WO2021128725A1 - 一种工业碱渣废水的处理系统及方法 - Google Patents

一种工业碱渣废水的处理系统及方法 Download PDF

Info

Publication number
WO2021128725A1
WO2021128725A1 PCT/CN2020/092666 CN2020092666W WO2021128725A1 WO 2021128725 A1 WO2021128725 A1 WO 2021128725A1 CN 2020092666 W CN2020092666 W CN 2020092666W WO 2021128725 A1 WO2021128725 A1 WO 2021128725A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali
inlet
oxidation reactor
water
alkali residue
Prior art date
Application number
PCT/CN2020/092666
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021128725A1 publication Critical patent/WO2021128725A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Definitions

  • the invention relates to the field of industrial alkali residue wastewater treatment, in particular to a system and method for industrial alkali residue wastewater treatment.
  • Petroleum refining and petrochemical processes will produce alkali slag wastewater containing high concentrations of sulfide and refractory organics.
  • the discharge of CODcr, sulfide and phenol is as high as 40% to 50% of the total pollutant discharge of the refinery. It affects the normal operation of sewage treatment facilities and the discharge of sewage; at the same time, the alkali residue wastewater is strongly alkaline and contains organic matter with recycling value. It is generally neutralized with strong acid before entering the sewage treatment plant. During the neutralization process, the sulfide in the wastewater is converted into hydrogen sulfide, which easily escapes, causing environmental pollution and operator poisoning. Therefore, the treatment of alkali residue wastewater has always been a problem that plagues petrochemical enterprises.
  • the alkali slag mitigation wet oxidation deodorization technology is at a higher temperature and pressure, the temperature can reach 150-200 °C, the reaction pressure is 1-5 MPa, and the inorganic sulfide and organic sulfide in the waste alkali slag are removed through the wet oxidation technology. It is oxidized to sulfate in the liquid phase to remove the sulfide in the alkali residue and avoid the pollution of the environment by the malodorous substances during acidification.
  • the current wet oxidation technology generally has relatively high operating temperature and relatively high pressure, which not only requires relatively high equipment requirements, high energy consumption and high cost, but also reduces operational safety.
  • the equipment is prone to aging and damage.
  • the residence time of the medium oxygen in the reactor is short, and most of the oxygen does not fully react before floating out of the reactor, which reduces the reaction efficiency and increases the processing cost.
  • the first object of the present invention is to provide a treatment system for industrial alkali slag wastewater.
  • the treatment system improves the mass transfer effect between two phases by arranging a micro-interface generator, which can break up air bubbles. Micron-level bubbles increase the area of the phase boundary between the gas phase and the liquid phase, so that oxygen can better fuse with the alkali slag wastewater to form a gas-liquid emulsion, which improves the efficiency of the oxidation reaction.
  • the oxygen in the alkali slag wastewater is After being broken into small bubbles, the gas volume becomes smaller, which slows down the buoyancy of the bubbles, makes the oxygen stay in the industrial alkali slag wastewater longer, further improves the reaction efficiency, and increases the mass transfer effect of the reaction phase interface.
  • the operating temperature and pressure can also be appropriately reduced, thereby avoiding a series of potential safety hazards caused by high temperature and high pressure, and achieving the effects of low energy consumption and low operating costs.
  • the second object of the present invention is to provide a method for treating industrial alkali slag wastewater by adopting the above treatment system.
  • the treatment method is easy to operate, has milder operating conditions, has low energy consumption, and has a removal rate of harmful substances in the treated alkali slag wastewater. It can reach about 99%, which is worthy of widespread application.
  • the invention provides a treatment system for industrial alkali residue wastewater treatment, comprising: an alkali residue storage tank, an alkali residue heat exchanger, an alkali residue heater, an oxidation reactor and a washing tower, and an alkali residue heat exchanger connected in sequence There are material inlets, material outlets, heat source inlets and heat source outlets on the board;
  • Part of the oxidized water from the oxidation reactor enters the alkali residue heat exchanger from the heat source inlet, and the other part enters the water washing tower to wash the alkali residue.
  • the heat source outlet is connected to the intermediate tank I, the material inlet is connected to the alkali residue storage tank, and the material outlet is connected to alkali.
  • the inner bottom of the oxidation reactor is provided with a micro-interface generator, which is used to disperse the broken gas into bubbles, and the bottom wall of the oxidation reactor is provided with an air inlet, which is connected with the micro-interface generator.
  • the wet oxidation technology in the prior art generally has relatively high operating temperature and relatively high pressure, which not only requires relatively high equipment requirements, high energy consumption, and high cost, but also reduces operational safety.
  • the equipment is prone to aging and damage, and it is oxidizing.
  • the residence time of oxygen in the reactor is short, and most of the oxygen floats out of the reactor without fully reacting, which reduces the reaction efficiency and increases the processing cost.
  • the present invention provides a treatment system specifically for industrial alkali slag wastewater treatment.
  • the treatment system is equipped with a micro-interface generator at the bottom of the oxidation reactor to break up the air or oxygen entering the oxidation reactor. Disperse into bubbles to form gas-liquid emulsions with waste water, thereby increasing the area of the phase boundary between gas and waste water, further improving the reaction efficiency, and increasing the mass transfer effect of the reaction phase interface, the operating temperature and pressure can also be Appropriate reduction can avoid a series of potential safety hazards caused by high temperature and high pressure, and achieve the effects of low energy consumption and low operating costs.
  • the micro-interface generator is a pneumatic micro-interface generator.
  • the number of the micro-interface generators is more than two, which are arranged side by side at the bottom of the oxidation reactor.
  • the number of the micro-interface generators can be more than one.
  • micro-interface generator used in the present invention is embodied in the inventor’s previous patents, such as the patent publication No. 106215730A.
  • the core of the micro-interface generator is bubble breakage, and the bubble breaker
  • the principle is that the gas carried by the high-speed jets collide with each other to transfer energy and break the bubbles.
  • the structure of the micro-interface generator is disclosed in one of the embodiments in the above patent, which will not be repeated here.
  • connection between the micro-interface generator and the oxidation reactor, and other equipment, including the connection structure and the connection location it depends on the structure of the micro-interface generator, which is not limited.
  • the number and position of the air inlets can be adjusted according to the height, length, diameter, waste water flow rate and other factors of the oxidation reactor in this system, so as to achieve better air supply effect and improve oxidation degradation. rate.
  • the industrial alkali slag wastewater is heated by an alkali slag heat exchanger and an alkali slag heater, and then enters the oxidation reactor, because the oxidation reaction needs to be carried out under high temperature and high pressure. Therefore, it is necessary to preheat the industrial alkali slag wastewater, and the temperature of the oxidation water after the oxidation reactor is relatively high. In order to make full use of this part of heat, it can be passed into the alkali slag heat exchanger to exchange the alkali slag wastewater.
