WO2021127950A1 - 一种向列型液晶组合物及在液晶显示器件中的应用 - Google Patents

一种向列型液晶组合物及在液晶显示器件中的应用 Download PDF

Info

Publication number
WO2021127950A1
WO2021127950A1 PCT/CN2019/127706 CN2019127706W WO2021127950A1 WO 2021127950 A1 WO2021127950 A1 WO 2021127950A1 CN 2019127706 W CN2019127706 W CN 2019127706W WO 2021127950 A1 WO2021127950 A1 WO 2021127950A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
general formula
weight
parts
liquid crystal
Prior art date
Application number
PCT/CN2019/127706
Other languages
English (en)
French (fr)
Inventor
王杰
储士红
陈卯先
陈海光
姜天孟
Original Assignee
北京八亿时空液晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京八亿时空液晶科技股份有限公司 filed Critical 北京八亿时空液晶科技股份有限公司
Priority to PCT/CN2019/127706 priority Critical patent/WO2021127950A1/zh
Priority to CN201980102837.8A priority patent/CN114787319B/zh
Priority to JP2022537789A priority patent/JP7419536B2/ja
Publication of WO2021127950A1 publication Critical patent/WO2021127950A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the invention belongs to the technical field of liquid crystal materials, and specifically relates to a nematic liquid crystal composition and its application in a liquid crystal display device.
  • liquid crystal compounds have been widely used in the field of information display, and at the same time the application in optical communications has also made certain progress.
  • the application fields of liquid crystal compounds have been significantly expanded to various display devices, electro-optical devices, electronic components, sensors, etc.
  • Nematic liquid crystal compounds have been most widely used in flat panel displays, especially for TFT active The matrix system.
  • the liquid crystal display has experienced a long road of development along with the discovery of liquid crystal.
  • Austrian botanist Friedrich Reinitzer discovered the first liquid crystal material, cholesterol benzoate.
  • Manguin invented the rubbing orientation method to make single-domain liquid crystals and to study optical anisotropy.
  • E. Bose established the theory of conserving movement, which was supported by experiments by L.S.Ormstein and F.Zernike, etc. It was later described as statistical fluctuations by De Gennes.
  • G.W.Oseen and H.Zocher founded the continuum theory in 1933 and was perfected by F.C.Frank. M.Born and K.Lichtennecker discovered and studied the dielectric anisotropy of liquid crystals.
  • the "active matrix” includes two types: 1. Metal oxide semiconductor OMS or other diodes on the silicon wafer as the substrate; 2. Thin film transistors TFT on the glass plate as the substrate. Monocrystalline silicon as a substrate material limits the display size, because there are many problems in the assembly of various parts of the display device and even the module assembly. Therefore, the second type of thin film transistor is a promising active matrix type, and the photoelectric effect used is usually the TN effect.
  • TFTs include compound semiconductors such as CdSe or TFTs based on polycrystalline or amorphous silicon.
  • liquid crystal composition provided by the present invention has the characteristics of high clearing point while having large optical anisotropy, and realizes the effect of effectively increasing the working temperature range.
  • the present invention provides a nematic liquid crystal composition with large optical anisotropy, high clearing point and good low-temperature miscibility and its use in liquid crystal display devices.
  • the nematic liquid crystal composition of the present invention has a sufficiently wide nematic phase temperature range and a large optical anisotropy ⁇ n, and has good UV resistance.
  • the addition of a chiral dopant can further adjust the performance Invented the pitch of the liquid crystal to realize the Bragg reflection in the requirement of multi-stable display.
  • the liquid crystal provided by the present invention and the polymer material have good mutual solubility, and can be combined with the polymer material to form a PDLC (Polymer Dispersed Liquid Crystal) film, which realizes the switch between the scattering state and the transparent state, and is further applied to smart curtains, Curtain wall or transparent display device.
  • PDLC Polymer Dispersed Liquid Crystal
  • a nematic liquid crystal composition the raw material components include the following compounds by weight:
  • a compound of general formula I 0.1-60 parts by weight
  • a compound of general formula II 0.1-20 parts by weight
  • a compound of general formula III 0.1-20 parts by weight
  • a compound of general formula IV 0.1-40 parts by weight
  • a compound of general formula V 0.1-20 parts by weight
  • a compound of general formula VI 0.1-20 parts by weight
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 in the above structural formula each independently represent a C 1 -C 12 alkyl group.
  • raw material components of the liquid crystal composition include the following compounds in parts by weight:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 each independently represent a C 1 -C 8 alkyl group.
  • raw material components of the liquid crystal composition include the following compounds in parts by weight:
  • the compound of general formula I 40-50 parts by weight;
  • a compound of general formula III 4-10 parts by weight
  • a compound of general formula VI 4-10 parts by weight
  • raw material components of the liquid crystal composition include the following compounds in parts by weight:
  • a compound of general formula III 8 parts by weight
  • the compound of the general formula I is one or more selected from the following compounds:
  • the compound of the general formula II is one or more selected from the following compounds:
  • the compound of the general formula III is one or more selected from the following compounds:
  • the compound of the general formula IV is one or more selected from the following compounds:
  • the compound of the general formula V is one or more selected from the following compounds:
  • the compound of the general formula VI is one or more selected from the following compounds:
  • the compound of the general formula VII is one or more selected from the following compounds:
  • the raw material components of the liquid crystal composition further include 0.1-0.5 parts by weight of an ultraviolet absorber.
  • the ultraviolet absorber is one or a mixture of benzotriazoles, benzophenones, triazines, and benzoic acid esters.
  • the raw material components of the liquid crystal composition further include 0.01-0.05 parts by weight of antioxidant.
  • the antioxidant is one or more mixtures of hindered phenols, phosphites, and a complex type of hindered phenols and phosphites.
  • the preparation method of the liquid crystal composition includes the following steps:
  • Each raw material component is taken, added in order of melting point from high to low, dissolved under heating and stirring conditions, fully mixed uniformly, and filtered and impurity removed to obtain the liquid crystal composition.
  • the heating temperature is 60-100°C.
  • the method for preparing the nematic liquid crystal composition of the present invention is not particularly limited, and conventional methods can be used to mix two or more compounds for production, such as by mixing different components at a high temperature of 60-100°C and dissolving each other Preparation, wherein the liquid crystal composition is dissolved and mixed in the solvent for the compound, and then the solvent is distilled off under reduced pressure; or the liquid crystal composition of the present invention can be prepared according to a conventional method, such as the content of The small components are dissolved in the main components with a large content at a higher temperature, or the respective components are dissolved in an organic solvent, such as acetone, chloroform, or methanol, and then the solution is mixed to remove the solvent.
  • an organic solvent such as acetone, chloroform, or methanol
  • the nematic liquid crystal composition of the present invention adopts a compound of general formula I, a compound of general formula II, a compound of general formula III, a compound of general formula IV, and a compound of general formula V.
  • the compound, the compound of the general formula VI, and the compound of the general formula VII are used as raw materials and appropriately proportioned.
  • the compounds represented by the general formula I and the general formula IV have large positive dielectric anisotropy and moderate optical anisotropy. It can be used as the main component of the liquid crystal composition for PDLC;
