WO2021128082A1 - 数据传输方法、装置及计算机存储介质 - Google Patents

数据传输方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2021128082A1
WO2021128082A1 PCT/CN2019/128397 CN2019128397W WO2021128082A1 WO 2021128082 A1 WO2021128082 A1 WO 2021128082A1 CN 2019128397 W CN2019128397 W CN 2019128397W WO 2021128082 A1 WO2021128082 A1 WO 2021128082A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
monitoring frequency
monitoring
uplink
downlink
Prior art date
Application number
PCT/CN2019/128397
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/788,728 priority Critical patent/US20230015374A1/en
Priority to CN201980003732.7A priority patent/CN113383589B/zh
Priority to PCT/CN2019/128397 priority patent/WO2021128082A1/zh
Publication of WO2021128082A1 publication Critical patent/WO2021128082A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present disclosure relates to communication technology, and in particular to a data transmission method, device and computer storage medium.
  • 5G 5th generation mobile networks
  • 5G 5th generation mobile networks or 5th generation wireless systems, referred to as 5G
  • 5G New Radio
  • URLLC Ultra Reliable and Low Latency Communication
  • this type of service usually requires the transmitter to obtain transmission resources as soon as possible when there is data to be transmitted, reducing the delay of the service waiting in the transmitter buffer, thereby reducing the air interface transmission delay .
  • the transmitter In the 5G unlicensed frequency band communication system, the transmitter usually uses the Listen Before Talk (LBT) mechanism to send data.
  • LBT Listen Before Talk
  • the base station and user equipment User Equipment, UE
  • the frequency domain is based on the LBT band (monitoring frequency band), and the frequency band used for communication between the base station and the UE may be wider, which can cover multiple LBT bands.
  • the base station and the UE will occupy the channel in a broadband manner, that is, the base station or the UE will monitor all the monitoring frequency bands on all frequency bands when sending data, and the data transmission will only be performed on the LBT band where the LBT is successful.
  • the base station When the base station sends downlink data, if the UE has uplink data to send, the UE needs to wait until the base station's downlink data transmission ends to obtain transmission resources, so the transmission waiting delay of uplink data will increase. In the same way, when the UE transmits uplink data, if the base station has downlink data to send, the base station needs to wait until the UE's uplink data transmission ends to obtain the transmission resources, so the transmission waiting time delay of the downlink data will increase.
  • the present disclosure provides a data transmission method, device and computer storage medium.
  • a data transmission method including:
  • the frequency band type includes at least one of the following: uplink monitoring frequency band, or downlink monitoring frequency band, or unrestricted monitoring frequency band;
  • the downlink monitoring frequency band is used for downlink transmission;
  • the uplink monitoring frequency band is used for uplink transmission;
  • the unrestricted monitoring frequency band can be used for both uplink transmission and downlink transmission.
  • the method further includes:
  • the monitoring frequency band configuration information includes frequency band type indication information
  • the frequency band type indication information is used to indicate one or more monitoring in the unlicensed frequency band The frequency band type of the frequency band.
  • the sending the monitoring frequency band configuration information to the UE includes:
  • the monitoring frequency band configuration information is sent to the UE through radio resource control (Radio Resource Control, RRC) layer signaling.
  • RRC Radio Resource Control
  • the frequency band type is the frequency of the listening frequency band of the uplink listening frequency band, which is lower than the frequency of the listening frequency band of the downlink listening frequency band.
  • the determining the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands includes:
  • a frequency band type is determined for at least one of the monitoring frequency bands; wherein the frequency band type is the downlink The number of monitoring frequency bands or the uplink monitoring frequency bands is less than the total number of monitoring frequency bands included in the unlicensed frequency band.
  • the determining the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands includes:
  • the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is the uplink monitoring frequency band.
  • the determining the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands includes:
  • PUSCH physical uplink shared channel
  • the frequency band type includes at least one of the following: uplink monitoring frequency band, or downlink monitoring frequency band, or unrestricted monitoring Frequency band; wherein the downlink monitoring frequency band is used for downlink transmission; the uplink monitoring frequency band is used for uplink transmission; the unrestricted monitoring frequency band can be used for both uplink transmission and downlink transmission.
  • the method before the determining the frequency band type of the at least one monitoring frequency band, the method further includes:
  • monitoring frequency band configuration information sent by the base station, where the monitoring frequency band configuration information includes frequency band type indication information, and the frequency band type indication information is used to indicate the type of one or more monitoring frequency bands in the unlicensed frequency band.
  • the acquiring the monitoring frequency band configuration information sent by the base station includes:
  • the monitoring frequency band configuration information is determined based on the broadcast message.
  • the acquiring the monitoring frequency band configuration information sent by the base station includes:
  • the monitoring frequency band configuration information is determined based on the RRC layer signaling.
  • the determining the frequency band type of at least one monitoring frequency band includes:
  • a frequency band type is determined for at least one of the monitoring frequency bands; wherein, the frequency band type is the downlink The number of monitoring frequency bands or the uplink monitoring frequency bands is less than the total number of monitoring frequency bands included in the unlicensed frequency band.
  • the method further includes:
  • the method further includes:
  • the scheduling instruction sent by the base station When the scheduling instruction sent by the base station is received, if the scheduling instruction instructs to transmit uplink data on the listening frequency band whose frequency band type is the downlink listening frequency band, the call instruction is ignored.
  • the method further includes:
  • the physical uplink shared channel (PUSCH) information is periodically transmitted by using the frequency band type as the monitoring frequency band of the uplink monitoring frequency band.
  • a data transmission device including:
  • the first determining unit is configured to determine one or more listening frequency bands in the unlicensed frequency band
  • the second determining unit is configured to determine a frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands; wherein the frequency band type includes at least one of the following: an uplink monitoring frequency band, or a downlink monitoring frequency band, or The unrestricted monitoring frequency band; wherein the downlink monitoring frequency band is used for downlink transmission; the uplink monitoring frequency band is used for uplink transmission; the unrestricted monitoring frequency band can be used for both uplink transmission and downlink transmission.
  • a data transmission apparatus applied to user equipment including:
  • the third determining unit is configured to determine one or more monitoring frequency bands in the unlicensed frequency band
  • the fourth determining unit is configured to determine the frequency band type of at least one monitoring frequency band in one or more monitoring frequency bands in the unlicensed frequency band; wherein the frequency band type includes at least one of the following: uplink monitoring frequency band, or The downlink listening frequency band, or the unrestricted listening frequency band; wherein the downlink listening frequency band is used for downlink transmission; the uplink listening frequency band is used for uplink transmission; the unrestricted listening frequency band can be used for both uplink transmission and Downlink transmission.
  • a data transmission device including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement any one of the aforementioned data transmission methods applied to the base station side technical solution by executing the executable instructions.
  • a data transmission device including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement any one of the foregoing data transmission methods applied to the UE side technical solution by executing the executable instruction.
  • a computer storage medium stores executable instructions, and after the executable instructions are executed by a processor, any one of the aforementioned technologies can be applied to the base station side.
  • a computer storage medium stores executable instructions, and after the executable instructions are executed by a processor, any one of the aforementioned technologies can be applied to the UE side.
  • the frequency band type includes at least one of the following: uplink listening frequency band , Or downlink monitoring frequency band, or unrestricted monitoring frequency band; wherein, the downlink monitoring frequency band is used for downlink transmission; the uplink monitoring frequency band is used for uplink transmission; the unrestricted monitoring frequency band can be used for both uplink transmission and In this way, since the frequency band type of at least one monitoring frequency band on the unlicensed frequency band is determined, it can at least reduce the transmission waiting delay of uplink data or downlink data, thereby helping to reduce the time of data transmission on the unlicensed frequency band. Extension.
  • Fig. 1 is a schematic structural diagram showing a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a first flow chart showing a data transmission method according to an exemplary embodiment
  • Fig. 3 is a second flowchart of a data transmission method according to an exemplary embodiment
  • Fig. 4 is a first block diagram showing a data transmission device according to an exemplary embodiment
  • Fig. 5 is a second block diagram of a data transmission device according to an exemplary embodiment
  • Fig. 6 is a block diagram showing a device 800 for implementing data transmission processing according to an exemplary embodiment
  • Fig. 7 is a block diagram showing a device 900 for implementing data transmission processing according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • the words "if” and “if” as used herein can be interpreted as “when” or “when” or “in response to certainty”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 11 and several base stations 12.
