WO2021128728A1 - 一种乙烯脱硫废水的处理系统及方法 - Google Patents

一种乙烯脱硫废水的处理系统及方法 Download PDF

Info

Publication number
WO2021128728A1
WO2021128728A1 PCT/CN2020/092683 CN2020092683W WO2021128728A1 WO 2021128728 A1 WO2021128728 A1 WO 2021128728A1 CN 2020092683 W CN2020092683 W CN 2020092683W WO 2021128728 A1 WO2021128728 A1 WO 2021128728A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
oxidation reaction
wastewater
reaction device
waste water
Prior art date
Application number
PCT/CN2020/092683
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021128728A1 publication Critical patent/WO2021128728A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds

Definitions

  • the invention relates to the field of ethylene desulfurization wastewater treatment, in particular to a system and method for treating ethylene desulfurization wastewater.
  • Ethylene is the main representative product of petrochemical industry and has a very important position in petrochemical industry.
  • the increase in ethylene production can drive and promote the increase of the three major synthetic materials and other organic materials. It can be said that ethylene production is a major indicator of the level of a country's petrochemical industry. Therefore, the country vigorously develops the ethylene industry, but various environmental problems will follow. In the ethylene production process, some waste water and waste gas will be indispensable.
  • waste lye In the production and operation of the ethylene plant, a large amount of waste lye will be generated due to the various acid gases produced in the process of washing and removing the cracking.
  • the main components of the waste lye are sulfide, residual sodium hydroxide and butter.
  • the composition is complex and the treatment is difficult. It often impacts downstream sewage treatment plants and affects sewage discharge standards, which is a major problem that plagues ethylene plants.
  • waste liquid 100:1 (volume); catalyst dosage 5ppm/m 3 waste liquid, normal temperature and pressure, contact time 3-5 hours, after treatment, the sulfur content of wastewater will be reduced from 4-5g/l to 0.5g /l or less, it will be lmg/1 or less after entering the sewage station of the plant, which meets the national discharge standard.
  • the first object of the present invention is to provide a treatment system for ethylene desulfurization wastewater.
  • the treatment system improves the mass transfer effect between two phases by arranging a micro-interface generator.
  • the micro-interface generator can break the bubbles into Micron-level bubbles increase the area of the phase boundary between the gas phase and the liquid phase, so that oxygen can better fuse with the ethylene desulfurization wastewater to form a gas-liquid emulsion, which improves the efficiency of the oxidation reaction.
  • the oxygen in the ethylene desulfurization wastewater is destroyed. After being broken into small bubbles, the gas volume becomes smaller, thereby slowing the buoyancy of the bubbles, making the oxygen stay in the ethylene desulfurization wastewater longer, further improving the reaction efficiency, and increasing the mass transfer effect of the reaction phase interface.
  • the entire treatment system does not need to use a catalyst, and it can achieve normal temperature and normal pressure operation.
  • the absence of a catalyst not only saves costs, but also eliminates the need for subsequent recovery and treatment of the catalyst, which causes secondary pollution.
  • the emergence of the problem the entire processing method is more convenient and quicker, and the operation process is correspondingly simplified.
  • the second object of the present invention is to provide a method for treating ethylene desulfurization wastewater by using the above-mentioned treatment system.
  • the treatment method is easy to operate, has milder operating conditions, and has low energy consumption.
  • the removal rate of harmful substances can be Up to 99%, it is worthy of widespread promotion and application.
  • the present invention provides a wastewater treatment system for treating ethylene desulfurization wastewater, including: an alkaline washing tower, a wastewater heat exchanger, a wastewater heater, and an oxidation reaction device connected in sequence, and a material inlet is provided on the wastewater heat exchanger , Material outlet, heat source inlet and heat source outlet, the alkali washing tower is provided with an alkali liquid circulation pipeline;
  • the oxidized water from the oxidation reaction device enters the waste water heat exchanger from the heat source inlet, the heat source outlet is connected with a finished product tank, the lye circulation pipeline is connected with a desulfurization waste water branch pipe, and the desulfurization waste water branch pipe is connected with The material inlet is connected, and the material outlet is connected to the waste water heater;
  • Micro-interface generators are symmetrically arranged on the double side walls of the oxidation reaction device, and the micro-interface generators are used to disperse the broken gas into bubbles.
  • the bottom wall of the oxidation reaction device is provided with an air inlet. Connected with the micro-interface generator through a pipeline;
  • the oxidation reaction device includes a primary oxidation reactor and a secondary oxidation reactor connected in sequence, and the oxidized water after the oxidation treatment of the primary oxidation reactor continues to enter the secondary oxidation reactor for oxidation treatment.
  • the waste ethylene lye to be processed by the invention contains high-concentration sodium sulfide, sodium hydrosulfide, thiolate, thiosulfate, phenols and other substances.
  • the hydrocarbon polymers in the cracked gas enter the waste liquid, and there will be a layer of yellow oil on the surface of the waste liquid, which exists as a water-in-oil emulsion.
  • the present invention provides a treatment system specifically for ethylene desulfurization wastewater treatment.
  • the treatment system is equipped with a micro-interface generator at the bottom of the oxidation reaction device to break and disperse the air or oxygen entering the oxidation reaction device.
  • Bubbles make the bubbles and wastewater form a gas-liquid emulsion, thereby increasing the area of the phase boundary between the gas and the wastewater, further improving the reaction efficiency, and increasing the mass transfer effect of the reaction phase interface, so that as much oxygen as possible is incorporated In the waste water, in this way, a good treatment effect can be ensured under the conditions of normal temperature and pressure, and no catalyst is required, or in order to ensure a better treatment effect, some catalysts can be added less, which can fully reduce the amount of catalyst used in the traditional process , According to the actual operating conditions, you can freely choose to add or not add catalyst.
  • the micro-interface generator is a pneumatic micro-interface generator.
  • the bottom of the oxidation reaction device is provided with a micro-interface generator, the number of the micro-interface generators is three, and each of the micro-interface generators is connected to the air inlet, so that both The cost can be taken into consideration, and the mass transfer effect can be guaranteed.
  • Two of the micro-interface generators are arranged at the symmetrical position of the bottom side wall, and a better mass transfer effect has been achieved through hedging, and the other micro-interface generator is arranged at the bottom of the oxidation reaction device.
  • the micro-interface generator used in the present invention can realize that before the multi-phase reaction medium enters the reactor, the gas and/or liquid phase in the multi-phase reaction medium can be placed in the micro-interface generator.