  • the compounds represented by the general formula II and the general formula III have a high phase transition temperature Tni (nematic phase-isotropic transition temperature) and large optical anisotropy.
  • the compound represented by the general formula V has a high phase transition temperature Tni and moderate optical anisotropy, and can be compared with the compound represented by the general formula II and the general formula III Cooperate with each other to adjust the optical anisotropy;
  • the compounds represented by general formula VI and general formula VII have good mutual solubility, which can further broaden the low temperature range of nematic liquid crystals.
  • the two components have different optical anisotropies. Mutual blending can effectively adjust the ⁇ n value of the liquid crystal composition.
  • the synergy between the above components enables the liquid crystal composition of the present invention to have a sufficiently wide temperature range and fast response speed, and also has the characteristics of high-definition bright spots and large optical anisotropy, and can adapt to low-temperature environmental conditions.
  • the nematic liquid crystal composition of the present invention contains polycyclic, cyano and ester-based compounds at the same time, has a sufficiently wide nematic phase temperature range and large optical anisotropy ⁇ n, and has good
  • the anti-ultraviolet performance of the invention, adding chiral dopants can further adjust the pitch of the liquid crystal of the present invention, and then realize the Bragg reflection in the requirement of multi-stable display.
  • the liquid crystal provided by the present invention and the polymer material have good mutual solubility, and can be combined with the polymer material to form a PDLC film to realize the switching between the scattering state and the transparent state, and further apply to smart curtains, curtain walls or transparent display devices.
  • the liquid crystal composition of the present invention can be applied to various display devices, and is especially suitable for PDLC devices.
  • the liquid crystal composition is prepared by a thermal dissolution method, including the following steps: weigh each raw material component by weight with a balance, wherein there is no specific requirement for the order of weighing and addition, usually based on each raw material component The melting point of the compound is weighed and mixed in order from high to low, heated and stirred at 60-100° C. to make the components melt uniformly, filtered, revolved, and finally encapsulated to obtain the target liquid crystal composition.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is only that the raw material components also include the ultraviolet absorber V001, and the preparation methods of other raw material components and the liquid crystal compound are the same as those of Embodiment 1.
  • the raw material components also include hindered phenolic antioxidant 0001, and the preparation methods of other raw material components and the liquid crystal compound are the same as those of Embodiment 1.
  • the preparation method of the liquid crystal compound in this comparative example is the same as that of Example 1.
  • the optical anisotropy ⁇ n, dielectric anisotropy ⁇ , and bulk viscosity ⁇ of the liquid crystal composition provided in Example 1 are basically the same.
  • the liquid crystal composition provided in Example 1 The melting point temperature Tcn of the composition is very low, and the clearing point Tni is higher, which indicates that the liquid crystal compound of the present invention has good low-temperature miscibility, has a wider temperature working range, and can adapt to some low-temperature environmental conditions.
  • the present invention is not limited to the above-mentioned best embodiment. Under the enlightenment of the present invention, anyone can derive other products in various forms, but regardless of any changes in its shape or structure, any product that is the same or similar to the present application Approximate technical solutions fall within the protection scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本发明涉及一种向列型液晶组合物及其制备方法,所述的液晶组合物通过采用通式为Ⅰ的化合物、通式为Ⅱ的化合物、通式为Ⅲ的化合物、通式为Ⅳ的化合物、通式为Ⅴ的化合物、通式为Ⅵ的化合物、通式为Ⅶ的化合物为原料并进行适当配比,最终制备得到的液晶组合物,同时含有多环、氰基及酯基化合物,具有足够宽的温度范围和快的响应速度,还具有高清亮点、大光学各向异性的特性,能够适应低温环境条件。本发明所述向列型液晶组合物能够适用于各类显示器件,尤其适用于PDLC装置。

