WO2021128281A1 - 自适应颜色变换的编解码方法、装置以及视频编解码设备 - Google Patents

自适应颜色变换的编解码方法、装置以及视频编解码设备 Download PDF

Info

Publication number
WO2021128281A1
WO2021128281A1 PCT/CN2019/129191 CN2019129191W WO2021128281A1 WO 2021128281 A1 WO2021128281 A1 WO 2021128281A1 CN 2019129191 W CN2019129191 W CN 2019129191W WO 2021128281 A1 WO2021128281 A1 WO 2021128281A1
Authority
WO
WIPO (PCT)
Prior art keywords
intra
mode
prediction mode
decoding
unit
Prior art date
Application number
PCT/CN2019/129191
Other languages
English (en)
French (fr)
Inventor
蔡文婷
朱建清
Original Assignee
富士通株式会社
蔡文婷
朱建清
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 蔡文婷, 朱建清 filed Critical 富士通株式会社
Priority to PCT/CN2019/129191 priority Critical patent/WO2021128281A1/zh
Priority to JP2022530916A priority patent/JP7323071B2/ja
Priority to CN201980102326.6A priority patent/CN114731438A/zh
Publication of WO2021128281A1 publication Critical patent/WO2021128281A1/zh
Priority to US17/826,357 priority patent/US20220295101A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the embodiments of the present application relate to the technical field of video coding and decoding.
  • VVC Versatile Video Coding
  • ACT adaptive color transform
  • ACT Adaptive Color Transform
  • an ACT flag can be notified at the coding unit (CU, Coding Unit) level to adaptively select between two color spaces.
  • CU Coding Unit
  • the ACT flag is equal to 1
  • the residual of the CU is coded in the YCgCo space; otherwise, the residual of the CU is coded in the original color space.
  • VVC defines 67 regular modes, including DC, Planar, and 65 angle modes.
  • VCC also includes some very large-scale formats, such as Intra Block Copy (IBC) mode, Matrix weighted Intra Prediction (MIP) mode, and Block Differential Pulse Code Modulation (BDPCM, Block Differential Pulse) mode. Coded Modulation) mode, etc.
  • IBC Intra Block Copy
  • MIP Matrix weighted Intra Prediction
  • BDPCM Block Differential Pulse Code Modulation
  • BDPCM Block Differential Pulse Code Modulation
  • ACT is only enabled when there is at least one non-zero coefficient in the CU; for those that use intra-frame prediction mode In the CU, the ACT is enabled only when the chrominance component selects the same intra prediction mode as the luminance component, that is, the Derived Mode (DM).
  • DM Derived Mode
  • the chroma DM mode will be set as a normal mode. Therefore, in these cases, the actual chrominance prediction mode is different from the luminance prediction mode at the same location. If ACT is applied to these internal blocks, it is not reasonable enough, and the problem of reducing the coding and decoding efficiency will occur.
  • embodiments of the present application provide an adaptive color conversion encoding and decoding method, device, and video encoding and decoding equipment.
  • an adaptive color conversion encoding device including:
  • the determining section determines that the coding unit does not use adaptive color transformation when the intra-luminance prediction mode of the coding unit is a very large-scale type, or, when the coding unit uses adaptive color transformation, determines that the coding unit uses adaptive color transformation.
  • the intra-luminance prediction mode of the coding unit is not the extraordinary scale type;
  • An encoding unit which is used to indicate whether the intra-luminance prediction mode of the coding unit is the first indication information of the extraordinary scale and/or is used to indicate whether the coding unit uses the first indication information of the adaptive color transformation Second, the instruction information is compiled into the bit stream.
  • an adaptive color conversion decoding device including:
  • a decoding unit that decodes, from the bitstream, first indication information for indicating whether the intra-luminance prediction mode of the decoding unit is a very large-scale type and/or second indication information for indicating whether the decoding unit uses adaptive color conversion ;as well as
  • the determining unit which determines that the decoding unit does not use adaptive color transformation when the intra-luminance prediction mode of the decoding unit is the extraordinary type, or uses the adaptive color in the decoding unit In the case of transformation, it is determined that the intra-luminance prediction mode of the decoding unit is not the extraordinary scale type.
  • a video encoding and decoding device including:
  • the intra-luminance prediction mode of the coding unit is not the extraordinary-scale type; and the first indication information that will be used to indicate whether the intra-luminance prediction mode of the coding unit is the extraordinary-scale type and/or is used to indicate the Whether the coding unit uses the second indication information of the adaptive color transformation to be encoded into the bitstream; and
  • a decoder that decodes the first indication information and/or the second indication information from a bitstream; and when the intra-luminance prediction mode of the decoding unit is the extraordinary type, determining the decoding unit The adaptive color transformation is not used, or, when the decoding unit uses the adaptive color transformation, it is determined that the intra-luminance prediction mode of the decoding unit is not the extraordinary scale type.
  • One of the beneficial effects of the embodiments of the present application is that the extraordinary scale and adaptive color conversion do not work together, so that the extraordinary scale or ACT can be reasonably applied, the performance of each codec tool can be guaranteed, and the coding and decoding efficiency can be improved.
  • Figure 1 is a schematic diagram of decoding after ACT is used
  • Fig. 2 is a schematic diagram of an adaptive color conversion coding method according to an embodiment of the present application
  • Fig. 3 is an exemplary diagram of an adaptive color transform coding method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a decoding method for adaptive color transformation according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of inferring prediction information in VVC
  • Fig. 6 is a schematic diagram of inferring prediction information in an embodiment of the present application.
  • Fig. 7 is a schematic diagram of an adaptive color conversion encoding device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a decoding device for adaptive color transformation according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of a video encoding and decoding device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the terms, but they do not indicate the spatial arrangement or chronological order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • Figure 1 is a schematic diagram of decoding after using ACT. As shown in Figure 1, after the decoder performs entropy decoding on the bitstream, it can perform inverse quantization and inverse transform, and then according to The ACT logo can be reversed ACT.
  • the decoder can also perform in-loop filtering, decoded picture buffer (DPB, Decoded Picture Buffer), intra prediction (intra prediction) and motion compensation prediction (motion compensated prediction) and many more.
  • Fig. 1 schematically shows various operations of the decoding end. For the encoding end, various operations can be performed accordingly.
  • Table 1 schematically shows the chroma mode and the luma mode of the intra prediction mode.
  • Brightness mode Chroma DM mode IBC DC MIP Planar BDPCM_VER VER BDPCM_HOR HOR
  • the chroma DM mode when the intra luma prediction mode is the IBC mode, the chroma DM mode may be the DC mode; when the intra luma prediction mode is the MIP mode, the chroma DM mode may be Planar Mode; when the intra luma prediction mode is the BDPCM_VER mode, the chroma DM mode may be the VER mode; when the intra luma prediction mode is the BDPCM_HOR mode, the chroma DM mode may be the HOR mode.
  • the actual chrominance prediction mode is different from the luminance prediction mode at the same location. If ACT is applied to these internal blocks, it is not reasonable enough, and the problem of reducing the coding and decoding efficiency will occur.
  • YCgCo is taken as an example for description, but the present application is not limited to this.
  • it can also be applied to other color spaces, such as YCbCr.
  • IBC, MIP, and BDPCM are used as examples to illustrate the extraordinary scale type, but the application is not limited to this, for example, other extraordinary scale types may also be used.
  • the embodiment of the present application provides an adaptive color conversion coding method.
  • the area of the image to be processed may be called a coding unit (CU) or a coding block (CB, Coding Block), but the present application is not limited to this, and other names may also be used.
  • CU coding unit
  • CB Coding Block
  • Fig. 2 is a schematic diagram of an adaptive color conversion coding method according to an embodiment of the present application. As shown in Figure 2, the method includes:
  • the intra-luminance prediction mode of the coding unit is a very large-scale type, determine that the coding unit does not use adaptive color transformation, or, when the coding unit uses adaptive color transformation, determine the encoding
  • the intra-luminance prediction mode of the unit is not the extraordinary type
  • First indication information used to indicate whether the intra-luminance prediction mode of the coding unit is the extraordinary scale and/or second indication used to indicate whether the coding unit uses the adaptive color transformation The information is compiled into the bitstream.
  • Figure 2 above only schematically illustrates part of the relevant content of the embodiments of the present application, but the present application is not limited thereto.
  • the order of execution among various operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of FIG. 2 above.
  • the extraordinary scale mode is a prediction mode other than the 67 conventional modes in VVC, and the 67 conventional modes include DC, planar, and 65 angle modes.
  • the extraordinary scale mode includes at least one or any combination of IBC mode, MIP mode, and BDPCM mode; the present application is not limited to this.
  • the first indication information includes at least one or any combination of the following: intra_bdpcm_luma_flag, intra_mip_flag, pred_mode_ibc_flag; the second indication information is cu_act_enabled_flag; the application is not limited to this.
  • the extraordinary scale and adaptive color conversion do not work together, so that the extraordinary scale or ACT can be applied reasonably, the performance of each codec tool can be guaranteed, and the coding and decoding efficiency can be improved.
  • the intra-luminance prediction mode of the coding unit is a very large-scale type
  • the intra-chroma prediction mode is the derivative mode DM
  • the judgment conditions for not using ACT can be further refined, and the accuracy of judgment can be improved.
  • the second indication information is not included in the bitstream. As a result, the number of bits to be coded can be reduced, and coding efficiency can be further improved.
  • Fig. 3 is an exemplary diagram of an adaptive color transform coding method according to an embodiment of the present application, exemplarily showing a part of the coding operation. As shown in Figure 3, the method includes:
  • Intra_chroma_pred_mode an intra chroma prediction mode
  • the method also includes:
  • Figure 3 takes IBC, MIP, and BDPCM as examples, and judges these three types of extraordinary scale in turn, but the application is not limited to this. For example, only one or two of IBC, MIP, and BDPCM can be judged, and for example, it can also be Change the order of judgment, etc.
  • the ACT identifier is encoded again, thereby reducing the number of encoded bits.
  • the intra-chroma prediction mode is the derivative mode DM
  • the first indication information is not encoded into the bitstream.
  • the number of bits to be coded can be reduced, and coding efficiency can be further improved.
  • the ratio of the size of the coding unit to the sub-block is used as the judgment condition.
  • the ratio is, for example, cbWidth/SubWidthC and/or cbHeight/SubHeightC; for details, please refer to the examples shown in Table 2 to Table 8 described later.
  • the block differential pulse code modulation BDPCM chroma mode when the block differential pulse code modulation BDPCM chroma mode is not enabled or selected (that is, intra_bdpcm_chroma_flag is false), the cross component linear mode (CCLM, Cross Component Linear Mode) or Information in other regular modes is encoded.
  • CCLM Cross Component Linear Mode
  • a pair ⁇ related to intra_bdpcm_chroma_flag in the current video standard document can be deleted; for details, please refer to the examples shown in Table 2 to Table 8 below.
  • the second indication information may be encoded after the intra chroma prediction mode of the coding unit is encoded.
  • Table 2 exemplarily shows the situation where the ACT coding is placed after the chroma mode coding. For the specific meaning of these contents, please refer to the relevant video standard documents. In addition, Table 2 shows the differences from the current video standard documents.
  • Table 3 exemplarily shows the case where ACT coding is placed after chroma mode coding and ACT and BDPCM do not work together. For the specific meaning of these contents, please refer to relevant video standard documents. In addition, Table 3 shows the differences from the current video standard documents.
  • Table 4 exemplarily shows the situation where ACT coding is placed behind the chroma mode coding and ACT and MIP do not work together. For the specific meaning of these contents, please refer to relevant video standard documents. In addition, Table 4 shows the differences from the current video standard documents.
  • Table 5 exemplarily shows a situation where ACT coding is placed after chroma mode coding and ACT and MIP do not work with BDPCM.
  • ACT and MIP do not work with BDPCM.
  • relevant video standard documents please refer to relevant video standard documents.
  • Table 5 shows the differences from the current video standard documents.
  • the second indication information may be encoded before the intra-luminance prediction mode of the coding unit is encoded.
  • Table 6 exemplarily shows the case where ACT coding is placed before the luminance mode coding and ACT and BDPCM do not work together. For the specific meaning of these contents, please refer to relevant video standard documents. In addition, Table 6 shows the differences from the current video standard documents.
  • Table 7 exemplarily shows the situation where ACT coding is placed before the luminance mode coding and ACT and MIP do not work together. For the specific meaning of these contents, please refer to relevant video standard documents. In addition, Table 7 shows the differences from the current video standard documents.
  • Table 8 exemplarily shows the situation where ACT coding is placed before the luminance mode coding and ACT and MIP do not work with BDPCM. For the specific meaning of these contents, please refer to relevant video standard documents. In addition, Table 8 shows the differences from the current video standard documents.
  • chroma_format_idc and separate_colour_plane_flag, for example, as shown in Table 9.
  • the application is not limited to this, for example, chroma_format_idc, SubWidthC, and SubHeightC can also be specified as other values.
  • chroma_format_idc separate_colour_plane_flag Chroma format SubWidthC SubHeightC 0 0 Monochrome 1 1 1 0 4:2:0 2 2 2 0 4:2:2 2 1 3 0 4:4:4 1 1 3 1 4:4:4 1 1
