WO2021127969A1 - 一种基于新材料的高精度卫星导航及通信组合天线 - Google Patents

一种基于新材料的高精度卫星导航及通信组合天线 Download PDF

Info

Publication number
WO2021127969A1
WO2021127969A1 PCT/CN2019/127825 CN2019127825W WO2021127969A1 WO 2021127969 A1 WO2021127969 A1 WO 2021127969A1 CN 2019127825 W CN2019127825 W CN 2019127825W WO 2021127969 A1 WO2021127969 A1 WO 2021127969A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
satellite navigation
antenna
low
metal
Prior art date
Application number
PCT/CN2019/127825
Other languages
English (en)
French (fr)
Inventor
吴鼎
吕波
钟文涛
Original Assignee
上海华测导航技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华测导航技术股份有限公司 filed Critical 上海华测导航技术股份有限公司
Priority to US17/257,025 priority Critical patent/US11799203B2/en
Priority to EP19934348.4A priority patent/EP3872929A4/en
Publication of WO2021127969A1 publication Critical patent/WO2021127969A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the invention relates to the field of satellite navigation, in particular to a high-precision satellite navigation and communication combined antenna based on new materials.
  • the performance of the antenna directly affects the performance of the receiver.
  • the performance of GNSS antennas for receiving satellite signals has also become a hot spot of concern.
  • the performance index of the antenna directly affects the positioning result. The better the positioning accuracy, the wider the applicable range. At present, the positioning accuracy has reached the millimeter level, and a single frequency band can no longer meet the requirements.
  • Many receivers require GNSS antennas to receive dual-band signals to improve positioning accuracy. Under such a trend, making a receiver for receiving systems that can receive multiple satellite systems and communication systems at the same time has become the main research direction of GNSS antenna reception.
  • the purpose of the present invention is to provide a high-precision satellite navigation and communication combined antenna based on new materials.
  • the present invention proposes a cost-reducing method that is easy to mass-produce High-precision satellite navigation and communication combined antennas, through the use of engineering plastics doped with modified materials, integrated injection molding to form a substrate, and then integrated through electroplating processes, greatly reducing production costs, and can be widely used in satellite positioning and navigation, satellite communications and mobile communications And other related fields.
  • a high-precision satellite navigation and communication combined antenna based on new materials, including high-frequency satellite navigation antenna metal radiating surface, low-frequency satellite navigation antenna metal radiating surface, WIFI/Bluetooth antenna metal
  • the radiation surface, the PCB board and the shielded metal cavity, the metal radiation surface of the low-frequency satellite navigation antenna is located between the metal radiation surface of the high-frequency satellite navigation antenna and the PCB board, and the metal radiation surface of the WIFI/Bluetooth antenna is located in the low-frequency satellite navigation antenna The side of the metal radiating surface.
  • the injection molding new material substrate adopts polyphenylene ether b doped with modified materials, a dielectric constant of 2.65, and a density of 1.06 g/cm3, and the injection molding new material substrate includes Injection molding new material substrate A, injection molding new material substrate B.
  • the metal radiating surface of the high-frequency satellite navigation antenna is electroplated on the new material substrate A to form a high-frequency passive board
  • the metal radiating surface of the low-frequency satellite navigation antenna is electroplated on the new material substrate B to form a low-frequency passive board.
  • the metal radiating surface of the high-frequency satellite navigation antenna and the metal radiating surface of the low-frequency satellite navigation antenna are formed of polygons, and the long sides of the polygons extend out of branches for frequency adjustment.
  • the high-frequency passive board and the low-frequency passive board are installed in combination, wherein each of the four corners of the high-frequency passive board has a 2mm screw hole, and there is a 4mm screw hole in the center through the screw and the PCB. The board is fixed.
  • the back surface of the high-frequency passive board is metal-plated as a ground surface, and the metal plating on the inner wall of the center screw hole is in contact with the ground surface of the high-frequency passive board; there are four passes on the high-frequency passive board 8mm from the center. Hole, used to weld metal round pins, as the feeder of the antenna.
  • the back surface of the low-frequency passive board is metal-plated as a ground surface, and the shape is the same as that of the low-frequency passive board, covering the entire back surface, wherein the inner wall of the central screw hole of the low-frequency passive board is metal-plated and the ground surface of the high-frequency passive board Contact: There are four via holes 15mm from the center on the low-frequency passive board, which are used to weld metal round pins as the feed of the antenna.
  • the metal radiating surface of the WIFI/Bluetooth antenna is plated on the side surface of the low-frequency substrate.