Description

一种向列型液晶组合物及在液晶显示器件中的应用 技术领域
本发明属于液晶材料技术领域,具体涉及一种向列型液晶组合物及在液晶显示器件中的应用。
背景技术
目前,液晶化合物在信息显示领域得到了广泛应用,同时在光通讯中的应用也取得了一定的进展。近几年,液晶化合物的应用领域已经显著拓宽到各类显示器件、电光器件、电子元件、传感器等,向列型液晶化合物已经在平板显示器中得到最为广泛的应用,特别是用于TFT有源矩阵的系统中。
液晶显示伴随液晶的发现经历了漫长的发展道路。1888年奥地利植物学家Friedrich Reinitzer发现了第一种液晶材料安息香酸胆固醇。1917年Manguin发明了摩擦定向法,用以制作单畴液晶和研究光学各向异性。1909年E.Bose建立了攒动学说,并得到L.S.Ormstein及F.Zernike等人的实验支持,后经De Gennes论述为统计性起伏。G.W.Oseen和H.Zocher在1933年创立连续体理论,并得到F.C.Frank完善。M.Born和K.Lichtennecker发现并研究了液晶的介电各向异性。1932年,W.Kast据此将向列相分为正、负性两大类。1927年,V.Freedericksz和V.Zolinao发现向列相液晶在电场或磁场作用下,发生形变并存在电压阈值。这一发现为液晶显示器的制作提供了依据。
1968年美国RCA公司R.Williams发现向列相液晶在电场作用下形成条纹畴,并有光散射现象。G.H.Heilmeir随即将其发展成动态散射显示模式,并制成世界上第一个液晶显示器LCD。七十年代初,Helfrich及Schadt发明了TN原理,人们利用TN光电效应和集成电路相结合,将其做成显示器件TN-LCD,为液晶的应用开拓了广阔的前景。七十年代以来,由于大规模集成电路和液晶材料的发展,液晶在显示方面的应用取得了突破性的发展,1983-1985年T.Scheffer等人先后提出超扭曲向列相STN(Super Twisred Nematic)模式以及 P.Brody在1972年提出的有源矩阵AM(Active matrix)方式被重新采用。传统的TN-LCD技术已发展为STN-LCD及TFT-LCD技术,尽管STN的扫描线数可达768行以上,但是当温度升高时仍然存在着响应速度、视角以及灰度等问题,因此大面积、高信息量、彩色显示大多采用有源矩阵显示方式。TFT-LCD已经广泛用于直视型电视、大屏幕投影电视、计算机终端显示和某些军用仪表显示,相信TFT-LCD技术具有更为广阔的应用前景。其中“有源矩阵”包括两种类型:1、在作为基片的硅晶片上的金属氧化物半导体OMS或其它二极管;2、在作为基片的玻璃板上的薄膜晶体管TFT。单晶硅作为基片材料限制了显示尺寸,因为各部分显示器件甚至模块组装在其结合处出现许多问题。因而,第二种薄膜晶体管是具有前景的有源矩阵类型,所利用的光电效应通常是TN效应。TFT包括化合物半导体,如CdSe或以多晶或无定形硅为基础的TFT。
近几年,液晶化合物的应用领域已经显著拓宽到各类显示器件、电光器件、电子元件、传感器等。为此,已经提出许多不同的结构,特别是在向列型液晶领域,向列型液晶化合物迄今已经在平板显示器中与调光领域得到了广泛应用。人们对显示技术的要求也在不断的提高,尤其是在实现宽的工作温度,快速响应,降低驱动电压以降低功耗等方面。本发明所提供的液晶组合物在具有大光学各向异性的同时,具有高的清亮点的特点,实现有效增大工作温度范围的效果。
发明内容
为了解决现有技术存在的上述问题,本发明提供了一种具有大的光学各向异性、较高的清亮点和好的低温互溶性的向列型液晶组合物及其在液晶显示器件中的应用。本发明所述的向列相液晶组合物,具有足够宽的向列相温度范围和大的光学各向异性△n,且具有较好的抗紫外性能,加入手性掺杂剂可以进一步调节本发明液晶的螺距,进而实现多稳态显示要求中的布拉格反射。同时,本发明所提供的液晶与聚合物材料具有良好的互溶性,可与聚合物材料配合制成PDLC(Polymer Dispersed Liquid Crystal)薄膜,实现散射态-透明态的切换,进一步应用于智能窗帘、幕墙或透明显示器件。
本发明所采用的技术方案为:
一种向列型液晶组合物,原料组分包括以下重量份的化合物:
通式为Ⅰ的化合物,0.1-60重量份;
通式为Ⅱ的化合物,0.1-20重量份;
通式为Ⅲ的化合物,0.1-20重量份;
通式为Ⅳ的化合物,0.1-40重量份;
通式为Ⅴ的化合物,0.1-20重量份;
通式为Ⅵ的化合物,0.1-20重量份;
通式为Ⅶ的化合物,0.1-20重量份;
上述7种化合物的结构如下:
Figure PCTCN2019127706-appb-000001
其中,上述结构式中的R 1、R 2、R 3、R 4、R 5、R 6、R 7各自独立代表C 1-C 12的烷基。
进一步优选所述液晶组合物的原料组分原料组分包括以下重量份的化合物:
通式为Ⅰ的化合物,20-55重量份;
通式为Ⅱ的化合物,1-15重量份;
通式为Ⅲ的化合物,1-15重量份;
通式为Ⅳ的化合物,10-35重量份;