  • the extraordinary scale and adaptive color conversion do not work together, so that the extraordinary scale or ACT can be reasonably applied, the performance of each codec tool can be ensured, and the coding and decoding efficiency can be improved.
  • the embodiment of the present application also provides a decoding method for adaptive color transformation, and the same content as in the embodiment of the first aspect will not be repeated.
  • the area of the image to be processed may be called a decoding unit, but the present application is not limited to this, for example, it may also be called a coding unit (CU) or a coding block (CB).
  • CU coding unit
  • CB coding block
  • Fig. 4 is a schematic diagram of a decoding method for adaptive color transformation according to an embodiment of the present application. As shown in Fig. 4, the method includes:
  • first indication information for indicating whether the intra-luminance prediction mode of the decoding unit is a very large-scale and/or second indication information for indicating whether the decoding unit uses adaptive color transformation
  • the intra-luminance prediction mode of the decoding unit is the extraordinary-scale mode
  • the extraordinary scale mode is a prediction mode other than the 67 conventional modes in the multifunctional video coding VVC, and the 67 conventional modes include DC, planar, and 65 angle modes.
  • the extraordinary scale includes at least one or any combination of the intra-block copy mode IBC, the matrix-weighted intra-frame prediction mode MIP, and the block differential pulse code modulation mode BDPCM.
  • the first indication information includes at least one or any combination of the following: intra_bdpcm_luma_flag, intra_mip_flag, pred_mode_ibc_flag; the second indication information is cu_act_enabled_flag.
  • the second indication information is decoded before the intra-luminance prediction mode of the decoding unit is decoded.
  • the second indication information is decoded.
  • the second indication information is not decoded from the bitstream.
  • the decoding unit uses the adaptive color transformation, the first indication information is not decoded from the bitstream.
  • the intra luma prediction mode of the decoding unit is the extraordinary scale
  • the intra chroma prediction mode is the derivative mode DM
  • the decoding unit when the decoding unit does not use the adaptive color transformation and the intra chrominance prediction mode is the derivative mode DM, it is determined that the intra luma prediction mode of the decoding unit is not the extraordinary mode. Scale style.
  • the ratio of the size of the coding unit to the sub-block is used as the judgment condition
  • the block differential pulse code modulation BDPCM chroma mode when the block differential pulse code modulation BDPCM chroma mode is not enabled or selected, the information of the inter-component linear mode CCLM or other conventional modes is decoded.
  • the extraordinary scale and adaptive color conversion do not work together, so that the extraordinary scale or ACT can be reasonably applied, the performance of each codec tool can be ensured, and the coding and decoding efficiency can be improved.
  • the embodiment of the present application also provides an image encoding and decoding method, and the same content as in the embodiment of the first and second aspects will not be repeated.
  • the embodiments of the third aspect of the present application can be combined with the embodiments of the first and second aspects, or can be implemented separately; in addition, the embodiments of the present application can be applied to the encoding end and/or the decoding end.
  • the following takes the decoding end as an example for description .
  • Table 10 schematically shows the expressions for inferring this information. For the specific meaning of these contents, please refer to the relevant video standard documents.
  • Table 11 exemplarily shows examples of inferring this information. For the specific meaning of these contents, please refer to relevant video standard documents.
  • the first row corresponds to the Planar mode
  • the fifth row corresponds to the DM mode.
  • Fig. 5 is a schematic diagram of inferring prediction information in VVC.
  • the information of adaptive color conversion may not be judged, and the intra chrominance prediction mode of the decoding unit may be determined according to the information of the block differential pulse code modulation BDPCM mode.
  • the identification information of the inter-component linear mode CCLM is inferred to be 0; in the case that there is no information about the intra chroma prediction mode, the frame The information of the inner chroma prediction mode is inferred to be 4.
  • Table 12 schematically shows the inferred expressions of this information in the embodiments of the present application. For the specific meaning of these contents, reference may be made to relevant video standard documents. In addition, Table 12 shows the differences from Table 10.
  • the chroma prediction mode can be inferred without ACT information, which can improve the consistency of the decoding process, and also facilitates hardware design.
  • the embodiment of the present application also provides a coding device for adaptive color conversion, and the same content as in the embodiment of the first and third aspects will not be repeated.
  • FIG. 7 is a schematic diagram of an adaptive color transform encoding device according to an embodiment of the present application. As shown in FIG. 7, the adaptive color transform encoding device 700 includes:
  • the determining unit 701 which determines that the coding unit does not use adaptive color transformation when the intra-luminance prediction mode of the coding unit is a very large-scale type, or, when the coding unit uses adaptive color transformation, determines The intra-luminance prediction mode of the coding unit is not the extraordinary scale type;
  • the coding unit 702 is used to indicate whether the intra-luminance prediction mode of the coding unit is the first indication information of the extraordinary scale and/or is used to indicate whether the coding unit uses the adaptive color transformation
  • the second indication information is encoded into the bit stream.
  • the extraordinary scale mode is a prediction mode other than the 67 conventional modes in the multifunctional video coding VVC, and the 67 conventional modes include DC, planar, and 65 angle modes.
  • the extraordinary scale includes at least one or any combination of the intra-block copy mode IBC, the matrix-weighted intra-frame prediction mode MIP, and the block differential pulse code modulation mode BDPCM.
  • the first indication information includes at least one or any combination of the following: intra_bdpcm_luma_flag, intra_mip_flag, pred_mode_ibc_flag; the second indication information is cu_act_enabled_flag.
  • the encoding unit 702 encodes the second indication information before encoding the intra luma prediction mode of the coding unit.
  • the encoding unit 702 encodes the second indication information after encoding the intra chroma prediction mode of the coding unit.
  • the encoding unit 702 does not encode the second indication information into the bitstream when the intra-luminance prediction mode of the coding unit is the extraordinary-scale type.
  • the encoding unit 702 does not encode the first indication information into a bitstream when the encoding unit uses the adaptive color transformation.
  • the determining unit 701 is further configured to determine the coding unit when the intra luma prediction mode of the coding unit is the extraordinary scale type and the intra chroma prediction mode is the derivative mode DM No adaptive color transformation is used.
  • the determining unit 701 is further configured to determine the intra-frame brightness of the coding unit when the coding unit does not use the adaptive color transformation and the intra-chroma prediction mode is the derivative mode DM.
  • the prediction mode is not the extraordinary scale.
  • the determining unit 701 does not judge the information of the adaptive color transformation, and determines the intra chroma prediction mode of the coding unit according to the information of the block differential pulse code modulation BDPCM mode.
  • the identification information of the inter-component linear mode CCLM is inferred to be 0; in the case that there is no information about the intra chroma prediction mode , The information of the intra-frame chroma prediction mode is inferred to be 4.
  • the encoding unit 701 when the encoding unit 701 encodes the third indication information indicating the block differential pulse code modulation BDPCM chroma mode, the ratio of the size of the encoding unit to the sub-block is used as the judgment condition.
  • the block differential pulse code modulation BDPCM chroma mode when the block differential pulse code modulation BDPCM chroma mode is not enabled or selected, the information of the inter-component linear mode CCLM or other conventional modes is encoded.
  • the encoding device 700 for adaptive color transformation may also include other components or modules.
  • the specific content of these components or modules reference may be made to related technologies.
  • FIG. 7 only exemplarily shows the connection relationship or signal direction between the various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned various components or modules may be implemented by hardware facilities such as a processor and a memory; the implementation of this application does not limit this.
  • the extraordinary scale and adaptive color conversion do not work together, so that the extraordinary scale or ACT can be reasonably applied, the performance of each codec tool can be ensured, and the coding and decoding efficiency can be improved.
  • the embodiment of the present application also provides a decoding device for adaptive color transformation, and the same content as in the embodiment of the second and third aspects will not be repeated.
  • FIG. 8 is a schematic diagram of a decoding device for adaptive color transformation according to an embodiment of the present application.
  • a decoding device 800 for adaptive color transformation includes:
  • the decoding unit 801 decodes the first indication information used to indicate whether the intra-luminance prediction mode of the decoding unit is a very large-scale and/or the second indication used to indicate whether the decoding unit uses adaptive color transformation from the bitstream Information;
  • the determining unit 802 which determines that the decoding unit does not use adaptive color transformation when the intra-luminance prediction mode of the decoding unit is the extraordinary type, or uses the adaptive color transformation in the decoding unit In the case of color conversion, it is determined that the intra-luminance prediction mode of the decoding unit is not the extraordinary scale type.
  • the extraordinary scale mode is a prediction mode other than the 67 conventional modes in the multifunctional video coding VVC, and the 67 conventional modes include DC, planar, and 65 angle modes.
  • the extraordinary scale includes at least one or any combination of the intra-block copy mode IBC, the matrix-weighted intra-frame prediction mode MIP, and the block differential pulse code modulation mode BDPCM.
  • the first indication information includes at least one or any combination of the following: intra_bdpcm_luma_flag, intra_mip_flag, pred_mode_ibc_flag; the second indication information is cu_act_enabled_flag.
  • the decoding unit 801 decodes the second indication information before decoding the intra-luminance prediction mode of the decoding unit.
  • the decoding unit 801 decodes the second indication information after decoding the intra chroma prediction mode of the decoding unit.
  • the decoding unit 801 does not decode the second indication information from the bitstream when the intra-luminance prediction mode of the decoding unit is the extraordinary-scale type.
  • the decoding unit 801 does not decode the first indication information from the bitstream when the decoding unit uses the adaptive color transformation.
  • the determining unit 802 is further configured to determine the decoding unit when the intra luma prediction mode of the decoding unit is the extraordinary-scale type and the intra chroma prediction mode is the derivative mode DM The adaptive color transformation is not used.
  • the determining unit 802 is further configured to determine the intra-frame luminance of the decoding unit when the decoding unit does not use the adaptive color transformation and the intra-chroma prediction mode is the derivative mode DM.
  • the prediction mode is not the extraordinary scale.
  • the determining unit 802 does not judge the information of the adaptive color transformation, and determines the intra chrominance prediction mode of the decoding unit according to the information of the block differential pulse code modulation BDPCM mode.
  • the identification information of the inter-component linear mode CCLM is inferred to be 0; in the case that there is no information about the intra chroma prediction mode , The information of the intra-frame chroma prediction mode is inferred to be 4.
  • the decoding unit 801 when the decoding unit 801 decodes the third indication information indicating the block differential pulse code modulation BDPCM chrominance mode, the ratio of the size of the coding unit to the sub-block is used as the judgment condition;
  • the decoding unit 801 decodes the information of the inter-component linear mode CCLM or other regular modes when the block differential pulse code modulation BDPCM chroma mode is not enabled or selected.
  • the adaptive color transform decoding apparatus 800 may also include other components or modules. For the specific content of these components or modules, reference may be made to related technologies.
  • FIG. 8 only exemplarily shows the connection relationship or signal direction between the various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned various components or modules may be implemented by hardware facilities such as a processor and a memory; the implementation of this application does not limit this.
  • the extraordinary scale and adaptive color conversion do not work together, so that the extraordinary scale or ACT can be reasonably applied, the performance of each codec tool can be ensured, and the coding and decoding efficiency can be improved.
  • the embodiments of the present application also provide a video encoding and decoding device, which performs image processing or video processing, and may be an encoder on the encoding end, a decoder on the decoding end, or a device including an encoder and a decoder. equipment.
  • the video codec device may include:
  • the intra-luminance prediction mode of the coding unit is not the extraordinary-scale type; and the first indication information that will be used to indicate whether the intra-luminance prediction mode of the coding unit is the extraordinary-scale type and/or is used to indicate the Whether the coding unit uses the second indication information of the adaptive color transformation to be encoded into the bitstream; and
  • a decoder that decodes the first indication information and/or the second indication information from a bitstream; and when the intra-luminance prediction mode of the decoding unit is the extraordinary type, determining the decoding unit The adaptive color transformation is not used, or, when the decoding unit uses the adaptive color transformation, it is determined that the intra-luminance prediction mode of the decoding unit is not the extraordinary scale type.