  • Part of the oxidized water from the oxidation reactor is returned to the alkali slag heat exchanger for heat exchange. At this time, the oxidized water can be reused.
  • the oxidized water cooled after the heat exchange is not required by the user. It can be used as a finished product through the intermediate tank I to the intermediate tank II.
  • the oxidized water will continue to enter the washing tower from the intermediate tank I for washing and slag removal.
  • the purified water after washing and removing the slag can be directly used. Reuse and store in intermediate tank III.
  • the present invention has sufficiently reduced the temperature and pressure of the reaction, the temperature of the oxidation reaction is controlled at 120-140°C, and the reaction pressure is controlled between 0.5-0.6 MPa.
  • the side wall of the alkali slag storage tank is provided with an alkali slag inlet
  • the bottom of the alkali slag storage tank is provided with an alkali slag outlet
  • the alkali slag waste water coming in from the alkali slag inlet is directed along the side wall of the alkali slag storage tank. Extend a distance down;
  • the alkali residue outlet is connected with a filter, and the filter is connected with the material inlet of the alkali residue heat exchanger.
  • the reason why it is necessary to extend the alkali slag waste water along the side wall of the alkali slag storage tank for a certain distance is generally to directly connect the alkali slag inlet to a vertical pipe to achieve this function.
  • the slag storage tank will cause the alkali slag waste water in the storage tank to fluctuate, so it is better to go deep into the lower part of the alkali slag storage tank.
  • a transfer pump is provided on the connecting pipe between the filter and the alkali slag heat exchanger.
  • the type of the filter can be any one of a plate and frame filter press, a vacuum filter press, a diatomaceous earth filter, a plate filter press, a membrane filter press, and a ceramic filter, preferably It is a plate and frame filter press, because the plate and frame filter press itself is low in cost, and the effect of filtering solid impurities is also better.
  • the processing system further includes an oil slick tank, a slick oil outlet is further provided on the side wall of the alkali residue storage tank, and the bottom surface of the oil slick tank is covered with an adsorbent layer.
  • a purified water outlet is set on the upper side of the side wall of the oil slick pond. After the slick oil is fully absorbed by the adsorbent at the bottom It can be discharged from the bottom of the oil slick, and the clean water is discharged from the clean water outlet.
  • a slag isolation box is also provided at the inlet of the oil slick tank to fully isolate the alkali residue.
  • the top of the oxidation reactor is provided with an oxidizing water outlet, the oxidizing water outlet is in communication with the feed inlet of the washing tower, and the side wall of the washing tower is provided with a washing water inlet, the washing water inlet
  • the incoming washing liquid passes through a spray head to spray the oxidized water to remove dross.
  • the bottom of the washing tower is provided with a washing water outlet, a part of the clean water from the washing water outlet is returned to the washing tower as cooling washing water for recycling, and the other part is produced as a finished product and stored in the intermediate tank III.
  • the washing water spray is inversely contacted with the incoming oxidized water to achieve the purification of the oxidized water.
  • part of the purified oxidized water is returned to the washing tower for cooling and washing water recycling, and the other part is used as a finished product Mined.
  • a vent is provided on the top of the water washing tower for the discharge of residual air or residual oxygen.
  • the processing system further includes an air pressure device, the air pressure device is in communication with the air inlet, and the air or compressed oxygen compressed by the air pressure device enters the micro-interface generator through the air inlet to be dispersed and broken. .
  • a pump body can be arranged on the corresponding connecting pipeline according to actual needs.
  • the industrial alkali slag wastewater treatment system of the present invention has a high treatment capacity. After the treatment system is processed, it can ensure a relatively high treatment effect under relatively low energy consumption conditions, and the removal rate of harmful substances can reach about 99%, including Some organic compounds such as sulfides, CODcr, and phenols.
  • the present invention also provides a method for treating industrial alkali residue wastewater, which includes the following steps:
  • the industrial alkali slag wastewater After heating, the industrial alkali slag wastewater enters the oxidation reactor, and at the same time, compressed air or compressed oxygen is passed into the oxidation reactor to cause an oxidation reaction;
  • the compressed air or compressed oxygen entering the oxidation reactor is first dispersed and broken through the micro-interface generator.
  • the temperature of the oxidation reaction is 120-140°C, and the reaction pressure is 0.5-0.6 MPa.
  • the industrial alkali residue wastewater treatment method of the present invention has simple operation, milder operating conditions, and low energy consumption.
  • the removal rate of harmful substances can reach about 99%, which is worthy of wide promotion and application.
  • the present invention has the following beneficial effects:
  • the industrial alkali slag wastewater treatment system of the present invention improves the mass transfer effect between the two phases by arranging the micro-interface generator.
  • the micro-interface generator can break the bubbles into micron-level bubbles, thereby Increase the area of the phase boundary between the gas phase and the liquid phase, so that oxygen can better fuse with the alkali slag wastewater to form a gas-liquid emulsion, and improve the efficiency of the oxidation reaction;
  • the waste water treatment system of the present invention has a simple structure, less three wastes, realizes full recovery and utilization of oxygen, and occupies a small area;
  • the wastewater treatment system of the present invention improves the mass transfer effect between the two phases by arranging the micro-interface generator, reduces energy consumption and production costs, and significantly improves the efficiency of the oxidation reaction;
  • the operating temperature and operating pressure are fully reduced, the operating temperature is basically about 100°C, and the reaction pressure is maintained at about 0.5MPa, which achieves the effects of low energy consumption and low operating cost.
  • FIG. 1 is a schematic structural diagram of an industrial alkali residue wastewater treatment system provided by Embodiment 1 of the present invention
  • Fig. 2 is a schematic structural diagram of an industrial alkali residue wastewater treatment system provided in the second embodiment of the present invention.
  • FIG. 1 it is an industrial alkali residue wastewater treatment system according to the first embodiment of the present invention, which includes an alkali residue storage tank 10, an alkali residue heat exchanger 20, an alkali residue heater 30, and an oxidation reactor 40 connected in sequence. , Water washing tower 50 and air compressor 44.
  • the side wall of the alkali residue storage tank 10 is provided with an alkali residue inlet 11, and the bottom of the alkali residue storage tank 10 is provided with an alkali residue outlet 12, and the alkali residue wastewater coming in from the alkali residue inlet 11 runs along the sidewall of the alkali residue storage tank 10. Extend for a certain distance downwards, and the reason why it needs to extend a certain distance downwards is to prevent the incoming alkali residue wastewater from causing fluctuations in the liquid in the alkali residue storage tank 10 and affecting the subsequent separation effect.