通式为Ⅴ的化合物,1-15重量份;
通式为Ⅵ的化合物,1-15重量份;
通式为Ⅶ的化合物,1-15重量份;
通式Ⅰ-通式Ⅴ中,R 1、R 2、R 3、R 4、R 5、R 6、R 7各自独立代表C 1-C 8的烷基。
进一步优选所述液晶组合物的原料组分包括以下重量份的化合物:
通式为Ⅰ的化合物,40-50重量份;
通式为Ⅱ的化合物,3-10重量份;
通式为Ⅲ的化合物,4-10重量份;
通式为Ⅳ的化合物,15-30重量份;
通式为Ⅴ的化合物,3-10重量份;
通式为Ⅵ的化合物,4-10重量份;
通式为Ⅶ的化合物,1-6重量份。
进一步优选所述液晶组合物的原料组分包括以下重量份的化合物:
通式为Ⅰ的化合物,48重量份;
通式为Ⅱ的化合物,4.75重量份;
通式为Ⅲ的化合物,8重量份;
通式为Ⅳ的化合物,22.75重量份;
通式为Ⅴ的化合物,7重量份;
通式为Ⅵ的化合物,6.5重量份;
通式为Ⅶ的化合物,3重量份。
所述通式为Ⅰ的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127706-appb-000002
所述通式为II的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127706-appb-000003
所述通式为III的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127706-appb-000004
所述通式为Ⅳ的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127706-appb-000005
所述通式为Ⅴ的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127706-appb-000006
所述通式为Ⅵ的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127706-appb-000007
所述通式为Ⅶ的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127706-appb-000008
进一步优选所述液晶组合物的原料组分还包括0.1-0.5重量份的紫外线吸收剂。
所述紫外吸收剂为苯并三唑类、二苯甲酮类、三嗪类、苯甲酸酯类中的一种或几种的混合物。
进一步优选所述液晶组合物的原料组分还包括0.01-0.05重量份的抗氧化剂。
所述抗氧化剂为受阻酚类、亚磷酸酯类以及受阻酚类和亚磷酸酯类复合型中的一种或多种混合物。
所述液晶组合物的制备方法,包括如下步骤:
取各原料组分,按照熔点由高到低的顺序依次加入,加热搅拌条件下进行溶解,充分混合均匀,经过滤、除杂后,即得所述液晶组合物。
所述加热的温度为60-100℃。
所述向列型液晶组合物在液晶显示器中的应用。
本发明所述向列型液晶组合物的制备方法无特殊限制,可采用常规方法将两种或多种化合物混合进行生产,如通过在高温60-100℃下混合不同组分并彼此溶解的方法制备,其中,将液晶组合物溶解在用于该化合物的溶剂中并混合,然后在减压下蒸馏出该溶剂;或者本发明所述液晶组合物可按照常规的方法制备,如将其中含量较小的组分在较高的温度下溶解在含量较大的主要组分中, 或将各所属组分在有机溶剂中溶解,如丙酮、氯仿或甲醇等,然后将溶液混合去除溶剂后得到。
本发明的有益效果为:
(1)本发明所述的向列型液晶组合物,通过采用通式为Ⅰ的化合物、通式为Ⅱ的化合物、通式为Ⅲ的化合物、通式为Ⅳ的化合物、通式为Ⅴ的化合物、通式为Ⅵ的化合物、通式为Ⅶ的化合物为原料并进行适当配比,其中通式I和通式IV所代表的化合物具有大的的正介电各项异性和适中的光学各项异性,可作为PDLC用液晶组合物主体成分;通式II、通式III代表的化合物具有高的相转变温度Tni(向列相-各向同性转变温度)和大的光学各向异性,可以提高液晶组合物的清亮点和进一步增加液晶的△n;通式V所代表的化合物具有高的相转变温度Tni和适中的光学各项异性,可与通式II、通式III所代表的化合物互相配合,调整光学各项异性;通式VI、通式VII所代表的化合物具有良好的互溶性,可进一步拓宽向列相液晶低温范围,同时这两种组分具有不同的光学各向异性,互相调配可有效调整液晶组合物的△n值。以上各组分之间协同作用,使本发明所述液晶组合物具有足够宽的温度范围和快的响应速度,还具有高清亮点、大光学各向异性的特性,能够适应低温环境条件。
(2)本发明所述的向列型液晶组合物,同时含有多环、氰基及酯基化合物,具有足够宽的向列相温度范围和大的光学各向异性△n,且具有较好的抗紫外性能,加入手性掺杂剂可以进一步调节本发明液晶的螺距,进而实现多稳态显示要求中的布拉格反射。同时,本发明所提供的液晶与聚合物材料具有良好的互溶性,可与聚合物材料配合制成PDLC薄膜,实现散射态-透明态的切换,进一步应用于智能窗帘、幕墙或透明显示器件。本发明所述液晶组合物能够适用于各类显示器件,尤其适用于PDLC装置。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例用于说明本发明,但不用来限制本发明的范围。