  • the WIFI/Bluetooth antenna adopts an inverted F antenna structure, which has a short-circuit point and a feed point, and is a passive antenna.
  • the amplifying and filtering circuit includes a first-stage pre-filter and a two-stage amplifier.
  • the high-frequency signal and the low-frequency signal are respectively combined through the pre-filter and the first-stage amplifier and then combined
  • the signal is output through the second-stage amplifier to ensure that the satellite navigation receiver obtains sufficient satellite signal strength.
  • the beneficial effects of the present invention are as follows: the present invention adopts engineering plastics doped with modified materials to form a substrate by integral injection molding, and then forms a substrate through an electroplating process, which greatly reduces production costs and can be widely used in satellite positioning. Navigation, surveying and mapping, mobile communications and other related fields.
  • Figure 1 is a front side view of the present invention
  • Figure 2 is a side view of the reverse side of the present invention.
  • Figure 3 is a schematic front view of the high-frequency passive board of the present invention.
  • FIG. 4 is a schematic diagram of the reverse side of the high-frequency passive board of the present invention.
  • Figure 5 is a schematic front view of the low-frequency passive board of the present invention.
  • Figure 6 is a schematic diagram of the reverse side of the low-frequency passive board of the present invention.
  • Fig. 7 is a block diagram of the PCB feeder network and amplifying and filtering circuit of the present invention.
  • the invention provides a high-precision satellite navigation and communication combined antenna based on new materials, which includes a high-precision satellite navigation antenna metal radiating surface, a WIFI/Bluetooth antenna metal radiating surface, an injection molding new material substrate, a PCB feeder network and amplification Filter circuit, shielded metal cavity, in which the metal radiating surface of the high-precision satellite navigation antenna is electroplated on two new material substrates of different sizes, the metal radiating surface of the WIFI/Bluetooth antenna is electroplated on the side of the large substrate, and the metal radiating surface of the antenna passes through the internal metal structure and the PCB The feeding network and the amplifying and filtering circuit are connected, and the shielding metal cavity covers the PCB circuit to protect the internal circuit.
  • the injection molding new material substrate adopts polyphenylene ether b doped with modified materials, with a dielectric constant of 2.65 and a density of 1.06 grams. /Cubic centimeter.
  • the overall appearance is beige. It is superior to the traditional F4B (polytetrafluoroethylene) substrate in terms of weight.
  • the metal radiating surface of the high-precision satellite navigation antenna is composed of a high-frequency metal radiating surface and a low-frequency metal radiating surface.
  • the high-frequency metal radiating surface is electroplated on a smaller new material substrate to form a high-frequency passive plate, and the low-frequency metal radiating surface is electroplated on A low-frequency passive board is formed on a larger new material substrate.
  • the high-frequency metal radiation surface and the low-frequency metal radiation surface are composed of polygons, and the long sides extend out of the branches for frequency adjustment.
  • the shape of the metal radiating surface can be modified into a circle and other polygonal structures.
  • the high-frequency passive board is on the upper side, and the low-frequency passive board is combined and installed on the lower side. It is fixed by screws and PCB board at the four corners.
  • the screw holes adopt a sinking method, which effectively reduces the overall height of the antenna.
  • the metal radiating surface of the WIFI/Bluetooth antenna is plated on the side surface of the low-frequency substrate. More preferably, the WIFI/Bluetooth antenna adopts an inverted F antenna structure, which has short-circuit points and feed points, and is a passive antenna.
  • the metal radiating surface of the high-precision satellite navigation antenna receives the electromagnetic wave in space, it is fed back to the equal power division 90 degree bridge through the four feed ports in the center of the high and low frequency passive plate.
  • the 90-degree power bridge synthesizes one signal, the other two signals are combined with another 90-degree equal power bridge to synthesize one signal, and the two synthesized signals pass through a 90-degree phase shift network and a 90-degree equal power bridge.
  • a right-handed circularly polarized signal is synthesized at the antenna interface.
  • the amplifying and filtering circuit includes a first-stage pre-filter and a two-stage amplifier.
  • the high-frequency signal and the low-frequency signal respectively pass through the pre-filter and the first-stage amplifier to synthesize a signal, and then output through the second-stage amplifier. Ensure that the satellite navigation receiver obtains sufficient satellite signal strength.