  • the gas and/or liquid phase in the multi-phase reaction medium can be placed in the micro-interface generator.
  • Through mechanical microstructures and/or turbulent flow microstructures they are broken into micro-bubbles and/or micro-droplets with a diameter of micrometers in a predetermined action mode to increase the gas and/or liquid phase and liquid phase and/or liquid phase and/or liquid phases during the reaction process.
  • the mass transfer area of the phase boundary between the solid phases improves the mass transfer efficiency between the reaction phases, and strengthens the multiphase reaction within the preset temperature and/or preset pressure range.
  • the micro-interface generator can be used for the reaction of gas-liquid, liquid-liquid, liquid-solid, gas-liquid-liquid, gas-liquid-solid and liquid-liquid-solid and other multiphase reaction media. Its specific structure can be based on The different flowing media can be freely selected. The specific structure and specific functions of the previous patents and documents also have corresponding records, and no additional details are given here. At the same time, according to actual engineering needs, the number and position of air inlets can be adjusted according to the height, length, diameter, waste water flow rate and other factors of the oxidation reaction device in this system to achieve better air supply effect and improve oxidation degradation. rate.
  • the micro-interface generator of the present invention is arranged at the middle and lower part of the oxidation reaction device by installing a pipeline.
  • the pipeline can serve as a fixed support for the micro-interface generator, and each micro-interface generator is connected to a branch pipe. , And then all the branch pipes are combined into a main pipe, and the main pipe is connected with the air inlet. In this way, the position of the micro-interface generator can be designed so that the dispersed gas and liquid can better realize the mass transfer between the two phases.
  • the oxidation reaction device of the present invention includes two-stage oxidation reactors.
  • the structure of the oxidation reactors of each stage is the same.
  • a micro-interface generator is installed in the lower part of the reactor.
  • the micro-interface in the two-stage oxidation reactor The generators are all connected to the air pressure device through the air inlet.
  • a two-stage oxidation reactor is set up to strengthen the wastewater treatment effect.
  • the ethylene desulfurization wastewater is heated by a wastewater heat exchanger and a wastewater heater, and then enters the oxidation reaction device.
  • the temperature of the oxidation water after the oxidation reaction device is usually relatively high. To make full use of this part of heat, it can be passed into the waste water heat exchanger to heat the ethylene desulfurization waste water to be treated.
  • the oxidized water from the oxidation reaction device will also contain a part of oxygen. Therefore, after the gas-liquid separation is carried out through the gas-liquid separation tank, the oxidized water is reused in the waste water heat exchanger for heat exchange.
  • the pretreatment includes adding a dehydrator and other pretreatments. Processing means, of course, can also be used for some other pre-processing methods according to actual working conditions.
  • a dehydrator is also included, and the dehydrator is connected to the alkali washing tower;
  • a raw water pump for transporting desulfurization wastewater is provided between the alkali washing tower and the dehydrator.
  • a transfer pump is provided on the connecting pipe between the waste water heat exchanger and the dehydrator.
  • the dewatering machine of the present invention is preferably a vacuum belt dewatering machine.
  • the vacuum belt dewatering machine achieves the purpose of dewatering by vacuum suction of the slurry.
  • the slurry is sent to the filter cloth of the vacuum belt dehydrator, and the filter cloth is conveyed through a heavy-duty rubber belt ,
  • the rubber belt is provided with grooves in the transverse direction and a through hole in the middle to enable liquid to be sucked into the vacuum box.
  • the filtrate and air are pumped to the vacuum manifold at the same time.
  • the filtrate in the vacuum filtrate collection pipe enters the gas-liquid separator for gas-liquid separation.
  • the top outlet of the gas-liquid separator is connected with a vacuum pump, and the gas is pumped out of the vacuum pump.
  • the separated filtrate enters the filtrate receiving water tank from the bottom outlet of the gas-liquid separator.
  • the slurry is vacuum sucked through the forming zone, the washing zone and the drying zone to form a qualified filter cake, which is sent to the unloading tank in the unloading zone and sent to the warehouse by the transfer belt conveyor.
  • an oxidizing water outlet is provided on the upper side of the oxidation reaction device, and the oxidizing water outlet is connected to the heat source inlet through a pipe.
  • the processing system further includes an air pressure device, the air pressure device is in communication with the air inlet, and the air or compressed oxygen compressed by the air pressure device enters the micro-interface generator through the air inlet to be dispersed and broken. .
  • the compressed air or oxygen from the air compressor is best heated in the heat exchanger before entering the micro-interface generator.
  • a pump body can be arranged on the corresponding connecting pipeline according to actual needs.
  • the treatment system of the ethylene desulfurization wastewater of the present invention has a high treatment capacity. After being processed by the treatment system, it can ensure a relatively high treatment effect under relatively low energy consumption conditions, and the removal rate of harmful substances can reach about 99%.
  • the present invention also provides a method for treating ethylene desulfurization wastewater, which includes the following steps:
  • the ethylene desulfurization wastewater from the caustic scrubber is heated and then enters the oxidation reaction device. At the same time, compressed air or compressed oxygen is passed into the oxidation reaction device to cause an oxidation reaction;
  • the compressed air or compressed oxygen entering the oxidation reaction device is first dispersed and broken through the micro-interface generator;
  • the ethylene desulfurization wastewater treatment method of the present invention has simple operation, milder operating conditions and low energy consumption.
  • the removal rate of harmful substances and COD can reach 99%, which reduces the discharge of industrial waste and is more environmentally friendly. It is worthy of widespread promotion and application.
  • the present invention has the following beneficial effects:
  • the ethylene desulfurization wastewater treatment system of the present invention improves the mass transfer effect between the two phases by arranging the micro-interface generator.
  • the micro-interface generator can break the bubbles into micron-level bubbles, thereby increasing the gas phase.
  • the phase boundary area with the liquid phase allows oxygen to better fuse with the ethylene desulfurization wastewater to form a gas-liquid emulsion, which improves the efficiency of the oxidation reaction;
  • the waste water treatment system of the present invention has a simple structure, less three wastes, realizes full recovery and utilization of oxygen, and occupies a small area;
