WO2021127898A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021127898A1
WO2021127898A1 PCT/CN2019/127581 CN2019127581W WO2021127898A1 WO 2021127898 A1 WO2021127898 A1 WO 2021127898A1 CN 2019127581 W CN2019127581 W CN 2019127581W WO 2021127898 A1 WO2021127898 A1 WO 2021127898A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
ttl
optical lens
Prior art date
Application number
PCT/CN2019/127581
Other languages
English (en)
French (fr)
Inventor
吴爽
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/127581 priority Critical patent/WO2021127898A1/zh
Publication of WO2021127898A1 publication Critical patent/WO2021127898A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupled devices (CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
  • CCD photosensitive coupled devices
  • CMOS Sensor complementary metal oxide semiconductor devices
  • the pixel size of photosensitive devices has been reduced, and the development trend of current electronic products with good functions, thin and short appearance, therefore, has a good
  • the miniaturized camera lens with image quality has become the mainstream in the current market.
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-element or four-element lens structure.
  • the object of the present invention is to provide an imaging optical lens that can meet the requirements of ultra-thinness and long focal length while obtaining high imaging performance.
  • the embodiments of the present invention provide an imaging optical lens.
  • the imaging optical lens includes a first lens, a second lens, a third lens, and a fourth lens in order from the object side to the image side. , And the fifth lens;
  • the focal length of the imaging optical lens is f
  • the total optical length of the imaging optical lens is TTL
  • the focal length of the fourth lens is f4
  • the focal length of the fifth lens is f5
  • the image side of the first lens is The on-axis distance of the object side of the second lens is d2
  • the on-axis distance of the image side of the second lens to the object side of the third lens is d4
  • the image side of the third lens is to the
  • the on-axis distance of the object side of the fourth lens is d6, and the on-axis distance of the image side of the fourth lens to the object side of the fifth lens is d8, which satisfies the following relationship:
  • the radius of curvature of the object side surface of the second lens is R3
  • the radius of curvature of the image side surface of the second lens is R4, and the following relationship is satisfied:
  • the focal length of the first lens is f1
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the on-axis thickness of the first lens is d1
  • the focal length of the second lens is f2
  • the on-axis thickness of the second lens is d3 and the following relationship is satisfied:
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, and the on-axis thickness of the third lens is d5 ,
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6
  • the on-axis thickness of the third lens is d5
  • the radius of curvature of the object side surface of the fourth lens is R7
  • the radius of curvature of the image side surface of the fourth lens is R8
  • the axial thickness of the fourth lens is d7
  • the radius of curvature of the object side surface of the fifth lens is R9
  • the radius of curvature of the image side surface of the fifth lens is R10
  • the axial thickness of the fifth lens is d9
  • the combined focal length of the first lens and the second lens is f12, which satisfies the following relationship:
  • the total optical length of the imaging optical lens is TTL
  • the image height of the imaging optical lens is IH, which satisfies the following relationship: TTL/IH ⁇ 4.68.
  • the focal number of the imaging optical lens is FNO, which satisfies the following relationship: FNO ⁇ 2.45.
  • the imaging optical lens according to the present invention has excellent optical characteristics, meets the requirements of ultra-thinness and long focal length, improves imaging quality, and is especially suitable for high-pixel CCD, CMOS and other imaging elements.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 13 is a schematic diagram of the structure of an imaging optical lens according to a fourth embodiment of the present invention.
  • FIG. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 13;
  • FIG. 15 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 13;
  • FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes five lenses. Specifically, the imaging optical lens 10 includes an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in sequence from the object side to the image side.
  • An optical element such as an optical filter GF may be provided between the fifth lens L5 and the image plane Si.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has negative refractive power.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material.
  • the system has the characteristics of long focal length.
  • the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2 is d2, and the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3 Is d4, the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4 is d6, and the axis from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5
  • the upper distance is d8, 1.00 ⁇ d4/(d2+d6+d8) ⁇ 1.50.