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, built-in computer or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • access terminal access terminal
  • user device user terminal
  • user agent user agent
  • user equipment user device
  • user terminal User Equipment
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device with an external trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • MTC machine-type communication
  • the base station 12 may be an evolved base station (eNB) used in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (Central Unit, CU) and at least two distributed units (Distributed Unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End) connection may also be established between the terminals 11.
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2P Vehicle to Pedestrian
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving Gate Way (SGW), Public Data Network Gate Way (PGW), policy and charging rules function unit (Policy and Charging Rules Function, PCRF) or home subscriber network side equipment (Home Subscriber Server, HSS), etc.
  • SGW Serving Gate Way
  • PGW Public Data Network Gate Way
  • PCRF Policy and Charging Rules Function
  • HSS home subscriber network side equipment
  • the implementation form of the network management device 13 is not limited in the embodiment of the present disclosure.
  • the transmitter needs to monitor the channel before sending data. When the channel is found to have interference below a certain threshold, the channel can be successfully occupied to send data. Listen Before Talk, LBT) mechanism.
  • LBT Listen Before Talk
  • the frequency domain is based on the LBT band (monitoring frequency band), and an LBT band is 20 MHz in the frequency domain.
  • the frequency band used by the base station and UE for communication may be relatively wide and can cover multiple LBT bands. For example, if the base station and UE communicate with an unlicensed frequency band of 80 MHz, the unlicensed frequency band will be divided into 4 LBT bands.
  • the base station and the UE will occupy the channel in a broadband manner, that is, the base station or the UE will monitor the 4 LBT bands on all 80MHz frequency bands when they want to send data, and the data will only be sent on the LBT band where the LBT is successful.
  • the unlicensed frequency band When the unlicensed frequency band is used to transmit low-latency services, it is usually used in scenarios where the indoor interference environment is controllable. For example, control networks deployed in indoor factories, indoor gaming sensor networks, etc. In such scenarios, the unlicensed frequency band used for communication between the base station and the UE usually suffers less interference from the outside world, and the interference mainly comes from the interference of the endpoints in the indoor network. For the endpoints in this network, if there are vacant LBT bands, the sender can monitor successfully and occupy the channel with a high probability when monitoring the channel.
  • the base station will use all 4 LBTs to send downlink data.
  • the UE In the process of the base station sending downlink data, if the UE has uplink data to send, the UE needs to wait until the base station's downlink data transmission ends to obtain transmission resources, so the transmission waiting time delay of uplink data will increase.
  • the base station if the UE occupies 4 LBTs to transmit uplink data, then if the base station has downlink data to send, the base station needs to wait until the UE's uplink data transmission ends to obtain transmission resources, so the downlink data transmission waiting time delay Will increase.
  • Fig. 2 is a first flowchart of a data transmission method according to an exemplary embodiment. As shown in Fig. 2, the data transmission method is used in a base station and includes the following steps:
  • step S11 determine one or more monitoring frequency bands in the unlicensed frequency band
  • the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is determined; wherein, the frequency band type includes at least one of the following: uplink monitoring frequency band, or downlink monitoring frequency band, or unrestricted monitoring Frequency band; wherein the downlink monitoring frequency band is used for downlink transmission; the uplink monitoring frequency band is used for uplink transmission; the unrestricted monitoring frequency band can be used for both uplink transmission and downlink transmission.
  • the frequency band type of at least one monitoring frequency band on the unlicensed frequency band is determined, it can at least reduce the transmission waiting delay of uplink data or downlink data, thereby helping to reduce the delay of uplink data or downlink data transmission on the unlicensed frequency band.
  • step S12 includes:
  • the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is an uplink monitoring frequency band; wherein, the uplink monitoring frequency band is used for uplink transmission.
  • the uplink monitoring band since it is determined that at least one frequency band type on the unlicensed frequency band is the uplink monitoring band, it is ensured that when there is uplink data to be sent, there is a monitoring band for uplink transmission. There will be no uplink data to be sent but need to wait until the downlink data is sent. The situation that the transmission resource can be obtained after the end can reduce the transmission waiting time delay of the uplink data, thereby reducing the time delay of the uplink data transmission.
  • step S12 includes:
  • the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is a downlink monitoring frequency band; wherein, the downlink monitoring frequency band is used for downlink transmission.
  • the downlink monitoring band since it is determined that at least one frequency band type on the unlicensed frequency band is the downlink monitoring band, it is ensured that when there is downlink data to be sent, there is a monitoring band for downlink transmission available, and there will be no downlink data to be sent but need to wait until the uplink data is sent.
  • the situation that the transmission resource can be obtained after the end can reduce the transmission waiting time delay of the downlink data, thereby reducing the time delay of the downlink data transmission.
  • step S12 includes:
  • the frequency band type of at least one of the one or more monitoring frequency bands is an uplink monitoring frequency band, and the uplink monitoring frequency band is used for uplink transmission;
  • the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is a downlink monitoring frequency band, and the downlink monitoring frequency band is used for downlink transmission.
  • At least one frequency band type is a listening frequency band of the downlink listening frequency band and at least one frequency band type is a listening frequency band of the uplink listening frequency band on the unlicensed frequency band
  • reduce the transmission waiting time delay of the uplink data and reduce the uplink data transmission delay; there will be no downlink data to be sent but the transmission resource cannot be obtained after the uplink data transmission is completed, reducing The transmission waiting time delay of the downlink data reduces the time delay of the downlink data transmission.
  • the method further includes:
  • the monitoring frequency band configuration information includes frequency band type indication information
  • the frequency band type indication information is used to indicate the type of one or more monitoring frequency bands in the unlicensed frequency band.
  • the UE can be notified of the type of one or more monitoring frequency bands in the unlicensed frequency band, so that the UE can select the corresponding monitoring frequency band to perform corresponding work based on the type of the monitoring frequency band configured by the base station. For example, the listening frequency band whose type is the downlink listening frequency band is selected to monitor the downlink information; the listening frequency band whose type is the uplink listening frequency band is selected to transmit the uplink information.
  • the sending monitoring frequency band configuration information to the UE includes:
  • the monitoring frequency band configuration information can be sent to the UE through a broadcast message to inform the UE of the monitoring frequency band configuration information, and the monitoring frequency band configuration information can be indicated through existing signaling such as a broadcast message, which can save the number of signaling.
  • the sending monitoring frequency band configuration information to the UE includes:
  • the monitoring frequency band configuration information is sent to the UE through RRC layer signaling.
  • the monitoring frequency band configuration information can be sent to the UE through RRC layer signaling to inform the UE of the monitoring frequency band configuration information.
  • different UEs can be configured with different uplink and downlink monitoring frequency bands through RRC signaling. Load balancing.
  • any existing or newly added signaling may be used to send the frequency band configuration information, which is not limited in the embodiments of the present disclosure.
  • the determining the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands includes:
  • the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is determined by means of agreement.
  • the frequency band type of the specific one or more monitoring frequency bands is agreed to be the uplink monitoring frequency band, the downlink monitoring frequency band, or the unrestricted monitoring frequency band through the agreement.
  • the protocol may be agreed in the protocol that among multiple monitoring frequency bands, the monitoring frequency band with the lowest frequency is the uplink monitoring frequency band, and the monitoring frequency band with the highest frequency is the downlink monitoring frequency band.
  • the frequency of the monitoring frequency band of the uplink monitoring band of the frequency band type is lower than the frequency of the monitoring frequency of the downlink monitoring frequency band of the frequency band type.
  • the use of the lower frequency uplink listening band is beneficial to enhance the uplink coverage and balance the uplink and downlink coverage.
  • determining the frequency band type of at least one listening frequency band in the one or more listening frequency bands includes:
  • a frequency band type is determined for at least one of the monitoring frequency bands; wherein the frequency band type is the downlink The number of monitoring frequency bands or the uplink monitoring frequency bands is less than the total number of monitoring frequency bands included in the unlicensed frequency band.
