WO2021128705A1 - 一种用于煤仓煤位光纤光栅智能监测装置及监测方法 - Google Patents
一种用于煤仓煤位光纤光栅智能监测装置及监测方法 Download PDFInfo
- Publication number
- WO2021128705A1 WO2021128705A1 PCT/CN2020/090605 CN2020090605W WO2021128705A1 WO 2021128705 A1 WO2021128705 A1 WO 2021128705A1 CN 2020090605 W CN2020090605 W CN 2020090605W WO 2021128705 A1 WO2021128705 A1 WO 2021128705A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coal
- fiber grating
- coal bunker
- vibration
- optical fiber
- Prior art date
Links
- 239000003245 coal Substances 0.000 title claims abstract description 221
- 239000000835 fiber Substances 0.000 title claims abstract description 95
- 238000012544 monitoring process Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000012806 monitoring device Methods 0.000 title claims abstract description 14
- 238000012545 processing Methods 0.000 claims abstract description 34
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 239000013307 optical fiber Substances 0.000 claims description 36
- 229910000831 Steel Inorganic materials 0.000 claims description 32
- 239000010959 steel Substances 0.000 claims description 32
- 230000001105 regulatory effect Effects 0.000 claims description 9
- 239000011241 protective layer Substances 0.000 claims description 5
- 230000001960 triggered effect Effects 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 229910001294 Reinforcing steel Inorganic materials 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 3
- 241000273930 Brevoortia tyrannus Species 0.000 description 77
- 239000000523 sample Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 238000013016 damping Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002817 coal dust Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/14—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/14—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
- G01F23/18—Indicating, recording or alarm devices actuated electrically
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/284—Electromagnetic waves
- G01F23/292—Light, e.g. infrared or ultraviolet
- G01F23/2921—Light, e.g. infrared or ultraviolet for discrete levels
- G01F23/2922—Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35316—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
Definitions
- the present invention relates to the technical field of coal mine equipment, in particular to a fiber grating intelligent monitoring device and a monitoring method for the coal level of a coal bunker.
- the existing coal bunker coal level monitoring technology is mainly divided into contact monitoring methods and non-contact monitoring methods.
- Contact monitoring includes: hammer type, electrode type, capacitive type, rod type, weighing type and rotary wing wheel type .
- Non-contact monitoring includes radar type, ultrasonic type, laser type, nuclear type, etc.
- the commonly used monitoring methods in underground coal mines are: based on radar technology, based on ultrasonic technology and based on laser technology.
- the radar-type coal level gauge transmits electromagnetic wave signals to the coal surface through the transmitter probe, and the reflected wave signal is received by the receiving probe. Since the propagation time of the radar wave is proportional to the distance to the coal surface, the coal can be measured through the signal processing of the external computer The specific distance from the coal roof.
- Ultrasonic coal level timer uses a transmitting probe to emit fixed-frequency ultrasonic waves. When the ultrasonic waves touch the coal surface, they will be reflected to the ultrasonic receiving probe.
- the specific distance from the coal surface to the top of the coal can be obtained through the external processing of the computer.
- the laser coal level meter emits a laser beam through a laser emitting device, and a laser receiving device is installed at the other end. If the coal level of the coal bunker exceeds this device, the laser beam emitted by the emitting end is blocked, and the receiving end has no signal and passes through the outside.
- the computer's amplification and comparison processing can determine the position of the coal level in the coal bunker at that moment.
- the environment of the underground coal bunker is full of complicated factors, and the above mine coal level monitoring devices still have many shortcomings and defects.
- the ultrasonic coal level meter After the ultrasonic coal level meter emits ultrasonic waves from the transmitting probe, the beam has a high probability of reflecting off the bunker wall, and the receiving probe cannot receive the wave signal. After the reflected wave reaches the other side of the warehouse wall, secondary reflections will occur. If these secondary reflected waves are received by the receiving probe, false signals will be generated, which will bring great errors to the monitoring.
- the design and use of the ultrasonic coal level gauge is closely related to the diameter and depth ratio of the coal bunker. When the ratio of the diameter to the depth of the coal bunker cannot meet the monitoring range of the ultrasonic coal level gauge, the monitoring results will be in line with the actual Doesn't match, and can't even be monitored.
- the ultrasonic coal level gauge also requires the coal bunker to have a certain regular shape, and the inner wall of the coal bunker is smooth, which greatly reduces the use range of the ultrasonic coal level gauge in the underground.
- the laser coal level gauge will also be affected by the harsh conditions of the underground coal bunker. In the case of high humidity, coal powder will gather at the reflective end and the receiving end of the laser coal level gauge, which will greatly reduce the coal level gauge’s measurement accuracy.
- the depth of the underground coal bunker generally exceeds 40m. The coal at such a large height will inevitably collide with the bunker wall during the fall, and the impact force is very large. If it collides with the laser coal level gauge installed on the bunker wall, the instrument will be directly damaged. , The service life will be greatly reduced, and maintenance is also quite difficult.
- the purpose of the present invention is to provide an intelligent optical fiber grating monitoring device and monitoring method for coal bunker coal level, which can not be affected by the underground environment, and can timely monitor whether the coal bunker has shed coal phenomenon, and continuously monitor the coal level of the coal bunker
- the device is conducive to the advancement of intelligent production in coal mines.
- an intelligent fiber grating monitoring device for the coal level of a coal bunker
- the monitoring device is located above the coal bunker (23), and includes a supporting device, a vibration device, and the supporting device Located above the coal bunker, the support device is detachably connected with the vibration device, the vibration device extends into the coal bunker, and the outer casing of the vibration device is processed with a surrounding reserved groove, and the reserved groove is used for placing
- a fiber grating sensor device wherein the fiber grating sensor device is connected to one end of a fiber grating demodulator, the other end of the fiber grating demodulator is electrically connected to a data processing system, and the data processing system is electrically connected to an alarm device, so The alarm device is connected with a tape conveyor.
- the supporting device includes supporting steel frames that are symmetrically arranged at the left and right ends of the coal bunker, the supporting steel frame is framed with a horizontal supporting steel beam, and the supporting steel beam is placed horizontally on the supporting steel frame through a steel bar connector .
- the vibration device includes a speed-regulating motor, a vibration connecting rod, and a vibration generator.
- the vibration connecting rod is axially connected to the speed-regulating motor, and the speed-regulating motor is detachably connected to the supporting steel beam.
- the generator is threadedly connected with the vibration connecting rod.
- the fiber Bragg grating sensor device includes a fiber Bragg grating, the fiber Bragg grating is wrapped with a protective layer, and the fiber Bragg grating is connected to the fiber grating demodulator.
- the fiber grating sensor device further includes an optical fiber and a fiber grating sensor, the fiber Bragg grating is connected in series on the optical fiber, one end of the optical fiber is connected to the fiber grating sensor, and the other end of the optical fiber is connected to the optical fiber.
- the fiber grating demodulator is connected.
- the tail end of the optical fiber is provided with an optical fiber pigtail.