  • the wastewater treatment system of the present invention improves the mass transfer effect between the two phases by arranging the micro-interface generator, reduces energy consumption and production cost, and significantly improves the efficiency of the oxidation reaction;
  • the treatment system of the present invention can realize normal temperature and normal pressure operation without using a catalyst.
  • the absence of a catalyst not only saves costs, but also eliminates the need for subsequent recovery and treatment of the catalyst, resulting in secondary pollution.
  • the processing method is easier and faster to operate, and the operation process is correspondingly simplified.
  • Fig. 1 is a schematic structural diagram of an ethylene desulfurization wastewater treatment system provided by an embodiment of the present invention.
  • FIG. 1 it is an ethylene desulfurization wastewater treatment system according to the first embodiment of the present invention, which includes an alkaline washing tower 10, a wastewater heat exchanger 40, a wastewater heater 50, an oxidation reaction device, and an air pressure device 74 connected in sequence. .
  • the waste water heat exchanger 40 is provided with a material inlet 41, a material outlet 42, a heat source inlet 43, and a heat source outlet 44.
  • the alkali washing tower is provided with a lye circulation pipeline 11, and the lye circulation pipeline 11 is provided with a lye circulation pump. 12.
  • the lye is sprayed to desulfurize the acid gas in the lye tower 10.
  • the desulfurization waste water branch pipe 13 is transported for wet oxidation treatment.
  • the desulfurization waste water branch pipe 13 is connected to the material inlet 41.
  • the oxidized water from the oxidation reaction device enters the waste water heat exchanger 60 from the heat source inlet 43, and the heat source outlet 44 is connected There is a finished product tank 90, and the material outlet 42 is connected to a waste water heater 50.
  • the waste water heat exchanger 40 the oxidized water reacted by the oxidation reaction device is exchanged with the ethylene desulfurization waste water to be treated, so as to achieve full use of energy. effect.
  • the upper side of the secondary oxidation reactor 60 is provided with an oxidizing water outlet 61.
  • the oxidizing water from the oxidizing water outlet 61 is first separated into gas and liquid in the gas-liquid separation tank 110, and then connected to the heat source inlet 43 through a pipe.
  • the secondary oxidation reactor A micro-interface generator 62 is provided in the lower part of the 60. The micro-interface generator 62 is used to disperse the crushed gas into bubbles.
  • the bottom wall of the secondary oxidation reactor 60 is provided with an air inlet 63.
  • the air inlet 63 is connected to the micro-interface generator 62 through a pipe, the air pressure device 64 is connected to the air inlet 63, and the air or oxygen compressed by the air pressure device 64 enters the micro-interface generator 62 through the air inlet 63 to achieve The gas is crushed and dispersed to enhance the mass transfer effect between the two phases.
  • the air compressor 64 is preferably an air compressor.
  • the air or oxygen compressed by the air compressor is heated by the heat exchanger before entering the micro-interface generator 62.
  • the type of air compressor can be selected as a centrifugal air compressor, which is low in cost and convenient to use.
  • the type of the micro-interface generator 62 is a pneumatic micro-interface generator 62, the number of the micro-interface generator 62 is 3, the two side walls of the secondary oxidation reactor 60 are symmetrically provided with the micro-interface generator 62, in addition to the secondary oxidation
  • the bottom of the reactor 60 is also provided with a micro-interface generator 62, so that the symmetrical arrangement can achieve hedging and strengthen the mass transfer effect.
  • the oxidized water from the secondary oxidation reactor 60 directly goes to the waste water heat exchanger 40 for heat exchange. After the heat exchange, it is cooled down and transported to the finished product tank 90 for storage.
  • the structure of the primary oxidation reactor 70 is consistent with the structure of the secondary oxidation reactor 60.
  • the water coming out of the finished product tank 90 can continue to be subjected to subsequent desalination treatment, and the conventional means of the prior art may be used for desalination.
  • the treatment system also includes a vacuum belt dehydrator 20, which is connected to the caustic washing tower 10. Between the caustic cleaning tower 10 and the dehydrator 20, a raw water pump 30 for transporting desulfurization wastewater and a waste water heat exchanger are provided. A transfer pump 80 is provided on the connecting pipe between 40 and the dehydrator 20, and the waste water removed from impurities from the vacuum belt dehydrator 20 is temporarily stored in the buffer tank 100, and then enters the waste water heat exchanger 40 from the buffer tank 100 through the transfer pump 80 in.
  • the number of micro-interface generators 62 is not limited. In order to increase the dispersion and mass transfer effect, additional micro-interface generators 62 can also be added, especially the installation position of the micro-interface generator 62 is not limited. It can be installed externally or internally, and when it is built-in, it can also be installed on the side wall of the kettle to be arranged oppositely to realize the hedging of microbubbles coming out of the outlet of the micro-interface generator 62.
  • the waste water heat exchanger 40, the wastewater heater 50, the pipeline of the oxidation reaction device, and the inside of the oxidation reaction device are purged with nitrogen, the ethylene desulfurization wastewater in the alkali scrubbing tower 10 is sent to the dehydrator 20 through the raw water pump 30 Pretreatment is performed to remove impurities, and the pretreated wastewater is temporarily stored in the buffer tank 100.
  • the ethylene desulfurization wastewater is sent to the wastewater heat exchanger 40 through the transfer pump 80 for heat exchange, and then further heated by the wastewater heater 50, and the heated ethylene desulfurization wastewater enters the oxidation reaction device for oxidation treatment.
  • the second oxidation reactor 60 two-stage oxidation treatment, compressed air or compressed oxygen is introduced from the bottom of the oxidation reaction device, and the micro-interface generator 62 is processed before the oxidation reaction is carried out to improve
  • the tops of the first-stage oxidation reactor 70 and the second-stage oxidation reactor 60 are both provided with a vent 75.
  • the oxidized water after the oxidation reaction in the oxidation reaction device is returned from the top of the oxidation reaction device to the waste water heat exchanger 50 for heat exchange and cooling treatment, and then is transported to the finished product tank 90 for storage.
  • the treatment system of the present invention ensures that the wet oxidation is carried out under normal temperature and pressure by laying the micro-interface generation system, and does not require the use of catalysts. Compared with the prior art ethylene desulfurization wastewater treatment system, the treatment system of the present invention has fewer equipment components, small floor space, low energy consumption, low cost, high safety, and controllable response, and is worthy of being widely promoted and applied.
  • the ethylene desulfurization wastewater treatment system of the present invention has a high processing capacity. After the treatment system is processed, it can ensure a relatively high treatment effect under relatively low energy consumption conditions, and the removal rate of harmful substances and COD can reach 99%. .