  • Fig. 9 is a schematic diagram of a video encoding and decoding device according to an embodiment of the present application.
  • a video encoding and decoding device 900 may include: a processor 901 and a memory 902; the memory 902 is coupled to the processor 901.
  • the memory 902 can store various data; in addition, it also stores an information processing program 903, and the program 903 is executed under the control of the processor 901.
  • the function of the encoding apparatus 700 for adaptive color transformation may be integrated into the processor 901.
  • the processor 901 may be configured to implement the coding method of adaptive color transformation as described in the embodiment of the first aspect.
  • the processor 901 may be configured to perform the following control: in a case where the intra-luminance prediction mode of the coding unit is a very large-scale type, it is determined that the coding unit does not use adaptive color transformation, or the coding unit uses In the case of adaptive color transformation, it is determined that the intra-luminance prediction mode of the coding unit is not the extraordinary scale; and it will be used to indicate whether the intra-luminance prediction mode of the coding unit is the second of the extraordinary scale.
  • One piece of indication information and/or second piece of indication information for indicating whether the coding unit uses the adaptive color transformation is encoded into the bitstream.
  • the function of the decoding apparatus 800 for adaptive color transformation may be integrated into the processor 901.
  • the processor 901 may be configured to implement the adaptive color transformation decoding method as described in the embodiment of the second aspect.
  • the processor 901 may be configured to perform the following control: decode the first indication information and/or the second indication information from a bitstream; and when the intra-luminance prediction mode of the decoding unit is the extraordinary scale
  • the processor 901 may be configured to perform the following control: decode the first indication information and/or the second indication information from a bitstream; and when the intra-luminance prediction mode of the decoding unit is the extraordinary scale
  • the processor 901 may be configured to implement the image coding and decoding methods described in the embodiments of the first and second aspects.
  • the processor 901 may be configured to perform the following control: when encoding and/or decoding the indication information indicating the block differential pulse code modulation BDPCM chrominance mode, the ratio of the size of the coding unit or the decoding unit to the sub-block is As a judgment condition, when the block differential pulse code modulation BDPCM chroma mode is not enabled or not selected, the information of the inter-component linear mode CCLM or other conventional modes is encoded.
  • the processor 901 may be configured to implement the image encoding and decoding method as described in the embodiments of the third aspect.
  • the processor 901 may be configured to perform the following control: do not judge the information of the adaptive color transformation, and determine the intra-chrominance prediction mode of the coding unit or the decoding unit according to the information of the block differential pulse code modulation BDPCM mode ; In the absence of the identification information of the inter-component linear mode CCLM, the identification information of the inter-component linear mode CCLM is inferred to be 0; in the absence of the information of the intra-chroma prediction mode, the intra-frame The information of the chroma prediction mode is inferred to be 4.
  • the video codec device 900 may further include: an input/output (I/O) device 904 and a display 905, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the video codec device 900 does not necessarily include all the components shown in FIG. 9; in addition, the video codec device 900 may also include components not shown in FIG. 9, such as a camera, Hard Disk Drive (HDD, Hard Disk Driver), etc.; refer to related technologies.
  • HDD Hard Disk Drive
  • An embodiment of the present application provides a computer-readable program, wherein when the program is executed in a video codec device or an electronic device, the program causes the electronic device to execute the adaptive color as described in the embodiment of the first aspect. Transformed coding method.
  • An embodiment of the present application provides a storage medium storing a computer readable program, wherein the computer readable program enables a video encoding and decoding device or an electronic device to execute the encoding method for adaptive color conversion as described in the embodiment of the first aspect .
  • An embodiment of the present application provides a computer-readable program, wherein when the program is executed in a video codec device or an electronic device, the program causes the electronic device to execute the adaptive color as described in the embodiment of the second aspect. Transformed decoding method.
  • An embodiment of the present application provides a storage medium storing a computer readable program, wherein the computer readable program causes a video encoding and decoding device or an electronic device to execute the adaptive color conversion decoding method as described in the embodiment of the first aspect .
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • This application relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods Or steps.
  • This application also relates to storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the drawings can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a coding method for adaptive color conversion including:
  • the intra-luminance prediction mode of the coding unit is a very large-scale type, it is determined that the coding unit does not use adaptive color transformation, or, in the case that the coding unit uses adaptive color transformation, it is determined that the coding unit
  • the intra-frame luminance prediction mode is not the extraordinary type
  • Supplement 2 The encoding method according to Supplement 1, wherein the extraordinary scale mode is a prediction mode other than the 67 conventional modes in the multifunctional video coding VVC, and the 67 conventional modes include DC, planar And 65 angle modes.
  • Supplement 3 The encoding method according to Supplement 1 or 2, wherein the extraordinary scale includes at least one of an intra-block copy mode IBC, a matrix-weighted intra-frame prediction mode MIP, and a block differential pulse code modulation mode BDPCM Or any combination.
  • the extraordinary scale includes at least one of an intra-block copy mode IBC, a matrix-weighted intra-frame prediction mode MIP, and a block differential pulse code modulation mode BDPCM Or any combination.
  • Appendix 4 The encoding method according to any one of appendices 1 to 3, wherein the first indication information includes at least one or any combination of the following: intra_bdpcm_luma_flag, intra_mip_flag, pred_mode_ibc_flag; the second indication information is cu_act_enabled_flag .
  • Supplement 5 The encoding method according to any one of Supplements 1 to 4, wherein the second indication information is encoded before the intra-luminance prediction mode of the coding unit is encoded.
  • Supplement 6 The encoding method according to any one of Supplements 1 to 4, wherein the second indication information is encoded after the intra chrominance prediction mode of the coding unit is encoded.
  • Supplement 7 The encoding method according to any one of Supplements 1 to 6, wherein, in the case where the intra-luminance prediction mode of the coding unit is the extraordinary-scale type, the second indication information is not Incorporate into the bitstream.
  • Supplement 8 The encoding method according to any one of Supplements 1 to 6, wherein, when the encoding unit uses the adaptive color transformation, the first indication information is not encoded into a bitstream .
  • Supplement 9 The encoding method according to any one of Supplements 1 to 8, wherein the intra-luminance prediction mode in the coding unit is the extraordinary-scale mode, and the intra-chrominance prediction mode is the derivative mode DM In the case of, it is determined that the coding unit does not use adaptive color transformation.
  • Supplement 10 The encoding method according to any one of Supplements 1 to 8, wherein, in the case that the coding unit does not use the adaptive color transformation, and the intra chroma prediction mode is a derivative mode DM, It is determined that the intra-luminance prediction mode of the coding unit is not the extraordinary scale type.
  • Supplement 11 The encoding method according to any one of Supplements 1 to 10, wherein the information of the adaptive color conversion is not judged, and the frame of the encoding unit is determined according to the information of the block differential pulse coding modulation BDPCM mode Internal chroma prediction mode.
  • Appendix 12 The encoding method according to Appendix 11, wherein, in the absence of identification information of the inter-component linear mode CCLM, the identification information of the inter-component linear mode CCLM is inferred to be 0; In the case of the information of the intra chroma prediction mode, the information of the intra chroma prediction mode is estimated to be 4.
  • Supplement 13 The encoding method according to any one of Supplements 1 to 12, wherein when encoding the third indication information indicating the block differential pulse code modulation BDPCM chroma mode, the size of the coding unit and the sub-block are The ratio of is used as the judgment condition.
  • Supplement 14 The encoding method according to Supplement 13, wherein, when the block differential pulse code modulation BDPCM chroma mode is not enabled or not selected, the inter-component linear mode CCLM or other conventional mode The information is encoded.
  • a decoding method for adaptive color transformation including:
  • the intra-luminance prediction mode of the decoding unit is the extraordinary type
  • Supplement 16 The decoding method according to Supplement 15, wherein the extraordinary scale mode is a prediction mode other than the 67 conventional modes in the multifunctional video coding VVC, and the 67 conventional modes include DC and planar And 65 angle modes.
  • Supplement 17 The decoding method according to Supplement 15 or 16, wherein the extraordinary scale includes at least one of an intra-block copy mode IBC, a matrix-weighted intra-frame prediction mode MIP, and a block differential pulse code modulation mode BDPCM Or any combination.
  • the extraordinary scale includes at least one of an intra-block copy mode IBC, a matrix-weighted intra-frame prediction mode MIP, and a block differential pulse code modulation mode BDPCM Or any combination.
  • Supplement 18 The decoding method according to any one of Supplements 15 to 17, wherein the first indication information includes at least one or any combination of the following: intra_bdpcm_luma_flag, intra_mip_flag, pred_mode_ibc_flag; the second indication information It is cu_act_enabled_flag.
  • Supplement 19 The decoding method according to any one of Supplements 15 to 18, wherein the second indication information is decoded before the intra-luminance prediction mode of the decoding unit is decoded.
  • Supplement 20 The decoding method according to any one of Supplements 15 to 18, wherein the second indication information is decoded after the intra-chroma prediction mode of the decoding unit is decoded.
  • Supplement 21 The decoding method according to any one of Supplements 15 to 20, wherein, in the case where the intra-luminance prediction mode of the decoding unit is the extraordinary-scale type, the bitstream is not decoded The second indication information.
  • Supplement 22 The decoding method according to any one of Supplements 15 to 20, wherein, when the decoding unit uses the adaptive color transformation, the first indication is not decoded from the bitstream information.
  • Supplement 23 The decoding method according to any one of Supplements 15 to 22, wherein the intra-luminance prediction mode in the decoding unit is the extraordinary-scale mode, and the intra-chrominance prediction mode is the derivative mode DM In the case of determining that the decoding unit does not use the adaptive color transformation.
  • Supplement 24 The decoding method according to any one of Supplements 15 to 22, wherein, in the case that the decoding unit does not use the adaptive color transformation, and the intra chroma prediction mode is a derivative mode DM, It is determined that the intra-luminance prediction mode of the decoding unit is not the extraordinary scale type.
  • Supplement 25 The decoding method according to any one of Supplements 15 to 24, wherein the information of the adaptive color conversion is not judged, and the frame of the decoding unit is determined according to the information of the block differential pulse code modulation BDPCM mode Internal chroma prediction mode.
  • Supplement 26 The decoding method according to Supplement 25, wherein in the absence of identification information of the inter-component linear mode CCLM, the identification information of the inter-component linear mode CCLM is inferred to be 0; In the case of the information of the intra chroma prediction mode, the information of the intra chroma prediction mode is estimated to be 4.
  • Supplement 27 The decoding method according to any one of Supplements 15 to 26, wherein when decoding the third indication information indicating the block differential pulse code modulation BDPCM chroma mode, the size of the coding unit and the sub-block are combined. The ratio of is used as the judgment condition.
  • Supplement 28 The decoding method according to Supplement 27, wherein, when the block differential pulse code modulation BDPCM chroma mode is not enabled or not selected, the inter-component linear mode CCLM or other conventional mode The information is decoded.
  • An image encoding and decoding method including:
  • the ratio of the size of the coding unit or the decoding unit to the sub-block is used as the judgment condition.
  • Supplement 30 The encoding and decoding method according to Supplement 29, wherein, when the block differential pulse code modulation BDPCM chroma mode is not enabled or selected, the inter-component linear mode CCLM or other conventional Mode information is encoded or decoded.
  • An image decoding method including:
  • the information of adaptive color transformation is not judged, and the intra chrominance prediction mode of the coding unit or decoding unit is determined according to the information of the block differential pulse code modulation BDPCM mode.
  • Supplement 32 The decoding method according to Supplement 31, wherein, in the absence of identification information of the inter-component linear mode CCLM, the inter-component linear mode CCLM identification information is inferred to be 0; In the case of the information of the intra chroma prediction mode, the information of the intra chroma prediction mode is estimated to be 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本申请实施例提供一种自适应颜色变换的编解码方法、装置以及视频编解码设备。所述方法包括:在编码单元的帧内亮度预测模式是非常规模式的情况下,确定所述编码单元不使用自适应颜色变换,或者,在所述编码单元使用自适应颜色变换的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式;以及将用于指示所述编码单元的帧内亮度预测模式是否是所述非常规模式的第一指示信息和/或用于指示所述编码单元是否使用所述自适应颜色变换的第二指示信息编入比特流中。