  • a high-precision satellite navigation and communication combined antenna based on new materials including high-frequency satellite navigation antenna metal radiating surface 18, low-frequency satellite navigation Antenna metal radiating surface 5, WIFI/Bluetooth antenna metal radiating surface 8, injection molding new material substrate, PCB feeder network and amplifying filter circuit, shielding metal cavity 24, injection molding new material substrate using polyphenylene ether doped with modified materials b, the dielectric constant is 2.65, and the density is 1.06 g/cm3.
  • the overall appearance is beige. It is superior to the traditional F4B (polytetrafluoroethylene) substrate in terms of weight.
  • the injection molding new material substrate includes injection molding new material substrate A (high frequency substrate 21), and injection molding new material substrate B (low frequency substrate 7).
  • reference numerals 4, 16, 13, 22 are through holes, which are reserved for pin needles to pass through the material substrate; among them, 4 and 13 are low-frequency passive board PIN needles to pass through the reserved through holes of the substrate. 22 and 16 are the through holes reserved for the PIN needle of the high-frequency passive board to pass through the substrate; the reference numerals 11 and 8 are the metal radiating surfaces of the WIFI/Bluetooth antenna.
  • the metal radiating surface of the high-precision satellite navigation antenna is composed of the metal radiating surface 18 of the high-frequency satellite navigation antenna and the metal radiating surface 5 of the low-frequency satellite navigation antenna, which are fixed by the screw hole 1, and the high-frequency satellite navigation antenna
  • the metal radiating surface 18 is electroplated on the smaller new material substrate A 21 to form a high frequency passive board
  • the low frequency metal radiating surface 5 is electroplated on the larger new material substrate B 7 to form a low frequency passive board.
  • the metal radiating surface 18 of the high-frequency satellite navigation antenna and the metal radiating surface 5 of the low-frequency satellite navigation antenna are composed of polygons, and the long sides extend out of the branches 17 and 6 for frequency adjustment.
  • the shape of the metal radiating surface can be modified into a circle and other polygonal structures.
  • the high-frequency passive board is on the top, and the low-frequency passive board is combined and installed on the bottom.
  • the screw hole 20 adopts a sinking method, which effectively reduces the overall height of the antenna.
  • the back surface of the high-frequency passive board is metal-plated as the ground surface 23, and the inner wall of the central screw hole 15 is metal-plated to contact the ground surface 23 of the high-frequency passive board; there are four on the high-frequency passive board 8mm from the center. Via 16 is used to weld metal round pins as the feed of the antenna.
  • the back surface of the low-frequency passive board is metal-plated as the ground surface 14, the shape is the same as that of the low-frequency passive board, and the entire back surface is covered.
  • the center screw hole 2 of the low-frequency passive board is metal-plated on the inner wall to contact the ground surface 14 of the high-frequency passive board; there are four via holes 4 on the low-frequency passive board 15mm from the center, which are used to weld metal round pins as the antenna Feed.
  • the metal radiating surface 8 of the WIFI/Bluetooth antenna is plated on the side surface of the low-frequency substrate 7.
  • the WIFI/Bluetooth antenna adopts an inverted F antenna structure, with short-circuit point 9 and feed point 10, which are passive antennas.
  • the metal radiating surface of the high-precision satellite navigation antenna receives the electromagnetic waves in space, it passes through the center of the high and low frequency passive board.
  • the 4 feed ports feed back to the equal power division 90 degree bridge, of which two signals are combined by one equal power division 90 degree bridge to synthesize a signal, and the other two signals are combined by another equal power division 90 degree bridge to synthesize a signal.
  • the two synthesized signals pass through a 90-degree phase-shifting network and an equal power division 90-degree bridge to finally synthesize a right-handed circularly polarized signal at the antenna interface.
  • the amplifying and filtering circuit includes a pre-filter and a two-stage amplifier.
  • the high-frequency signal and the low-frequency signal respectively pass through the pre-filter and the first-stage amplifier and then synthesize a signal, and then pass the second-stage amplifier to output to ensure the satellite navigation receiver.
  • the invention adopts engineering plastics doped with modified materials, integrally injection molding to form a substrate, and then integrally formed through an electroplating process, which greatly reduces production costs, and can be widely used in satellite positioning and navigation, satellite communications, mobile communications and other related fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明公开了一种基于新材料的高精度卫星导航及通信组合天线,包括高频卫星导航天线金属辐射面、低频卫星导航天线金属辐射面、WIFI/蓝牙天线金属辐射面、PCB板和屏蔽金属腔,低频卫星导航天线金属辐射面位于高频卫星导航天线金属辐射面与PCB板之间,WIFI/蓝牙天线金属辐射面位于低频卫星导航天线金属辐射面的侧面,本发明通过采用掺杂改性材料的工程塑料,一体注塑形成基板,再通过电镀工艺一体成型,大大降低生产成本,可以广泛应用于卫星定位导航、测绘及移动通信等相关领域。