  • the focal length of the fifth lens L5 is defined as f5, -2.00 ⁇ f5/f ⁇ -1.20, and the ratio of the focal length f5 of the fifth lens L5 to the focal length f of the overall imaging optical lens 10 is stipulated, which is conducive to field curvature correction within the range of conditions. Improve imaging quality.
  • the focal length of the fourth lens L4 is defined as f4, 0.70 ⁇ f4/f ⁇ 1.20, and the ratio of the focal length f4 of the fourth lens L4 to the focal length f of the overall imaging optical lens 10 is specified, which is beneficial to improve the image quality within the scope of the conditions.
  • the imaging optical lens 10 of the present invention When the focal length of the imaging optical lens 10 of the present invention, the focal length of each lens, and the on-axis distance from the image side of the related lens to the object side satisfy the above relationship, the imaging optical lens 10 can be made to meet the requirements of ultra-thin and long focal length. Good optical performance.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, 1.50 ⁇ (R3+R4)/(R3-R4) ⁇ 10.00, which defines the surface shape of the second lens L2,
  • the surface shape that meets the conditions can reduce the degree of light deflection in the lens and reduce aberrations.
  • the focal length of the first lens L1 is f1, 0.17 ⁇ f1/f ⁇ 0.87, which specifies the ratio of the focal length of the first lens L1 to the overall focal length.
  • the first lens has an appropriate positive refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin lenses.
  • it satisfies 0.28 ⁇ f1/f ⁇ 0.70.
  • the curvature radius R1 of the object side surface of the first lens L1 and the curvature radius R2 of the image side surface of the first lens L1 satisfy the following relationship: -1.51 ⁇ (R1+R2)/(R1-R2) ⁇ -0.40, reasonable control of the first lens
  • the shape of the lens enables the first lens to effectively correct the spherical aberration of the system.
  • -0.95 ⁇ (R1+R2)/(R1-R2) ⁇ -0.50 is satisfied.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05 ⁇ d1/TTL ⁇ 0.36, which is beneficial to realize ultra-thinness.
  • 0.09 ⁇ d1/TTL ⁇ 0.29 is satisfied.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the second lens L2 is f2, which satisfies the following relationship: -5.02 ⁇ f2/f ⁇ -0.36.
  • the on-axis thickness of the second lens L2 is d3, which satisfies the following relationship: 0.01 ⁇ d3/TTL ⁇ 0.05, which is beneficial to realize ultra-thinness.
  • 0.02 ⁇ d3/TTL ⁇ 0.04 is satisfied.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the third lens L3 is f3
  • the following relationship is satisfied: -9.07 ⁇ f3/f ⁇ -0.33.
  • the reasonable distribution of optical power enables the system to have better imaging quality and Lower sensitivity.
  • it satisfies -5.67 ⁇ f3/f ⁇ -0.42.
  • the curvature radius R5 of the object side surface of the third lens L3 and the curvature radius R6 of the image side surface of the third lens L3 satisfy the following relationship: -0.58 ⁇ (R5+R6)/(R5-R6) ⁇ 7.01, which can effectively control the third lens
  • the shape of L3 is conducive to the molding of the third lens L3.
  • the degree of deflection of the light passing through the lens can be eased, and aberrations can be effectively reduced.
  • -0.36 ⁇ (R5+R6)/(R5-R6) ⁇ 5.61 is satisfied.
  • the on-axis thickness of the third lens L3 is d5, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.17, which is beneficial to realize ultra-thinness.
  • 0.02 ⁇ d5/TTL ⁇ 0.13 is satisfied.
  • the curvature radius R7 of the object side surface of the fourth lens L4 and the curvature radius R8 of the image side surface of the fourth lens L4 satisfy the following relationship: 0.55 ⁇ (R7+R8)/(R7-R8) ⁇ 33.07, which can effectively control the fourth lens L4
  • the shape is beneficial to the shaping of the fourth lens L4.
  • the degree of deflection of light passing through the lens can be eased, and aberrations can be effectively reduced.