- the alarm device includes an audible and visual alarm and a conveyor emergency brake valve; the audible and visual alarm is connected to the data processing system, and one end of the conveyor emergency brake valve is connected to the data processing system, The other end of the emergency brake valve of the conveyor is connected with the belt conveyor.
- the sound and light alarm is used to automatically emit an alarm sound and a flashing light beam when the coal level reaches the upper or lower limit to remind underground personnel to check the coal bunker in time and eliminate hidden dangers;
- the emergency brake valve of the transport aircraft is used for sound and light alarms When the device is triggered, the belt conveyor stops working.
- the vibration device further includes a vibration damping sheet, the vibration damping sheet is arranged between the supporting steel beam and the speed-regulating motor, and the vibration damping sheet is threadedly connected with the supporting steel beam.
- a fiber grating intelligent monitoring method for the coal level of a coal bunker includes the following steps:
- the fiber grating sensor transmits the stress signal to the static fiber grating demodulator, and the optical signal is converted into an electrical signal through the analytical processing of the fiber grating demodulator and transmitted to the data processing system. After the electrical signal is input through the simulation software, the coal level The specific location is displayed on the monitor for the staff to monitor and take corresponding measures;
- coal level in the bunker exceeds or falls below the set upper limit, it will trigger an audible and visual alarm, an emergency brake valve and a vibration device;
- the display will show the specific shed coal position and the height of the shed coal area; the data processing system will trigger the sound and light alarm and emergency brake valve, the sound and light alarm will send out sound and light signals to remind the monitoring personnel Check the situation in time, and the emergency brake valve will stop the coal transportation of the belt conveyor in time.
- the present invention relates to the light wave reflection change of the fiber grating, which has fast response and high precision, can transmit the signal to the display device in the first time, and provides a good environment for the operation of the coal bunker.
- the underground coal bunker has high coal dust concentration and high humidity, and it is difficult to eliminate the limitations of these factors in the existing technology.
- the invention will not be affected by the harsh environment of the underground coal bunker, and can stably monitor the coal level in real time.
- the invention will transmit the force signal to the computer data processing system in time when a coal shed fault occurs, and the system will transmit the signal to the vibration device and trigger the vibration generator to clear the coal in time. warehouse.
- Fiber Bragg grating has low cost and mature technology. It is convenient to use with other non-contact coal level meters when deployed, and its service life can reach more than 5 years.
- Figure 1 is a schematic diagram of the structure of the present invention
- Figure 2 is a schematic diagram of part of the structure of the vibration device of the present invention.
- FIG. 3 is a schematic diagram of a part of the structure of the fiber grating sensor device of the present invention.
- Fig. 4 is a schematic diagram of a part of the structure of the optical fiber of the present invention.
- Figure 5 shows the linear relationship between the coal level in the coal bunker and the fiber grating sensor when the coal level in the coal bunker is within a safe range
- Figure 6 shows the linear relationship between the coal level of the coal bunker and the fiber grating sensor when the coal level in the coal bunker exceeds the set upper limit
- Figure 7 shows the linear relationship between the coal level of the coal bunker and the fiber grating sensor when the coal level of the coal bunker is lower than the lower calibration limit
- Figure 8 is a linear relationship diagram between the coal level of the coal bunker and the optical fiber grating sensor when the shed coal failure occurs in the coal bunker;
- 1 is a supporting steel frame
- 2 is a supporting steel beam
- 3 is a speed-regulating motor
- 4 is a vibration buffer plate
- 5 is a vibration connecting rod
- 6 is a vibration generator
- 7 is a reserved slot
- 8 is a fiber Bragg grating.
- 9 is the protective layer
- 10 is the fiber outlet
- 11 is the fiber pigtail
- 12 is the fiber
- 13 is the fiber grating demodulator
- 14 is the fiber grating temperature sensor
- 15 is the sound and light alarm
- 16 is the emergency brake valve of the transport aircraft
- 17 is a thread
- 18 is a steel bar connector
- 19 is an unloading port
- 20 is a display
- 21 is a data processing system
- 22 is a coal bunker entrance
- 23 is a coal bunker
- 24 is a belt conveyor
- 25 is a bolt.
- this embodiment provides a fiber grating intelligent monitoring device for coal bunker coal level, including a supporting device, the supporting device is located above the coal bunker 23, the supporting device and the vibration device are detachable Connected, the vibrating device extends into the inside of the coal bunker 23, the outer casing of the vibrating device is processed with a surrounding reserved slot 7 for placing the fiber grating sensor device, and the fiber grating sensor device is connected There is a fiber grating demodulator 13, the fiber grating demodulator 13 is electrically connected to a data processing system 21, the data processing system 21 is electrically connected to an alarm device, the alarm device is connected to a tape conveyor 24, and the optical fiber The grating demodulator 13 uses the mine-used intrinsically safe fiber grating demodulator 13 to analyze and transmit the strain signal to the data processing system 21 in time when the fiber grating senses the strain signal.
- the supporting device includes supporting steel frames 1 symmetrically arranged at the left and right ends of the coal bunker 23.
- the supporting steel frames 1 are installed at both ends of the coal bunker 23 and are commonly used mining supporting steel frames.
- the supporting steel frame 1 is supported by a horizontal supporting steel beam 2 which is placed horizontally on the supporting steel frame 1 through a reinforcing steel connector 18, and the support is stable.
- the vibration device includes a vibration connecting rod 5, a speed regulating motor 3, and a vibration generator 6.
- the vibration connecting rod 5 is axially connected to the speed regulating motor 3, and the speed regulating motor 3 is connected to the supporting steel beam. 2 Removable connection, the vibration generator 6 is threadedly connected to the vibration connecting rod 5, the vibration connecting rod 5 is provided with a reserved groove 7, and the fiber Bragg grating 8 is pasted on the reserved groove 7 Inside, the optical fiber outlet port 10 is reserved, and a layer of thermoplastic rubber is covered on the reserved groove 7 to remove the optical fiber gap and fill it completely.
- the speed regulating motor 3 is composed of a circuit control system and a safety electric motor.
- the thickness and transverse section of the supporting steel beam 2 meet the requirements for the installation of the speed-regulating motor 3, and the ring breaking strength should be greater than the gravity and additional stress of the speed-regulating motor 3.
- the vibration device further includes a vibration buffer sheet 4, the vibration buffer sheet 4 is arranged between the supporting steel beam 2 and the speed control motor 3, and a suitable mine speed control motor is selected to be installed on the support through screws.
- a vibration buffer sheet 4 is arranged between the supporting steel beam 2 and the speed control motor 3, and a suitable mine speed control motor is selected to be installed on the support through screws.
- the supporting steel beam 2 is punched and the vibration damping sheet 4 is connected with bolts 25.
- the rear part of the reserved groove 7 is machined with an assembly thread 17 for connecting the vibration generator 6, the vibration generator 6 is matched and fixed with the thread 17, and the top of the vibration connecting rod 5 is machined with an assembly thread matching the vibration damping sheet 4.
- the fiber Bragg grating sensor device includes a fiber Bragg grating 8, the fiber Bragg grating 8 is connected in series to the optical fiber 12 and the order is marked according to the depth of the bunker, and the fiber Bragg grating 8 is wrapped with a protective layer 9 to form It is arranged spirally on the vibrating connecting rod 5 to eliminate the error signal caused by the temperature change.