Abstract

本发明提供了一种乙烯脱硫废水的处理系统及方法。该处理系统包括:依次连接的碱洗塔、废水换热器、废水加热器、氧化反应装置,废水换热器上设置有物料进口、物料出口、热源进口以及热源出口,碱洗塔上设置有碱液循环管线;氧化反应装置出来的氧化水从所述热源进口进入废水换热器中,热源出口连接有成品罐,碱液循环管线连接有脱硫废水支管,脱硫废水支管与所述物料进口连接,物料出口连接废水加热器;氧化反应装置内双侧壁对称设置有微界面发生器。本发明的处理系统通过布设了微界面发生器后,提高反应相界面的接触,不需要使用催化剂、或者少添加催化剂也能获得良好的废水处理效果,实现了能耗低,节约成本的效果。

Description

一种乙烯脱硫废水的处理系统及方法 技术领域
本发明涉及乙烯脱硫废水处理领域,具体而言,涉及一种乙烯脱硫废水的处理系统及方法。
背景技术
乙烯是石油化工的主要代表产品,在石油化工中具有很重要的地位。乙烯产量的增加,能够带动和促进三大合成材料和其他有机材料的增加,可以说,乙烯产量是衡量一个国家石油化工工业水平的主要标志。所以国家大力发展乙烯工业,但随之而来的就是各种环境问题,乙烯生产过程中,就会必不可少的产生一些废水废气等。
在乙烯装置的生产运行中,由于洗涤脱除裂解过程中产生的各种酸性气体会产生大量的废碱液,而废碱液的主要成分为硫化物、残存的氢氧化钠和黄油,由于其成分复杂,处理难度大,经常给下游的污水处理厂造成冲击,影响污水排放标准,是困扰乙烯装置的老大难问题。
目前,对各种废碱液的处理,国内外生产厂家大多采用湿式氧化技术。最近,吉林乙烯装置投产时,采用湿式氧化法处理碱洗塔脱硫废液,与生产装置同时投产。流程简单,效果良好,脱硫率达90%以上。这一方法是以聚酞菁钴为催化剂,空气为氧化剂,将来自碱洗塔的含硫废水中的硫醇钠和硫化纳分别氧化为二硫化物RSSR和Na 2S 2O 3,主要条件空气:废液=100:1(体积);催化剂用量5ppm/m 3废液,常温常压,接触时间3-5小时,经处理后,废水含硫量由4-5g/l降至0.5g/l以下,汇入厂污水站后为lmg/1以下,达到国家排放标准。
上述湿式氧化处理过程中,通过采用了催化剂后,虽然操作温度和压力不 高,基本可以实现在常温常压下操作,但是采用了催化剂后本身成本比较高,后续反应结束后,还要考虑催化剂的后续回收、处理的问题,操作非常不便,无形之中多增加了很多后续工作。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种乙烯脱硫废水的处理系统,该处理系统通过布设微界面发生器后,提高了两相之间的传质效果,该微界面发生器可以将气泡打碎成微米级别的气泡,从而增加气相与液相之间的相界面积,使得氧气可以与乙烯脱硫废水更好的融合形成气液乳化物,提高氧化反应效率,同时由于乙烯脱硫废水中的氧气被打碎成小气泡后,气体体积变小,从而减缓了气泡上浮的浮力,使得氧气在乙烯脱硫废水中停留的时间更长,进一步提高反应效率,增加了反应相界面的传质效果。
同时,通过采用了微界面发生器后,整个处理系统不需要采用催化剂,就可以实现常温常压操作,不采用催化剂不仅节约了成本,还免去了催化剂需要后续回收、处理,造成二次污染的问题的出现,整个处理方法操作更为简便快捷,操作流程也相应的简化许多。
本发明的第二目的在于提供一种采用上述处理系统进行乙烯脱硫废水的处理方法,该处理方法操作简便、操作条件更加温和,能耗低,处理后的乙烯脱硫废水中,有害物去除率可达99%左右,值得广泛推广应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种用于处理乙烯脱硫废水的废水处理系统,包括:依次连接的碱洗塔、废水换热器、废水加热器、氧化反应装置,所述废水换热器上设置有物料进口、物料出口、热源进口以及热源出口,所述碱洗塔上设置有碱液循环管线;
所述氧化反应装置出来的氧化水从所述热源进口进入所述废水换热器中,所述热源出口连接有成品罐,所述碱液循环管线连接有脱硫废水支管,所述脱硫废水支管与所述物料进口连接,所述物料出口连接所述废水加热器;
所述氧化反应装置内双侧壁对称设置有微界面发生器,所述微界面发生器用于分散破碎气体成气泡,所述氧化反应装置的底璧上设置有进气口,所述进气口与所述微界面发生器通过管道连接;
所述氧化反应装置包括依次连接的一级氧化反应器、二级氧化反应器,所述一级氧化反应器氧化处理后的氧化水继续进入所述二级氧化反应器进行氧化处理。
本发明所需处理的乙烯废碱液中含有高浓度的硫化钠、硫氢化钠、硫醇盐与硫代硫酸盐、酚类等物质。与此同时,在碱洗过程中裂解气中烃类聚合物进入废液,在废液表面还会存在一层黄色的油状物,以油包水型的乳状液存在,这些废液目前主要采用湿式氧化技术进行处理,但是在湿式氧化处理过程中,采用了催化剂后,虽然操作温度和压力不高,基本可以实现在常温常压下操作,但是采用了催化剂后本身成本比较高,后续反应结束后,还要考虑催化剂的后续回收、处理的问题,操作非常不便,无形之中多增加了很多后续工作。