  • the listening frequency band in the unlicensed frequency band has both a listening frequency band for transmitting uplink information and a listening frequency band for transmitting downlink information, thereby helping to reduce the delay of data transmission.
  • the determining the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands includes:
  • the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is the uplink monitoring frequency band.
  • the listening frequency band for transmitting uplink information for the UE. Since the base station will not send downlink information, including downlink control information and downlink data information, on the listening frequency band whose frequency band type is the uplink listening frequency band. Therefore, it can ensure that the UE is available. When uplink data needs to be sent, the listening frequency band for uplink transmission is available. There will be no situation where there is uplink data to be sent but the transmission resources need to be waited until the end of the downlink data transmission. This can reduce the transmission waiting delay of uplink data, thereby reducing the uplink The delay of data transmission.
  • the determining the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands includes:
  • the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is the uplink monitoring frequency band.
  • the UE transmits the CG-PUSCH information by using the monitoring frequency band whose frequency band type is the uplink monitoring frequency band.
  • CG-PUSCH Configured grant-PUSCH
  • Chinese meaning is configured authorized PUSCH, sometimes also called uplink grant free (UL grant free) PUSCH.
  • one or more monitoring frequency bands in an unlicensed frequency band are determined; and the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is determined; wherein the frequency band type includes At least one of the following: uplink monitoring frequency band, or downlink monitoring frequency band, or unrestricted monitoring frequency band; wherein, the downlink monitoring frequency band is used for downlink transmission; the uplink monitoring frequency band is used for uplink transmission; and the unrestricted monitoring frequency band is both It can be used for uplink transmission as well as downlink transmission; in this way, since the frequency band type of at least one monitoring band on the unlicensed frequency band is determined, it can at least reduce the transmission waiting delay of uplink data or downlink data, thereby helping Reduce the delay of data transmission on unlicensed frequency bands.
  • Fig. 3 is a second flowchart of a data transmission method according to an exemplary embodiment. As shown in Fig. 3, the data transmission method is used in a user terminal (UE) and includes the following steps:
  • step S21 determine one or more monitoring frequency bands in the unlicensed frequency band
  • a frequency band type of at least one monitoring frequency band is determined; wherein the frequency band type includes at least one of the following: uplink monitoring frequency band, or downlink monitoring frequency band , Or unrestricted monitoring frequency band; wherein, the downlink monitoring frequency band is used for downlink transmission; the uplink monitoring frequency band is used for uplink transmission; the unrestricted monitoring frequency band can be used for both uplink transmission and downlink transmission.
  • the frequency band type of at least one monitoring frequency band on the unlicensed frequency band is determined, it can at least reduce the transmission waiting delay of uplink data or downlink data, thereby helping to reduce the delay of data transmission on the unlicensed frequency band.
  • the method before the determining the frequency band type of the at least one monitoring frequency band, the method further includes:
  • monitoring frequency band configuration information sent by the base station, where the monitoring frequency band configuration information includes frequency band type indication information, and the frequency band type indication information is used to indicate the type of one or more monitoring frequency bands in the unlicensed frequency band.
  • the UE determines the type of one or more listening frequency bands in the unlicensed frequency band according to the listening frequency band configuration information, and it is convenient for the UE to select the corresponding listening frequency band to perform corresponding work based on the type of the listening frequency band configured by the base station. For example, the listening frequency band whose type is the downlink listening frequency band is selected to monitor the downlink information; the listening frequency band whose type is the uplink listening frequency band is selected to transmit the uplink information.
  • the acquiring monitoring frequency band configuration information includes:
  • the monitoring frequency band configuration information is determined based on the broadcast message.
  • the UE can learn the monitoring frequency band configuration information through the broadcast message.
  • the acquiring monitoring frequency band configuration information includes:
  • the monitoring frequency band configuration information is determined based on the RRC layer signaling.
  • the UE can learn the monitoring frequency band configuration information through RRC layer signaling.
  • any existing or newly added signaling may be used to send the frequency band configuration information, which is not limited in the embodiments of the present disclosure.
  • the determining the frequency band type of the at least one listening frequency band includes:
  • the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is determined by means of agreement.
  • the frequency band type of the specific one or more monitoring frequency bands is agreed to be the uplink monitoring frequency band, the downlink monitoring frequency band, or the unrestricted monitoring frequency band through the agreement.
  • the protocol may be agreed in the protocol that among multiple monitoring frequency bands, the monitoring frequency band with the lowest frequency is the uplink monitoring frequency band, and the monitoring frequency band with the highest frequency is the downlink monitoring frequency band.
  • the frequency band type of the at least one listening frequency band includes:
  • a frequency band type is determined for at least one of the monitoring frequency bands; wherein, the frequency band type is the downlink The number of monitoring frequency bands or the uplink monitoring frequency bands is less than the total number of monitoring frequency bands included in the unlicensed frequency band.
  • the listening frequency band in the unlicensed frequency band has both a listening frequency band for transmitting uplink information and a listening frequency band for transmitting downlink information, thereby helping to reduce the delay of data transmission.
  • the method further includes:
  • the UE has a listening band for uplink transmission when there is uplink data to be sent, and there will be no uplink data to be sent but the situation that the transmission resource can be obtained after the end of the downlink data transmission can be reduced, which can reduce the transmission of uplink data. Wait for the delay, thereby reducing the delay of uplink data transmission.
  • the method further includes:
  • the scheduling instruction sent by the base station When the scheduling instruction sent by the base station is received, if the scheduling instruction instructs to transmit uplink data on the listening frequency band whose frequency band type is the downlink listening frequency band, the call instruction is ignored.
  • the UE does not occupy the monitoring frequency band resource whose frequency band type is the downlink monitoring frequency band.
  • the method further includes:
  • the physical uplink shared channel PUSCH information is periodically transmitted.
  • the UE transmits the CG-PUSCH information by using the monitoring frequency band whose frequency band type is the uplink monitoring frequency band.
  • CG-PUSCH Configured grant-PUSCH, meaning in Chinese means configured authorized PUSCH, sometimes also called uplink grant free (UL grant free) PUSCH.
  • the technical solutions described in the embodiments of the present disclosure determine one or more monitoring frequency bands in the unlicensed frequency band; determine the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands in the unlicensed frequency band; wherein, The frequency band type includes at least one of the following: uplink monitoring frequency band, or downlink monitoring frequency band, or unrestricted monitoring frequency band; wherein, the downlink monitoring frequency band is used for downlink transmission; the uplink monitoring frequency band is used for uplink transmission; The unrestricted monitoring frequency band can be used for both uplink transmission and downlink transmission; in this way, since the frequency band type of at least one monitoring frequency band on the unlicensed frequency band is determined, at least the transmission waiting delay of uplink data or downlink data can be reduced. This helps to reduce the delay of data transmission on unlicensed frequency bands.
  • Fig. 4 is a first block diagram showing a data transmission device according to an exemplary embodiment.
  • the data transmission device is applied to the base station side.
  • the device includes a first determining unit 10 and a second determining unit 20; wherein,
  • the first determining unit 10 is configured to determine one or more listening frequency bands in an unlicensed frequency band
  • the second determining unit 20 is configured to determine a frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands; wherein the frequency band type includes at least one of the following: uplink monitoring frequency band, or downlink monitoring Frequency band, or unrestricted monitoring frequency band; wherein, the downlink monitoring frequency band is used for downlink transmission; the uplink monitoring frequency band is used for uplink transmission; the unrestricted monitoring frequency band can be used for both uplink transmission and downlink transmission .
  • the device further includes:
  • the first communication unit 30 (not shown in FIG. 4) is configured to send monitoring frequency band configuration information to a user equipment (UE), where the monitoring frequency band configuration information includes frequency band type indication information, and the frequency band type indication information is used for Indicate the frequency band type of one or more monitoring frequency bands in the unlicensed frequency band.
  • UE user equipment
  • the first communication unit 30 is configured to:
  • the monitoring frequency band configuration information is sent to the UE through radio resource control (RRC) layer signaling.
  • RRC radio resource control
  • the frequency band type is the frequency of the listening frequency band of the uplink listening frequency band, which is lower than the frequency of the listening frequency band of the downlink listening frequency band.