Description

自适应颜色变换的编解码方法、装置以及视频编解码设备 技术领域
本申请实施例涉及视频编解码技术领域。
背景技术
在新一代视频编码标准即多功能视频编码(VVC,Versatile Video Coding)中,采用了自适应颜色变换(ACT,Adaptive Color Transform)来减少444色度格式中三个颜色分量之间的冗余,以提高444色度格式的编码效率。与HEVC SCC相同,ACT通过将残差从输入颜色空间自适应转换为YCgCo空间,在预测残差域中执行环路颜色空间转换。
例如,可以通过在编码单元(CU,Coding Unit)级别通知一个ACT标志,自适应地在两个颜色空间中进行选择。当ACT标志等于1时,CU的残差在YCgCo空间中编码;否则,CU的残差在原始颜色空间中编码。
另一方面,VVC定义了67种常规模式(regular mode),包括DC、Planar和65个角度模式。此外,VCC还包括一些非常规模式,例如,块内复制(IBC,Intra Block Copy)模式、矩阵加权帧内预测(MIP,Matrix weighted Intra Prediction)模式、块差分脉冲编码调制(BDPCM,Block Differential Pulse Coded Modulation)模式,等等。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,在现有方案中与HEVC ACT的设计相同,对于采用帧间预测模式和IBC模式的CU,仅当CU中至少有一个非零系数时才启用ACT;对于采用帧内预测模式的CU,仅在色度分量选择与亮度分量相同的帧内预测模式,即衍生模式(DM,Derived Mode)时才启用ACT。
但是,对于采用帧内预测模式的CU来说,如果帧内亮度预测模式为非常规模式,则会将色度DM模式设置为一种常规模式。因此,在这些情况下,实际色度预测模式 与同位置的亮度预测模式不同,如果将ACT应用于这些内部块是不够合理的,会出现降低编解码效率的问题。
针对上述问题的至少之一,本申请实施例提供一种自适应颜色变换的编解码方法、装置以及视频编解码设备。
根据本申请实施例的一个方面,提供一种自适应颜色变换的编码装置,包括:
确定部,其在编码单元的帧内亮度预测模式是非常规模式的情况下,确定所述编码单元不使用自适应颜色变换,或者,在所述编码单元使用自适应颜色变换的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式;以及
编码部,其将用于指示所述编码单元的帧内亮度预测模式是否是所述非常规模式的第一指示信息和/或用于指示所述编码单元是否使用所述自适应颜色变换的第二指示信息编入比特流中。
根据本申请实施例的另一个方面,提供一种自适应颜色变换的解码装置,包括:
解码部,其从比特流中解码用于指示解码单元的帧内亮度预测模式是否是非常规模式的第一指示信息和/或用于指示所述解码单元是否使用自适应颜色变换的第二指示信息;以及
确定部,其在所述解码单元的帧内亮度预测模式是所述非常规模式的情况下,确定所述解码单元不使用自适应颜色变换,或者,在所述解码单元使用所述自适应颜色变换的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
根据本申请实施例的又一个方面,提供一种视频编解码设备,包括:
编码器,其在编码单元的帧内亮度预测模式是非常规模式的情况下,确定所述编码单元不使用自适应颜色变换,或者,在所述编码单元使用自适应颜色变换的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式;以及将用于指示所述编码单元的帧内亮度预测模式是否是所述非常规模式的第一指示信息和/或用于指示所述编码单元是否使用所述自适应颜色变换的第二指示信息编入比特流中;以及
解码器,其从比特流中解码所述第一指示信息和/或所述第二指示信息;以及在解码单元的帧内亮度预测模式是所述非常规模式的情况下,确定所述解码单元不使用自适应颜色变换,或者,在所述解码单元使用所述自适应颜色变换的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
本申请实施例的有益效果之一在于:非常规模式和自适应颜色变换不共同工作, 从而能够合理地应用非常规模式或者ACT,保证每个编解码工具的性能,能够提高编解码的效率。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是采用ACT后进行解码的一示意图;
图2是本申请实施例的自适应颜色变换的编码方法的一示意图;
图3是本申请实施例的自适应颜色变换的编码方法的一示例图;
图4是本申请实施例的自适应颜色变换的解码方法的一示意图;
图5是VVC中推断预测信息的一示意图;
图6是本申请实施例中推断预测信息的一示意图;
图7是本申请实施例的自适应颜色变换的编码装置的一示意图;
图8是本申请实施例的自适应颜色变换的解码装置的一示意图;
图9是本申请实施例的视频编解码设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包 括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
图1是采用ACT后进行解码的一示意图,如图1所示,解码端对比特流进行熵解码(entropy decoding)后,可以进行逆量化(inverse quantization)和逆变换(inverse transform),然后根据ACT标识可以进行逆ACT。
此外,如图1所示,解码端还可以进行环路滤波(in-loop filter)、解码图片缓存(DPB,Decoded Picture Buffer)、帧内预测(intra prediction)和运动补偿预测(motion compensated prediction)等等。图1示意性示出了解码端的各种操作,对于编码端,可以相应地进行各种操作。
表1示意性示出了帧内预测模式的色度模式和亮度模式。
表1
亮度模式 色度DM模式
IBC DC
MIP Planar
BDPCM_VER VER
BDPCM_HOR HOR
如表1所示,例如,在帧内亮度预测模式为IBC模式的情况下,色度DM模式可能为DC模式;在帧内亮度预测模式为MIP模式的情况下,色度DM模式可能为Planar模式;在帧内亮度预测模式为BDPCM_VER模式的情况下,色度DM模式可能为VER模式;在帧内亮度预测模式为BDPCM_HOR模式的情况下,色度DM模式可能为HOR模式。
因此,在这些情况下,实际色度预测模式与同位置的亮度预测模式不同,如果将ACT应用于这些内部块是不够合理的,会出现降低编解码效率的问题。
在本申请实施例中,以YCgCo为例进行说明,但本申请不限于此,例如还可以适用于其他的颜色空间,例如YCbCr等。此外,非常规模式以IBC、MIP、BDPCM为例进行说明,但本申请不限于此,例如还可以采用其他的非常规模式。
第一方面的实施例
本申请实施例提供一种自适应颜色变换的编码方法。在编码端,可以将待处理图像的区域称为编码单元(CU)或编码块(CB,Coding Block),但本申请不限于此,还可以使用其他名称。
图2是本申请实施例的自适应颜色变换的编码方法的一示意图。如图2所示,该方法包括:
201,在编码单元的帧内亮度预测模式是非常规模式的情况下,确定所述编码单元不使用自适应颜色变换,或者,在所述编码单元使用自适应颜色变换的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式;以及
202,将用于指示所述编码单元的帧内亮度预测模式是否是所述非常规模式的第一指示信息和/或用于指示所述编码单元是否使用所述自适应颜色变换的第二指示信息编入比特流中。
值得注意的是,以上附图2仅对本申请实施例的部分相关内容进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图2的记载。
在一些实施例中,非常规模式是除去VVC中的67种常规模式之外的预测模式,所述67种常规模式包括DC、planar和65种角度模式。例如,所述非常规模式包括IBC模式、MIP模式、BDPCM模式中的至少之一或任意组合;本申请不限于此。
在一些实施例中,第一指示信息包括如下至少之一或任意组合:intra_bdpcm_luma_flag、intra_mip_flag、pred_mode_ibc_flag;第二指示信息为cu_act_enabled_flag;本申请不限于此。
由此,非常规模式和自适应颜色变换不共同工作,从而能够合理地应用非常规模 式或者ACT,保证每个编解码工具的性能,能够提高编解码的效率。
在一些实施例中,在编码单元的帧内亮度预测模式是非常规模式,且帧内色度预测模式是衍生模式DM的情况下,确定所述编码单元不使用自适应颜色变换。由此,可以对不使用ACT的判断条件进行进一步细化,提高判断的准确性。
在一些实施例中,在编码单元的帧内亮度预测模式是非常规模式的情况下,不将第二指示信息编入比特流中。由此,可以减少编码的比特数,进一步提高编码效率。
图3是本申请实施例的自适应颜色变换的编码方法的一示例图,示例性示出了编码的一部分操作。如图3所示,该方法包括:
301,对帧内色度预测模式(intra_chroma_pred_mode)进行编码;
302,确定帧内色度预测模式是否为DM模式,如果是DM模式则进一步判断是否为非常规模式。
以IBC、MIP和BDPCM均进行判断为例,如图3所示,该方法还包括:
303,确定帧内亮度预测模式是否为IBC模式,即pred_mode_ibc_flag是否为true;如果为否,则执行304;
304,确定帧内亮度预测模式是否为MIP模式,即intra_mip_flag是否为true;如果为否,则执行305;
305,确定帧内亮度预测模式是否为BDPCM模式,即intra_bdpcm_luma_flag是否为true;如果为否,则执行306;
306,将ACT标识(cu_act_enabled_flag)编入比特流中。
图3以IBC、MIP和BDPCM为例,依次对这三种非常规模式进行判断,但本申请不限于此,例如可以仅判断IBC、MIP和BDPCM中的一种或两种,再例如还可以改变判断的顺序等。在图3的示例中,在不是这三种非常规模式的情况下,再对ACT标识进行编码,由此能够减少编码的比特数。
在一些实施例中,在编码单元不使用自适应颜色变换,且帧内色度预测模式是衍生模式DM的情况下,确定所述编码单元的帧内亮度预测模式不是非常规模式。由此,可以对不是非常规模式的判断条件进行进一步细化,提高判断的准确性。
在一些实施例中,在编码单元使用自适应颜色变换的情况下,不将第一指示信息编入比特流中。由此,可以减少编码的比特数,进一步提高编码效率。