- the fiber Bragg grating 8 is connected to the fiber grating demodulator 13.
- the fiber grating sensor device further includes an optical fiber 12 and a fiber grating sensor 14.
- the fiber Bragg grating 8 is connected in series to the optical fiber 12, and the order is marked according to the depth of the bunker 23, and the optical fiber is wrapped with a protective layer 9 , Arranged spirally on the vibration connecting rod 5.
- the fiber grating temperature sensor 14 is connected in series on the optical fiber and the order is marked according to the depth of the coal bunker.
- the fiber grating sensor device is spirally arranged on the vibrating connecting rod 5 to eliminate error signals caused by temperature changes.
- One port of the fiber grating demodulator 13 is connected to the optical fiber 12, and the other port of the fiber grating demodulator 13 is connected to the host computer and placed in a suitable position to realize real-time operation by workers.
- the fiber grating demodulator 13 adopts a mine-used intrinsically safe fiber grating static demodulator.
- an optical fiber pigtail 11 is provided at the end of the optical fiber 12 for connecting the optical fiber grating demodulator 13.
- the alarm device includes an audible and visual alarm 15 and a conveyor emergency brake valve 16; the audible and visual alarm 15 is connected to the data processing system 21, and one end of the conveyor emergency brake valve 16 is connected to the emergency brake valve 16 of the conveyor.
- the data processing system 21 is connected, the other end of the emergency brake valve 16 of the conveyor is connected to the belt conveyor 24, the signal source is stable, and the brake is sensitive.
- the sound and light alarm 15 is used to automatically emit an alarm sound and a flashing light beam when the coal level reaches the upper or lower limit to remind underground personnel to check the coal bunker 23 in time and eliminate hidden dangers; the emergency brake valve 16 of the transport aircraft is used for sound When the light alarm device is triggered, the belt conveyor 24 stops working.
- the sound and light alarm 15 is used to automatically emit an alarm sound and a flashing light beam when the coal level reaches the upper or lower limit to remind underground personnel to check the coal bunker 23 in time and eliminate hidden dangers; the emergency brake valve 16 of the transport aircraft is used for sound When the light alarm device is triggered, the belt conveyor 24 stops working, and it can be manually restored after the hidden fault is removed.
- the sound and light alarm 15 includes a sound generator and a light source generator, both of which are connected to a computer by a single-chip control system, with a stable signal source and rapid action.
- One end of the emergency brake valve 16 is connected to the data processing system 21, and the other end of the emergency brake valve 16 is connected to the main working shaft of the belt conveyor 24.
- the signal source is stable and the brake is sensitive.
- the working principle is: install a support structure above the coal bunker 23, calibrate the monitoring depth before installation in the underground, and mark the sequence number of the fiber grating for the coal bunker of different depths. Put the vibrating device with the fiber grating sensor device vertically into the center of the coal bunker 23.
- the fiber grating temperature sensor 14 under the same temperature condition can be used for temperature compensation. In order to eliminate the interference caused by the temperature, the reliability of the monitored data is higher.
- the coal body When the coal lump falls into the coal bunker 23 from the coal bunker entrance 22, the coal body will generate tangential stress on the steel structure due to the squeezing effect, and the stress will be transmitted to the fiber grating sensor 14, and this signal will be sent to the fiber grating demodulator 13 Through computer data processing, the coal level of the coal bunker 23 can be measured.
- the working process is as follows: (1) When the coal level in the coal bunker 23 is in a safe range, the fiber grating sensor 8 transmits the stress signal to the static fiber grating demodulator 13, and the optical signal is analyzed and processed by the fiber grating demodulator 13 It is converted into an electric signal and transmitted to the data processing system 21. After the electric signal is input through the simulation software, the specific position of the coal level will be displayed on the display 20 for monitoring by the staff. At this time, the audible and visual alarm 15, the emergency brake valve 16, and the vibration device will not be triggered.
- the linear relationship between the coal level of the coal bunker and the fiber grating sensor is shown in Figure 6, which shows that the coal level of the coal bunker is 5m away from the top of the coal bunker.
- the fiber grating sensor 8 When the coal level of the coal bunker is lower than the lower calibration limit, the fiber grating sensor 8 will transmit the optical signal to the fiber grating demodulator 13, and the fiber grating demodulator 13 will convert the optical signal into an electrical signal and transmit it to the data processing system 21 , The display 20 will display the coal level and trigger the sound and light alarm 15 to remind the underground workers to stop coal caving at the coal unloading port 19 and take safety precautions.
- the computer processed data is shown in Figure 8. The figure shows that the coal level of the coal bunker has reached the lower limit of the coal level at this time, and measures should be taken immediately.
- the light grating sensor 8 senses the empty coal area below and transmits the optical signal to the fiber grating demodulator 13, and passes through the fiber grating.
- the demodulator 13 converts the electrical signal into the data processing system 21, and the display 20 will display the specific location of the shed coal and the height of the shed coal area.
- the data processing system 21 triggers the sound and light alarm 15 and the emergency brake valve 16.
- the sound and light alarm 15 sends out sound and light signals to remind the monitoring personnel to find out the situation in time.
- the emergency brake valve 16 will stop the operation of the belt conveyor 24 in time. Coal action to prevent accidents.
- the vibration device After specific confirmation by the inspector, the vibration device is manually turned on, the parameters of the speed regulating motor 3 are set, the vibration generator 6 starts to work, and the surrounding coal body begins to fall due to the vibration to eliminate the coal shed fault. If the surrounding coal body does not fall, the parameters of the speed regulating motor 3 should be adjusted to make the surrounding coal body fall. If the coal in the pent coal area is hard and large and cannot be solved by a vibrating device, other solutions should be used quickly. After the shed coal failure is resolved, the coal level of the coal bunker 23 is in a safe range, the vibration device, the sound and light alarm device and the emergency brake device are released, and the belt conveyor 24 continues to work.