  • the second determining unit 20 is configured to:
  • a frequency band type is determined for at least one of the monitoring frequency bands; wherein the frequency band type is the downlink The number of monitoring frequency bands or the uplink monitoring frequency bands is less than the total number of monitoring frequency bands included in the unlicensed frequency band.
  • the second determining unit 20 is configured to:
  • the frequency band type of at least one monitoring frequency band in the one or more monitoring frequency bands is the uplink monitoring frequency band.
  • the second determining unit 20 is configured to:
  • the UE When configuring resources for the UE to periodically transmit physical uplink shared channel PUSCH information, determine that the frequency band type of at least one of the one or more listening frequency bands is the uplink listening frequency band.
  • the specific structures of the first determining unit 10, the second determining unit 20, and the first communication unit 30 can be determined by the data transmission device or the central processing unit (CPU, Central Processing Unit) in the base station to which the data transmission device belongs. , Microprocessor (MCU, Micro Controller Unit), Digital Signal Processor (DSP, Digital Signal Processing) or Programmable Logic Device (PLC, Programmable Logic Controller), etc.
  • CPU Central Processing Unit
  • MCU Microcontroller
  • DSP Digital Signal Processor
  • PLC Programmable Logic Device
  • the data transmission device described in this embodiment may be set on the side of the base station.
  • the module may be implemented by an analog circuit that implements the functions described in the embodiments of the present disclosure, or may be implemented by running software that implements the functions described in the embodiments of the present disclosure on the terminal.
  • the data transmission device described in the embodiment of the present disclosure can reduce the time delay of data transmission on an unlicensed frequency band.
  • Fig. 5 is a second block diagram of a data transmission device according to an exemplary embodiment.
  • the data transmission device is applied to the UE side.
  • the device includes a third determining unit 40 and a fourth determining unit 50.
  • the third determining unit 40 is configured to determine one or more listening frequency bands in the unlicensed frequency band
  • the fourth determining unit 50 is configured to determine a frequency band type of at least one monitoring frequency band in one or more monitoring frequency bands in the unlicensed frequency band; wherein, the frequency band type includes at least one of the following: uplink monitoring frequency band, Or downlink monitoring frequency band, or unrestricted monitoring frequency band; wherein, the downlink monitoring frequency band is used for downlink transmission; the uplink monitoring frequency band is used for uplink transmission; the unrestricted monitoring frequency band can be used for both uplink transmission and Perform downlink transmission.
  • the device includes:
  • the second communication unit 60 (not shown in FIG. 5) is configured to:
  • monitoring frequency band configuration information sent by the base station, where the monitoring frequency band configuration information includes frequency band type indication information, and the frequency band type indication information is used to indicate one or more unlicensed frequency bands The type of monitoring band.
  • the second communication unit 60 is configured to:
  • the monitoring frequency band configuration information is determined based on the broadcast message.
  • the second communication unit 60 is configured to:
  • the monitoring frequency band configuration information is determined based on the RRC layer signaling.
  • the fourth determining unit 50 is configured to:
  • a frequency band type is determined for at least one of the monitoring frequency bands; wherein, the frequency band type is the downlink The number of monitoring frequency bands or the uplink monitoring frequency bands is less than the total number of monitoring frequency bands included in the unlicensed frequency band.
  • the second communication unit 60 is configured to:
  • the second communication unit 60 is configured to:
  • the scheduling instruction sent by the base station When the scheduling instruction sent by the base station is received, if the scheduling instruction instructs to transmit uplink data on the listening frequency band whose frequency band type is the downlink listening frequency band, the call instruction is ignored.
  • the second communication unit 60 is configured to:
  • the physical uplink shared channel PUSCH information is periodically transmitted.
  • the data transmission device described in this embodiment may be set on the UE side.
  • each processing module in the data transmission device of the embodiment of the present disclosure can be understood by referring to the relevant description of the data transmission method applied to the UE side.
  • the module may be implemented by an analog circuit that implements the functions described in the embodiments of the present disclosure, or may be implemented by running software that implements the functions described in the embodiments of the present disclosure on the terminal.
  • the specific structures of the third determining unit 40, the fourth determining unit 50, and the second communication unit 60 can be implemented by the CPU, MCU, DSP, or PLC in the data transmission device or the UE to which the data transmission device belongs.
  • the data transmission device described in the embodiment of the present disclosure can reduce the time delay of data transmission on an unlicensed frequency band.
  • Fig. 6 is a block diagram showing a device 800 for implementing data transmission processing according to an exemplary embodiment.
  • the device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O, Input/Output) interface 812, The sensor component 814, and the communication component 816.
  • a processing component 802 a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O, Input/Output) interface 812, The sensor component 814, and the communication component 816.
  • the processing component 802 generally controls the overall operations of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the device 800. Examples of such data include instructions for any application or method operating on the device 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage devices or their combination, such as static random access memory (Static Random-Access Memory, SRAM), electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory). -Erasable Programmable Read Only Memory, EEPROM, Erasable Programmable Read Only Memory (EPROM), Programmable Read-Only Memory (PROM), Read Only Memory (Read Only Memory) , ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • SRAM static random access memory
  • EEPROM Electrically erasable programmable read-only memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read-Only Memory
  • Read Only Memory Read
  • the power component 806 provides power to various components of the device 800.
  • the power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (Liquid Crystal Display, LCD) and a touch panel (Touch Panel, TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC for short).
  • the microphone When the device 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the device 800 with various aspects of status assessment.
  • the sensor component 814 can detect the open/close state of the device 800 and the relative positioning of the components.
  • the component is the display and the keypad of the device 800.
  • the sensor component 814 can also detect the position change of the device 800 or a component of the device 800. , The presence or absence of contact between the user and the device 800, the orientation or acceleration/deceleration of the device 800, and the temperature change of the device 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) or a charge-coupled device (Charge-coupled Device, CCD) image sensor for use in imaging applications.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a Near Field Communication (NFC) module to facilitate short-range communication.
  • NFC Near Field Communication
  • the NFC module can be based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (Blue Tooth, BT) technology and Other technologies to achieve.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • the apparatus 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (Digital Signal Processor, DSP), and digital signal processing devices (Digital Signal Processing Device, DSPD), programmable logic device (Programmable Logic Device, PLD), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), controller, microcontroller, microprocessor or other electronic components to implement the above applications Data transmission method on the UE side.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components to implement the above applications Data transmission method on the UE side.
  • a non-transitory computer storage medium including executable instructions, such as a memory 804 including executable instructions.
  • the executable instructions can be executed by the processor 820 of the device 800 to complete the foregoing method.
  • the non-transitory computer storage medium may be ROM, random access memory (Random Access Memory, RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Fig. 7 is a block diagram showing a device 900 for implementing data transmission processing according to an exemplary embodiment.
  • the device 900 may be provided as a server.
  • the apparatus 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as an application program.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute the above-mentioned data transmission method applied to the base station side.
  • the device 900 may also include a power supply component 926 configured to perform power management of the device 900, a wired or wireless network interface 950 configured to connect the device 900 to a network, and an input output (I/O) interface 958.