在一些实施例中,在对指示块差分脉冲编码调制BDPCM色度模式的第三指示信 息(intra_bdpcm_chroma_flag)进行编码时,将编码单元与子块的大小的比值作为判断条件。该比值例如为cbWidth/SubWidthC和/或cbHeight/SubHeightC;具体可以参考后述的表2至表8所示的例子。
在一些实施例中,在所述块差分脉冲编码调制BDPCM色度模式不被使能或者不被选择(即intra_bdpcm_chroma_flag为false)的情况下,对分量间线性模式(CCLM,Cross Component Linear Mode)或其他常规模式的信息进行编码。
例如,可以将当前视频标准文档中与intra_bdpcm_chroma_flag相关的一对{}删除;具体可以参考后述的表2至表8所示的例子。
以上对本申请实施例进行了示意性说明,以下将通过几个示例进行进一步说明。
在一些实施例中,可以在对编码单元的帧内色度预测模式进行编码之后,对第二指示信息进行编码。
表2示例性示出了将ACT编码放在色度模式编码的后面的情况,关于这些内容的具体含义可以参考相关的视频标准文档。此外表2示出了与当前视频标准文档不同之处。
表2
Figure PCTCN2019129191-appb-000001
Figure PCTCN2019129191-appb-000002
Figure PCTCN2019129191-appb-000003
Figure PCTCN2019129191-appb-000004
表3示例性示出了将ACT编码放在色度模式编码的后面、且ACT和BDPCM不共同工作的情况,关于这些内容的具体含义可以参考相关的视频标准文档。此外表3示出了与当前视频标准文档不同之处。
表3
Figure PCTCN2019129191-appb-000005
Figure PCTCN2019129191-appb-000006
Figure PCTCN2019129191-appb-000007
Figure PCTCN2019129191-appb-000008
表4示例性示出了将ACT编码放在色度模式编码的后面、且ACT和MIP不共同工作的情况,关于这些内容的具体含义可以参考相关的视频标准文档。此外表4示出了与当前视频标准文档不同之处。
表4
Figure PCTCN2019129191-appb-000009
Figure PCTCN2019129191-appb-000010
Figure PCTCN2019129191-appb-000011
表5示例性示出了将ACT编码放在色度模式编码的后面、且ACT和MIP与BDPCM不共同工作的情况,关于这些内容的具体含义可以参考相关的视频标准文档。 此外表5示出了与当前视频标准文档不同之处。
表5
Figure PCTCN2019129191-appb-000012
Figure PCTCN2019129191-appb-000013
Figure PCTCN2019129191-appb-000014
在一些实施例中,可以在对编码单元的帧内亮度预测模式进行编码之前,对第二指示信息进行编码。
表6示例性示出了将ACT编码放在亮度模式编码的前面、且ACT和BDPCM不共同工作的情况,关于这些内容的具体含义可以参考相关的视频标准文档。此外表6示出了与当前视频标准文档不同之处。
表6
Figure PCTCN2019129191-appb-000015
Figure PCTCN2019129191-appb-000016
Figure PCTCN2019129191-appb-000017
表7示例性示出了将ACT编码放在亮度模式编码的前面、且ACT和MIP不共同工作的情况,关于这些内容的具体含义可以参考相关的视频标准文档。此外表7示出了与当前视频标准文档不同之处。
表7
Figure PCTCN2019129191-appb-000018
Figure PCTCN2019129191-appb-000019
Figure PCTCN2019129191-appb-000020
Figure PCTCN2019129191-appb-000021
表8示例性示出了将ACT编码放在亮度模式编码的前面、且ACT和MIP与BDPCM不共同工作的情况,关于这些内容的具体含义可以参考相关的视频标准文档。此外表8示出了与当前视频标准文档不同之处。
表8
Figure PCTCN2019129191-appb-000022
Figure PCTCN2019129191-appb-000023
Figure PCTCN2019129191-appb-000024
Figure PCTCN2019129191-appb-000025
值得注意的是,以上仅以表2至8为例,对本申请实施例进行了示例性说明,但本申请不限于此。此外,对于图像编码等还可以包括其他操作或者过程,例如熵编码、量化、变换等。关于这些操作或者过程的具体内容,可以参考相关技术。
关于表2至8中的变量SubWidthC和SubHeightC,具体可以取决于色度格式样本结构,该结构通过chroma_format_idc和separate_colour_plane_flag指定,例如,如表9所示。本申请不限于此,例如chroma_format_idc,SubWidthC和SubHeightC也可以被指定为其他值。
表9
chroma_format_idc separate_colour_plane_flag Chroma format SubWidthC SubHeightC
0 0 Monochrome 1 1
1 0 4:2:0 2 2
2 0 4:2:2 2 1
3 0 4:4:4 1 1
3 1 4:4:4 1 1
值得注意的是,以上仅以表9为例,对本申请实施例的SubWidthC和SubHeightC进行了示例性说明,但本申请不限于此。关于这些参数的具体内容,可以参考相关的视频编解码标准文档。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,在本申请中非常规模式和自适应颜色变换不共同工作,从而能够合理地应用非常规模式或者ACT,保证每个编解码工具的性能,能够提高编解码的效率。
第二方面的实施例
本申请实施例还提供一种自适应颜色变换的解码方法,与第一方面的实施例中相 同的内容不再赘述。在解码端,为方便起见,可以将待处理图像的区域称为解码单元,但本申请不限于此,例如也可以称为编码单元(CU)或编码块(CB)。
图4是本申请实施例的自适应颜色变换的解码方法的一示意图,如图4所示,该方法包括:
401,从比特流中解码用于指示解码单元的帧内亮度预测模式是否是非常规模式的第一指示信息和/或用于指示所述解码单元是否使用自适应颜色变换的第二指示信息;以及
402,在所述解码单元的帧内亮度预测模式是所述非常规模式的情况下,确定所述解码单元不使用自适应颜色变换,或者,在所述解码单元使用所述自适应颜色变换的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
在一些实施例中,所述非常规模式是除去多功能视频编码VVC中的67种常规模式之外的预测模式,所述67种常规模式包括DC、planar和65种角度模式。例如,所述非常规模式包括块内复制模式IBC、矩阵加权帧内预测模式MIP、块差分脉冲编码调制模式BDPCM中的至少之一或任意组合。
在一些实施例中,第一指示信息包括如下的至少之一或任意组合:intra_bdpcm_luma_flag、intra_mip_flag、pred_mode_ibc_flag;第二指示信息为cu_act_enabled_flag。
在一些实施例中,在对所述解码单元的帧内亮度预测模式进行解码之前,对所述第二指示信息进行解码。
在一些实施例中,在对所述解码单元的帧内色度预测模式进行解码之后,对所述第二指示信息进行解码。
在一些实施例中,在所述解码单元的帧内预测模式是所述非常规模式的情况下,不从所述比特流中解码所述第二指示信息。
在一些实施例中,在所述解码单元使用所述自适应颜色变换的情况下,不从所述比特流中解码所述第一指示信息。
在一些实施例中,在所述解码单元的帧内亮度预测模式是所述非常规模式,且帧内色度预测模式是衍生模式DM的情况下,确定所述解码单元不使用所述自适应颜色变换。
在一些实施例中,在所述解码单元不使用所述自适应颜色变换,且帧内色度预测模式是衍生模式DM的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常 规模式。
在一些实施例中,在对指示块差分脉冲编码调制BDPCM色度模式的第三指示信息进行解码时,将编码单元与子块的大小的比值作为判断条件;
在一些实施例中,在所述块差分脉冲编码调制BDPCM色度模式不被使能或者不被选择的情况下,对分量间线性模式CCLM或其他常规模式的信息进行解码。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,在本申请中非常规模式和自适应颜色变换不共同工作,从而能够合理地应用非常规模式或者ACT,保证每个编解码工具的性能,能够提高编解码的效率。
第三方面的实施例
本申请实施例还提供一种图像编解码方法,与第一、二方面的实施例中相同的内容不再赘述。本申请第三方面的实施例可以与第一、二方面的实施例结合起来,也可以单独实施;此外本申请实施例可以适用于编码端和/或解码端,以下以解码端为例进行说明。
发明人发现,在目前的VVC标准中,在自适应颜色变换的信息(以下以cu_act_enabled_flag表示)被使能(即cu_act_enabled_flag=1)的情况下,将会跳过对BDPCM、CCLM和intra_chroma_pred_mode等信息的编码和/或解码,可以参考前述的表2至8。在编码端和/或解码端,这些信息可以通过已有的信息被推断出来。
表10示意性示出了推断这些信息的表述,关于这些内容的具体含义可以参考相关的视频标准文档。
表10
Figure PCTCN2019129191-appb-000026
Figure PCTCN2019129191-appb-000027
表11示例性示出了推断这些信息的例子,关于这些内容的具体含义可以参考相关的视频标准文档。
表11
Figure PCTCN2019129191-appb-000028
其中,0≤X≤66;第一行对应于Planar模式,第五行对应于DM模式。
图5是VVC中推断预测信息的一示意图。如图5所示,cu_act_enabled_flag为1的情况下,可以确定(或推断出)IntraPredModeC=lumaIntraPredMode;否则,进一步判断BdpcmFlag,在BdpcmFlag不等于1的情况下,使用cclm_mode_flag,cclm_mode_idx,intra_chroma_pred_mode和lumaIntraPredMode推断出IntraPredModeC;否则,进一步判断BdpcmDir,在BdpcmDir=1的情况下,IntraPredModeC=INTRA_ANGULAR50,在BdpcmDir不是1的情况下,IntraPredModeC=INTRA_ANGULAR18。