- the computer-processed data is shown in Figure 8.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Control Of Conveyors (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Alarm Systems (AREA)
Abstract
一种用于煤仓煤位光纤光栅智能监测装置及监测方法,包括支撑装置,支撑装置位于煤仓(23)的上方,支撑装置与振动装置可拆卸连接,振动装置伸入煤仓(23)内部,振动装置外壳上加工有环绕的预留槽(7),预留槽(7)用于放置光纤光栅传感器装置(14),光纤光栅传感器装置(14)连接有光纤光栅解调仪(13),光纤光栅解调仪(13)电性连接有数据处理系统(21),数据处理系统(21)电性连接报警装置(15),报警装置(15)连接有胶带运输机(24)。该光纤光栅的光波反射变化,这种变化反应快、精度高,能够在第一时间将信号传输到显示装置,给煤仓(23)的运作提供良好的环境;不受煤仓(23)恶劣环境干扰,能够稳定的实时监测煤位;及时监测到棚煤现象,并对棚煤故障进行疏通;容易部署和维护,成本低。
Description
本发明涉及煤矿设备技术领域,特别是涉及一种用于煤仓煤位光纤光栅智能监测装置及监测方法。
随着煤矿生产进入智能化时代发展阶段,井下煤仓成为连接井上井下的重要组成部分。在井下原煤进入到煤仓时,常常伴随有大量的煤尘和体积较大的矸石,当煤仓内煤位过高时,就会发生块煤溢出的风险,直接会导致胶带输送机的损伤和人员伤亡事故。当大体积煤块或者矸石在较大湿度环境中落下时,会出现棚煤现象,且难以及时发现,导致煤仓堵塞。煤仓底部进行卸煤时,如果没有具体的监测手段使煤位降低到规定的煤位下限以下,可能造成闸口破坏,或者出现漏风使得煤尘大肆飞扬,给井下生产带来不安全因素。为了使井下连续作业生产,必须要对煤仓煤位进行精确的位置监测。现有的煤仓煤位监测技术主要分为接触式监测方法和非接触式监测方法,接触式监测包括:重锤式、电极式、电容式、机杆式、称重式和回转翼轮式。非接触式监测包括:雷达式、超声波式、激光式、核子式等,其中现在煤矿井下常用的监测方法有:基于雷达技术、基于超声波技术和基于激光技术三种方法。雷达式煤位计通过发射探头发射电磁波信号到煤面,反射回的波信号由接收探头接收,由于雷达波的传播时间与到煤面距离成比例关系,通过外部计算机的信号处理可以测出煤位距离煤顶的具体距离。超声波式煤位计时以发射探头发出固定频率的超声 波,超声波接触到煤面时会反射至超声波接收探头,根据测量得到的超声波从发射端到接收端的时间间隔以及该波在空气中的传播速度,可以通过计算机的外部处理得到煤面到煤顶的具体距离。激光式煤位计是通过激光发射装置发射激光束,在另一端设置激光接收装置,如果煤仓煤位超过此装置时,发射端所发出的激光束被阻断,接收端无信号,经过外部计算机的放大和比较处理,就可以确定出该时刻煤仓内煤位的位置。井下煤仓的环境充满着复杂因素,以上的矿用煤位监测装置仍然存在许多的不足和缺陷。
(1)雷达式煤位计在工作过程中,当雷达波发射到煤面上时,由于煤面粗糙不平,雷达波会朝着杂乱的方向反射,并且有些煤种对于雷达波有很强的吸收作用,这些因素极大的影响了这种煤位计的监测精度。井下煤仓的环境恶劣,经常伴有煤粉和各种挥发性物质,时间稍长便会积聚在发射器的端头表面,会严重的影响雷达波的发射和接收,进而使得监测机制失效。
(2)超声波煤位计从发射探头发出超声波后,波束有很大的概率从煤仓的仓壁上反射出去,接收探头就无法接收到波信号。反射波到达另一侧仓壁后会发生二次反射,这些二次反射波如果被接收探头接收到就会产生虚假信号,给监测带来极大的误差。除此之外,超声波煤位计的设计和使用与煤仓的直径和深度比密切相关,当煤仓的直径与深度之比不能满足超声波煤位计的监测范围时,监测的结果会与实际不符,甚至不能监测。超声波煤位计还要求煤仓有一定的规则形状,煤仓内壁光滑,这就使得超声波煤位计在井下的使用范围大大缩 小。
(3)激光式煤位计同样会受到井下煤仓恶劣的条件影响,在湿度较大情况下,煤粉会聚集在激光煤位计的反射端和接收端,这样会大大降低煤位计的测量精度。井下煤仓深度一般会超过40m,这样大高度下煤在下落过程中势必会碰撞到煤仓仓壁,且冲击力很大,如果碰撞到安装在仓壁的激光煤位计,会直接损毁仪器,使用寿命会大大减少,维修也相当困难。
发明内容
本发明的目的是提供一种用于煤仓煤位光纤光栅智能监测装置及监测方法,可以不受井下环境影响,并且能够及时监测发现煤仓是否出现棚煤现象,连续性监测煤仓煤位的装置,有利于煤矿智能化生产的推进。
为实现上述目的,本发明提供了如下方案:一种用于煤仓煤位光纤光栅智能监测装置,所述监测装置位于煤仓(23)的上方,包括支撑装置、振动装置,所述支撑装置位于煤仓的上方,所述支撑装置与振动装置可拆卸连接,所述振动装置伸入煤仓内部,所述振动装置的外壳上加工有环绕的预留槽,所述预留槽用于放置光纤光栅传感器装置,所述光纤光栅传感器装置与光纤光栅解调仪的一端连接,所述光纤光栅解调仪另一端电性连接有数据处理系统,所述数据处理系统电性连接报警装置,所述报警装置连接有胶带运输机。
优选地,所述支撑装置包括在煤仓左右两端对称设置的支撑钢架,所述支撑钢架上架有横向的支撑钢梁,所述支撑钢梁通过钢筋连 接件横放在支撑钢架上面。
优选地,所述振动装置包括调速电机、振动连接杆、振动发生器,所述振动连接杆与所述调速电机轴接,所述调速电机与支撑钢梁可拆卸连接,所述振动发生器与所述振动连接杆螺纹连接。
优选地,所述光纤光栅传感器装置包括光纤布拉格光栅,所述光纤布拉格光栅外包裹保护层,所述光纤布拉格光栅与所述光纤光栅解调仪连接。
优选地,所述光纤光栅传感器装置还包括光纤、光纤光栅传感器,所述光纤布拉格光栅串联在所述光纤上,所述光纤的一端与所述光纤光栅传感器连接,所述光纤的另一端与所述光纤光栅解调仪连接。
优选地,所述光纤的尾端设有光纤尾纤。
优选地,所述报警装置包括声光报警器、运输机紧急制动阀;所述声光报警器与所述数据处理系统连接,所述运输机紧急制动阀的一端与所述数据处理系统连接,所述运输机紧急制动阀的另一端与胶带输送机连接。
优选地,所述声光报警器用于在煤位达到上限或者下限时会自动发出报警声音和闪烁光束,提醒井下人员及时查看煤仓并排除隐患;所述运输机紧急制动阀用于声光报警装置触发的同时,使得所述胶带运输机停止工作。
优选地,所述振动装置还包括振动缓冲片,所述振动缓冲片设置在所述支撑钢梁与调速电机之间,所述振动缓冲片与所述支撑钢梁螺纹连接。
一种用于煤仓煤位光纤光栅智能监测方法,包括如下步骤:
光纤光栅传感器将应力信号传递到静态光纤光栅解调仪上,经过光纤光栅解调仪的解析处理将光信号转变为电信号传输到数据处理系统内,通过模拟软件输入电信号后会将煤位的具体位置在显示器显示,以供工作人员监控,并采取相应措施;
若煤仓内煤位超过或低于所设定上限,将会触发声光报警器、紧急制动阀和振动装置;
若煤仓内出现棚煤故障,显示器会显示具体的棚煤位置以及棚煤区高度;数据处理系统触发声光报警器和紧急制动阀,声光报警器发出声音信号和光信号,提醒监测人员及时查明情况,紧急制动阀会及时停止胶带输送机的运煤动作。
本发明公开了以下技术效果:
(1)精度高,时效性好。本发明涉及到光纤光栅的光波反射变化,这种变化反应快、精度高,能够在第一时间将信号传输到显示装置,给煤仓的运作提供良好的环境。
(2)不受煤仓恶劣环境干扰。井下煤仓煤尘浓度高、湿度大,在现有的技术上很难排除这些因素的限制。本发明不会受到井下煤仓恶劣环境的影响,能够稳定的实时监测煤位。
(3)及时监测到棚煤现象,并对棚煤故障进行疏通。本发明由于与煤仓内煤块直接接触,在发生棚煤故障时,及时的会将受力信号传输到计算机数据处理系统,系统会将信号传递给振动装置,及时触发振动发生器来疏通煤仓。
(4)容易部署和维护,成本低。光纤光栅成本低,技术成熟,在部署时方便与其他非接触式煤位计,使用年限可达5年以上。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图;
图2为本发明振动装置的部分结构示意图;
图3为本发明光纤光栅传感器装置的部分结构示意图;
图4为本发明光纤的部分结构示意图;
图5为当煤仓内煤位处于安全范围时,煤仓煤位与光纤光栅传感器的线性关系图;