  • the alkali slag heat exchanger 20 has a material inlet 21, a material outlet 22, a heat source inlet 23, and a heat source outlet 24. Part of the oxidized water from the oxidation reactor 40 enters the alkali slag heat exchanger 20 from the heat source inlet 23, and the other part enters the alkali slag heat exchanger 20.
  • the alkali slag is washed in the washing tower 50, the heat source outlet 24 is connected with an intermediate tank I 80, the material inlet 21 is connected with the alkali slag storage tank 10, and the material outlet 22 is connected with an alkali slag heater 30.
  • the oxidized water after the reaction in the oxidation reactor 40 is exchanged with the alkali slag wastewater to be treated, which fully utilizes energy and saves operating costs.
  • the top of the oxidation reactor 40 is provided with an oxidizing water outlet 41.
  • the oxidizing water outlet 41 is in communication with the feed inlet 51 of the washing tower 50.
  • the oxidizing water from the oxidizing water outlet will contain a part of oxygen, so it is first placed in the gas-liquid separation tank 110 During gas-liquid separation, gas is recovered from the top of the gas-liquid separation tank 110, and the liquid phase is oxidized water from the bottom of the gas-liquid separation tank 110 to the washing tower 50.
  • the side wall of the washing tower 50 is provided with a washing water inlet 52, and the washing liquid from the washing water inlet 52 passes through a spray head to spray the oxidized water to remove slag.
  • the inner bottom of the oxidation reactor 40 is provided with a micro-interface generator 42 which is used to disperse the crushed gas into bubbles.
  • the bottom wall of the oxidation reactor 40 is provided with an air inlet 43.
  • the air inlet 43 interacts with the micro-interface.
  • the air pressure device 44 communicates with the air inlet 43.
  • the air or oxygen compressed by the air pressure device 44 enters the micro-interface generator 42 through the air inlet 43 to realize the pulverization and dispersion of the gas to strengthen the two-phase The mass transfer effect between.
  • the air compressor 44 is preferably an air compressor, and the compressed air or oxygen is heated by a heat exchanger before entering the oxidation reactor 40.
  • the type of air compressor can be selected as a centrifugal air compressor, which is low in cost and convenient to use.
  • the type of the micro-interface generator 42 is a pneumatic micro-interface generator 42.
  • the number of the micro-interface generators 42 is more than two, and they are arranged side by side at the bottom of the oxidation reactor 40.
  • the oxidized water from the oxidation reactor 40 is directly removed from the alkali slag heat exchanger 20 for heat exchange, and then enters the intermediate tank I 80.
  • the dewatering washing tower 50 is subjected to refining post-treatment, and the other part is directly stored in the intermediate tank II 120.
  • the bottom of the washing tower 50 is provided with a washing water outlet 53. Part of the clean water from the washing water outlet 53 is returned to the washing tower 50 as cooling washing water for recycling, and the other part is produced as a finished product and stored in the intermediate tank III 90
  • a vent 54 is provided on the top of the washing tower 50 for the discharge of the remaining air or the remaining oxygen.
  • the recycled washing water can also wash and remove impurities from the oxidized water, which reduces energy consumption by recycling.
  • the treatment system also includes a filter 60 and a slick tank 70.
  • the alkali residue outlet 12 of the alkali residue storage tank 10 is connected with a filter.
  • the filter 60 is connected to the material inlet 21 of the alkali slag heat exchanger 20, and the connecting pipe between the filter 60 and the alkali slag heat exchanger 20 is provided with a transfer pump 100.
  • the oil slick outlet 13 on the side wall of the alkali residue storage tank 10 is connected with an oil slick tank 70, and the bottom surface of the oil slick tank 70 is covered with an adsorbent layer to achieve better adsorption of the slick oil.
  • the type of the filter 60 can be any one of a plate and frame filter press, a vacuum filter press, a diatomaceous earth filter, a plate filter press, a membrane filter press, and a ceramic filter, preferably a plate and frame filter. Filter press.
  • the micro-interface generator 42 is not limited to one. In order to increase the dispersion and mass transfer effect, additional micro-interface generators 42 can also be added, especially the installation position of the micro-interface generator 42 is different. It can be installed externally or internally, and when it is built-in, it can also be installed on the side wall of the kettle to be arranged oppositely, so as to realize the hedging of the microbubbles coming out of the outlet of the micro-interface generator 42.
  • the industrial alkali residue wastewater passes through the alkali residue inlet 11 Into the alkali slag storage tank 10, in order to avoid liquid fluctuations, the industrial alkali slag waste water entering from the alkali slag inlet 11 extends down a certain distance along the tank wall through the vertical pipeline in the tank, and the industrial alkali slag storage tank 10
  • the residue wastewater is removed from the bottom of the alkali residue storage tank 10 to the filter 60 to filter the residue, and the slick oil floating on the surface of the wastewater flows from the slick outlet 13 to the slick pool 70 for further treatment by overflowing.
  • the industrial alkali residue waste water removed by the filter 60 is sent to the alkali residue heat exchanger 20 through the transfer pump 100 for heat exchange, and then further heated by the alkali residue heater 30, and the heated alkali residue waste water enters into Oxidation treatment is performed in the oxidation reactor 40.
  • Compressed air or compressed oxygen is introduced from the bottom of the oxidation reactor 40, and is processed by the micro-interface generator 42 before the oxidation reaction is carried out to improve the mass transfer efficiency of the phase interface.
  • the reaction temperature of the oxidation reactor 40 is 120-140°C, and the reaction pressure is 0.5-0.6 MPa.
  • the oxidized water after the oxidation reaction in the oxidation reactor 40 is partly returned from the top of the oxidation reactor 40 to the alkali slag heat exchanger 20 for heat exchange and cooling treatment, and then transported to the intermediate tank II 120 for storage, and the other part enters the washing tower 50 for use After washing with washing water to remove impurities, it is sent to intermediate tank III90 for storage.
  • the washing water in the washing tower 50 can be sprayed and washed with freshly supplemented washing water, or the oxidized water after washing can be recycled back to the washing tower 50 as the washing water for spray washing, which saves energy.
  • the water from the intermediate tank II 120 and the intermediate tank III 90 continue to undergo subsequent processing, such as desalination, and recovery of valuable components.
  • the processing system of the present invention reduces the pressure and temperature of the oxidation reactor by laying the micro-interface generation system, and fully reduces the energy consumption.
  • the treatment system of the present invention has fewer equipment components, small floor space, low energy consumption, low cost, high safety, and controllable response, and is worthy of being widely promoted and applied.
  • the industrial alkali slag wastewater treatment system of the present invention has a high treatment capacity. After the treatment system is processed, it can ensure a relatively high treatment effect under relatively low energy consumption conditions, and the removal rate of harmful substances can reach about 99%. , Including some sulfides, CODcr, and phenols and other organic substances.