  • the device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种数据传输方法、装置以及计算机存储介质,所述方法包括:确定非授权频段内的一个或一个以上的监听频带;以及确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型;其中所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。

Description

数据传输方法、装置及计算机存储介质 技术领域
本公开涉及通信技术,尤其涉及一种数据传输方法、装置及计算机存储介质。
背景技术
在第5代移动通信技术(5th generation mobile networks或5th generation wireless systems,简称5G)新空口(New Radio,NR)系统中,某些业务类型需要要求低时延,例如超高可靠低时延通信(Ultra Reliable and Low Latency Communication,URLLC)业务类型,此类业务通常要求发射端在有待传数据时能够尽快获得传输资源,减少业务在发射端缓存中等待的时延,以此降低空口传输时延。
在5G非授权频段通信系统中,发射端通常使用先监听后传输(Listen Before Talk,LBT)机制发送数据。基站和用户设备(User Equipment,UE)进行信道监听时,在频域上是以LBT band(监听频带)为单位的,而基站和UE通信所使用的频带可能较宽,能覆盖多个LBT band,基站和UE会以宽带的方式占用信道,也即基站或者UE在要发送数据,会在全部频段上对所有监听频带分别做监听,数据发送只会在LBT成功的LBT band上进行。在基站发送下行数据的过程中,如果UE有上行数据要发送,则UE需要等到基站的下行数据发送结束之后才能获得传输资源,所以上行数据的传输等待时延会增加。同理,在UE传输上行数据的过程中,如果基站有下行数据要发送,则基站需要等到UE的上行数据发送结束之后才能获得传输资源,所以下行数据的传输等待时延会增加。
发明内容
本公开提供一种数据传输方法、装置及计算机存储介质。
根据本公开实施例的第一方面,提供一种数据传输方法,包括:
确定非授权频段内的一个或一个以上的监听频带;以及
确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
上述方案中,所述方法还包括:
向用户设备(User Equipment,UE)发送监听频带配置信息,所述监听频带配置信息中包括频带类型指示信息,所述频带类型指示信息用于指示所述非授权频段内的一个或一个以上的监听频带的频带类型。
上述方案中,所述向UE发送监听频带配置信息,包括:
通过广播消息向所述UE发送所述监听频带配置信息;或者
通过无线资源控制(Radio Resource Control,RRC)层信令向所述UE发送所述监听频带配置信息。
上述方案中,所述频带类型为所述上行监听频带的监听频带的频率,低于所述频带类型为所述下行监听频带的监听频带的频率。
上述方案中,所述确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型,包括:
当与UE通过非授权频段通信,且通信所使用的非授权频段包括两个或两个以上的监听频带时,为至少一个所述监听频带确定频带类型;其中,所述频带类型为所述下行监听频带或所述上行监听频带的个数,小于所述非授权频段包括的监听频带的总个数。
上述方案中,所述确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型,包括:
接收到UE发送的调度请求时,确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为所述上行监听频带。
上述方案中,所述确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型,包括:
为UE配置用于周期性传输物理上行共享信道(Physical Uplink Shared channel,PUSCH)信息的资源时,确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为所述上行监听频带。
根据本公开实施例的第二方面,提供了一种数据传输方法,应用于用户设备(UE),所述方法包括:
确定非授权频段内的一个或一个以上的监听频带;以及
在非授权频段内的一个或一个以上的监听频带中,确定至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
上述方案中,所述确定至少一个监听频带的频带类型之前,所述方法还包括:
获取基站发送的监听频带配置信息,所述监听频带配置信息中包括频带类型指示信息,所述频带类型指示信息用于指示非授权频段内的一个或一个以上的监听频带的类型。
上述方案中,所述获取基站发送的监听频带配置信息,包括:
接收广播消息;
基于所述广播消息确定所述监听频带配置信息。
上述方案中,所述获取基站发送的监听频带配置信息,包括:
接收RRC层信令;
基于所述RRC层信令确定所述监听频带配置信息。
上述方案中,所述确定至少一个监听频带的频带类型,包括:
当与基站通过非授权频段通信,且通信所使用的非授权频段包括两个或两个以上的监听频带时,为至少一个所述监听频带确定频带类型;其中,所述频带类型为所述下行监听频带或所述上行监听频带的个数,小于所述非授权频段包括的监听频带的总个数。
上述方案中,所述方法还包括:
利用频带类型为上行监听频带的监听频带,发送调度请求。
上述方案中,所述方法还包括:
接收到基站发送的调度指令时,若所述调度指令指示在频带类型为所述下行监听频带的监听频带上传输上行数据,忽略所述调用指令。
上述方案中,所述方法还包括:
利用频带类型为所述上行监听频带的监听频带,周期性传输物理上行共享信道(PUSCH)信息。
根据本公开实施例的第三方面,提供了一种数据传输装置,包括:
第一确定单元,被配置为确定非授权频段内的一个或一个以上的监听频带;以及
第二确定单元,被配置为确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
根据本公开实施例的第四方面,提供了一种数据传输装置,应用于用户设备(UE),包括:
第三确定单元,被配置为确定非授权频段内的一个或一个以上的监听 频带;
第四确定单元,被配置为在非授权频段内的一个或一个以上的监听频带中,确定至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
根据本公开实施例的第五方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为通过执行所述可执行指令,实现前述任意一个应用于基站侧技术方案所述的数据传输方法。
根据本公开实施例的第六方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为通过执行所述可执行指令,实现前述任意一个应用于UE侧技术方案所述的数据传输方法。
根据本公开实施例的第七方面,提供一种计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行之后,能够实现前述任意一个应用于基站侧技术方案所述的数据传输方法。
根据本公开实施例的第八方面,提供一种计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行之后,能够实现前述任意一个应用于UE侧技术方案所述的数据传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
确定非授权频段内的一个或一个以上的监听频带;以及确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监 听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输;如此,由于确定了非授权频段上至少一个监听频带的频带类型,至少能降低上行数据或下行数据的传输等待时延,从而有助于在非授权频段上降低数据传输的时延。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种数据传输方法的流程图一;
图3是根据一示例性实施例示出的一种数据传输方法的流程图二;
图4是根据一示例性实施例示出的一种数据传输装置的框图一;
图5是根据一示例性实施例示出的一种数据传输装置的框图二;
图6是根据一示例性实施例示出的一种用于实现数据传输处理的装置800的框图;
图7是根据一示例性实施例示出的一种用于实现数据传输处理的装置900的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述 的、本申请实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“一个”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(User Equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车 电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(New Radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,机器类型通信(Machine-Type Communication,MTC)系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(Central Unit,CU)和至少两个分布单元(Distributed Unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(Vehicle to Everything,V2X)中的V2V(Vehicle to Vehicle,车对车)通信、V2I(Vehicle to Infrastructure,车对路边设备)通 信和V2P(Vehicle to Pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving Gate Way,SGW)、公用数据网网关(Public Data Network Gate Way,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户网络侧设备(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
在5G NR中,某些业务类型需要要求低时延,例如超高可靠低时延通信(Ultra Reliable and Low Latency Communication,URLLC)业务类型。此类业务通常要求发射端在有待传数据时能够尽快获得传输资源,减少业务在发射端缓存中等待的时延,以此降低空口传输时延。
在5G非授权频段系统中,发射端在发送数据之前,需要先对信道进行监听,监听发现信道中的干扰低于一定的门限时,才能成功占用信道发送数据,也即使用先监听后传输(Listen Before Talk,LBT)机制。在当前的5G非授权频段通信系统中,基站和UE进行信道监听时,在频域上是以LBT band(监听频带)为单位的,一个LBT band在频域上是20MHz。基站和UE通信所使用的频带可能较宽,能覆盖多个LBT band,例如基站和UE通信使用了80MHz的非授权频段,那么该非授权频段会被分为4个LBT band。基站和UE会以宽带的方式占用信道,也即基站或者UE在要发送数据,会在全部80MHz的频段上对4个LBT band分别做监听,数据发送只会在LBT成功的LBT band上进行。