图6为当煤仓内煤位超过所设定上限时,煤仓煤位与光纤光栅传感器的线性关系图;
图7为当煤仓煤位低于标定下限时,煤仓煤位与光纤光栅传感器的线性关系图;
图8为当煤仓内出现棚煤故障时,煤仓煤位与光纤光栅传感器的线性关系图;
其中,1为支撑钢架,2为支撑钢梁,3为调速电机,4为振动缓冲片,5为振动连接杆,6为振动发生器,7为预留槽,8为光纤布拉 格光栅,9为保护层,10为光纤出线口,11为光纤尾纤,12为光纤,13为光纤光栅解调仪,14为光纤光栅温度传感器,15为声光报警器,16为运输机紧急制动阀,17为螺纹,18为钢筋连接件,19为缷煤口,20为显示器,21为数据处理系统,22为煤仓入口,23为煤仓,24为胶带运输机,25为螺栓。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参照图1-8所示,本实施例提供一种用于煤仓煤位光纤光栅智能监测装置,包括支撑装置,所述支撑装置位于煤仓23的上方,所述支撑装置与振动装置可拆卸连接,所述振动装置伸入煤仓23内部,所述振动装置的外壳上加工有环绕的预留槽7,所述预留槽7用于放置光纤光栅传感器装置,所述光纤光栅传感器装置连接有光纤光栅解调仪13,所述光纤光栅解调仪13电性连接有数据处理系统21,所述数据处理系统21电性连接报警装置,所述报警装置连接有胶带运输机24,所述光纤光栅解调仪13使用矿用本安型光纤光栅解调仪13,在光纤光栅感知到应变信号时及时分析传输给数据处理系统21。
进一步优化方案,所述支撑装置包括在煤仓23左右两端对称设置的支撑钢架1,所述支撑钢架1安装在煤仓23的两端,为常用的矿用支撑钢架,所述支撑钢架1上架有横向的支撑钢梁2,所述支撑钢梁2通过钢筋连接件18横放在支撑钢架1上面,支撑稳固。
进一步优化方案,所述振动装置包括振动连接杆5、调速电机3、振动发生器6,所述振动连接杆5与所述调速电机3轴接,所述调速电机3与支撑钢梁2可拆卸连接,所述振动发生器6与所述振动连接杆5螺纹连接,所述振动连接杆5上设有预留槽7,所述光纤布拉格光栅8黏贴在所述预留槽7内,留出光纤出线口10,在所述预留槽7上覆盖一层热塑型橡胶,将除去光纤的空隙并填充完整。所述调速电机3由电路控制系统和安全电力发动机组成。所述支撑钢梁2为厚度和横向截面满足调速电机3的安装,抗破环强度应该大于调速电机3的重力和附加应力。
进一步优化方案,所述振动装置还包括振动缓冲片4,所述振动缓冲片4设置在所述支撑钢梁2与调速电机3之间,选择合适的矿用调速电机通过螺丝安装在支撑钢梁2上,支撑钢梁2打孔后将振动缓冲片4用螺栓25连接。
所述预留槽7在尾部加工出连接振动发生器6的装配螺纹17,振动发生器6与螺纹17配合固定,所述振动连接杆5顶部加工出与振动缓冲片4配套的装配螺纹。
进一步优化方案,所述光纤光栅传感器装置包括光纤布拉格光栅8,所述光纤布拉格光栅8串联在光纤12上并且根据煤仓深度标记好 顺序,所述光纤布拉格光栅8外包裹有保护层9,呈螺旋式布置在振动连接杆5上,排除由温度变化产生的错误信号。所述光纤布拉格光栅8与所述光纤光栅解调仪13连接。
进一步优化方案,所述光纤光栅传感器装置还包括光纤12、光纤光栅传感器14,所述光纤布拉格光栅8串联在所述光纤12上,并且根据煤仓23深度标记好顺序,光纤外部包裹保护层9,呈螺旋式布置在振动连接杆5上。所述光纤光栅温度传感器14串联在光纤上并且根据煤仓深度标记好顺序,所述光纤光栅传感器装置呈螺旋式布置在振动连接杆5上,排除由温度变化产生的错误信号。所述光纤光栅解调仪13的一端口连接光纤12,所述光纤光栅解调仪13的另一个端口连接在计算机主机上,放置于合适位置,实现工作人员实时操作。所述光纤光栅解调仪13采用矿用本安型光纤光栅静态解调仪。
进一步优化方案,所述光纤12的尾端设有光纤尾纤11,用于连接所述光纤光栅解调仪13。
进一步优化方案,所述报警装置包括声光报警器15、运输机紧急制动阀16;所述声光报警器15与所述数据处理系统21连接,所述运输机紧急制动阀16的一端与所述数据处理系统21连接,所述运输机紧急制动阀16的另一端与胶带输送机24连接,信号来源稳定,制动灵敏。所述声光报警器15,用于在煤位达到上限或者下限时会自动发出报警声音和闪烁光束,提醒井下人员及时查看煤仓23并排除隐患;所述运输机紧急制动阀16用于声光报警装置触发的同时,使得所述胶带运输机24停止工作。
所述声光报警器15,用于在煤位达到上限或者下限时会自动发出报警声音和闪烁光束,提醒井下人员及时查看煤仓23并排除隐患;所述运输机紧急制动阀16用于声光报警装置触发的同时,使得所述胶带运输机24停止工作,当隐故障除后可手动恢复。
所述声光报警器15包括声音发生器和光源发生器,都由单片机控制系统连接在计算机上,信号来源稳定,动作迅速。所述紧急制动阀16的一端连接在数据处理系统21上,所述紧急制动阀16的另一端连接在胶带输送机24主要工作轴上,信号来源稳定,制动灵敏。
工作原理为:在煤仓23上方安装支撑结构,在井下安装前标定监测深度,对于不同深度的煤仓标注光纤光栅的顺序号。将附带有光纤光栅传感器装置的振动装置垂直放入煤仓23中心位置,在应力监测过程中为了防止温度变化对监测结果产生干扰,可采用相同温度条件下的光纤光栅温度传感器14进行温度补偿,以剔除温度所产生的干扰,使得监测的数据可靠性更高。当煤块由煤仓入口22落入煤仓23后,由于挤压作用煤体会对钢结构产生切向的应力,应力会传递到光纤光栅传感器14,将这种信号发送到光纤光栅解调仪13通过计算机数据处理,便可以测出煤仓23的煤位。
工作流程如下:(1)当煤仓23内煤位处于安全范围时,光纤光栅传感器8将应力信号传递到静态光纤光栅解调仪13上,经过光纤光栅解调仪13的解析处理将光信号转变为电信号传输到数据处理系统21内,通过模拟软件输入电信号后会将煤位的具体位置在显示器20显示,以供工作人员监控。此时不会触发声光报警器15、紧急制 动阀16和振动装置。煤仓煤位与光纤光栅传感器的线性关系如图6所示,由图可知煤仓煤位在距离煤仓顶部5m处。
(2)当煤仓23内煤位超过所设定上限时,由于应力作用光纤光栅传感器8会将信号通过光纤光栅解调仪13传递给数据处理系统21,此时声光报警器15和紧急制动阀16迅速响应。声光报警器15发出声音信号和光信号,提醒监测人员迅速了解情况并及时打开缷煤口19,疏散周围工人。紧急制动阀16迅速作用,停止胶带输送机24的运煤动作。煤仓底部缷煤口19打开,开始缷煤。计算机处理数据如图7所示,由图表明此时煤仓煤位已经达到煤位上限。
(3)当煤仓煤位低于标定下限时,光纤光栅传感器8会将光信号传递给光纤光栅解调仪13,光纤光栅解调仪13将光信号转换为电信号传输到数据处理系统21,显示器20会显示煤位并触发声光报警器15,提醒井下工作人员停止卸煤口19放煤工作,做好安全防备工作。计算机处理数据如图8所示,由图表明此时煤仓煤位已经达到煤位下限,应该立即采取措施。
(4)当煤仓23内出现棚煤故障时,煤仓23下部出现空煤区,光线光栅传感器8感应到下方空煤区后将光信号传递到光纤光栅解调仪13上,经过光纤光栅解调仪13转换为电信号输入数据处理系统21,显示器20会显示具体的棚煤位置以及棚煤区高度。数据处理系统21触发声光报警器15和紧急制动阀16,声光报警器15发出声音信号和光信号,提醒监测人员及时查明情况,紧急制动阀16会及时停止胶带输送机24的运煤动作,以防发生事故。经过检测人员具体 确认后,手动打开振动装置,设定调速电机3的参数,振动发生器6开始工作,周围煤体由于振动作用开始下落排除棚煤故障。如果周围煤体不下落,应该调节调速电机3的参数,使周围煤体下落。如果棚煤区煤块坚硬且体积较大,无法通过振动装置解决,就应该迅速使用其他解决办法。棚煤故障解决后,煤仓23煤位处于安全范围,振动装置、声光报警装置和紧急制动装置解除,胶带输送机24继续工作。计算机处理数据如图8所示,由图知煤仓内在距离煤仓顶部14m处发生了光纤光栅的波长突变,说明在14m以下已经没有块煤对光纤光栅产生应力作用,即在此处发生了棚煤故障,应该立即采取上述措施进行疏通。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
Claims (10)