Abstract

本发明提供了一种工业碱渣废水的处理系统及方法。该处理系统包括:依次连接的碱渣储罐、碱渣换热器、碱渣加热器、氧化反应器以及水洗塔,碱渣换热器上设置有物料进口、物料出口、热源进口以及热源出口;氧化反应器出来的氧化水一部分从热源进口进入碱渣换热器中,另一部分进入水洗塔中洗涤碱渣,热源出口连接有中间罐Ⅰ,物料进口与碱渣储罐连接,物料出口连接碱渣加热器;氧化反应器内底部设置有微界面发生器,所述微界面发生器用于分散破碎气体成气泡,所述氧化反应器的底璧上设置有进气口,所述进气口与所述微界面发生器连通。本发明的处理系统操作温度与压力比较低,避免了高温高压带来的安全隐患的发生,实现了能耗低,操作成本低的效果。

Description

一种工业碱渣废水的处理系统及方法 技术领域
本发明涉及工业碱渣废水处理领域,具体而言,涉及一种工业碱渣废水的处理系统及方法。
背景技术
石油炼制与石油化工过程中会产生含有高浓度硫化物和难降解有机物的碱渣废水,其CODcr、硫化物和酚的排放量高达炼油厂污染物排放总量的40%~50%,直接影响到污水处理设施的正常运转和污水的达标排放;同时由于碱渣废水具有强碱性,且含有具有回收价值的有机物。在进入污水处理厂前一般都要用强酸进行中和处理。在中和过程中,废水中的硫化物反应转化为硫化氢,极易逸出,造成环境污染和操作人员中毒,因此碱渣废水的处理一直是困扰石油化工企业的难题。
其中,碱渣缓和湿式氧化脱臭技术是在较高的温度和压力下,温度可达150-200℃,反应压力1-5MPa,通过湿式氧化技术将废碱渣中的无机硫化物和有机硫化物在液相条件下氧化为硫酸盐,从而除去碱渣中的硫化物,避免酸化时产生恶臭物质污染环境。
但是,目前的湿式氧化技术普遍操作温度比较高,压力也比较大,这样不仅对设备要求比较高,能耗高,成本高,也降低了操作安全性,设备容易老化损坏,并且在反应氧化过程中氧气在反应器中的停留时间短,大部分的氧气未进行充分的反应便浮出反应器,这样一来降低了反应效率也增加了处理成本。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种工业碱渣废水的处理系统,该处理系统通过布设微界面发生器后,提高了两相之间的传质效果,该微界面发生器可以将气泡打碎成微米级别的气泡,从而增加气相与液相之间的相界面积,使得氧气可以与碱渣废水更好的融合形成气液乳化物,提高氧化反应效率,同时由于碱渣废水中的氧气被打碎成小气泡后,气体体积变小,从而减缓了气泡上浮的浮力,使得氧气在工业碱渣废水中停留的时间更长,进一步提高反应效率,增加了反应相界面的传质效果后,操作温度与压力也可以适当的降低,从而避免了高温高压带来的一系列安全隐患的发生,实现了能耗低,操作成本低的效果。
本发明的第二目的在于提供一种采用上述处理系统进行工业碱渣废水的处理方法,该处理方法操作简便、操作条件更加温和,能耗低,处理后的碱渣废水中,有害物去除率可达99%左右,值得广泛推广应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种用于工业碱渣废水处理的处理系统,包括:依次连接的碱渣储罐、碱渣换热器、碱渣加热器、氧化反应器以及水洗塔,碱渣换热器上设置有物料进口、物料出口、热源进口以及热源出口;
氧化反应器出来的氧化水一部分从热源进口进入碱渣换热器中,另一部分进入水洗塔中洗涤碱渣,热源出口连接有中间罐Ⅰ,物料进口与碱渣储罐连接,物料出口连接碱渣加热器;
氧化反应器内底部设置有微界面发生器,微界面发生器用于分散破碎气体成气泡,氧化反应器的底璧上设置有进气口,进气口与微界面发生器连通。
现有技术中的湿式氧化技术普遍操作温度比较高,压力也比较大,这样不仅对设备要求比较高,能耗高,成本高,也降低了操作安全性,设备容易老化损坏,并且在反应氧化过程中氧气在反应器中的停留时间短,大部分的氧气未进行充分的反应便浮出反应器,这样一来降低了反应效率也增加了处理成本。
本发明为了解决上述技术问题,提供了一种专门针对工业碱渣废水处理的 处理系统,该处理系统通过在氧化反应器底部设置有微界面发生器,将进入氧化反应器的空气或氧气打碎分散成气泡,使得气泡与废水形成气液乳化物,从而增加了气体与废水之间的相界面积,进一步提高了反应效率,增加了反应相界面的传质效果后,操作温度与压力也可以适当的降低,从而避免了高温高压带来的一系列安全隐患的发生,实现了能耗低,操作成本低的效果。
优选地,所述微界面发生器为气动式微界面发生器。
优选地,所述微界面发生器的个数为2个以上,并排设置在所述氧化反应器的底部,为了增加传质效果,微界面发生器的个数可以为多个。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中体现,如公开号106215730A的专利,微界面发生器其核心在于气泡破碎,气泡破碎器的原理是高速射流所携带的气体相互撞击进行能量传递,使气泡破碎,关于微界面发生器的结构在上述专利中公开其中一实施例,此不再赘述。关于微界面发生器与氧化反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。关于微界面发生器的反应机理及控制方法,在本发明人在先专利CN107563051B中已经公开,此不再赘述。同时,也可以根据实际工程需要,对本系统中的氧化反应器的高度、长度、直径、废水流速等因素对进气口的数量和位置进行调整,以达到更好地供气效果,提高氧化降解率。