当使用非授权频段传输低时延业务时,通常用于室内的干扰环境可控 的场景。例如在室内工厂部署的控制网络,室内的游戏传感网络等。这类场景中基站和UE通信所使用的非授权频段通常受到外界的干扰比较少,干扰主要来自室内本网络中端点的干扰。对于本网络中的端点来说,如果还有空余的LBT band,那么发送端在做信道监听时,能以很大的概率监听成功并占用信道。
但如果基站在上述4个LBT band上LBT都成功了,基站会使用全部的4个LBT来发送下行数据。在基站发送下行数据的过程中,如果UE有上行数据要发送,则UE需要等到基站的下行数据发送结束之后才能可能获得传输资源,所以上行数据的传输等待时延会增加。同样的道理,如果UE占用了4个LBT来传输上行数据,那么如果基站有下行数据要发送,则基站需要等到UE的上行数据发送结束之后才能可能获得传输资源,所以下行数据的传输等待时延会增加。
基于上述无线通信系统,如何在非授权频段上降低数据传输的时延,提出本公开方法各个实施例。
图2是根据一示例性实施例示出的一种数据传输方法的流程图一,如图2所示,该数据传输方法用于基站中,包括以下步骤:
在步骤S11中,确定非授权频段内的一个或一个以上的监听频带;
在步骤S12中,确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
如此,由于确定了非授权频段上至少一个监听频带的频带类型,至少能降低上行数据或下行数据的传输等待时延,从而有助于在非授权频段上降低上行数据或下行数据传输的时延。
在一些实施例中,步骤S12,包括:
确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为上行监听频带;其中,所述上行监听频带用于上行传输。
如此,由于确定了非授权频段上至少一个频带类型为上行监听频带,进而保证在有上行数据需要发送时有用于上行传输的监听频带可用,不会出现有上行数据要发送但需要等到下行数据发送结束之后才能获得传输资源的情况,能减少上行数据的传输等待时延,从而降低上行数据传输的时延。
在一些实施例中,步骤S12,包括:
确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为下行监听频带;其中,所述下行监听频带用于下行传输。
如此,由于确定了非授权频段上至少一个频带类型为下行监听频带,进而保证在有下行数据需要发送时有用于下行传输的监听频带可用,不会出现有下行数据要发送但需要等到上行数据发送结束之后才能获得传输资源的情况,能减少下行数据的传输等待时延,从而降低下行数据传输的时延。
在一些实施例中,步骤S12,包括:
确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为上行监听频带,所述上行监听频带用于上行传输;以及
确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为下行监听频带,所述下行监听频带用于下行传输。
如此,由于确定了非授权频段上至少一个频带类型为下行监听频带的监听频带,和至少一个频带类型为上行监听频带的监听频带,进而不会出现有上行数据要发送但需要等到下行数据发送结束之后才能获得传输资源的情况,减少上行数据的传输等待时延,降低上行数据传输的时延;也不会出现有下行数据要发送但需要等到上行数据发送结束之后才能获得传输资源的情况,减少下行数据的传输等待时延,降低下行数据传输的时延。
在一些实施例中,所述方法还包括:
向UE发送监听频带配置信息,所述监听频带配置信息中包括频带类型指示信息,所述频带类型指示信息用于指示所述非授权频段内的一个或一个以上的监听频带的类型。
如此,能够通知UE非授权频段内的一个或一个以上的监听频带的类型,便于UE基于基站配置的监听频带的类型,选择对应的监听频带进行对应的工作。比如,选择类型为下行监听频带的监听频带监听下行信息;选择类型为上行监听频带的监听频带传输上行信息。
在一些实施方式中,所述向UE发送监听频带配置信息,包括:
通过广播消息向所述UE发送监听频带配置信息。
如此,可通过广播消息向UE发送监听频带配置信息,告知UE监听频带配置信息,通过广播消息这类已有信令来指示监听频带配置信息,能节省信令个数。
在一些实施方式中,所述向UE发送监听频带配置信息,包括:
通过RRC层信令向所述UE发送监听频带配置信息。
如此,可通过RRC层信令向UE发送监听频带配置信息,告知UE监听频带配置信息,这样,通过RRC信令能够为不同的UE配置不同的上行和下行监听频带,因而能使得各个监听频带上负载均衡。
当然,在本公开的一些实施方式中,可以用任何已有的或是新增的信令来发送该频带配置信息,本公开实施方式中并不对此做出限定。
在一些实施方式中,所述确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型,包括:
通过协议约定方式确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型。
比如,当非授权通信频段包含多个监听频带时,通过协议约定特定的1个或者多个监听频带的频带类型为上行监听频带、或下行监听频带、或未 限定监听频带。例如,可以在协议中约定多个监听频带中,频率最低的监听频带为上行监听频带,频率最高的监听频带为下行监听频带。
在一些实施例中,频带类型为上行监听频带的监听频带的频率,低于频带类型为下行监听频带的监听频带的频率。
如此,由于频率较低的频带传播损耗更小,由于终端的发送功率相对于基站来说要小,因而使用较低频率的上行监听频带有利于增强上行覆盖范围,使得上下行覆盖范围的平衡。
在一些实施例中,确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型,包括:
当与UE通过非授权频段通信,且通信所使用的非授权频段包括两个或两个以上的监听频带时,为至少一个所述监听频带确定频带类型;其中,所述频带类型为所述下行监听频带或所述上行监听频带的个数,小于所述非授权频段包括的监听频带的总个数。
如此,能够保证非授权频段内的监听频段中,既有用于传输上行信息的监听频带,又有用于传输下行信息的监听频带,从而有助于降低数据传输的时延。
在一些实施例中,所述确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型,包括:
接收到UE发送的调度请求时,确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为所述上行监听频带。
如此,能够为UE配置用于传输上行信息的监听频带,由于基站将不在该频带类型为上行监听频带的监听频带上发送下行信息,包括下行控制信息和下行数据信息,因此,能够保证UE在有上行数据需要发送时有用于上行传输的监听频带可用,不会出现有上行数据要发送但需要等到下行数据发送结束之后才能获得传输资源的情况,能减少上行数据的传输等待时延,从而降低上行数据传输的时延。
在一些实施例中,所述确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型,包括:
为UE配置用于周期性传输PUSCH信息的资源时,确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为所述上行监听频带。
如此,能够为UE配置用于传输上行信息的监听频带,便于UE自发的传输上行信令或数据。例如,UE利用该频带类型为上行监听频带的监听频带传输CG-PUSCH信息。其中,CG-PUSCH,Configured grant-PUSCH,中文含义为配置授权的PUSCH,有时也叫做上行免授权(UL grant free)PUSCH。
本公开实施例所述的技术方案,确定非授权频段内的一个或一个以上的监听频带;以及确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型;其中所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输;如此,由于确定了非授权频段上至少一个监听频带的频带类型,至少能降低上行数据或下行数据的传输等待时延,从而有助于在非授权频段上降低数据传输的时延。
图3是根据一示例性实施例示出的一种数据传输方法的流程图二,如图3所示,该数据传输方法用于用户终端(UE)中,包括以下步骤:
在步骤S21中,确定非授权频段内的一个或一个以上的监听频带;
在步骤S22中,在非授权频段内的一个或一个以上的监听频带中,确定至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
如此,由于确定了非授权频段上至少一个监听频带的频带类型,至少 能降低上行数据或下行数据的传输等待时延,从而有助于在非授权频段上降低数据传输的时延。
上述方案中,所述确定至少一个监听频带的频带类型之前,所述方法还包括:
获取基站发送的监听频带配置信息,所述监听频带配置信息中包括频带类型指示信息,所述频带类型指示信息用于指示非授权频段内的一个或一个以上的监听频带的类型。
如此,便于UE根据监听频带配置信息确定非授权频段内的一个或一个以上的监听频带的类型,进而便于UE基于基站配置的监听频带的类型,选择对应的监听频带进行对应的工作。比如,选择类型为下行监听频带的监听频带监听下行信息;选择类型为上行监听频带的监听频带传输上行信息。
在一些实施例中,所述获取监听频带配置信息,包括:
接收广播消息;
基于所述广播消息确定所述监听频带配置信息。
如此,UE能通过广播消息获知监听频带配置信息。
在一些实施例中,所述获取监听频带配置信息,包括:
接收RRC层信令;
基于所述RRC层信令确定所述监听频带配置信息。
如此,UE能通过RRC层信令获知监听频带配置信息。
当然,在本公开的一些实施方式中,可以用任何已有的或是新增的信令来发送该频带配置信息,本公开实施方式中并不对此做出限定。
在一些实施例中,所述确定至少一个监听频带的频带类型,包括:
通过协议约定方式确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型。
比如,当非授权通信频段包含多个监听频带时,通过协议约定特定的1个或者多个监听频带的频带类型为上行监听频带、或下行监听频带、或未 限定监听频带。例如,可以在协议中约定多个监听频带中,频率最低的监听频带为上行监听频带,频率最高的监听频带为下行监听频带。
在一些实施例中,所述至少一个监听频带的频带类型,包括:
当与基站通过非授权频段通信,且通信所使用的非授权频段包括两个或两个以上的监听频带时,为至少一个所述监听频带确定频带类型;其中,所述频带类型为所述下行监听频带或所述上行监听频带的个数,小于所述非授权频段包括的监听频带的总个数。
如此,能够保证非授权频段内的监听频段中,既有用于传输上行信息的监听频带,又有用于传输下行信息的监听频带,从而有助于降低数据传输的时延。
在一些实施例中,所述方法还包括:
利用频带类型为上行监听频带的监听频带,发送调度请求。
如此,能够保证UE在有上行数据需要发送时有用于上行传输的监听频带可用,不会出现有上行数据要发送但需要等到下行数据发送结束之后才能获得传输资源的情况,能减少上行数据的传输等待时延,从而降低上行数据传输的时延。
在一些实施例中,所述方法还包括:
接收到基站发送的调度指令时,若所述调度指令指示在频带类型为所述下行监听频带的监听频带上传输上行数据,忽略所述调用指令。