本发明为了解决上述技术问题,提供了一种专门针对乙烯脱硫废水处理的处理系统,该处理系统通过在氧化反应装置底部设置有微界面发生器,将进入氧化反应装置的空气或氧气打碎分散成气泡,使得气泡与废水形成气液乳化物,从而增加了气体与废水之间的相界面积,进一步提高了反应效率,增加了反应相界面的传质效果后,使得氧气尽可能的多融入到废水中,这样在常温常压的条件下也能保证良好的处理效果,不需要采用催化剂,或者为了保证更优的处理效果,也可少添加一些催化剂,可充分降低传统工艺采用催化剂的量,根据实际操作工况可自由选择添加或不添加催化剂。
优选地,所述微界面发生器为气动式微界面发生器。
优选地,所述氧化反应装置内的底部设置有微界面发生器,所述微界面发 生器的个数为3个,每个所述微界面发生器均与所述进气口连通,这样既可以兼顾到成本,又能保证传质效果。其中两个微界面发生器设置底部侧壁对称的位置上,通过对冲已达到更优的传质效果,另外一个微界面发生器设置在氧化反应装置的最底部。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器可实现在多相反应介质进入反应器之前,将多相反应介质中的气相和/或液相在微界面发生器中通过机械微结构和/或湍流微结构,以预设作用方式破碎成直径为微米级别的微气泡和/或微液滴,以增大反应过程中气相和/或液相与液相和/或固相之间的相界传质面积,提高各反应相之间的传质效率,在预设温度和/或预设压强范围内强化多相反应。
该微界面发生器可用于气-液、液-液、液-固、气-液-液、气-液-固以及液-液-固等多相反应介质进行的反应,其具体结构可根据流经介质的不同进行自由选择,关于其具体结构以及具体功能作用之前的专利、文献中也有相应的记载,在此不做额外赘述。同时,也可以根据实际工程需要,对本系统中的氧化反应装置的高度、长度、直径、废水流速等因素对进气口的数量和位置进行调整,以达到更好地供气效果,提高氧化降解率。
本发明的微界面发生器通过内设管道的方式将其设置在氧化反应装置内中下部的位置,管道可以起到固定支撑微界面发生器的作用,每个微界面发生器都与一个支管连接,然后所有支管汇总到一个总管,总管再与进气口连接,这样设计微界面发生器的位置,可以使得分散打碎后的气体与液体更好的实现两相之间的传质。
本发明的氧化反应装置包括了两级氧化反应器,每一级的氧化反应器的结构是一致的,均在反应器内的下部设置有微界面发生器,两级氧化反应器内的微界面发生器均通过进气口与空压装置连接。通过设置两级氧化反应器以强化废水的处理效果。
另外,在本发明的方案中,先将乙烯脱硫废水经过废水换热器、废水加热 器进行加热后,再进入氧化反应装置中,经过了氧化反应装置反应后的氧化水温度通常比较高,为了充分利用这部分热量,可以将其通入废水换热器中对待处理的乙烯脱硫废水进行加热。从氧化反应装置出来的氧化水还会含有一部分氧气,因此先经过气液分离罐将气液分离后,再将氧化水回用到废水换热器中进行换热。
为了回收乙烯脱硫废水中的资源、降低乙烯脱硫废水的湿式氧化难度、提高废水的COD去除率,最好在湿式氧化之前先对乙烯脱硫废水进行预处理,所述预处理包括增设脱水机等预处理手段,当然根据实际的工况对于其他的一些预处理方式也可以采用。
因此,在本发明乙烯脱硫废水的处理系统中,还包括了脱水机,所述脱水机与所述碱洗塔连接;
优选地,所述碱洗塔与所述脱水机之间设置有用于运输脱硫废水的原水泵。
优选地,所述废水换热器与所述脱水机的连接管道上设置有输送泵。
本发明的脱水机优选为真空皮带脱水机,真空皮带脱水机是通过真空抽吸浆液达到脱水的目的,浆液被送入真空皮带脱水机的滤布上,滤布是通过一条重型橡胶皮带传送的,此橡胶皮带上横向开有凹槽且中间开有通孔以使液体能够吸入真空箱。滤液和空气同时被抽送到真空总管,真空滤液收集管中滤液进入气液分离器进行气水分离,气液分离器顶部出口与真空泵相连,气体出真空泵抽走。分离后的滤液由气液分离器底部出口进入滤液接收水箱。浆液经真空抽吸经过成形区、冲洗区和干燥区形成合格的滤饼,在卸料区送入卸料槽由转运皮带机送入仓库。
优选地,所述氧化反应装置的侧上部设置有氧化水出口,所述氧化水出口通过管道与热源进口连接。
优选地,所述处理系统还包括空压装置,所述空压装置与所述进气口连通,经过空压装置压缩的空气或压缩的氧气通过进气口进入微界面发生器进行分 散打碎。从空压装置来的压缩空气或氧气最好先在换热器中加热,再进入到微界面发生器中。
本发明的处理系统中可根据实际需要在相应的连接管道上设置泵体。
本发明的乙烯脱硫废水的处理系统处理能力高,经过该处理系统处理后,能保证在比较低的能耗条件下,拥有比较高的处理效果,有害物去除率可达99%左右。
除此之外,本发明还提供了一种乙烯脱硫废水的处理方法,包括如下步骤:
从碱洗塔出来的乙烯脱硫废水经过加热后进入氧化反应装置中,同时在氧化反应装置中通入压缩空气或压缩氧气,发生氧化反应;
进入所述氧化反应装置的压缩空气或压缩氧气先通过微界面发生器进行分散破碎;