除非另有说明,本发明中百分比为重量百分比;温度单位为摄氏度;△n代表光学各向异性(25℃);△ε(△ε=ε∥-ε⊥)代表介电各向异性(25℃,1000Hz),ε∥和ε⊥分别代表平行和垂直介电常数(25℃,1000Hz);η代表体积粘度(mPa·s,25℃);Tni代表液晶组合物的清亮点(℃);Tcn代表液晶组合物的熔点温度。
以下各实施例中,液晶化合物中基团结构用表1所示代码表示。
表1-液晶化合物的基团结构代码
Figure PCTCN2019127706-appb-000009
以如下化合物结构为例:
Figure PCTCN2019127706-appb-000010
表示为:4PGPCN。
Figure PCTCN2019127706-appb-000011
表示为:5CZPPCN。
以下各实施例中,所述液晶组合物的制备均采用热溶解方法,包括以下步 骤:用天平按重量百分比称量各原料组分,其中称量加入顺序无特定要求,通常以各原料组分的熔点由高到低的顺序依次称量混合,在60-100℃下加热搅拌使得各组分熔解均匀,再经过滤、旋蒸,最后封装即得目标液晶组合物。
以下各实施例中,所述液晶组合物中各组分的重量百分比及所得目标液晶组合物的性能参数见下述表格。
以下实施例中,所涉及的所有组分均为已知液晶化合物,可由北京八亿时空提供。
实施例1
表2-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127706-appb-000012
实施例2
表3-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127706-appb-000013
实施例3
表4-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127706-appb-000014
Figure PCTCN2019127706-appb-000015
实施例4
表5-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127706-appb-000016
Figure PCTCN2019127706-appb-000017
实施例5
表6-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127706-appb-000018
实施例6
本实施例与实施例1的区别仅在于:原料组分还包括紫外线吸收剂V001,其他原料组分以及液晶化合物的制法均与实施例1相同。
本实施例所述液晶组合物的原料组分如表7所示。
表7-液晶化合物中各原料组分的用量
组分 化合物代码 重量(g)
I 2PPCN 4.75
I 4PPCN 0.25
I 5PPCN 38
I 7PPCN 5
II 5PPPCN 4.75
III 3PGPCN 8
IV 3OPPCN 1
IV 5OPPCN 13.75
IV 6OPPCN 2
IV 8OPPCN 6
V 5CPPCN 7
VI 5PZPPCN 6.5
VII 2CZPPCN 3
—— 紫外线吸收剂V001 0.3
实施例7
本实施例与实施例1的区别仅在于:原料组分还包括受阻酚类抗氧化剂0001,其他原料组分以及液晶化合物的制法均与实施例1相同。
本实施例所述液晶组合物的原料组分如表8所示。
表8-液晶化合物中各原料组分的用量
组分 化合物代码 重量(g)
I 2PPCN 4.75
I 4PPCN 0.25
I 5PPCN 38
I 7PPCN 5
II 5PPPCN 4.75
III 3PGPCN 8
IV 3OPPCN 1
IV 5OPPCN 13.75
IV 6OPPCN 2
IV 8OPPCN 6
V 5CPPCN 7
VI 5PZPPCN 6.5
VII 2CZPPCN 3
—— 受阻酚类抗氧化剂0001 0.03
对比例1
表9-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127706-appb-000019
Figure PCTCN2019127706-appb-000020
本对比例所述液晶化合物的制法与实施例1相同。
将实施例1与对比例1所得液晶组合物的各性能参数值进行汇总比较,参见表10。
表10-实施例1与对比例1所得液晶组合物的性能参数比较
Figure PCTCN2019127706-appb-000021
从表10可以看出,与对比例1相比,实施例1提供的液晶组合物的光学各向异性△n、介电各向异性Δε、体积粘度η基本一致,然而实施例1提供的液晶组合物的熔点温度Tcn很低,清亮点Tni更高,从而说明本发明所述的液晶化合物的低温互溶性良好,具有更宽温度的工作范围,能够适应一些低温环境条件。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