Description

一种基于新材料的高精度卫星导航及通信组合天线 技术领域
本发明涉及卫星导航领域,特别涉及一种基于新材料的高精度卫星导航及通信组合天线。
背景技术
伴随着科技的进步,位置、时间等信息越来越凸显价值,与北斗导航相关的应用大力发展,在高精度测绘、无人自动驾驶、无人机等热点领域需求得到了极大的开发,这也迎合了北斗三号卫星导航系统建设覆盖。
天线作为接收机的最前端部件,其性能好坏直接影响接收机性能。对于接收卫星信号的GNSS天线的性能也已成为备受关注的一个热点。天线的性能指标直接影响定位结果。定位精度越好,可应用的范围越广。目前定位精度已经达到毫米级,单一的频段已经无法满足要求。许多接收机都要求GNSS天线能接收双频段的信号,以提高定位精度。在这样的趋势下,为接收系统制作一个能同时接收多个卫星系统和通信系统的接收机已成为了GNSS天线接收的主要研究方向。
发明内容
针对上述问题,本发明的目的在于提供一种基于新材料的高精度卫星导航及通信组合天线,本发明为了更好的推广应用高精度卫星导航天线,提出了一种易于批量化生产的降低成本高精度卫星导航及通信组合天线,通过采用掺杂改性材料的工程塑料,一体注塑形成基板,再通过电镀工艺一体成型,大大降低生产成本,可以广泛应用于卫星定位导航、卫星通信及移动通信等相关领域。
为实现上述目的,本发明提供如下技术方案:一种基于新材料的高精度卫星导航及通信组合天线,包括高频卫星导航天线金属辐射面、低频卫星导航天线金属辐射面、WIFI/蓝牙天线金属辐射面、PCB板和屏蔽金属腔,所述低频卫星导航天线金属辐射面位于所述高频卫星导航天线金属辐射面与PCB板之间,所述WIFI/蓝牙天线金属辐射面位于低频卫星导航天线金属辐射面的侧面。
优选的,还包括注塑成型新材料基板,所述注塑成型新材料基板采用掺杂改性材料的聚苯醚b,介电常数2.65,密度1.06克/立方厘米,所述注塑成型新材料基板包括注塑成型新材料基板A、注塑成型新材料基板B。
优选的,所述高频卫星导航天线金属辐射面电镀于新材料基板A上组成高频无源板,低频卫星导航天线金属辐射面电镀于新材料基板B上组成低频无源板。
优选的,所述高频卫星导航天线金属辐射面和低频卫星导航天线金属辐射面由多边形构成,其中多边形的长边伸出枝节用于实现频率调节。
优选的,所述高频无源板与低频无源板组合安装,其中高频无源板的四个角上各有一个2mm的螺丝孔,正中心有一个4mm的螺丝孔,通过螺丝和PCB板固定。
优选的,所述高频无源板的反面镀金属为接地面,中心螺丝孔内壁镀金属与高频无源板的接地面接触;在高频无源板上距中心8mm处有四个过孔,用来焊接金属圆针,作为天线的馈电。
优选的,所述低频无源板的反面镀金属为接地面,形状与低频无源板相同,铺满整个反面,其中低频无源板中心螺丝孔内壁镀金属与高频无源板的接地面接触;在低频无源板上距中心15mm处有四个过孔,用来焊接金属圆针,作为天线的馈电。
优选的,所述WIFI/蓝牙天线金属辐射面电镀于低频基板的侧面。
优选的,WIFI/蓝牙天线采用倒F天线结构,存在短路点和馈电点,为无源天线。
优选的,还包括PCB馈电网络及放大滤波电路,其中放大滤波电路包括一级前置滤波器和两级放大器,高频信号和低频信号各自经过前置滤波器和第一级放大器后合成一路信号,再经过第二级放大器输出,保证卫星导航接收机获得足够的卫星信号强度。