- 一种用于煤仓煤位光纤光栅智能监测装置,所述监测装置位于煤仓(23)的上方,其特征在于,包括支撑装置、振动装置,所述支撑装置位于煤仓(23)的上方,所述支撑装置与振动装置可拆卸连接,所述振动装置伸入煤仓(23)的内部,所述振动装置的外壳上加工有环绕的预留槽(7),所述预留槽(7)用于放置光纤光栅传感器装置,所述光纤光栅传感器装置与光纤光栅解调仪(13)的一端连接,所述光纤光栅解调仪(13)另一端电性连接有数据处理系统(21),所述数据处理系统(21)电性连接报警装置,所述报警装置连接有胶带运输机(24)。
- 根据权利要求1所述的用于煤仓煤位光纤光栅智能监测装置,其特征在于,所述支撑装置包括在煤仓左右两端对称设置的支撑钢架(1),所述支撑钢架(1)上架有横向的支撑钢梁(2),所述支撑钢梁(2)通过钢筋连接件(18)横放在支撑钢架(1)上面。
- 根据权利要求2所述的用于煤仓煤位光纤光栅智能监测装置,其特征在于,所述振动装置包括调速电机(3)、振动连接杆(5)、振动发生器(6),所述振动连接杆(5)与所述调速电机(3)轴接,所述调速电机(3)与支撑钢梁(2)可拆卸连接,所述振动发生器(6)与所述振动连接杆(5)螺纹连接。
- 根据权利要求1所述的用于煤仓煤位光纤光栅智能监测装置,其特征在于,所述光纤光栅传感器装置包括光纤布拉格光栅(8),所述光纤布拉格光栅(8)外包裹有保护层(9)。
- 根据权利要求4所述的用于煤仓煤位光纤光栅智能监测装置, 其特征在于,所述光纤光栅传感器装置还包括光纤(12)、光纤光栅传感器(14),所述光纤布拉格光栅(8)、所述光纤光栅传感器(14)串联在所述光纤(12)上,所述光纤(12)与所述光纤光栅解调仪(13)连接。
- 根据权利要求5所述的用于煤仓煤位光纤光栅智能监测的方法及装置,其特征在于,所述光纤(12)的尾端设有光纤尾纤(11)。
- 根据权利要求1所述的用于煤仓煤位光纤光栅智能监测的方法及装置,其特征在于,所述报警装置包括声光报警器(15)、运输机紧急制动阀(16);所述声光报警器(15)与所述数据处理系统(21)连接,所述运输机紧急制动阀(16)的一端与所述数据处理系统(21)连接,所述运输机紧急制动阀(16)的另一端与胶带输送机(24)连接。
- 根据权利要求7所述的用于煤仓煤位光纤光栅智能监测的方法及装置,其特征在于,所述声光报警器(15)用于在煤位达到上限或者下限时会自动发出报警声音和闪烁光束,提醒井下人员及时查看煤仓并排除隐患;所述运输机紧急制动阀(16)用于声光报警装置触发的同时,使得所述胶带运输机(24)停止工作。
- 根据权利要求3所述的用于煤仓煤位光纤光栅智能监测的方法及装置,其特征在于,所述振动装置还包括振动缓冲片(4),所述振动缓冲片(4)设置在所述支撑钢梁(2)与调速电机(3)之间,所述振动缓冲片(4)与所述支撑钢梁(2)螺纹连接。
- 一种用于煤仓煤位光纤光栅智能监测方法,其特征在于,包 括如下步骤:光纤光栅传感器(8)将应力信号传递到静态光纤光栅解调仪(13)上,经过光纤光栅解调仪(13)的解析处理将光信号转变为电信号传输到数据处理系统(21)内,通过模拟软件输入电信号后会将煤位的具体位置在显示器(20)显示,以供工作人员监控,并采取相应措施;若煤仓(23)内煤位超过或低于所设定上限,将会触发声光报警器(15)、紧急制动阀(16)和振动装置;若煤仓(23)内出现棚煤故障,显示器(20)会显示具体的棚煤位置以及棚煤区高度;数据处理系统(21)触发声光报警器(15)和紧急制动阀(16),声光报警器(15)发出声音信号和光信号,提醒监测人员及时查明情况,紧急制动阀(16)会及时停止胶带输送机(24)的运煤动作。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/049,247 US20230130817A1 (en) | 2019-12-26 | 2020-05-15 | The fiber bragg grating intelligent device and method for monitoring coal level in bunker |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911370439.2 | 2019-12-26 | ||
CN201911370439.2A CN111103029B (zh) | 2019-12-26 | 2019-12-26 | 一种用于煤仓煤位光纤光栅智能监测装置及监测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021128705A1 true WO2021128705A1 (zh) | 2021-07-01 |
Family
ID=70424683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/090605 WO2021128705A1 (zh) | 2019-12-26 | 2020-05-15 | 一种用于煤仓煤位光纤光栅智能监测装置及监测方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230130817A1 (zh) |
CN (1) | CN111103029B (zh) |
WO (1) | WO2021128705A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111103029B (zh) * | 2019-12-26 | 2021-04-30 | 河南理工大学 | 一种用于煤仓煤位光纤光栅智能监测装置及监测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1588013A (zh) * | 2004-08-24 | 2005-03-02 | 西安科技大学 | 蛇形光纤传感器埋入与测试方法及其蛇形光纤传感器 |
US20160097277A1 (en) * | 2014-10-06 | 2016-04-07 | Caterpillar Inc. | Fiber optic shape sensing adapted to cutter module of highwall miner |
CN108593048A (zh) * | 2018-07-13 | 2018-09-28 | 山东超晟光电科技有限公司 | 煤矿堆煤无源光纤保护开关 |
CN208953017U (zh) * | 2018-11-29 | 2019-06-07 | 兖州煤业股份有限公司 | 基于光纤光栅传感器的煤矿综采面转载机监控系统 |
CN111103029A (zh) * | 2019-12-26 | 2020-05-05 | 河南理工大学 | 一种用于煤仓煤位光纤光栅智能监测装置及监测方法 |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01316609A (ja) * | 1988-06-17 | 1989-12-21 | Sumitomo Heavy Ind Ltd | 物体の位置検出装置 |
EP1189039A1 (en) * | 2000-09-18 | 2002-03-20 | NTT Advanced Technology Corporation | Fiber-optic liquid level measurement device |
JP2002277304A (ja) * | 2001-03-15 | 2002-09-25 | Ntt Advanced Technology Corp | 液面計 |
JP4536114B2 (ja) * | 2005-05-26 | 2010-09-01 | 三菱電機株式会社 | 光ファイバセンサ |
US20070234800A1 (en) * | 2006-04-11 | 2007-10-11 | Monitor Technologies Llc | Level sensor |
ES2294950B1 (es) * | 2006-09-28 | 2009-02-01 | Universidad De Cantabria | Sistema sensor de fibra optica para medida de nivel de liquido en tanques. |
US7792392B2 (en) * | 2006-12-09 | 2010-09-07 | University of Pittsburgh—of the Commonwealth System of Higher Education | Fiber optic gas sensor |