如此,能够保证UE不占用频带类型为所述下行监听频带的监听频带资源。
在一些实施例中,所述方法还包括:
利用频带类型为所述上行监听频带的监听频带,周期性传输物理上行共享信道PUSCH信息。
如此,便于UE自发的传输上行信令或数据。例如,UE利用该频带类型为上行监听频带的监听频带传输CG-PUSCH信息。其中,CG-PUSCH, Configured grant-PUSCH,中文含义为配置授权的PUSCH,有时也叫做上行免授权(UL grant free)PUSCH。
本公开实施例所述的技术方案,确定非授权频段内的一个或一个以上的监听频带;在非授权频段内的一个或一个以上的监听频带中,确定至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输;如此,由于确定了非授权频段上至少一个监听频带的频带类型,至少能降低上行数据或下行数据的传输等待时延,从而有助于在非授权频段上降低数据传输的时延。
图4是根据一示例性实施例示出的一种数据传输装置框图一。该数据传输装置应用于基站侧,参照图4,该装置包括第一确定单元10和第二确定单元20;其中,
所述第一确定单元10,被配置为确定非授权频段内的一个或一个以上的监听频带;
所述第二确定单元20,被配置为确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
上述方案中,所述装置还包括:
第一通信单元30(图4中未示出),被配置为向用户设备(UE)发送监听频带配置信息,所述监听频带配置信息中包括频带类型指示信息,所述频带类型指示信息用于指示所述非授权频段内的一个或一个以上的监听频带的频带类型。
上述方案中,所述第一通信单元30,被配置为:
通过广播消息向所述UE发送所述监听频带配置信息;或者
通过无线资源控制(RRC)层信令向所述UE发送所述监听频带配置信息。
上述方案中,所述频带类型为所述上行监听频带的监听频带的频率,低于所述频带类型为所述下行监听频带的监听频带的频率。
上述方案中,所述第二确定单元20,被配置为:
当与UE通过非授权频段通信,且通信所使用的非授权频段包括两个或两个以上的监听频带时,为至少一个所述监听频带确定频带类型;其中,所述频带类型为所述下行监听频带或所述上行监听频带的个数,小于所述非授权频段包括的监听频带的总个数。
上述方案中,所述第二确定单元20,被配置为:
接收到UE发送的调度请求时,确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为所述上行监听频带。
上述方案中,所述第二确定单元20,被配置为:
为UE配置用于周期性传输物理上行共享信道PUSCH信息的资源时,确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为所述上行监听频带。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用中,上述第一确定单元10、第二确定单元20和第一通信单元30的具体结构均可由该数据传输装置或该数据传输装置所属基站中的中央处理器(CPU,Central Processing Unit)、微处理器(MCU,Micro Controller Unit)、数字信号处理器(DSP,Digital Signal Processing)或可编程逻辑器件(PLC,Programmable Logic Controller)等实现。
本实施例所述的数据传输装置可设置于基站侧。
本领域技术人员应当理解,本公开实施例的数据传输装置中各处理模 块的功能,可参照前述应用于基站侧的数据传输方法的相关描述而理解,本公开实施例的数据传输装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在终端上的运行而实现。
本公开实施例所述的数据传输装置,能在非授权频段上降低数据传输的时延。
图5是根据一示例性实施例示出的一种数据传输装置框图二。该数据传输装置应用于UE侧,参照图5,该装置包括第三确定单元40和第四确定单元50。
第三确定单元40,被配置为确定非授权频段内的一个或一个以上的监听频带;
第四确定单元50,被配置为在非授权频段内的一个或一个以上的监听频带中,确定至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
在一些实施例中,所述装置包括:
第二通信单元60(图5中未示出),被配置为:
确定至少一个监听频带的频带类型之前,获取基站发送的监听频带配置信息,所述监听频带配置信息中包括频带类型指示信息,所述频带类型指示信息用于指示非授权频段内的一个或一个以上的监听频带的类型。
在一些实施例中,所述第二通信单元60,被配置为:
接收广播消息;
基于所述广播消息确定所述监听频带配置信息。
在一些实施例中,所述第二通信单元60,被配置为:
接收RRC层信令;
基于所述RRC层信令确定所述监听频带配置信息。
上述方案中,所述第四确定单元50,被配置为:
当与基站通过非授权频段通信,且通信所使用的非授权频段包括两个或两个以上的监听频带时,为至少一个所述监听频带确定频带类型;其中,所述频带类型为所述下行监听频带或所述上行监听频带的个数,小于所述非授权频段包括的监听频带的总个数。
在一些实施例中,所述第二通信单元60,被配置为:
利用频带类型为上行监听频带的监听频带,发送调度请求。
在一些实施例中,所述第二通信单元60,被配置为:
接收到基站发送的调度指令时,若所述调度指令指示在频带类型为所述下行监听频带的监听频带上传输上行数据,忽略所述调用指令。
在一些实施例中,所述第二通信单元60,被配置为:
利用频带类型为所述上行监听频带的监听频带,周期性传输物理上行共享信道PUSCH信息。
本实施例所述的数据传输装置可设置于UE侧。
本领域技术人员应当理解,本公开实施例的数据传输装置中各处理模块的功能,可参照前述应用于UE侧的数据传输方法的相关描述而理解,本公开实施例的数据传输装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在终端上的运行而实现。
实际应用中,上述第三确定单元40、第四确定单元50和第二通信单元60的具体结构均可由该数据传输装置或该数据传输装置所属UE中的CPU、MCU、DSP或PLC等实现。
本公开实施例所述的数据传输装置,能在非授权频段上降低数据传输的时延。
图6是根据一示例性实施例示出的一种用于实现数据传输处理的装置 800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(I/O,Input/Output)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static Random-Access Memory,SRAM),电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),可编程只读存储器(Programmable read-only memory,PROM),只读存储器(Read Only Memory,ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件806为装置800的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口 的屏幕。在一些实施例中,屏幕可以包括液晶显示器(Liquid Crystal Display,LCD)和触摸面板(Touch Panel,TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(microphone,简称MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器, 如互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合元件(Charge-coupled Device,CCD)图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(Near Field Communication,NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(Radio Frequency Identification,RFID)技术,红外数据协会(Infrared Data Association,IrDA)技术,超宽带(Ultra Wide Band,UWB)技术,蓝牙(Blue Tooth,BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(Digital Signal Processing Device,DSPD)、可编程逻辑器件(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述应用于UE侧的数据传输方法。
在示例性实施例中,还提供了一种包括可执行指令的非临时性的计算机存储介质,例如包括可执行指令的存储器804,上述可执行指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性的计算机存储介质可以是ROM、随机存取存储器(Random Access Memory,RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图7是根据一示例性实施例示出的一种用于实现数据传输处理的装置 900的框图。例如,装置900可以被提供为一服务器。参照图7,装置900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述应用于基站侧的数据传输方法。
装置900还可以包括一个电源组件926被配置为执行装置900的电源管理,一个有线或无线网络接口950被配置为将装置900连接到网络,和一个输入输出(I/O)接口958。装置900可以操作基于存储在存储器932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本公开实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (21)

  1. 一种数据传输方法,所述方法包括:
    确定非授权频段内的一个或一个以上的监听频带;以及
    确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
  2. 根据权利要求1所述的数据传输方法,其中,所述方法还包括:
    向用户设备UE发送监听频带配置信息,所述监听频带配置信息中包括频带类型指示信息,所述频带类型指示信息用于指示所述非授权频段内的一个或一个以上的监听频带的频带类型。
  3. 根据权利要求2所述的数据传输方法,其中,所述向UE发送监听频带配置信息,包括:
    通过广播消息向所述UE发送所述监听频带配置信息;或者
    通过无线资源控制RRC层信令向所述UE发送所述监听频带配置信息。
  4. 根据权利要求1所述的数据传输方法,其中,所述频带类型为所述上行监听频带的监听频带的频率,低于所述频带类型为所述下行监听频带的监听频带的频率。
  5. 根据权利要求1所述的数据传输方法,其中,所述确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型,包括:
    当与UE通过非授权频段通信,且通信所使用的非授权频段包括两个或两个以上的监听频带时,为至少一个所述监听频带确定频带类型;其中,所述频带类型为所述下行监听频带或所述上行监听频带的个数,小于所述非授权频段包括的监听频带的总个数。