但是,发明人发现:以上方案降低了解码过程的一致性,此外也不利于硬件设计。
在本申请实施例中,可以不对自适应颜色变换的信息进行判断,根据块差分脉冲编码调制BDPCM模式的信息确定解码单元的帧内色度预测模式。
此外,在不存在分量间线性模式CCLM的标识信息的情况下,所述分量间线性模式CCLM的标识信息被推断为0;在不存在帧内色度预测模式的信息的情况下,所述帧内色度预测模式的信息被推断为4。
表12示意性示出了本申请实施例的推断这些信息的表述,关于这些内容的具体含义可以参考相关的视频标准文档。此外表12示出了与表10不同之处。
表12
Figure PCTCN2019129191-appb-000029
图6是本申请实施例中推断预测信息的一示意图。如图6所示,不需要对自适应颜色变换的信息cu_act_enabled_flag进行判断,直接判断BdpcmFlag,在BdpcmFlag不等于1的情况下,使用cclm_mode_flag,cclm_mode_idx,intra_chroma_pred_mode和lumaIntraPredMode推断出IntraPredModeC;否则,进一步判断BdpcmDir,在BdpcmDir=1的情况下,IntraPredModeC=INTRA_ANGULAR50,在BdpcmDir不是1的情况下,IntraPredModeC=INTRA_ANGULAR18。
由此,无需ACT信息即可对色度预测模式进行推断,能够提高解码过程的一致 性,此外有利于硬件设计。
第四方面的实施例
本申请实施例还提供一种自适应颜色变换的编码装置,与第一、三方面的实施例中相同的内容不再赘述。
图7是本申请实施例的自适应颜色变换的编码装置的示意图,如图7所示,自适应颜色变换的编码装置700包括:
确定部701,其在编码单元的帧内亮度预测模式是非常规模式的情况下,确定所述编码单元不使用自适应颜色变换,或者,在所述编码单元使用自适应颜色变换的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式;以及
编码部702,其将用于指示所述编码单元的帧内亮度预测模式是否是所述非常规模式的第一指示信息和/或用于指示所述编码单元是否使用所述自适应颜色变换的第二指示信息编入比特流中。
在一些实施例中,所述非常规模式是除去多功能视频编码VVC中的67种常规模式之外的预测模式,所述67种常规模式包括DC、planar和65种角度模式。例如,所述非常规模式包括块内复制模式IBC、矩阵加权帧内预测模式MIP、块差分脉冲编码调制模式BDPCM中的至少之一或任意组合。
在一些实施例中,第一指示信息包括如下至少之一或任意组合:intra_bdpcm_luma_flag、intra_mip_flag、pred_mode_ibc_flag;第二指示信息为cu_act_enabled_flag。
在一些实施例中,编码部702在对所述编码单元的帧内亮度预测模式进行编码之前,对所述第二指示信息进行编码。
在一些实施例中,编码部702在对所述编码单元的帧内色度预测模式进行编码之后,对所述第二指示信息进行编码。
在一些实施例中,编码部702在所述编码单元的帧内亮度预测模式是所述非常规模式的情况下,不将所述第二指示信息编入比特流中。
在一些实施例中,编码部702在所述编码单元使用所述自适应颜色变换的情况下,不将所述第一指示信息编入比特流中。
在一些实施例中,确定部701还用于在所述编码单元的帧内亮度预测模式是所述非常规模式,且帧内色度预测模式是衍生模式DM的情况下,确定所述编码单元不使 用自适应颜色变换。
在一些实施例中,确定部701还用于在所述编码单元不使用所述自适应颜色变换,且帧内色度预测模式是衍生模式DM的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式。
在一些实施例中,确定部701不对所述自适应颜色变换的信息进行判断,并根据块差分脉冲编码调制BDPCM模式的信息确定所述编码单元的帧内色度预测模式。
在一些实施例中,在不存在分量间线性模式CCLM的标识信息的情况下,所述分量间线性模式CCLM的标识信息被推断为0;在不存在帧内色度预测模式的信息的情况下,所述帧内色度预测模式的信息被推断为4。
在一些实施例中,编码部701在对指示块差分脉冲编码调制BDPCM色度模式的第三指示信息进行编码时,将编码单元与子块的大小的比值作为判断条件。
在一些实施例中,在所述块差分脉冲编码调制BDPCM色度模式不被使能或者不被选择的情况下,对分量间线性模式CCLM或其他常规模式的信息进行编码。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。自适应颜色变换的编码装置700还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图7中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器等硬件设施来实现;本申请实施并不对此进行限制。
以上各实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,在本申请中非常规模式和自适应颜色变换不共同工作,从而能够合理地应用非常规模式或者ACT,保证每个编解码工具的性能,能够提高编解码的效率。
第五方面的实施例
本申请实施例还提供一种自适应颜色变换的解码装置,与第二、三方面的实施例 中相同的内容不再赘述。
图8是本申请实施例的自适应颜色变换的解码装置的示意图,如图8所示,自适应颜色变换的解码装置800包括:
解码部801,其从比特流中解码用于指示解码单元的帧内亮度预测模式是否是非常规模式的第一指示信息和/或用于指示所述解码单元是否使用自适应颜色变换的第二指示信息;以及
确定部802,其在所述解码单元的帧内亮度预测模式是所述非常规模式的情况下,确定所述解码单元不使用自适应颜色变换,或者,在所述解码单元使用所述自适应颜色变换的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
在一些实施例中,所述非常规模式是除去多功能视频编码VVC中的67种常规模式之外的预测模式,所述67种常规模式包括DC、planar和65种角度模式。例如,所述非常规模式包括块内复制模式IBC、矩阵加权帧内预测模式MIP、块差分脉冲编码调制模式BDPCM中的至少之一或任意组合。
在一些实施例中,第一指示信息包括如下的至少之一或任意组合:intra_bdpcm_luma_flag、intra_mip_flag、pred_mode_ibc_flag;第二指示信息为cu_act_enabled_flag。
在一些实施例中,解码部801在对所述解码单元的帧内亮度预测模式进行解码之前,对所述第二指示信息进行解码。
在一些实施例中,解码部801在对所述解码单元的帧内色度预测模式进行解码之后,对所述第二指示信息进行解码。
在一些实施例中,解码部801在所述解码单元的帧内亮度预测模式是所述非常规模式的情况下,不从所述比特流中解码所述第二指示信息。
在一些实施例中,解码部801在所述解码单元使用所述自适应颜色变换的情况下,不从所述比特流中解码所述第一指示信息。
在一些实施例中,确定部802还用于在所述解码单元的帧内亮度预测模式是所述非常规模式,且帧内色度预测模式是衍生模式DM的情况下,确定所述解码单元不使用所述自适应颜色变换。
在一些实施例中,确定部802还用于在所述解码单元不使用所述自适应颜色变换,且帧内色度预测模式是衍生模式DM的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
在一些实施例中,确定部802不对所述自适应颜色变换的信息进行判断,并根据块差分脉冲编码调制BDPCM模式的信息确定所述解码单元的帧内色度预测模式。
在一些实施例中,在不存在分量间线性模式CCLM的标识信息的情况下,所述分量间线性模式CCLM的标识信息被推断为0;在不存在帧内色度预测模式的信息的情况下,所述帧内色度预测模式的信息被推断为4。
在一些实施例中,解码部801在对指示块差分脉冲编码调制BDPCM色度模式的第三指示信息进行解码时,将编码单元与子块的大小的比值作为判断条件;
在一些实施例中,解码部801在所述块差分脉冲编码调制BDPCM色度模式不被使能或者不被选择的情况下,对分量间线性模式CCLM或其他常规模式的信息进行解码。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。自适应颜色变换的解码装置800还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图8中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器等硬件设施来实现;本申请实施并不对此进行限制。
以上各实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,在本申请中非常规模式和自适应颜色变换不共同工作,从而能够合理地应用非常规模式或者ACT,保证每个编解码工具的性能,能够提高编解码的效率。
第六方面的实施例
本申请实施例还提供一种视频编解码设备,该视频编解码设备进行图像处理或视频处理,可以是编码端的编码器,也可以是解码端的解码器,还可以是包括编码器和解码器的设备。
在一些实施例中,视频编解码设备可以包括:
编码器,其在编码单元的帧内亮度预测模式是非常规模式的情况下,确定所述编码单元不使用自适应颜色变换,或者,在所述编码单元使用自适应颜色变换的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式;以及将用于指示所述编码单元的帧内亮度预测模式是否是所述非常规模式的第一指示信息和/或用于指示所述编码单元是否使用所述自适应颜色变换的第二指示信息编入比特流中;以及
解码器,其从比特流中解码所述第一指示信息和/或所述第二指示信息;以及在解码单元的帧内亮度预测模式是所述非常规模式的情况下,确定所述解码单元不使用自适应颜色变换,或者,在所述解码单元使用所述自适应颜色变换的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
图9是本申请实施例的视频编解码设备的一示意图。如图9所示,视频编解码设备900可以包括:处理器901和存储器902;存储器902耦合到处理器901。其中该存储器902可存储各种数据;此外还存储信息处理的程序903,并且在处理器901的控制下执行该程序903。
在一些实施例中,自适应颜色变换的编码装置700的功能可以被集成到处理器901中。其中,处理器901可以被配置为实现如第一方面的实施例所述的自适应颜色变换的编码方法。