US20090007652A1 (en) * | 2007-07-03 | 2009-01-08 | Baker Hughes Incorporated | Optical sensor for measuring downhole ingress of debris |
DE102007057348A1 (de) * | 2007-11-28 | 2009-06-04 | Uhde Gmbh | Verfahren zum Befüllen einer Ofenkammer einer Koksofenbatterie |
DE102008014745A1 (de) * | 2008-03-18 | 2009-10-01 | Siemens Aktiengesellschaft | Vorrichtung zur Tanküberwachung auf einem Schiff |
DE102008060032A1 (de) * | 2008-07-31 | 2010-02-04 | Sms Siemag Aktiengesellschaft | Gießspiegelmessung in einer Kokille durch ein faseroptisches Messverfahren |
US8463083B2 (en) * | 2009-01-30 | 2013-06-11 | Claudio Oliveira Egalon | Side illuminated multi point multi parameter optical fiber sensor |
CN202483561U (zh) * | 2012-01-17 | 2012-10-10 | 北京奥飞搏世技术服务有限公司 | 基于光纤传感的煤层气井液位监测系统 |
FR2992718B1 (fr) * | 2012-06-27 | 2014-07-18 | Elta | Dispositif de detection de niveau d'un liquide contenu dans une enceinte |
CN102797491A (zh) * | 2012-08-04 | 2012-11-28 | 河南理工大学 | 一种煤矿动力灾害的光纤光栅监测系统及方法 |
CN102966344B (zh) * | 2012-11-20 | 2015-05-27 | 中国地质大学(武汉) | 煤层气排采井井底气流上举参数检测装置 |
BR102013006794B1 (pt) * | 2013-03-25 | 2022-11-01 | Luxtec - Sistemas Ópticos Ltda - Me | Dispositivo multiparamétrico para medição por meios ópticos, do nível de preenchimento de tanques e reservatórios para líquidos e liquefeitos, índice de refração e análises por imagem, sem peças móveis |
US9645002B2 (en) * | 2013-03-28 | 2017-05-09 | Exxonmobil Research And Engineering Company | System and method for identifying levels or interfaces of media in a vessel |
CN103278214B (zh) * | 2013-05-29 | 2015-11-04 | 西北大学 | 保偏光纤布拉格光栅液位传感器 |
CN104343466B (zh) * | 2014-10-15 | 2017-02-08 | 中国科学院合肥物质科学研究院 | 一种全光纤煤矿安全监测系统 |
CN104880233A (zh) * | 2015-06-12 | 2015-09-02 | 武汉理工大学 | 一种新型翻车机溜槽料位检测系统及方法 |
CN204679143U (zh) * | 2015-06-26 | 2015-09-30 | 秦皇岛科云工贸有限责任公司 | 应变传感器料位测控装置 |
US9952081B2 (en) * | 2016-02-29 | 2018-04-24 | The Boeing Company | System and method for measuring liquid levels having a fiber with a strain layer around a Bragg grating |
US10416004B2 (en) * | 2016-05-02 | 2019-09-17 | Mitsubishi Electric Corporation | Resin impregnation detection device, coil for rotating machine, and method for impregnating and molding resin of coil for rotating machine |
CN107448191A (zh) * | 2016-05-30 | 2017-12-08 | 中国石油天然气集团公司 | 一种煤层气井的温度和压力同步监测系统 |
DE102016125614A1 (de) * | 2016-12-23 | 2018-06-28 | fos4X GmbH | Optische Füllstandsmesseinrichtung und Verfahren zum Messen eines Füllstandes |
CN106840016B (zh) * | 2017-01-24 | 2020-02-04 | 中国矿业大学(北京) | 松散堆积体安全监测预警方法 |
PT109877A (pt) * | 2017-01-26 | 2018-07-26 | Inst Superior Tecnico | Método ótico para a medição da concentração de oxigénio em sistemas de combustível. |
DE102017206424A1 (de) * | 2017-04-13 | 2018-10-18 | Siemens Aktiengesellschaft | Anordnung und Verfahren zur Füllstandsmessung |
CN107054911B (zh) * | 2017-04-14 | 2019-10-11 | 西安热工研究院有限公司 | 一种自动判断并消除原煤仓堵煤的控制系统和方法 |
CN107167217B (zh) * | 2017-05-23 | 2020-09-08 | 田志鹏 | 一种声光耦合的光纤液位传感器系统 |
CN107387166B (zh) * | 2017-08-01 | 2020-04-10 | 安徽理工大学 | 回采工作面煤层底板破坏深度实时监测预警系统及方法 |
CN207395935U (zh) * | 2017-08-04 | 2018-05-22 | 西安迅航光电科技有限公司 | 一种基于光纤光栅传感技术的冲击地压在线监测系统 |
CN108195304A (zh) * | 2017-11-28 | 2018-06-22 | 中国矿业大学 | 一种大采高采场煤壁片帮深度测定方法 |
CN209028493U (zh) * | 2018-04-03 | 2019-06-25 | 山东省冶金设计院股份有限公司 | 一种大型料仓的温度料位一体化安全检测控制系统 |
CN108490502A (zh) * | 2018-04-09 | 2018-09-04 | 栾彦锋 | 矿山探测系统及其探测方法 |
FR3080180B1 (fr) * | 2018-04-11 | 2021-08-06 | Saipem Sa | Dispositif et procede pour la determination du niveau d'interface de phase dans un reservoir |