与现有技术相比,本发明的有益效果如下:本发明通过采用掺杂改性材料的工程塑料,一体注塑形成基板,再通过电镀工艺一体成型,大大降低生产成本,可以广泛应用于卫星定位导航、测绘及移动通信等相关领域。
附图说明
图1为本发明正面侧视图;
图2为本发明反面侧视图;
图3为本发明高频无源板正面示意图;
图4为本发明高频无源板反面示意图;
图5为本发明低频无源板正面示意图;
图6为本发明低频无源板反面示意图;
图7为本发明PCB馈电网络及放大滤波电路框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”“前端”、“后端”、“两端”、“一端”、“另一端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“设置有”、“连接”等,应做广义理解,例如“连接”,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明提供了一种基于新材料的高精度卫星导航及通信组合天线,其包括高精度卫星导航天线金属辐射面,WIFI/蓝牙天线金属辐射面,注塑成型新材料基板,PCB馈电网络及放大滤波电路,屏蔽金属腔,其中高精度卫星导航天线金属辐射面电镀于两个大小不同新材料基板上,WIFI/蓝牙天线金属辐射面电镀于大基板侧面,天线金属辐射面通过内部金属结构和PCB馈电网络及放大滤波电路连接,屏蔽金属腔覆盖PCB电路,保护内部电路,在本发明中,注塑成型新材料基板采用掺杂改性材料的聚苯醚b,介电常数2.65,密度1.06克/立方厘米。通过模具注塑成型,整体呈现米黄色。在重量上面优于传统的F4B(聚四氟乙烯)基板。
在本发明中,为了兼顾高频段和低频段卫星导航信号带宽的差异,注塑成 型新材料基板选用了两种规格厚度,低频基板采用6毫米厚度,高频基板采用4毫米厚度。为了有效降低天线边缘高度,高频基板四条边采用倒圆角的方式成型。高精度卫星导航天线金属辐射面由高频金属辐射面和低频金属辐射面两块组成,高频金属辐射面电镀于较小的新材料基板上组成高频无源板,低频金属辐射面电镀于较大的新材料基板上组成低频无源板。进一步优选,高频金属辐射面和低频金属辐射面由多边形构成,长边伸出枝节用于实现频率调节。金属辐射面的形状可以修改为圆形及其它多边形结构。
在本发明中,高频无源板在上,低频无源板在下组合安装。在四个角通过螺丝和PCB板固定。螺丝孔位采用下沉方式,有效降低天线整体的高度。
在本发明中,WIFI/蓝牙天线金属辐射面电镀于低频基板的侧面,进一步优选,WIFI/蓝牙天线采用倒F天线结构,存在短路点和馈电点,为无源天线。
在本发明中,高精度卫星导航天线金属辐射面将空间电磁波接收到后,通过高低频无源板中心的4个馈电口反馈给等功分90度电桥,其中两路信号通过一个等功分90度电桥合成一路信号,另外两路信号通过另一个等功分90度电桥合成一路信号,两路合成信号通过一个90度移相网络和一个等功分90度电桥最终在天线接口处合成一路右旋圆极化信号。
在本发明中,放大滤波电路包括一级前置滤波器和两级放大器,高频信号和低频信号各自经过前置滤波器和第一级放大器后合成一路信号,再经过第二级放大器输出,保证卫星导航接收机获得足够的卫星信号强度。