例如,处理器901可以被配置为进行如下的控制:在编码单元的帧内亮度预测模式是非常规模式的情况下,确定所述编码单元不使用自适应颜色变换,或者,在所述编码单元使用自适应颜色变换的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式;以及将用于指示所述编码单元的帧内亮度预测模式是否是所述非常规模式的第一指示信息和/或用于指示所述编码单元是否使用所述自适应颜色变换的第二指示信息编入比特流中。
在一些实施例中,自适应颜色变换的解码装置800的功能可以被集成到处理器901中。其中,处理器901可以被配置为实现如第二方面的实施例所述的自适应颜色变换的解码方法。
例如,处理器901可以被配置为进行如下的控制:从比特流中解码所述第一指示信息和/或所述第二指示信息;以及在解码单元的帧内亮度预测模式是所述非常规模式的情况下,确定所述解码单元不使用自适应颜色变换,或者,在所述解码单元使用所述自适应颜色变换的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常 规模式。
在一些实施例中,处理器901可以被配置为实现如第一、二方面的实施例所述的图像编解码方法。例如,处理器901可以被配置为进行如下的控制:在对指示块差分脉冲编码调制BDPCM色度模式的指示信息进行编码和/或解码时,将编码单元或解码单元与子块的大小的比值作为判断条件;在所述块差分脉冲编码调制BDPCM色度模式不被使能或者不被选择的情况下,对分量间线性模式CCLM或其他常规模式的信息进行编码。
在一些实施例中,处理器901可以被配置为实现如第三方面的实施例所述的图像编解码方法。例如,处理器901可以被配置为进行如下的控制:不对所述自适应颜色变换的信息进行判断,并根据块差分脉冲编码调制BDPCM模式的信息确定编码单元或解码单元的帧内色度预测模式;在不存在分量间线性模式CCLM的标识信息的情况下,所述分量间线性模式CCLM的标识信息被推断为0;在不存在帧内色度预测模式的信息的情况下,所述帧内色度预测模式的信息被推断为4。
此外,如图9所示,视频编解码设备900还可以包括:输入输出(I/O)设备904和显示器905等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,视频编解码设备900也并不是必须要包括图9中所示的所有部件;此外,视频编解码设备900还可以包括图9中没有示出的部件,例如摄像头(camera)、硬盘驱动器(HDD,Hard Disk Driver)等;可以参考相关技术。
本申请实施例提供一种计算机可读程序,其中当在视频编解码设备或者电子设备中执行所述程序时,所述程序使得该电子设备执行如第一方面的实施例所述的自适应颜色变换的编码方法。
本申请实施例提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得视频编解码设备或者电子设备执行如第一方面的实施例所述的自适应颜色变换的编码方法。
本申请实施例提供一种计算机可读程序,其中当在视频编解码设备或者电子设备中执行所述程序时,所述程序使得该电子设备执行如第二方面的实施例所述的自适应颜色变换的解码方法。
本申请实施例提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得视频编解码设备或者电子设备执行如第一方面的实施例所述的自适应颜色 变换的解码方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1、一种自适应颜色变换的编码方法,包括:
在编码单元的帧内亮度预测模式是非常规模式的情况下,确定所述编码单元不使用自适应颜色变换,或者,在所述编码单元使用自适应颜色变换的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式;以及
将用于指示所述编码单元的帧内亮度预测模式是否是所述非常规模式的第一指示信息和/或用于指示所述编码单元是否使用所述自适应颜色变换的第二指示信息编入比特流中。
附记2、根据附记1所述的编码方法,其中,所述非常规模式是除去多功能视频编码VVC中的67种常规模式之外的预测模式,所述67种常规模式包括DC、planar和65种角度模式。
附记3、根据附记1或2所述的编码方法,其中,所述非常规模式包括块内复制模式IBC、矩阵加权帧内预测模式MIP、块差分脉冲编码调制模式BDPCM中的至少之一或任意组合。
附记4、根据附记1至3任一项所述的编码方法,其中,所述第一指示信息包括如下至少之一或任意组合:intra_bdpcm_luma_flag、intra_mip_flag、pred_mode_ibc_flag;所述第二指示信息为cu_act_enabled_flag。
附记5、根据附记1至4任一项所述的编码方法,其中,在对所述编码单元的帧内亮度预测模式进行编码之前,对所述第二指示信息进行编码。
附记6、根据附记1至4任一项所述的编码方法,其中,在对所述编码单元的帧内色度预测模式进行编码之后,对所述第二指示信息进行编码。
附记7、根据附记1至6任一项所述的编码方法,其中,在所述编码单元的帧内亮度预测模式是所述非常规模式的情况下,不将所述第二指示信息编入比特流中。
附记8、根据附记1至6任一项所述的编码方法,其中,在所述编码单元使用所述自适应颜色变换的情况下,不将所述第一指示信息编入比特流中。
附记9、根据附记1至8任一项所述的编码方法,其中,在所述编码单元的帧内亮度预测模式是所述非常规模式,且帧内色度预测模式是衍生模式DM的情况下,确定所述编码单元不使用自适应颜色变换。
附记10、根据附记1至8任一项所述的编码方法,其中,在所述编码单元不使 用所述自适应颜色变换,且帧内色度预测模式是衍生模式DM的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式。
附记11、根据附记1至10任一项所述的编码方法,其中,不对所述自适应颜色变换的信息进行判断,根据块差分脉冲编码调制BDPCM模式的信息确定所述编码单元的帧内色度预测模式。
附记12、根据附记11所述的编码方法,其中,在不存在分量间线性模式CCLM的标识信息的情况下,所述分量间线性模式CCLM的标识信息被推断为0;在不存在帧内色度预测模式的信息的情况下,所述帧内色度预测模式的信息被推断为4。
附记13、根据附记1至12任一项所述的编码方法,其中,在对指示块差分脉冲编码调制BDPCM色度模式的第三指示信息进行编码时,将编码单元与子块的大小的比值作为判断条件。
附记14、根据附记13所述的编码方法,其中,在所述块差分脉冲编码调制BDPCM色度模式不被使能或者不被选择的情况下,对分量间线性模式CCLM或其他常规模式的信息进行编码。
附记15、一种自适应颜色变换的解码方法,包括:
从比特流中解码用于指示解码单元的帧内亮度预测模式是否是非常规模式的第一指示信息和/或用于指示所述解码单元是否使用自适应颜色变换的第二指示信息;以及
在所述解码单元的帧内亮度预测模式是所述非常规模式的情况下,确定所述解码单元不使用自适应颜色变换,或者,在所述解码单元使用所述自适应颜色变换的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
附记16、根据附记15所述的解码方法,其中,所述非常规模式是除去多功能视频编码VVC中的67种常规模式之外的预测模式,所述67种常规模式包括DC、planar和65种角度模式。
附记17、根据附记15或16所述的解码方法,其中,所述非常规模式包括块内复制模式IBC、矩阵加权帧内预测模式MIP、块差分脉冲编码调制模式BDPCM中的至少之一或任意组合。
附记18、根据附记15至17任一项所述的解码方法,其中,所述第一指示信息包括如下的至少之一或任意组合:intra_bdpcm_luma_flag、intra_mip_flag、pred_mode_ ibc_flag;所述第二指示信息为cu_act_enabled_flag。
附记19、根据附记15至18任一项所述的解码方法,其中,在对所述解码单元的帧内亮度预测模式进行解码之前,对所述第二指示信息进行解码。
附记20、根据附记15至18任一项所述的解码方法,其中,在对所述解码单元的帧内色度预测模式进行解码之后,对所述第二指示信息进行解码。
附记21、根据附记15至20任一项所述的解码方法,其中,在所述解码单元的帧内亮度预测模式是所述非常规模式的情况下,不从所述比特流中解码所述第二指示信息。
附记22、根据附记15至20任一项所述的解码方法,其中,在所述解码单元使用所述自适应颜色变换的情况下,不从所述比特流中解码所述第一指示信息。
附记23、根据附记15至22任一项所述的解码方法,其中,在所述解码单元的帧内亮度预测模式是所述非常规模式,且帧内色度预测模式是衍生模式DM的情况下,确定所述解码单元不使用所述自适应颜色变换。
附记24、根据附记15至22任一项所述的解码方法,其中,在所述解码单元不使用所述自适应颜色变换,且帧内色度预测模式是衍生模式DM的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
附记25、根据附记15至24任一项所述的解码方法,其中,不对所述自适应颜色变换的信息进行判断,根据块差分脉冲编码调制BDPCM模式的信息确定所述解码单元的帧内色度预测模式。
附记26、根据附记25所述的解码方法,其中,在不存在分量间线性模式CCLM的标识信息的情况下,所述分量间线性模式CCLM的标识信息被推断为0;在不存在帧内色度预测模式的信息的情况下,所述帧内色度预测模式的信息被推断为4。
附记27、根据附记15至26任一项所述的解码方法,其中,在对指示块差分脉冲编码调制BDPCM色度模式的第三指示信息进行解码时,将编码单元与子块的大小的比值作为判断条件。
附记28、根据附记27所述的解码方法,其中,在所述块差分脉冲编码调制BDPCM色度模式不被使能或者不被选择的情况下,对分量间线性模式CCLM或其他常规模式的信息进行解码。
附记29、一种图像编解码方法,包括:
在对指示块差分脉冲编码调制BDPCM色度模式的指示信息进行编码和/或解码时,将编码单元或解码单元与子块的大小的比值作为判断条件。
附记30、根据附记29所述的编解码方法,其中,在所述块差分脉冲编码调制BDPCM色度模式不被使能或者不被选择的情况下,对分量间线性模式CCLM或其他常规模式的信息进行编码或解码。
附记31、一种图像解解码方法,包括:
不对自适应颜色变换的信息进行判断,根据块差分脉冲编码调制BDPCM模式的信息确定编码单元或解码单元的帧内色度预测模式。
附记32、根据附记31所述的解解码方法,其中,在不存在分量间线性模式CCLM的标识信息的情况下,所述分量间线性模式CCLM的标识信息被推断为0;在不存在帧内色度预测模式的信息的情况下,所述帧内色度预测模式的信息被推断为4。