Claims (10)

  1. 一种向列型液晶组合物,其特征在于,原料组分包括以下重量份的化合物:
    通式为Ⅰ的化合物,0.1-60重量份;
    通式为Ⅱ的化合物,0.1-20重量份;
    通式为Ⅲ的化合物,0.1-20重量份;
    通式为Ⅳ的化合物,0.1-40重量份;
    通式为Ⅴ的化合物,0.1-20重量份;
    通式为Ⅵ的化合物,0.1-20重量份;
    通式为Ⅶ的化合物,0.1-20重量份;
    上述7种化合物的结构如下:
    Figure PCTCN2019127706-appb-100001
    其中,上述结构式中的R 1、R 2、R 3、R 4、R 5、R 6、R 7各自独立代表C 1-C 12的烷基。
  2. 根据权利要求1所述的液晶组合物,其特征在于,原料组分包括以下重量份的化合物:
    通式为Ⅰ的化合物,20-55重量份;
    通式为Ⅱ的化合物,1-15重量份;
    通式为Ⅲ的化合物,1-15重量份;
    通式为Ⅳ的化合物,10-35重量份;
    通式为Ⅴ的化合物,1-15重量份;
    通式为Ⅵ的化合物,1-15重量份;
    通式为Ⅶ的化合物,1-15重量份;
    通式Ⅰ-通式Ⅴ中,R 1、R 2、R 3、R 4、R 5、R 6、R 7各自独立代表C 1-C 8的烷基。
  3. 根据权利要求1所述的液晶组合物,其特征在于,原料组分包括以下重量份的化合物:
    通式为Ⅰ的化合物,40-50重量份;
    通式为Ⅱ的化合物,3-10重量份;
    通式为Ⅲ的化合物,4-10重量份;
    通式为Ⅳ的化合物,15-30重量份;
    通式为Ⅴ的化合物,3-10重量份;
    通式为Ⅵ的化合物,4-10重量份;
    通式为Ⅶ的化合物,1-6重量份。
  4. 根据权利要求1所述的液晶组合物,其特征在于,原料组分包括以下重量份的化合物:
    通式为Ⅰ的化合物,48重量份;
    通式为Ⅱ的化合物,4.75重量份;
    通式为Ⅲ的化合物,8重量份;
    通式为Ⅳ的化合物,22.75重量份;
    通式为Ⅴ的化合物,7重量份;
    通式为Ⅵ的化合物,6.5重量份;
    通式为Ⅶ的化合物,3重量份。
  5. 根据权利要求1所述的液晶组合物,其特征在于,所述通式为Ⅰ的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127706-appb-100002
    所述通式为II的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127706-appb-100003
    所述通式为III的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127706-appb-100004
    所述通式为Ⅳ的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127706-appb-100005
    所述通式为Ⅴ的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127706-appb-100006
    所述通式为Ⅵ的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127706-appb-100007
    所述通式为Ⅶ的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127706-appb-100008
  6. 根据权利要求1-5任一项所述的液晶组合物,其特征在于,原料组分还包括0.1-0.5重量份的紫外线吸收剂。
  7. 根据权利要求6所述的液晶组合物,其特征在于,所述紫外吸收剂为苯并三唑类、二苯甲酮类、三嗪类、苯甲酸酯类中的一种或几种的混合物。
  8. 根据权利要求1-5任一项所述的液晶组合物,其特征在于,原料组分还包括0.01-0.05重量份的抗氧化剂。
  9. 根据权利要求8所述的液晶组合物,其特征在于,所述抗氧化剂为受阻酚类、亚磷酸酯类、复合型中的一种或多种混合物。
  10. 权利要求1-9任一项所述向列型液晶组合物在液晶显示器中的应用。
PCT/CN2019/127706 2019-12-24 2019-12-24 一种向列型液晶组合物及在液晶显示器件中的应用 WO2021127950A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/127706 WO2021127950A1 (zh) 2019-12-24 2019-12-24 一种向列型液晶组合物及在液晶显示器件中的应用
CN201980102837.8A CN114787319B (zh) 2019-12-24 2019-12-24 一种向列型液晶组合物及在液晶显示器件中的应用
JP2022537789A JP7419536B2 (ja) 2019-12-24 2019-12-24 ネマチック液晶組成物及び液晶表示デバイスにおける応用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127706 WO2021127950A1 (zh) 2019-12-24 2019-12-24 一种向列型液晶组合物及在液晶显示器件中的应用

Publications (1)

Publication Number Publication Date
WO2021127950A1 true WO2021127950A1 (zh) 2021-07-01

Family

ID=76573523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127706 WO2021127950A1 (zh) 2019-12-24 2019-12-24 一种向列型液晶组合物及在液晶显示器件中的应用

Country Status (3)