具体实施例:请参阅图1-图7所示,本发明提供的实施例:一种基于新材料的高精度卫星导航及通信组合天线,包括高频卫星导航天线金属辐射面18,低频卫星导航天线金属辐射面5,WIFI/蓝牙天线金属辐射面8,注塑成型新材料基板,PCB馈电网络及放大滤波电路,屏蔽金属腔24,注塑成型新材料基板 采用掺杂改性材料的聚苯醚b,介电常数2.65,密度1.06克/立方厘米。通过模具注塑成型,整体呈现米黄色。在重量上面优于传统的F4B(聚四氟乙烯)基板。其中,注塑成型新材料基板包括注塑成型新材料基板A(高频基板21)、注塑成型新材料基板B(低频基板7)。在本发明中,附图标记4、16、13、22为通孔,作用为pin针穿过材料基板所预留;其中4、13为低频无源板PIN针穿过基板预留通孔,22、16为高频无源板PIN针穿过基板预留通孔;附图标记11和8均为WIFI/蓝牙天线金属辐射面。
在本实施例中,高精度卫星导航天线金属辐射面由高频卫星导航天线金属辐射面18和低频卫星导航天线金属辐射面5两块组成,通过螺丝孔位1进行固定,高频卫星导航天线金属辐射面18电镀于较小的新材料基板A 21上组成高频无源板,低频金属辐射面5电镀于较大的新材料基板B 7上组成低频无源板。高频卫星导航天线金属辐射面18和低频卫星导航天线金属辐射面5由多边形构成,长边伸出枝节17和6用于实现频率调节。金属辐射面的形状可以修改为圆形及其它多边形结构。其中,高频无源板在上,低频无源板在下组合安装。高频无源介质板的四个角上各有一个2mm的螺丝孔19,正中心有一个4mm的螺丝孔15,用来进行装配锁螺丝用,通过螺丝和PCB板25固定。螺丝孔位20采用下沉方式,有效降低天线整体的高度。进一步优选,高频无源板的反面镀金属为接地面23,中心螺丝孔15内壁镀金属与高频无源板的接地面23接触;在高频无源板上距中心8mm处有四个过孔16,用来焊接金属圆针,作为天线的馈电。低频无源板的反面镀金属为接地面14,形状与低频无源板相同,整个反面全部铺满。低频无源板中心螺丝孔2内壁镀金属与高频无源板的接地面14接触;在低频无源板上距中心15mm处有四个过孔4,用来焊接金属圆针,作为天线的馈电。在本实施例中,WIFI/蓝牙天线金属辐射面8电镀于低频基板7的侧面。WIFI/蓝 牙天线采用倒F天线结构,存在短路点9和馈电点10,为无源天线。另外在蓝牙馈电处新材料基板B 7有一处底面金属挖空,为了防止馈电与接地面短路;高精度卫星导航天线金属辐射面将空间电磁波接收到后,通过高低频无源板中心的4个馈电口反馈给等功分90度电桥,其中两路信号通过一个等功分90度电桥合成一路信号,另外两路信号通过另一个等功分90度电桥合成一路信号,两路合成信号通过一个90度移相网络和一个等功分90度电桥最终在天线接口处合成一路右旋圆极化信号。放大滤波电路包括一级前置滤波器和两级放大器,高频信号和低频信号各自经过前置滤波器和第一级放大器后合成一路信号,再经过第二级放大器输出,保证卫星导航接收机获得足够的卫星信号强度。本发明通过采用掺杂改性材料的工程塑料,一体注塑形成基板,再通过电镀工艺一体成型,大大降低生产成本,可以广泛应用于卫星定位导航、卫星通信及移动通信等相关领域。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (10)