  • 0.89 ⁇ (R7+R8)/(R7-R8) ⁇ 26.45 is satisfied.
  • the on-axis thickness of the fourth lens L4 is d7, which satisfies the following relationship: 0.05 ⁇ d7/TTL ⁇ 0.35, which is beneficial to realize ultra-thinness.
  • 0.08 ⁇ d7/TTL ⁇ 0.28 is satisfied.
  • the curvature radius R9 of the object side surface of the fifth lens L5 and the curvature radius R10 of the image side surface of the fifth lens L5 satisfy the following relationship: -17.49 ⁇ (R9+R10)/(R9-R10) ⁇ -2.88, which is the fifth lens
  • -17.49 ⁇ (R9+R10)/(R9-R10) ⁇ -2.88 which is the fifth lens
  • it is beneficial to correct the aberration of the off-axis angle of view Preferably, -10.93 ⁇ (R9+R10)/(R9-R10) ⁇ -3.60 is satisfied.
  • the on-axis thickness of the fifth lens L5 is d9, which satisfies the following relationship: 0.02 ⁇ d9/TTL ⁇ 0.10, which is conducive to achieving ultra-thinness.
  • 0.03 ⁇ d9/TTL ⁇ 0.08 is satisfied.
  • the combined focal length of the first lens L1 and the second lens L2 is defined as f12, which satisfies the following relational expression: 0.29 ⁇ f12/f ⁇ 1.03.
  • the imaging optics can be eliminated.
  • the aberration and distortion of the lens 10 can suppress the back focal length of the imaging optical lens 10 and maintain the miniaturization of the image lens system group.
  • the ratio of the focal length f of the imaging optical lens 10 to the total optical length TTL is greater than or equal to 1, and the imaging optical lens 10 has the characteristics of a long focal length.
  • the focal number of the imaging optical lens 10 is defined as FNO, which satisfies the following relationship: FNO ⁇ 2.45, which is conducive to achieving a large aperture and good imaging performance.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 9.56 mm, which is beneficial to realize ultra-thinness.
  • the total optical length TTL is less than or equal to 9.12 mm.
  • the total optical length of the imaging optical lens 10 is TTL
  • the image height of the imaging optical lens 10 is IH, which satisfies the following relationship: TTL/IH ⁇ 4.68, which is conducive to achieving ultra-thinness.
  • the overall optical length TTL of the overall imaging optical lens 10 can be shortened as much as possible, and the characteristics of miniaturization can be maintained.
  • the imaging optical lens 10 of the present invention will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
  • TTL optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points for specific implementations, refer to the following.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the optical filter GF
  • R12 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the optical filter GF;
  • d11 the axial thickness of the optical filter GF
  • d12 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspherical systems.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
  • P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively
  • P5R1 and P5R2 represent the object side and the image side of the fifth lens L5, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. song.
  • Table 17 shows the values corresponding to the various numerical values in each of Examples 1, 2, 3, and 4 and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter of the imaging optical lens is 3.861mm
  • the full-field image height is 2.040mm
  • the diagonal field angle is 24.38°
  • the effective focal length EFL is 9.420
  • the total optical length TTL is 7.584
  • EFL/TTL is 1.242
  • long focal length, ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm pass through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 20 of the second embodiment.
  • the field curvature S in FIG. 8 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. song.
  • Table 17 shows the values corresponding to the various values in each example 1, 2, 3, and 4 and the parameters that have been specified in the conditional expressions.
  • the second embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens is 3.853mm
  • the full-field image height is 2.040mm
  • the diagonal field angle is 24.38°
  • the effective focal length EFL is 9.421
  • the total optical length TTL is 7.252
  • EFL/TTL is 1.299
  • long focal length, ultra-thin, its on-axis and off-axis chromatic aberrations are fully compensated, and it has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm pass through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 20 of the third embodiment.
  • the field curvature S in FIG. 12 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. song.
  • Table 17 shows the values corresponding to the various numerical values in each of Examples 1, 2, 3, and 4 and the parameters specified in the conditional expressions.