Claims (20)

  1. 一种自适应颜色变换的编码装置,包括:
    确定部,其在编码单元的帧内亮度预测模式是非常规模式的情况下,确定所述编码单元不使用自适应颜色变换,或者,在所述编码单元使用自适应颜色变换的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式;以及
    编码部,其将用于指示所述编码单元的帧内亮度预测模式是否是所述非常规模式的第一指示信息和/或用于指示所述编码单元是否使用所述自适应颜色变换的第二指示信息编入比特流中。
  2. 根据权利要求1所述的编码装置,其中,所述非常规模式是除去多功能视频编码VVC中的67种常规模式之外的预测模式,所述67种常规模式包括DC、planar和65种角度模式。
  3. 根据权利要求1所述的编码装置,其中,所述非常规模式包括块内复制模式、矩阵加权帧内预测模式、块差分脉冲编码调制模式中的至少之一或任意组合。
  4. 根据权利要求1所述的编码装置,其中,所述第一指示信息包括如下至少之一或任意组合:intra_bdpcm_luma_flag、intra_mip_flag、pred_mode_ibc_flag;所述第二指示信息为cu_act_enabled_flag。
  5. 根据权利要求1所述的编码装置,其中,所述编码部在对所述编码单元的帧内亮度预测模式进行编码之前,对所述第二指示信息进行编码;
    或者,所述编码部在对所述编码单元的帧内色度预测模式进行编码之后,对所述第二指示信息进行编码。
  6. 根据权利要求1所述的编码装置,其中,所述编码部在所述编码单元的帧内亮度预测模式是所述非常规模式的情况下,不将所述第二指示信息编入比特流中;
    或者,所述编码部在所述编码单元使用所述自适应颜色变换的情况下,不将所述第一指示信息编入比特流中。
  7. 根据权利要求1所述的编码装置,其中,所述确定部还用于在所述编码单元的帧内亮度预测模式是所述非常规模式,且帧内色度预测模式是衍生模式的情况下,确定所述编码单元不使用自适应颜色变换;
    或者,所述确定部还用于在所述编码单元不使用所述自适应颜色变换,且帧内色度预测模式是衍生模式的情况下,确定所述编码单元的帧内亮度预测模式不是所述非 常规模式。
  8. 根据权利要求1所述的编码装置,其中,所述确定部不对所述自适应颜色变换的信息进行判断,根据块差分脉冲编码调制模式的信息确定所述编码单元的帧内色度预测模式。
  9. 根据权利要求8所述的编码装置,其中,在不存在分量间线性模式的标识信息的情况下,所述分量间线性模式的标识信息被推断为0;在不存在帧内色度预测模式的信息的情况下,所述帧内色度预测模式的信息被推断为4。
  10. 根据权利要求1所述的编码装置,其中,所述编码部在对指示块差分脉冲编码调制色度模式的第三指示信息进行编码时,将编码单元与子块的大小的比值作为判断条件;
    在所述块差分脉冲编码调制色度模式不被使能或者不被选择的情况下,对分量间线性模式或其他常规模式的信息进行编码。
  11. 一种自适应颜色变换的解码装置,包括:
    解码部,其从比特流中解码用于指示解码单元的帧内亮度预测模式是否是非常规模式的第一指示信息和/或用于指示所述解码单元是否使用自适应颜色变换的第二指示信息;以及
    确定部,其在所述解码单元的帧内亮度预测模式是所述非常规模式的情况下,确定所述解码单元不使用自适应颜色变换,或者,在所述解码单元使用所述自适应颜色变换的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
  12. 根据权利要求11所述的解码装置,其中,所述非常规模式是除去多功能视频编码VVC中的67种常规模式之外的预测模式,所述67种常规模式包括DC、planar和65种角度模式。
  13. 根据权利要求11所述的解码装置,其中,所述非常规模式包括块内复制模式、矩阵加权帧内预测模式、块差分脉冲编码调制模式中的至少之一或任意组合。
  14. 根据权利要求11所述的解码装置,其中,所述第一指示信息包括如下的至少之一或任意组合:intra_bdpcm_luma_flag、intra_mip_flag、pred_mode_ibc_flag;所述第二指示信息为cu_act_enabled_flag。
  15. 根据权利要求11所述的解码装置,其中,所述解码部在对所述解码单元的帧内亮度预测模式进行解码之前,对所述第二指示信息进行解码;
    或者,所述解码部在对所述解码单元的帧内色度预测模式进行解码之后,对所述第二指示信息进行解码。
  16. 根据权利要求11所述的解码装置,其中,所述解码部在所述解码单元的帧内亮度预测模式是所述非常规模式的情况下,不从所述比特流中解码所述第二指示信息;
    或者,所述解码部在所述解码单元使用所述自适应颜色变换的情况下,不从所述比特流中解码所述第一指示信息。
  17. 根据权利要求11所述的解码装置,其中,所述确定部还用于在所述解码单元的帧内亮度预测模式是所述非常规模式,且帧内色度预测模式是衍生模式的情况下,确定所述解码单元不使用所述自适应颜色变换;
    或者,所述确定部还用于在所述解码单元不使用所述自适应颜色变换,且帧内色度预测模式是衍生模式的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
  18. 根据权利要求11所述的解码装置,其中,所述确定部不对所述自适应颜色变换的信息进行判断,并根据块差分脉冲编码调制模式的信息确定所述解码单元的帧内色度预测模式;
    在不存在分量间线性模式的标识信息的情况下,所述分量间线性模式的标识信息被推断为0;在不存在帧内色度预测模式的信息的情况下,所述帧内色度预测模式的信息被推断为4。
  19. 根据权利要求11所述的解码装置,其中,所述解码部在对指示块差分脉冲编码调制色度模式的第三指示信息进行解码时,将解码单元与子块的大小的比值作为判断条件;
    在所述块差分脉冲编码调制色度模式不被使能或者不被选择的情况下,对分量间线性模式或其他常规模式的信息进行解码。
  20. 一种视频编解码设备,包括:
    编码器,其在编码单元的帧内亮度预测模式是非常规模式的情况下,确定所述编码单元不使用自适应颜色变换,或者,在所述编码单元使用自适应颜色变换的情况下,确定所述编码单元的帧内亮度预测模式不是所述非常规模式;以及将用于指示所述编码单元的帧内亮度预测模式是否是所述非常规模式的第一指示信息和/或用于指示所 述编码单元是否使用所述自适应颜色变换的第二指示信息编入比特流中;以及
    解码器,其从比特流中解码所述第一指示信息和/或所述第二指示信息;以及在解码单元的帧内亮度预测模式是所述非常规模式的情况下,确定所述解码单元不使用自适应颜色变换,或者,在所述解码单元使用所述自适应颜色变换的情况下,确定所述解码单元的帧内亮度预测模式不是所述非常规模式。
PCT/CN2019/129191 2019-12-27 2019-12-27 自适应颜色变换的编解码方法、装置以及视频编解码设备 WO2021128281A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/129191 WO2021128281A1 (zh) 2019-12-27 2019-12-27 自适应颜色变换的编解码方法、装置以及视频编解码设备
JP2022530916A JP7323071B2 (ja) 2019-12-27 2019-12-27 アダプティブカラー変換のためのコーディングとデコーディング方法、装置及びビデオコーデック装置
CN201980102326.6A CN114731438A (zh) 2019-12-27 2019-12-27 自适应颜色变换的编解码方法、装置以及视频编解码设备
US17/826,357 US20220295101A1 (en) 2019-12-27 2022-05-27 Coding and decoding methods and apparatuses for adaptive color transform and video codec device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129191 WO2021128281A1 (zh) 2019-12-27 2019-12-27 自适应颜色变换的编解码方法、装置以及视频编解码设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/826,357 Continuation US20220295101A1 (en) 2019-12-27 2022-05-27 Coding and decoding methods and apparatuses for adaptive color transform and video codec device

Publications (1)

Publication Number Publication Date
WO2021128281A1 true WO2021128281A1 (zh) 2021-07-01

Family

ID=76573565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129191 WO2021128281A1 (zh) 2019-12-27 2019-12-27 自适应颜色变换的编解码方法、装置以及视频编解码设备

Country Status (4)

Country Link
US (1) US20220295101A1 (zh)
JP (1) JP7323071B2 (zh)
CN (1) CN114731438A (zh)
WO (1) WO2021128281A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077569A1 (zh) * 2022-10-13 2024-04-18 Oppo广东移动通信有限公司 编解码方法、码流、编码器、解码器以及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015131328A1 (en) * 2014-03-04 2015-09-11 Microsoft Technology Licensing, Llc Adaptive switching of color spaces, color sampling rates and/or bit depths
US20180124396A1 (en) * 2016-11-02 2018-05-03 Fujitsu Limited Apparatus, method for coding video, and non-transitory computer-readable storage medium for storing program for coding video
US20180262760A1 (en) * 2017-03-10 2018-09-13 Intel Corporation Screen content detection for adaptive encoding
EP3544298A1 (en) * 2014-09-12 2019-09-25 Vid Scale, Inc. Inter-component de-correlation for video coding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142642B2 (en) 2014-06-04 2018-11-27 Qualcomm Incorporated Block adaptive color-space conversion coding
JP2021010046A (ja) * 2017-10-06 2021-01-28 シャープ株式会社 画像符号化装置及び画像復号装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015131328A1 (en) * 2014-03-04 2015-09-11 Microsoft Technology Licensing, Llc Adaptive switching of color spaces, color sampling rates and/or bit depths
EP3544298A1 (en) * 2014-09-12 2019-09-25 Vid Scale, Inc. Inter-component de-correlation for video coding
US20180124396A1 (en) * 2016-11-02 2018-05-03 Fujitsu Limited Apparatus, method for coding video, and non-transitory computer-readable storage medium for storing program for coding video
US20180262760A1 (en) * 2017-03-10 2018-09-13 Intel Corporation Screen content detection for adaptive encoding

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
G. J. SULLIVAN, J.-R. OHM: "Meeting Report of the 16th JVET Meeting", 16. JVET MEETING; 20191001 - 20191011; GENEVA; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), no. JVET-P2000 ; m51523, 6 January 2020 (2020-01-06), XP030224324 *
X. XIU (KWAI), Y.-W. CHEN (KWAI), T.-C. MA (KWAI), H.-J. JHU (KWAI), X. WANG (KWAI INC.): "Support of adaptive color transform for 444 video coding in VVC", 16. JVET MEETING; 20191001 - 20191011; GENEVA; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), no. JVET-P0517 ; m50488, 11 October 2019 (2019-10-11), XP030217557 *
X. ZHAO (TENCENT), X. XU, X. LI, S. LIU (TENCENT): "An implementation of adaptive color transform in VVC", 14. JVET MEETING; 20190319 - 20190327; GENEVA; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), no. JVET-N0368, 13 March 2019 (2019-03-13), pages 1 - 3, XP030203007 *
X. ZHAO (TENCENT): "Crosscheck of JVET-P0517: Support of adaptive color transform for 444 video coding in VVC", 16. JVET MEETING; 20191001 - 20191011; GENEVA; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), no. JVET-P0683 ; m50739, 11 October 2019 (2019-10-11), XP030217981 *

Also Published As

Publication number Publication date
JP7323071B2 (ja) 2023-08-08
US20220295101A1 (en) 2022-09-15
CN114731438A (zh) 2022-07-08
JP2023505432A (ja) 2023-02-09

Similar Documents

Publication Publication Date Title
US11778235B2 (en) Signaling coding of transform-skipped blocks
TW201842779A (zh) 多重轉換預測
WO2021004152A1 (zh) 图像分量的预测方法、编码器、解码器以及存储介质
US20160323600A1 (en) Methods and Apparatus for Use of Adaptive Prediction Resolution in Video Coding
TW201332370A (zh) 圖像編碼方法、圖像解碼方法、圖像編碼裝置、圖像解碼裝置及其程式
TW202130174A (zh) 發信圖像以及視訊的塊分割
WO2020029187A1 (zh) 视频图像分量的预测方法、装置及计算机存储介质
WO2021128281A1 (zh) 自适应颜色变换的编解码方法、装置以及视频编解码设备
TWI692972B (zh) 一種編碼/解碼的方法及電子裝置
TWI784348B (zh) 視訊圖片資訊之指定技術
WO2023011412A1 (en) Color component processing in down-sample video coding
TW202315411A (zh) 視訊編解碼方法及裝置
KR20180070593A (ko) 정보 데이터의 공통 세트에 의해 구동되는 후보 프로세스들의 세트로부터 비디오 데이터에 적용될 프로세스를 선택하기 위한 방법 및 디바이스
US20210067773A1 (en) Video encoder, video decoder, and video system
TWI839968B (zh) 具有編碼參數的局部照明補償
CN116600131A (zh) 解码预测方法、装置及计算机存储介质
WO2021128265A1 (zh) 滤波方法及其装置
WO2023272517A1 (zh) 编解码方法、码流、编码器、解码器及计算机存储介质
WO2020191575A1 (zh) 图像编解码方法、装置以及电子设备
WO2021128284A1 (zh) 二次变换的约束方法及其装置
WO2021128277A1 (zh) 交叉分量自适应环路滤波方法、装置以及视频编解码设备
WO2023193260A1 (zh) 编解码方法、码流、编码器、解码器以及存储介质
WO2022217442A1 (zh) 系数编解码方法、编码器、解码器以及计算机存储介质
WO2024060099A1 (zh) 编解码方法、码流、编码器、解码器以及存储介质
WO2023093863A1 (en) Local illumination compensation with coded parameters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957483

Country of ref document: EP

Kind code of ref document: A1