  1. 一种基于新材料的高精度卫星导航及通信组合天线,其特征在于:包括高频卫星导航天线金属辐射面、低频卫星导航天线金属辐射面、WIFI/蓝牙天线金属辐射面、PCB板和屏蔽金属腔,所述低频卫星导航天线金属辐射面位于所述高频卫星导航天线金属辐射面与PCB板之间,所述WIFI/蓝牙天线金属辐射面位于低频卫星导航天线金属辐射面的侧面。
  2. 根据权利要求1所述的一种基于新材料的高精度卫星导航及通信组合天线,其特征在于,还包括注塑成型新材料基板,所述注塑成型新材料基板采用掺杂改性材料的聚苯醚b,介电常数2.65,密度1.06克/立方厘米,所述注塑成型新材料基板包括注塑成型新材料基板A、注塑成型新材料基板B。
  3. 根据权利要求2所述的一种基于新材料的高精度卫星导航及通信组合天线,其特征在于,所述高频卫星导航天线金属辐射面电镀于新材料基板A上组成高频无源板,低频卫星导航天线金属辐射面电镀于新材料基板B上组成低频无源板。
  4. 根据权利要求3所述的一种基于新材料的高精度卫星导航及通信组合天线,其特征在于:所述高频卫星导航天线金属辐射面和低频卫星导航天线金属辐射面由多边形构成,其中多边形的长边伸出枝节用于实现频率调节。
  5. 根据权利要求4所述的一种基于新材料的高精度卫星导航及通信组合天线,其特征在于:所述高频无源板与低频无源板组合安装,其中高频无源板的四个角上各有一个2mm的螺丝孔,正中心有一个4mm的螺丝孔,通过螺丝和PCB板固定。
  6. 根据权利要求5所述的一种基于新材料的高精度卫星导航及通信组合天线,其特征在于:所述高频无源板的反面镀金属为接地面,中心螺丝孔内壁镀金属与高频无源板的接地面接触;在高频无源板上距中心8mm处有四个过孔, 用来焊接金属圆针,作为天线的馈电。
  7. 根据权利要求6所述的一种基于新材料的高精度卫星导航及通信组合天线,其特征在于:所述低频无源板的反面镀金属为接地面,形状与低频无源板相同,铺满整个反面,其中低频无源板中心螺丝孔内壁镀金属与高频无源板的接地面接触;在低频无源板上距中心15mm处有四个过孔,用来焊接金属圆针,作为天线的馈电。
  8. 根据权利要求7所述的一种基于新材料的高精度卫星导航及通信组合天线,其特征在于:所述WIFI/蓝牙天线金属辐射面电镀于低频基板的侧面。
  9. 根据权利要求8所述的一种基于新材料的高精度卫星导航及通信组合天线,其特征在于:WIFI/蓝牙天线采用倒F天线结构,存在短路点和馈电点,为无源天线。
  10. 根据权利要求8所述的一种基于新材料的高精度卫星导航及通信组合天线,其特征在于:还包括PCB馈电网络及放大滤波电路,其中放大滤波电路包括一级前置滤波器和两级放大器,高频信号和低频信号各自经过前置滤波器和第一级放大器后合成一路信号,再经过第二级放大器输出,保证卫星导航接收机获得足够的卫星信号强度。
PCT/CN2019/127825 2019-12-23 2019-12-24 一种基于新材料的高精度卫星导航及通信组合天线 WO2021127969A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/257,025 US11799203B2 (en) 2019-12-23 2019-12-24 Modified-material-based high-precision combined antenna for satellite navigation and communications
EP19934348.4A EP3872929A4 (en) 2019-12-23 2019-12-24 HIGH PRECISION SATELLITE NAVIGATION AND COMMUNICATION COMBINATION ANTENNA BASED ON A NEW MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911334865.0A CN113097697A (zh) 2019-12-23 2019-12-23 一种基于新材料的高精度卫星导航及通信组合天线
CN201911334865.0 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021127969A1 true WO2021127969A1 (zh) 2021-07-01