  6. 根据权利要求1所述的数据传输方法,其中,所述确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型,包括:
    接收到UE发送的调度请求时,确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为所述上行监听频带。
  7. 根据权利要求1所述的数据传输方法,其中,所述确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型,包括:
    为UE配置用于周期性传输物理上行共享信道PUSCH信息的资源时,确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型为所述上行监听频带。
  8. 一种数据传输方法,应用于用户设备UE,所述方法包括:
    确定非授权频段内的一个或一个以上的监听频带;以及
    在非授权频段内的一个或一个以上的监听频带中,确定至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
  9. 根据权利要求8所述的数据传输方法,其中,所述确定至少一个监听频带的频带类型之前,所述方法还包括:
    获取基站发送的监听频带配置信息,所述监听频带配置信息中包括频带类型指示信息,所述频带类型指示信息用于指示非授权频段内的一个或一个以上的监听频带的类型。
  10. 根据权利要求9所述的数据传输方法,其中,所述获取基站发送的监听频带配置信息,包括:
    接收广播消息;
    基于所述广播消息确定所述监听频带配置信息。
  11. 根据权利要求9所述的数据传输方法,其中,所述获取基站发送 的监听频带配置信息,包括:
    接收RRC层信令;
    基于所述RRC层信令确定所述监听频带配置信息。
  12. 根据权利要求8所述的数据传输方法,其中,所述确定至少一个监听频带的频带类型,包括:
    当与基站通过非授权频段通信,且通信所使用的非授权频段包括两个或两个以上的监听频带时,为至少一个所述监听频带确定频带类型;其中,所述频带类型为所述下行监听频带或所述上行监听频带的个数,小于所述非授权频段包括的监听频带的总个数。
  13. 根据权利要求8所述的数据传输方法,其中,所述方法还包括:
    利用频带类型为上行监听频带的监听频带,发送调度请求。
  14. 根据权利要求8所述的数据传输方法,其中,所述方法还包括:
    接收到基站发送的调度指令时,若所述调度指令指示在频带类型为所述下行监听频带的监听频带上传输上行数据,忽略所述调用指令。
  15. 根据权利要求8所述的数据传输方法,其中,所述方法还包括:
    利用频带类型为所述上行监听频带的监听频带,周期性传输物理上行共享信道PUSCH信息。
  16. 一种数据传输装置,包括:
    第一确定单元,被配置为确定非授权频段内的一个或一个以上的监听频带;以及
    第二确定单元,被配置为确定所述一个或一个以上的监听频带中至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
  17. 一种数据传输装置,应用于用户设备UE,包括:
    第三确定单元,被配置为确定非授权频段内的一个或一个以上的监听频带;
    第四确定单元,被配置为在非授权频段内的一个或一个以上的监听频带中,确定至少一个监听频带的频带类型;其中,所述频带类型包括以下的至少一种:上行监听频带,或下行监听频带,或未限定监听频带;其中,所述下行监听频带用于下行传输;所述上行监听频带用于上行传输;所述未限定监听频带既能用于进行上行传输也能用于进行下行传输。
  18. 一种数据传输装置,包括:
    处理器;
    用于存储可执行指令的存储器;
    其中,所述处理器被配置为:执行所述可执行指令时实现权利要求1至7任一项所述的数据传输方法。
  19. 一种数据传输装置,包括:
    处理器;
    用于存储可执行指令的存储器;
    其中,所述处理器被配置为:执行所述可执行指令时实现权利要求8至15任一项所述的数据传输方法。
  20. 一种计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求1至7任一项所述的数据传输方法。
  21. 一种计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求8至15任一项所述的数据传输方法。
PCT/CN2019/128397 2019-12-25 2019-12-25 数据传输方法、装置及计算机存储介质 WO2021128082A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/788,728 US20230015374A1 (en) 2019-12-25 2019-12-25 Data transmission method and device, and computer storage medium
CN201980003732.7A CN113383589B (zh) 2019-12-25 2019-12-25 数据传输方法、装置及计算机存储介质
PCT/CN2019/128397 WO2021128082A1 (zh) 2019-12-25 2019-12-25 数据传输方法、装置及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128397 WO2021128082A1 (zh) 2019-12-25 2019-12-25 数据传输方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2021128082A1 true WO2021128082A1 (zh) 2021-07-01

Family

ID=76575079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128397 WO2021128082A1 (zh) 2019-12-25 2019-12-25 数据传输方法、装置及计算机存储介质

Country Status (3)

Country Link
US (1) US20230015374A1 (zh)
CN (1) CN113383589B (zh)
WO (1) WO2021128082A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178396A (zh) * 2017-01-17 2019-08-27 高通股份有限公司 新无线电频谱共享(nr-ss)中的动态时分双工(tdd)和自包含子帧结构
US20190274162A1 (en) * 2018-03-01 2019-09-05 Qualcomm Incorporated Bandwidth part (bwp) configuration for subband access in new radio-unlicensed (nr-u)
CN110300442A (zh) * 2018-03-23 2019-10-01 维沃移动通信有限公司 一种信号发送方法及网络设备
CN110536453A (zh) * 2019-09-16 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178396A (zh) * 2017-01-17 2019-08-27 高通股份有限公司 新无线电频谱共享(nr-ss)中的动态时分双工(tdd)和自包含子帧结构
US20190274162A1 (en) * 2018-03-01 2019-09-05 Qualcomm Incorporated Bandwidth part (bwp) configuration for subband access in new radio-unlicensed (nr-u)
CN110300442A (zh) * 2018-03-23 2019-10-01 维沃移动通信有限公司 一种信号发送方法及网络设备
CN110536453A (zh) * 2019-09-16 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置和系统

Also Published As

Publication number Publication date
CN113383589A (zh) 2021-09-10
CN113383589B (zh) 2023-04-11
US20230015374A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP2023520478A (ja) 構成情報伝送方法および装置、通信機器および記憶媒体
CN110622617B (zh) 信息处理方法、装置及计算机存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021168664A1 (zh) 通信方法、装置及计算机存储介质
WO2021179130A1 (zh) 通信处理方法及装置
WO2021196214A1 (zh) 传输方法、装置及计算机存储介质
CN111096063B (zh) 非连续接收drx的处理方法、装置及计算机存储介质
WO2020252794A1 (zh) 能力参数处理方法及装置、通信设备及存储介质
WO2022120854A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021007789A1 (zh) 信息处理方法、装置及计算机存储介质
WO2020237679A1 (zh) 随机接入方法及装置、通信设备及存储介质
WO2021102699A1 (zh) 无线链路失败的处理方法、装置及计算机存储介质
WO2022261877A1 (zh) Drx定时器的启动方法、装置、通信设备及存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021174510A1 (zh) 无线网络接入方法、装置、通信设备及存储介质
WO2021164011A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021174494A1 (zh) 增强上行覆盖的处理方法、装置及存储介质
WO2021114271A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021012131A1 (zh) 资源分配方法及装置、消息帧处理方法及装置、存储介质
WO2021003675A1 (zh) 信息处理方法、装置及计算机存储介质
WO2021007728A1 (zh) 获取系统消息的方法及装置、通信设备及存储介质
WO2023050350A1 (zh) Cfr的确定方法、装置、通信设备及存储介质
WO2022032581A1 (zh) 上行传输的发送、接收方法及装置、通信设备及介质
WO2022006759A1 (zh) 信息传输方法、装置、通信设备和存储介质
US20220408469A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957795

Country of ref document: EP

Kind code of ref document: A1