本发明的乙烯脱硫废水的处理方法操作简便、操作条件更加温和,能耗低,处理后的乙烯脱硫废水中,有害物、COD去除率可达99%,减少了工业废物的排放,更加环保,值得广泛推广应用。
与现有技术相比,本发明的有益效果在于:
(1)本发明乙烯脱硫废水的处理系统通过布设了微界面发生器后,提高了两相之间的传质效果,该微界面发生器可以将气泡打碎成微米级别的气泡,从而增加气相与液相之间的相界面积,使得氧气可以与乙烯脱硫废水更好的融合形成气液乳化物,提高氧化反应效率;
(2)本发明的废水处理系统中,通过采用了两级氧化反应器,以加强废水的处理效果;
(3)本发明的废水处理系统,结构简单,三废少,实现了氧气的充分回收利用,占地面积小;
(4)本发明的废水处理系统通过布设微界面发生器提高了两相之间的传质效果,降低了能耗以及生产成本,显著提高了氧化反应效率;
(5)本发明的处理系统不需要采用催化剂,就可以实现常温常压操作,不采用催化剂不仅节约了成本,还免去了催化剂需要后续回收、处理,造成二次污染的问题的出现,整个处理方法操作更为简便快捷,操作流程也相应的简化许多。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的乙烯脱硫废水的处理系统的结构示意图。
附图说明:
10-碱洗塔;                     11-碱液循环管线;
12-碱液循环泵;                 13-脱硫废水支管;
20-脱水机;                     30-原水泵;
40-废水换热器;                 41-物料进口;
42-物料出口;                   43-热源进口;
44-热源出口;                   50-废水加热器;
60-二级氧化反应器;             61-氧化水出口;
62-微界面发生器;               63-进气口;
64-空压装置;                   65-放空口;
70-一级氧化反应器;             80-输送泵;
90-成品罐;                     100-缓冲罐;
110-气液分离罐。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例一的乙烯脱硫废水的处理系统,其包括了依次连接的碱洗塔10、废水换热器40、废水加热器50、氧化反应装置以及空 压装置74。
其中,废水换热器40上分别有物料进口41、物料出口42、热源进口43以及热源出口44,碱洗塔上设置有碱液循环管线11,碱液循环管线11上设置有碱液循环泵12,碱液以喷淋的形式在碱液塔10中对酸性气体进行脱硫处理,当碱洗液达到饱和时,形成了废液需要进行处理时,则从碱液循环管线11上连接出来的脱硫废水支管13输送以进行湿式氧化处理,脱硫废水支管13与物料进口41连接,氧化反应装置出来的氧化水从所述热源进口43进入所述废水换热器60中,所述热源出口44连接有成品罐90,所述物料出口42连接废水加热器50,在废水换热器40中,通过将氧化反应装置反应后的氧化水与待处理的乙烯脱硫废水换热,从而达到充分利用能源的效果。
二级氧化反应器60的侧上部设置有氧化水出口61,氧化水出口61出来的氧化水先在气液分离罐110中进行气液分离,再通过管道与热源进口43连接,二级氧化反应器60内下部设置有微界面发生器62,所述微界面发生器62用于分散破碎气体成气泡,所述二级氧化反应器60的底璧上设置有进气口63,所述进气口63与所述微界面发生器62通过管道连接,空压装置64与进气口63连通,通过空压装置64压缩后的空气或氧气通过进气口63进入到微界面发生器62中,实现气体的粉碎分散,以加强两相之间的传质效果。空压装置64优选为空气压缩机。空压装置压缩后的空气或氧气先经过换热器加热后,再进入微界面发生器62。空气压缩机的类型可以选择为离心式空气压缩机,该种类型的压缩机造价低,使用方便。微界面发生器62的类型为气动式微界面发生器62,微界面发生器62的个数为3个,二级氧化反应器60内双侧壁对称设置有微界面发生器62,此外二级氧化反应器60的底部还设置有微界面发生器62,这样对称设置的方式可以实现对冲,强化传质效果。二级氧化反应器60出来的氧化水直接去废水换热器40进行换热,换热后冷却下来输送到成品罐90中储存。一级氧化反应器70的结构与二级氧化反应器60的结构一致。成品罐90出来的水可以继续进行后续的除盐处理,除盐采用现有技术的常规手段即可。
该处理系统还包括了真空皮带脱水机20,该真空皮带脱水机20与碱洗塔10连接,碱洗塔10与脱水机20之间设置有用于运输脱硫废水的原水泵30,废水换热器40与脱水机20的连接管道上设置有输送泵80,从真空皮带脱水机20脱离杂质后的废水暂存到缓冲罐100中,然后从缓冲罐100经过输送泵80进入到废水换热器40中。