Family

ID=76573412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127825 WO2021127969A1 (zh) 2019-12-23 2019-12-24 一种基于新材料的高精度卫星导航及通信组合天线

Country Status (4)

Country Link
US (1) US11799203B2 (zh)
EP (1) EP3872929A4 (zh)
CN (1) CN113097697A (zh)
WO (1) WO2021127969A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449812B (zh) * 2022-02-10 2023-07-07 曲面超精密光电(深圳)有限公司 内建低轨道卫星通讯天线的车载屏的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694423A (zh) * 2014-11-28 2016-06-22 上海杰事杰新材料(集团)股份有限公司 一种高强度低介电损耗的改性聚苯醚材料及其制备方法
CN205666326U (zh) * 2016-06-08 2016-10-26 嘉善金昌电子有限公司 一种丝印贯孔超厚轻质gnss天线
CN109037942A (zh) * 2018-08-14 2018-12-18 广州吉欧电子科技有限公司 基于介质埋藏的测量型gnss天线
CN109659666A (zh) * 2019-01-29 2019-04-19 深圳市集众思创科技有限公司 智能天线
US20190123436A1 (en) * 2017-10-17 2019-04-25 Advanced Automotive Antennas, S.L.U. Broadband antenna system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904070B (zh) * 2012-09-29 2015-02-11 航天恒星科技有限公司 一种多频点卫星导航终端天线
CN204179230U (zh) * 2014-11-06 2015-02-25 上海海积信息科技股份有限公司 一种双频天线
US10193231B2 (en) * 2015-03-02 2019-01-29 Trimble Inc. Dual-frequency patch antennas
CN105024137B (zh) * 2015-08-10 2018-10-12 广州中海达卫星导航技术股份有限公司 多频通信天线装置及带该多频通信天线装置的gnss接收机
CN106785320A (zh) * 2015-12-22 2017-05-31 中国电子科技集团公司第二十研究所 一种相位中心稳定的gnss掩星定位天线
JP2017195433A (ja) * 2016-04-18 2017-10-26 株式会社Soken 多層アンテナ
CN106009608B (zh) * 2016-07-14 2018-07-20 东莞市常平信安实业有限公司 一种印刷线路板用热塑性聚苯醚及其制备方法
US10096893B2 (en) * 2016-12-02 2018-10-09 Laird Technologies, Inc. Patch antennas
CN207217783U (zh) * 2017-08-08 2018-04-10 深圳市华信天线技术有限公司 一种多功能gnss天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694423A (zh) * 2014-11-28 2016-06-22 上海杰事杰新材料(集团)股份有限公司 一种高强度低介电损耗的改性聚苯醚材料及其制备方法
CN205666326U (zh) * 2016-06-08 2016-10-26 嘉善金昌电子有限公司 一种丝印贯孔超厚轻质gnss天线
US20190123436A1 (en) * 2017-10-17 2019-04-25 Advanced Automotive Antennas, S.L.U. Broadband antenna system
CN109037942A (zh) * 2018-08-14 2018-12-18 广州吉欧电子科技有限公司 基于介质埋藏的测量型gnss天线
CN109659666A (zh) * 2019-01-29 2019-04-19 深圳市集众思创科技有限公司 智能天线

Also Published As

Publication number Publication date
US20210376467A1 (en) 2021-12-02
US11799203B2 (en) 2023-10-24
EP3872929A1 (en) 2021-09-01
CN113097697A (zh) 2021-07-09
EP3872929A4 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US6549167B1 (en) Patch antenna for generating circular polarization
CN104241827B (zh) 一种多频兼容叠层微带天线
CN101483279B (zh) 利用pifa天线制造圆形极化波的天线系统
US20150138033A1 (en) Antenna structure and wireless communication device using the same
CN204257814U (zh) 轻型宽带gnss测量型天线
US11557839B2 (en) Double frequency vertical polarization antenna and television
CN104157968A (zh) 一种新概念宽带圆极化天线
CN201674000U (zh) 一种基于正交同轴馈电的圆极化陶瓷天线
CN103199336B (zh) 应用于北斗系统的双框带切口四桥跨接微带天线
CN104078769A (zh) 一种舰船用微带天线
EP2664027B1 (en) Dual antenna structure having circular polarisation characteristics
CN102769183B (zh) 应用于北斗系统的四螺旋分布加载振子微带天线
CN111478055A (zh) 单频圆极化定位天线和可穿戴设备
WO2018129649A1 (zh) 天线组件及电子装置
WO2021127969A1 (zh) 一种基于新材料的高精度卫星导航及通信组合天线
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
CN110797627A (zh) 一种天线装置和终端设备
KR200470080Y1 (ko) 익스텐디드 접지부를 구비한 차량용 세라믹 원편파 패치 안테나
WO2024051434A1 (zh) 一种圆极化天线、通信设备及圆极化天线制造方法
CN210468111U (zh) 天线振子及阵列天线
CN116315649A (zh) 小型圆极化天线
US11962058B1 (en) Circular filter assembly
CN212380572U (zh) 一种宽带gnss卫星接收天线
CN214227148U (zh) 一种宽带圆极化u缝贴片天线
CN204375958U (zh) 一种天线及机载通信设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019934348

Country of ref document: EP

Effective date: 20201230

NENP Non-entry into the national phase

Ref country code: DE