GB2576773A (en) * | 2018-08-31 | 2020-03-04 | Advanced Fibreoptic Eng Ltd | Fluid level sensing device and method |
CN110057426B (zh) * | 2019-05-06 | 2021-03-16 | 武汉理工大学 | 基于布喇格光栅周围应变层的暗池液位测量系统及方法 |
WO2021073740A1 (en) * | 2019-10-17 | 2021-04-22 | Lytt Limited | Inflow detection using dts features |
CN212674207U (zh) * | 2020-07-23 | 2021-03-09 | 陈天宇 | 一种大型容器的多功能安全检测系统 |
US20220042839A1 (en) * | 2020-08-07 | 2022-02-10 | Ming-Chun Lai | Subsidence sensing device with liquid replenishing mechanism |
EP3961163A1 (en) * | 2020-08-31 | 2022-03-02 | Simmonds Precision Products, Inc. | Fluid quantity sensor system |
-
2019
- 2019-12-26 CN CN201911370439.2A patent/CN111103029B/zh active Active
-
2020
- 2020-05-15 US US17/049,247 patent/US20230130817A1/en not_active Abandoned
- 2020-05-15 WO PCT/CN2020/090605 patent/WO2021128705A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1588013A (zh) * | 2004-08-24 | 2005-03-02 | 西安科技大学 | 蛇形光纤传感器埋入与测试方法及其蛇形光纤传感器 |
US20160097277A1 (en) * | 2014-10-06 | 2016-04-07 | Caterpillar Inc. | Fiber optic shape sensing adapted to cutter module of highwall miner |
CN108593048A (zh) * | 2018-07-13 | 2018-09-28 | 山东超晟光电科技有限公司 | 煤矿堆煤无源光纤保护开关 |
CN208953017U (zh) * | 2018-11-29 | 2019-06-07 | 兖州煤业股份有限公司 | 基于光纤光栅传感器的煤矿综采面转载机监控系统 |
CN111103029A (zh) * | 2019-12-26 | 2020-05-05 | 河南理工大学 | 一种用于煤仓煤位光纤光栅智能监测装置及监测方法 |
Non-Patent Citations (2)
Title |
---|
LI AIJUN, WU JIANPING: "An Optical Fiber Coal Level Sensor", JOURNAL OF TAIYUAN HEAVY MACHINERY INSTITUTE, vol. 18, no. 2, 1 June 1997 (1997-06-01), XP055824182, ISSN: 1673-2057 * |
SHI XINGUO, QI SHUAI; CHENG YAN; ZHUO SHAO-FAN: "Analysis of Coalbunker Blockage Mechanism and Design for Dredging Device", MEIKUANG-JIXIE = COAL MINE MACHINERY, CN, vol. 34, no. 12, 1 December 2013 (2013-12-01), CN, pages 42 - 43, XP055824177, ISSN: 1003-0794, DOI: 10.13436/j.mkjx.2013.12.110 * |
Also Published As
Publication number | Publication date |
---|---|
US20230130817A1 (en) | 2023-04-27 |
CN111103029B (zh) | 2021-04-30 |
CN111103029A (zh) | 2020-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020100848A4 (en) | The Fiber Bragg Grating Intelligent Device And Method For Monitoring Coal Level In Bunker | |
US9377340B2 (en) | Monitoring of floating roof tank | |
RU2630334C2 (ru) | Система динамического контроля отделения кровли выработки на основе волоконных решеток и способ предварительного оповещения | |
CN204854887U (zh) | 一种光纤点式液位传感器 | |
WO2021128705A1 (zh) | 一种用于煤仓煤位光纤光栅智能监测装置及监测方法 | |
CN106949844A (zh) | 一种井筒井壁变形自动测量仪及其工作方法 | |
CN111022940A (zh) | 一种天然气管道检测系统和方法 | |
CN103171874A (zh) | 一种钢绳芯输送带无损监测装置 | |
CN108267210A (zh) | 一种盾构机出土量测量及预警系统 | |
Liu et al. | Advances of optical fiber sensors for coal mine safety monitoring applications | |
CN105067071A (zh) | 一种具有高安全性和精确性的绞车配重式料位测量装置 | |
CN207881790U (zh) | 一种与液位开关连锁的液位计 | |
CN105957569B (zh) | 一种核电站乏燃料水池监测装置 | |
CN203772360U (zh) | 一种可在恶劣环境下精确测量料位的料仓装置 | |
CN105784066A (zh) | 一种具有冗余设计的矿山超深溜井料位在线测量方法 | |
CN102879458A (zh) | 一种基于压磁效应的损伤检测仪 | |
CN107063391B (zh) | 一种非接触式双物位智能检测系统 | |
WO2019041988A1 (zh) | 一种采煤机滚筒径向及轴向振动的同步监测装置及方法 | |
CN1963462A (zh) | 激光瓦斯监控系统 | |
CN203981882U (zh) | 矿用隔爆型激光料流传感器 | |
CN114563040A (zh) | 一种水电站水工隧道监测系统及其工作方法 | |
CN203065039U (zh) | 一种起重机金属结构健康监测系统 | |
CN112595286A (zh) | 一种实时监控隧道拱顶沉降和隧道收敛的装置及方法 | |
CN208766084U (zh) | 一种粉尘检测装置 | |
CN206905844U (zh) | 一种智能非接触式料位计和料位测量系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20907588 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20907588 Country of ref document: EP Kind code of ref document: A1 |