在上述实施例中,微界面发生器62并不局限于个数,为了增加分散、传质效果,也可以多增设额外的微界面发生器62,尤其是微界面发生器62的安装位置不限,可外置也可内置,内置时还可以采用安装在釜内的侧壁上相对设置的方式,以实现从微界面发生器62的出口出来的微气泡发生对冲。
在上述两个实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置上设置。
以下简要说明本发明的乙烯脱硫废水的处理系统的工作过程和原理:
氮气吹扫碱洗塔10、废水换热器40、废水加热器50、氧化反应装置的管线以及氧化反应装置内部后,碱洗塔10内的乙烯脱硫废水通过原水泵30送到脱水机20中进行预处理以脱除杂质,预处理后的废水暂时储存在缓冲罐100中。
然后,乙烯脱硫废水经过输送泵80送入到废水换热器40中进行换热后,再经过废水加热器50进行进一步的加热,加热后的乙烯脱硫废水进入到氧化反应装置中进行氧化处理,依次经过一级氧化反应器70、二级氧化反应器60两级氧化处理,压缩空气或压缩氧气从氧化反应装置的底部通入,先经过微界面发生器62处理后再进行氧化反应,以提高相界面的传质效率,一级氧化反应器70、二级氧化反应器60的顶部均设置有放空口75。
氧化反应装置中氧化反应后的氧化水从氧化反应装置的顶部返回废水换热器50中换热冷却处理后,输送到成品罐90中储存。
以上各个工艺步骤循环往复,以使整个处理系统平稳的运行。
本发明的处理系统通过铺设微界面发生系统,保证了湿式氧化在常温常压 状态下进行,且不需要采用催化剂。与现有技术乙烯脱硫废水的处理系统相比,本发明的处理系统设备组件少、占地面积小、能耗低、成本低、安全性高、反应可控,值得广泛推广应用。
总之,本发明的乙烯脱硫废水的处理系统处理能力高,经过该处理系统处理后,能保证在比较低的能耗条件下,拥有比较高的处理效果,有害物、COD去除率可达99%。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种乙烯脱硫废水的处理系统,其特征在于,包括:依次连接的碱洗塔、废水换热器、废水加热器、氧化反应装置,所述废水换热器上设置有物料进口、物料出口、热源进口以及热源出口,所述碱洗塔上设置有碱液循环管线;
    所述氧化反应装置出来的氧化水从所述热源进口进入所述废水换热器中,所述热源出口连接有成品罐,所述碱液循环管线连接有脱硫废水支管,所述脱硫废水支管与所述物料进口连接,所述物料出口连接所述废水加热器;
    所述氧化反应装置内双侧壁对称设置有微界面发生器,所述微界面发生器用于分散破碎气体成气泡,所述氧化反应装置的底璧上设置有进气口,所述进气口与所述微界面发生器通过管道连接;
    所述氧化反应装置包括依次连接的一级氧化反应器、二级氧化反应器,所述一级氧化反应器氧化处理后的氧化水继续进入所述二级氧化反应器进行氧化处理。
  2. 根据权利要求1所述的处理系统,其特征在于,所述处理系统还包括脱水机,所述脱水机与所述碱洗塔连接。
  3. 根据权利要求2所述的处理系统,其特征在于,所述碱洗塔与所述脱水机之间设置有用于运输脱硫废水的原水泵。
  4. 根据权利要求1所述的处理系统,其特征在于,所述微界面发生器为气动式微界面发生器。
  5. 根据权利要求1所述的处理系统,其特征在于,所述氧化反应装置内的底部设置有微界面发生器,所述微界面发生器的个数为3个,每个所述微界面发生器均与所述进气口连通。
  6. 根据权利要求1-5任一项所述的处理系统,其特征在于,所述氧化反应装置的侧上部设置有氧化水出口,所述氧化水出口通过管道与热源进口连接。
  7. 根据权利要求3所述的处理系统,其特征在于,所述废水换热器与所 述脱水机的连接管道上设置有输送泵。
  8. 根据权利要求1-5任一项所述的处理系统,其特征在于,所述处理系统还包括空压装置,所述空压装置与所述进气口连通。
  9. 根据权利要求2所述的处理系统,其特征在于,所述脱水机的类型为真空皮带脱水机。
  10. 采用权利要求1-9任一项所述处理系统的乙烯脱硫废水的处理方法,其特征在于,包括如下步骤:
    从碱洗塔出来的乙烯脱硫废水经过加热后进入氧化反应装置中,同时在氧化反应装置中通入压缩空气或压缩氧气,发生氧化反应;
    进入所述氧化反应装置的压缩空气或压缩氧气先通过微界面发生器进行分散破碎。
PCT/CN2020/092683 2019-12-23 2020-05-27 一种乙烯脱硫废水的处理系统及方法 WO2021128728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911334193.3A CN113087256A (zh) 2019-12-23 2019-12-23 一种乙烯脱硫废水的处理系统及方法
CN201911334193.3 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021128728A1 true WO2021128728A1 (zh) 2021-07-01