Country Link
JP (1) JP7419536B2 (zh)
CN (1) CN114787319B (zh)
WO (1) WO2021127950A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051926A (zh) * 1989-10-02 1991-06-05 默克专利有限公司 电光性液晶体系
EP0511487A1 (en) * 1991-04-04 1992-11-04 MERCK PATENT GmbH Electro-optical liquid crystal system
JPH0558981A (ja) * 1991-08-27 1993-03-09 Seiko Epson Corp ターフエニル誘導体及びそれを含有する液晶組成物及びそれを用いた液晶表示素子
EP0730019A1 (en) * 1994-07-15 1996-09-04 Seiko Epson Corporation Liquid crystal composition and liquid crystal display element produced therefrom
CN101407718A (zh) * 2007-10-12 2009-04-15 北京八亿时空液晶材料科技有限公司 一种向列型液晶组合物
CN104560059A (zh) * 2014-12-12 2015-04-29 北京八亿时空液晶科技股份有限公司 一种液晶材料及其应用
CN107189793A (zh) * 2016-03-15 2017-09-22 北京八亿时空液晶科技股份有限公司 一种液晶组合物及其应用
CN108072986A (zh) * 2016-11-14 2018-05-25 江苏和成显示科技有限公司 一种微胶囊液晶显示器件
CN108676565A (zh) * 2018-03-19 2018-10-19 北京八亿时空液晶科技股份有限公司 一种液晶材料及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110452710B (zh) * 2018-05-08 2021-04-09 北京八亿时空液晶科技股份有限公司 一种液晶组合物及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051926A (zh) * 1989-10-02 1991-06-05 默克专利有限公司 电光性液晶体系
EP0511487A1 (en) * 1991-04-04 1992-11-04 MERCK PATENT GmbH Electro-optical liquid crystal system
JPH0558981A (ja) * 1991-08-27 1993-03-09 Seiko Epson Corp ターフエニル誘導体及びそれを含有する液晶組成物及びそれを用いた液晶表示素子
EP0730019A1 (en) * 1994-07-15 1996-09-04 Seiko Epson Corporation Liquid crystal composition and liquid crystal display element produced therefrom
CN101407718A (zh) * 2007-10-12 2009-04-15 北京八亿时空液晶材料科技有限公司 一种向列型液晶组合物
CN104560059A (zh) * 2014-12-12 2015-04-29 北京八亿时空液晶科技股份有限公司 一种液晶材料及其应用
CN107189793A (zh) * 2016-03-15 2017-09-22 北京八亿时空液晶科技股份有限公司 一种液晶组合物及其应用
CN108072986A (zh) * 2016-11-14 2018-05-25 江苏和成显示科技有限公司 一种微胶囊液晶显示器件
CN108676565A (zh) * 2018-03-19 2018-10-19 北京八亿时空液晶科技股份有限公司 一种液晶材料及其应用

Also Published As

Publication number Publication date
JP7419536B2 (ja) 2024-01-22
CN114787319A (zh) 2022-07-22
JP2023508304A (ja) 2023-03-02
CN114787319B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
TWI582219B (zh) Liquid crystal compositions containing 2-methyl-3,4,5-trifluorobenzene liquid crystal compounds and their use
CN104673323B (zh) 一种含2-甲基-3,4,5-三氟苯液晶化合物的液晶组合物及其应用
WO2016145907A1 (zh) 一种液晶组合物及其应用
CN104130781B (zh) 一种液晶组合物及其应用
CN103642502B (zh) 一种含双氧杂环结构化合物的液晶组合物及其应用
CN104263382B (zh) 含1,3-二噁烷及二氟甲氧基桥键化合物的液晶组合物及其应用
CN107267157B (zh) 一种负介电各向异性液晶组合物及其应用
CN106883864B (zh) 一种向列相液晶组合物及其应用
CN106544040B (zh) 一种具有高可靠性的液晶组合物及其应用
CN106635059B (zh) 具有大的光学各向异性的快速响应液晶组合物及其应用
CN110452710B (zh) 一种液晶组合物及其应用
TW201414818A (zh) 液晶組合物及包含該組合物的光電顯示器件
CN104099105A (zh) 一种含有二噁烷环的液晶化合物及其应用
CN104087313B (zh) 一种液晶组合物及其应用
CN101665701B (zh) 一种向列型液晶组合物
CN109722256B (zh) 一种液晶组合物及其应用
CN108659860A (zh) 一种含有氟代乙氧基化合物的液晶组合物及其应用
CN110093166B (zh) 一种含有自配向化合物的液晶组合物及其应用
CN107345142B (zh) 一种含有萘环的负介电各向异性液晶组合物及其应用
CN107177359B (zh) 一种含有丁烯基桥键的负介电各向异性液晶组合物及其应用
CN107151557B (zh) 一种含有环己烯类化合物的液晶组合物及应用
CN108690637A (zh) 一种含有氟代乙氧基化合物的液晶组合物及其应用
WO2021127950A1 (zh) 一种向列型液晶组合物及在液晶显示器件中的应用
CN102140349B (zh) 一种用于tft显示的嘧啶类液晶组合物
CN108659853B (zh) 一种含有氟代烷氧基液晶化合物的液晶组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957405

Country of ref document: EP

Kind code of ref document: A1