另外,本发明的方案中,先将工业碱渣废水经过碱渣换热器、碱渣加热器进行加热后,再进入氧化反应器中,因为氧化反应的发生需要在高温高压的状态下进行,所以需要对工业碱渣废水预先加热,同时经过氧化反应器反应后的氧化水温度比较高,为了充分利用这部分热量,可以将其通入碱渣换热器中对碱渣废水进行换热。
从氧化反应器中出来的氧化水一部分返回碱渣换热器中用于换热,此时出来的氧化水已经可以实现回用,在用户要求不高的情况下换热后冷却下来的氧化水可以通过中间罐Ⅰ去往中间罐Ⅱ,作为成品进行使用,当用户要求比较高 的情况下,氧化水从中间罐Ⅰ继续进入水洗塔进行水洗除渣,经过水洗除渣后的净化水可以直接回用,储存在中间罐Ⅲ中。
当然本发明通过采用了微界面发生器,已经将反应的温度和压力充分降低,氧化反应的温度控制在120-140℃,反应压力控制在0.5-0.6MPa之间。
优选地,碱渣储罐的侧壁设置有碱渣进口,碱渣储罐的底部设置有碱渣出口,从所述碱渣进口进来的碱渣废水沿所述碱渣储罐的侧壁向下延伸一段距离;
所述碱渣出口连接有过滤器,所述过滤器与所述碱渣换热器的物料进口连接。
之所以需要将碱渣废水沿所述碱渣储罐的侧壁向下延伸一段距离,一般是直接将碱渣进口连接一段竖直的管道以实现该功能,目的是如果碱渣废水直接进入碱渣储罐,会造成储罐中的碱渣废水发生波动,所以最好深入到靠近碱渣储罐的下部为好。
优选地,所述过滤器与所述碱渣换热器的连接管道上设置有输送泵。
优选地,所述过滤器的类型可以为板框压滤机、真空压滤机、硅藻土过滤器、板式压滤机、隔膜式压滤机、陶瓷过滤机中的任意一种,优选地为板框压滤机,因为板框压滤机本身造价低,过滤固体杂质的效果也比较好。
优选地,所述处理系统还包括浮油池,所述碱渣储罐的侧壁上还设置有浮油出口,所述浮油池内的底面覆盖有吸附剂层。进入浮油池的废水中还有一部分净水,为了充分回收这部分净水,在浮油池的侧壁靠上的位置上设置有净水出水口,浮油被底部的吸附剂充分吸附后可由浮油池的底部排出,净水则由净水出水口排出。
此外,为了提高浮油池的处理效果在浮油池的进口还设置有隔渣箱,将碱渣充分隔离。
优选地,所述氧化反应器的顶部设置有氧化水出口,所述氧化水出口与所述水洗塔的进料口连通,所述水洗塔的侧壁设置有洗涤水进口,所述洗涤水进 口进来的洗涤液经过喷淋头对所述氧化水喷淋除渣。
优选地,所述水洗塔的底部设置有洗涤水出口,所述洗涤水出口出来的洁净水一部分返回所述水洗塔作为冷却洗涤水循环使用,另一部分做为成品采出存放在中间罐Ⅲ中。
在水洗塔内通入洗涤水喷淋与进入的氧化水逆向接触以实现氧化水的净化,为了降低能耗,净化后的氧化水一部分返回水洗塔作为冷却洗涤水循环使用,而另一部分做为成品采出。
优选地,所述水洗塔的顶部设置有放空口用于剩余空气或剩余氧气的排出。
优选地,所述处理系统还包括空压装置,所述空压装置与所述进气口连通,经过空压装置压缩的空气或压缩的氧气通过进气口进入微界面发生器进行分散打碎。
本发明的处理系统中可根据实际需要在相应的连接管道上设置泵体。
本发明的工业碱渣废水的处理系统处理能力高,经过该处理系统处理后,能保证在比较低的能耗条件下,拥有比较高的处理效果,有害物去除率可达99%左右,包括一些硫化物、CODcr、以及酚类等有机物。
本发明还提供了一种工业碱渣废水的处理方法,包括如下步骤:
工业碱渣废水经过加热后进入氧化反应器中,同时在氧化反应器中通入压缩空气或压缩氧气,发生氧化反应;
进入所述氧化反应器的压缩空气或压缩氧气先通过微界面发生器进行分散破碎。
优选地,所述氧化反应的温度为120-140℃,反应压力0.5-0.6MPa。
本发明的工业碱渣废水的处理方法操作简便、操作条件更加温和,能耗低,处理后的碱渣废水中,有害物去除率可达99%左右,值得广泛推广应用。
与现有技术相比,本发明的有益效果在于:
(1)本发明的工业碱渣废水的处理系统通过布设了微界面发生器后,提高了两相之间的传质效果,该微界面发生器可以将气泡打碎成微米级别的气泡,从而增加气相与液相之间的相界面积,使得氧气可以与碱渣废水更好的融合形成气液乳化物,提高氧化反应效率;
(2)本发明的废水处理系统,结构简单,三废少,实现了氧气的充分回收利用,占地面积小;
(3)本发明的废水处理系统通过布设微界面发生器提高了两相之间的传质效果,降低了能耗以及生产成本,显著提高了氧化反应效率;
(4)充分降低了操作温度以及操作压力,操作温度基本在100℃左右,反应压力维持在0.5MPa左右,实现了能耗低,操作成本低的效果。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例一提供的工业碱渣废水的处理系统的结构示意图;
图2为本发明实施例二提供的工业碱渣废水的处理系统的结构示意图。
附图说明:
10-碱渣储罐;                  11-碱渣进口;
12-碱渣出口;                  13-浮油出口;
20-碱渣换热器;                21-物料进口;