Family

ID=76573593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092683 WO2021128728A1 (zh) 2019-12-23 2020-05-27 一种乙烯脱硫废水的处理系统及方法

Country Status (2)

Country Link
CN (1) CN113087256A (zh)
WO (1) WO2021128728A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102285729A (zh) * 2010-06-18 2011-12-21 中国石油化工股份有限公司 一种高温湿式氧化处理废碱液的方法
CN106215730A (zh) * 2016-08-05 2016-12-14 南京大学 微米气泡发生器
CN110591763A (zh) * 2019-09-10 2019-12-20 南京延长反应技术研究院有限公司 一种煤间接液化的智能强化控制系统及工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319150B (zh) * 2007-06-07 2010-09-15 中国石油化工股份有限公司 热碱洗脱硫方法
CN104609625B (zh) * 2013-11-05 2016-08-17 中国石油化工股份有限公司 一种乙烯废碱液的处理方法
CN108675433A (zh) * 2018-06-22 2018-10-19 杭州深瑞水务有限公司 一种多段进气湿式氧化系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102285729A (zh) * 2010-06-18 2011-12-21 中国石油化工股份有限公司 一种高温湿式氧化处理废碱液的方法
CN106215730A (zh) * 2016-08-05 2016-12-14 南京大学 微米气泡发生器
CN110591763A (zh) * 2019-09-10 2019-12-20 南京延长反应技术研究院有限公司 一种煤间接液化的智能强化控制系统及工艺

Also Published As

Publication number Publication date
CN113087256A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN211712859U (zh) 一种乙烯脱硫废水的智能处理系统
CN102350203A (zh) 一种利用旋转动力设备脱除含硫化氢气体的工艺
WO2021128723A1 (zh) 一种丙烯酸及其酯废水的处理系统及方法
CN104556523A (zh) 一种炼油厂碱渣废液和三泥处理方法
CN106861401B (zh) 液化石油气脱硫净化系统及净化方法
CN106315930A (zh) 一种乙烯废碱液再生回用的方法
CN105542874A (zh) 一种兰炭煤气一体化工艺及装置
CN205528636U (zh) 一种兰炭煤气一体化装置
WO2021128728A1 (zh) 一种乙烯脱硫废水的处理系统及方法
CN109929583A (zh) 一种尾气零排放的液态烃脱硫醇碱液再生的装置及方法
CN211733963U (zh) 一种乙烯脱硫废水的处理系统
CN218637008U (zh) 用于沼气脱硫的强制循环湿法脱硫装置
CN204999859U (zh) 一种凝析油脱硫醇及碱液再生回收二硫化物的装置
CN214830137U (zh) 低品质变压器油回收再利用系统
CN206396137U (zh) 分体式沼气生物脱硫装置
CN108726553A (zh) 一种利用电石渣和废硫酸生产硫酸钙的系统
CN109701363A (zh) 一种回收低温甲醇洗装置酸性气中甲醇的方法
CN205699822U (zh) 一种高效废气净化装置
CN210752010U (zh) 一种氟化氢制备过程中的含硫工艺气的脱硫装置
CN108570335A (zh) 轻石脑油脱硫脱胺的方法和装置
CN210814652U (zh) 一种用于硫磺回收尾气的深度脱硫化氢装置
CN105731501B (zh) 一种利用酸性气生产固体碳酸氢钠的方法及装置
CN113045083A (zh) 一种乙烯脱硫废水的智能处理系统及方法
CN203959827U (zh) 用于二硫化碳制备工艺中液硫的分离装置
CN113201365A (zh) 低品质变压器油回收再利用系统及其回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904533

Country of ref document: EP

Kind code of ref document: A1