22-物料出口;                  23-热源进口;
24-热源出口;                  30-碱渣加热器;
40-氧化反应器;                 41-氧化水出口;
42-微界面发生器;               43-进气口;
44-空压装置;                   50-水洗塔;
51-进料口;                     52-洗涤水进口;
53-洗涤水出口;                 54-放空口;
60-过滤器;                     70-浮油池;
80-中间罐Ⅰ;                   90-中间罐Ⅱ;
100-输送泵;                    110-气液分离罐;
120-中间罐Ⅲ。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸 连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例一的工业碱渣废水的处理系统,其包括了依次连接的碱渣储罐10、碱渣换热器20、碱渣加热器30、氧化反应器40、水洗塔50以及空压装置44。
其中,碱渣储罐10的侧壁设置有碱渣进口11,碱渣储罐10的底部设置有碱渣出口12,从碱渣进口11进来的碱渣废水沿碱渣储罐10的侧壁向下延伸一段距离,之所以需要往下延伸一段距离,是为了避免进来的碱渣废水对碱渣储罐10里面的液体造成波动,影响后续分离效果。
碱渣换热器20上分别有物料进口21、物料出口22、热源进口23以及热源出口24,氧化反应器40出来的氧化水一部分从热源进口23进入碱渣换热器20中,另一部分进入水洗塔50中洗涤碱渣,热源出口24连接有中间罐Ⅰ80,物料进口21与碱渣储罐10连接,物料出口22连接碱渣加热器30。在碱渣换热器20中,通过将氧化反应器40反应后的氧化水与待处理的碱渣废水实现换热,充分利用了能源,节省了操作成本。
氧化反应器40的顶部设置有氧化水出口41,氧化水出口41与水洗塔50的进料口51连通,氧化水出口出来的氧化水会含有一部分的氧气,因此先在气液分离罐110中进行气液分离,气体从气液分离罐110的顶部回收,液相为氧化水从气液分离罐110的底部去水洗塔50。
水洗塔50的侧壁设置有洗涤水进口52,洗涤水进口52进来的洗涤液经过 喷淋头对所述氧化水喷淋除渣。氧化反应器40内底部设置有微界面发生器42,微界面发生器42用于分散破碎气体成气泡,氧化反应器40的底璧上设置有进气口43,进气口43与微界面发生器42连通,空压装置44与进气口43连通,通过空压装置44压缩后的空气或氧气通过进气口43进入到微界面发生器42中,实现气体的粉碎分散,以加强两相之间的传质效果。空压装置44优选为空气压缩机,压缩后的空气或氧气先经过换热器加热后,再进入氧化反应器40中。空气压缩机的类型可以选择为离心式空气压缩机,该种类型的压缩机造价低,使用方便。微界面发生器42的类型为气动式微界面发生器42,微界面发生器42的个数为2个以上,并排设置在氧化反应器40的底部。氧化反应器40出来的氧化水直接去碱渣换热器20进行换热,然后进入中间罐Ⅰ80中,为了满足高质量客户的需求,进一步处理后以提高水体的质量,可从中间罐Ⅰ80一部分去水洗塔50进行精制后处理,另一部分直接存放在中间罐Ⅱ120中。
另外,水洗塔50的底部设置有洗涤水出口53,所述洗涤水出口53出来的洁净水一部分返回所述水洗塔50作为冷却洗涤水循环使用,另一部分做为成品采出存放在中间罐Ⅲ90中,水洗塔50的顶部设置有放空口54用于剩余空气或剩余氧气的排出。除了添加的新鲜洗涤水对氧化水进行洗涤除杂以外,循环返回的洗涤水也可以实现对氧化水进行洗涤除杂,通过循环利用的方式以降低能耗。
参见图2所示,作为本发明的实施例二的工业碱渣废水的处理系统,该处理系统还包括了过滤器60和浮油池70,碱渣储罐10的碱渣出口12连接有过滤器60,过滤器60与碱渣换热器20的物料进口21连接,过滤器60与碱渣换热器20的连接管道上设置有输送泵100。
碱渣储罐10侧壁上的浮油出口13连接有浮油池70,在浮油池70内的底面覆盖有吸附剂层以实现对浮油更好的吸附。通过在处理系统中增设过滤器60与浮油池70,以实现更好的去浮油与残渣的效果。
该过滤器60的类型可以为板框压滤机、真空压滤机、硅藻土过滤器、板 式压滤机、隔膜式压滤机、陶瓷过滤机中的任意一种,优选地为板框压滤机。
在上述两个实施例中,微界面发生器42并不局限于一个,为了增加分散、传质效果,也可以多增设额外的微界面发生器42,尤其是微界面发生器42的安装位置不限,可外置也可内置,内置时还可以采用安装在釜内的侧壁上相对设置的方式,以实现从微界面发生器42的出口出来的微气泡发生对冲。
在上述两个实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置上设置。
以下简要说明本发明的工业碱渣废水的处理系统的工作过程和原理:
氮气吹扫碱渣储罐10、碱渣换热器20、碱渣加热器30、氧化反应器40、水洗塔50的管线以及氧化反应器40内部后,工业碱渣废水通过碱渣进口11通入到碱渣储罐10中,为了避免液体的波动从碱渣进口11进来的工业碱渣废水通过罐内竖直的管道沿罐壁向下延伸一段距离,碱渣储罐10内的工业碱渣废水从碱渣储罐10底部去过滤器60过滤残渣,浮在废水表面的浮油通过溢流的方式从浮油出口13去浮油池70进行进一步的处理。
经过过滤器60去杂的工业碱渣废水经过输送泵100送入到碱渣换热器20中进行换热后,再经过碱渣加热器30进行进一步的加热,加热后的碱渣废水进入到氧化反应器40中进行氧化处理,压缩空气或压缩氧气从氧化反应器40的底部通入,先经过微界面发生器42处理后再进行氧化反应,以提高相界面的传质效率。
氧化反应器40的反应温度为120-140℃,反应压力0.5-0.6MPa。
氧化反应器40中氧化反应后的氧化水从氧化反应器40的顶部一部分返回碱渣换热器20中换热冷却处理后,输送到中间罐Ⅱ120中储存,另一部分进入到水洗塔50中采用洗涤水水洗除杂后,送往中间罐Ⅲ90储存。
水洗塔50中的洗涤水既可以采用新鲜补充的洗涤水喷淋洗涤,也可以采用洗涤后的氧化水循环返回水洗塔50作为洗涤水喷淋洗涤,节约能源。
中间罐Ⅱ120以及中间罐Ⅲ90出来的水继续进行后续的处理,比如除盐 后,回收有价值的成分。
以上各个工艺步骤循环往复,以使整个处理系统平稳的运行。
本发明的处理系统通过铺设微界面发生系统,降低了氧化反应器的压力以及温度,充分降低了能耗。与现有技术工业碱渣废水的处理系统相比,本发明的处理系统设备组件少、占地面积小、能耗低、成本低、安全性高、反应可控,值得广泛推广应用。
总之,本发明的工业碱渣废水的处理系统处理能力高,经过该处理系统处理后,能保证在比较低的能耗条件下,拥有比较高的处理效果,有害物去除率可达99%左右,包括一些硫化物、CODcr、以及酚类等有机物。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种工业碱渣废水的处理系统,其特征在于,包括:依次连接的碱渣储罐、碱渣换热器、碱渣加热器、氧化反应器以及水洗塔,所述碱渣换热器上设置有物料进口、物料出口、热源进口以及热源出口;
    所述氧化反应器出来的氧化水一部分从所述热源进口进入所述碱渣换热器中,另一部分进入所述水洗塔中洗涤碱渣,所述热源出口连接有中间罐Ⅰ,所述物料进口与所述碱渣储罐连接,所述物料出口连接所述碱渣加热器;
    所述氧化反应器内底部设置有微界面发生器,所述微界面发生器用于分散破碎气体成气泡,所述氧化反应器的底璧上设置有进气口,所述进气口与所述微界面发生器连通。
  2. 根据权利要求1所述的处理系统,其特征在于,所述碱渣储罐的侧壁设置有碱渣进口,所述碱渣储罐的底部设置有碱渣出口,从所述碱渣进口进来的碱渣废水沿所述碱渣储罐的侧壁向下延伸一段距离;
    所述碱渣出口连接有过滤器,所述过滤器与所述碱渣换热器的物料进口连接;
    优选地,所述过滤器与所述碱渣换热器的连接管道上设置有输送泵。
  3. 根据权利要求1所述的处理系统,其特征在于,所述处理系统还包括浮油池,所述碱渣储罐的侧壁上还设置有浮油出口,所述浮油池内的底面覆盖有吸附剂层。
  4. 根据权利要求1所述的处理系统,其特征在于,所述微界面发生器为气动式微界面发生器。
  5. 根据权利要求1所述的处理系统,其特征在于,所述微界面发生器的个数为2个以上,并排设置在所述氧化反应器的底部。
  6. 根据权利要求1-5任一项所述的处理系统,其特征在于,所述氧化反应器的顶部设置有氧化水出口,所述氧化水出口与所述水洗塔的进料口连通,所述水洗塔的侧壁设置有洗涤水进口,所述洗涤水进口进来的洗涤液经过喷淋 头对所述氧化水喷淋除渣。
  7. 根据权利要求6所述的处理系统,其特征在于,所述水洗塔的底部设置有洗涤水出口,所述洗涤水出口出来的洁净水一部分返回所述水洗塔作为冷却洗涤水循环使用,另一部分做为成品采出;
    优选地,所述水洗塔的顶部设置有放空口用于剩余空气或剩余氧气的排出。
  8. 根据权利要求1-5任一项所述的处理系统,其特征在于,所述处理系统还包括空压装置,所述空压装置与所述进气口连通。
  9. 根据权利要求2所述的处理系统,其特征在于,所述过滤器为板框压滤机。
  10. 采用权利要求1-9任一项所述处理系统的工业碱渣废水的处理方法,其特征在于,包括如下步骤:
    工业碱渣废水经过加热后进入氧化反应器中,同时在氧化反应器中通入压缩空气或压缩氧气,发生氧化反应;
    进入所述氧化反应器的压缩空气或压缩氧气先通过微界面发生器进行分散破碎;
    优选地,所述氧化反应的温度为120-140℃,反应压力0.5-0.6MPa。
PCT/CN2020/092666 2019-12-23 2020-05-27 一种工业碱渣废水的处理系统及方法 WO2021128725A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911334009.5 2019-12-23
CN201911334009.5A CN113087112A (zh) 2019-12-23 2019-12-23 一种工业碱渣废水的处理系统及方法

Publications (1)

Publication Number Publication Date
WO2021128725A1 true WO2021128725A1 (zh) 2021-07-01

Family

ID=76573619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092666 WO2021128725A1 (zh) 2019-12-23 2020-05-27 一种工业碱渣废水的处理系统及方法

Country Status (2)

Country Link
CN (1) CN113087112A (zh)
WO (1) WO2021128725A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257102A (zh) * 1998-12-16 2000-06-21 中国石油化工集团公司 石油炼制工业油品精制废碱液的处理方法
CN101164913A (zh) * 2006-07-04 2008-04-23 林德股份公司 石油化学设备中废碱液的氧化方法和设备
CN102285729A (zh) * 2010-06-18 2011-12-21 中国石油化工股份有限公司 一种高温湿式氧化处理废碱液的方法
CN106215730A (zh) * 2016-08-05 2016-12-14 南京大学 微米气泡发生器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565972B2 (ja) * 1996-01-31 2004-09-15 新日本石油化学株式会社 廃ソーダの湿式酸化方法
CN101993143B (zh) * 2010-10-27 2012-07-25 南京工业大学 一种利用超临界水氧化法处理碱渣废水的系统和方法
CN106565009B (zh) * 2016-10-26 2020-08-14 中国石油化工股份有限公司 基于余热利用的碱渣废液催化处理装置及方法
CN106380021A (zh) * 2016-11-23 2017-02-08 江苏省环境科学研究院 一种高浓度有机废水的湿式氧化处理系统及方法
CN106630101A (zh) * 2017-01-05 2017-05-10 中国科学院上海高等研究院 一种基于微纳米气泡破氰的装置和方法
CN109775838A (zh) * 2019-02-19 2019-05-21 南乙环境工程技术(上海)有限公司 一种去除生化出水中cod和阴离子表面活性剂的工艺
CN110540285A (zh) * 2019-08-07 2019-12-06 北京化工大学 一种非均相臭氧催化与微纳米气泡联用的污水处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257102A (zh) * 1998-12-16 2000-06-21 中国石油化工集团公司 石油炼制工业油品精制废碱液的处理方法
CN101164913A (zh) * 2006-07-04 2008-04-23 林德股份公司 石油化学设备中废碱液的氧化方法和设备
CN102285729A (zh) * 2010-06-18 2011-12-21 中国石油化工股份有限公司 一种高温湿式氧化处理废碱液的方法
CN106215730A (zh) * 2016-08-05 2016-12-14 南京大学 微米气泡发生器

Also Published As

Publication number Publication date
CN113087112A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2021189634A1 (zh) 一种内置微界面造纸废水处理系统及处理方法
CN102285729A (zh) 一种高温湿式氧化处理废碱液的方法
CN104556523A (zh) 一种炼油厂碱渣废液和三泥处理方法
CN102633350B (zh) 超临界水氧化系统中过量氧回用及二氧化碳回收方法
CN106753569A (zh) 低压干粉煤气化工艺
CN102417264B (zh) 一种处理硝基氯苯生产废水的方法
WO2021128725A1 (zh) 一种工业碱渣废水的处理系统及方法
CN112010451B (zh) 一种冷轧稀碱废水深度处理方法和处理系统
CN112661314A (zh) 用于高浓度有机废液处理的亚临界流化床反应器及方法
CN111056903B (zh) 一种苯部分加氢催化剂的回收工艺及装置
CN105585212B (zh) 一种pta生产废水综合处理回用方法
CN105016552B (zh) 一种油品精制废碱液的处理方法
CN211813946U (zh) 一种工业碱渣废水的处理系统
CN108726553B (zh) 一种利用电石渣和废硫酸生产硫酸钙的系统
CN214830137U (zh) 低品质变压器油回收再利用系统
US11267742B2 (en) Built-in micro-interface papermaking wastewater treatment system and wastewater treatment method thereof
CN211734077U (zh) 一种工业碱渣废水的智能处理系统
CN212403832U (zh) 甲硫醇钠的生产废水回收再利用装置
CN113201365A (zh) 低品质变压器油回收再利用系统及其回收方法
CN211159192U (zh) 一种克劳斯硫回收酸性水的处理装置
CN210752010U (zh) 一种氟化氢制备过程中的含硫工艺气的脱硫装置
CN211733963U (zh) 一种乙烯脱硫废水的处理系统
CN109721035B (zh) 一种废稀硫酸的净化提浓工艺
CN113045081A (zh) 一种工业碱渣废水的智能处理系统及方法
CN211098293U (zh) 一种湿法脱酸的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906085

Country of ref document: EP

Kind code of ref document: A1