  • the third embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens is 3.568mm
  • the full-field image height is 2.040mm
  • the diagonal field angle is 26.00°
  • the effective focal length EFL is 8.706, and the total optical length TTL is 8.688, EFL/TTL is 1.002
  • the focal length is long, ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the fourth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 13 and Table 14 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 14 shows the aspheric surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 15 and Table 16 show the inflection point and stagnation point design data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Stagnation position 1 Stagnation position 2 P1R1 0 To To P1R2 0 To To P2R1 0 To To P2R2 0 To To P3R1 1 0.165 To P3R2 0 To To P4R1 0 To To P4R2 0 To To P5R1 1 1.375 To P5R2 2 1.385 2.195
  • FIG. 14 and 15 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm pass through the imaging optical lens 40 of the fourth embodiment.
  • FIG. 16 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 40 of the fourth embodiment.
  • the field curvature S in FIG. 16 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. song.
  • Table 17 shows the values corresponding to the various numerical values in each of Examples 1, 2, 3, and 4 and the parameters specified in the conditional expressions.
  • the fourth embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens is 3.853mm
  • the full-field image height is 2.040mm
  • the diagonal field angle is 24.30°
  • the effective focal length EFL is 9.400
  • the total optical length TTL is 7.586
  • EFL/TTL is 1.239
  • long focal length, ultra-thin, its on-axis and off-axis chromatic aberrations are fully compensated, and it has excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 Example 4 f/TTL 1.24 1.30 1.00 1.24 d4/(d2+d6+d8) 1.27 1.15 1.00 1.50 f5/f -1.67 -1.20 -1.20 -2.00 f4/f 0.91 0.82 1.20 0.70 f 9.420 9.421 8.706 9.400 f1 3.503 3.270 5.052 3.486 f2 -5.605 -5.155 -21.865 -5.433 f3 -5.517 -4.749 -39.480 -4.699 f4 8.592 7.761 10.446 6.589 f5 -15.736 -11.306 -10.449 -18.790 f12 6.064 5.470 6.007 6.091 Fno 2.44 2.45 2.44 2.44
  • Fno aperture F number

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),摄像光学镜头(10)自物侧至像侧依序包含:第一透镜(L1),第二透镜(L2),第三透镜(L3),第四透镜(L4),以及第五透镜(L5);且满足下列关系式:1.00≤f/TTL≤1.30;1.00≤d4/(d2+d6+d8)≤1.50;-2.00≤f5/f≤-1.20;0.70≤f4/f≤1.20。摄像光学镜头(10)具有大光圈、长焦距和超薄等良好的光学性能。

Description

摄像光学镜头 【技术领域】
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
【背景技术】
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄的长焦距摄像光学镜头。
【发明内容】
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足超薄化和长焦距的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述 摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,以及第五透镜;
所述摄像光学镜头的焦距为f,所述摄像光学镜头的光学总长为TTL,所述第四透镜的焦距为f4,所述第五透镜的焦距为f5,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,满足下列关系式:
1.00≤f/TTL≤1.30;
1.00≤d4/(d2+d6+d8)≤1.50;
-2.00≤f5/f≤-1.20;
0.70≤f4/f≤1.20。
优选地,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:
1.50≤(R3+R4)/(R3-R4)≤10.00。
优选地,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,且满足下列关系式:
0.17≤f1/f≤0.87;
-1.51≤(R1+R2)/(R1-R2)≤-0.40;
0.05≤d1/TTL≤0.36。
优选地,所述第二透镜的焦距为f2,所述第二透镜的轴上厚度为d3,且满 足下列关系式:
-5.02≤f2/f≤0.36;
0.01≤d3/TTL≤0.05。
优选地,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式:
-9.07≤f3/f≤-0.33;
-0.58≤(R5+R6)/(R5-R6)≤7.01;
0.02≤d5/TTL≤0.17。
优选地,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
0.55≤(R7+R8)/(R7-R8)≤33.07;
0.05≤d7/TTL≤0.35。
优选地,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
-17.49≤(R9+R10)/(R9-R10)≤-2.88;
0.02≤d9/TTL≤0.10。
优选地,所述第一透镜与所述第二透镜的组合焦距为f12,满足下列关系式:
0.29≤f12/f≤1.03。
优选地,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:TTL/IH≤4.68。
优选地,所述摄像光学镜头的焦数为FNO,满足下列关系式:FNO≤2.45。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,满足超薄化和长焦距的要求,提高了成像质量,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
【附图说明】
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图;
图13是本发明第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示摄像光学镜头的轴向像差示意图;
图15是图13所示摄像光学镜头的倍率色差示意图;
图16是图13所示摄像光学镜头的场曲及畸变示意图。
【具体实施方式】
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明 的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。第五透镜L5和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力。
第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质。通过合理化配置透镜的材料,使得镜头在超薄化和长焦距的同时具有良好的光学性能。
定义整体摄像光学镜头10的焦距为f,定义摄像光学镜头10的光学总长为TTL,1.00≤f/TTL≤1.30,规定了摄像光学镜头10的焦距f与光学总长TTL的比值,在条件范围内的系统具有长焦距的特点。
定义所述第一透镜L1的像侧面到所述第二透镜L2的物侧面的轴上距离为d2,所述第二透镜L2的像侧面到所述第三透镜L3的物侧面的轴上距离为d4,所述第三透镜L3的像侧面到所述第四透镜L4的物侧面的轴上距离为d6,所述第四透镜L4的像侧面到所述第五透镜L5的物侧面的轴上距离为d8,1.00≤ d4/(d2+d6+d8)≤1.50,当d4/(d2+d6+d8)满足上述条件时,有利于压缩摄像光学镜头10的系统总长,实现超薄化。
定义第五透镜L5的焦距为f5,-2.00≤f5/f≤-1.20,规定了第五透镜L5焦距f5与整体摄像光学镜头10的焦距f的比值,在条件范围内有利于场曲校正,提高成像质量。
定义第四透镜L4的焦距为f4,0.70≤f4/f≤1.20,规定了第四透镜L4焦距f4与整体摄像光学镜头10的焦距f的比值,在条件范围内有利于提高像质。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜像侧面到物侧面的轴上距离满足上述关系式时,可以使摄像光学镜头10满足超薄化和长焦距的同时具有良好的光学性能。
第二透镜L2物侧面的曲率半径为R3,第二透镜L2像侧面的曲率半径为R4,1.50≤(R3+R4)/(R3-R4)≤10.00,规定了第二透镜L2的面型,满足条件的面型可降低光线在镜片内的偏折程度,减小像差。
第一透镜L1的焦距为f1,0.17≤f1/f≤0.87,规定了第一透镜L1的焦距与整体焦距的比值。在规定的范围内时,第一透镜具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化发展。优选地,满足0.28≤f1/f≤0.70。
第一透镜L1物侧面的曲率半径R1,第一透镜L1像侧面的曲率半径R2,满足下列关系式:-1.51≤(R1+R2)/(R1-R2)≤-0.40,合理控制第一透镜的形状,使得第一透镜能够有效地校正系统球差。优选地,满足-0.95≤(R1+R2)/(R1-R2)≤-0.50。
第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足 下列关系式:0.05≤d1/TTL≤0.36,有利于实现超薄化。优选地,满足0.09≤d1/TTL≤0.29。
整体摄像光学镜头10的焦距为f,第二透镜L2焦距f2,满足下列关系式:-5.02≤f2/f≤-0.36,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足-3.14≤f2/f≤-0.46。
第二透镜L2的轴上厚度为d3,满足下列关系式:0.01≤d3/TTL≤0.05,有利于实现超薄化。优选地,满足0.02≤d3/TTL≤0.04。
整体摄像光学镜头10的焦距为f,第三透镜L3焦距f3,以及满足下列关系式:-9.07≤f3/f≤-0.33,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-5.67≤f3/f≤-0.42。
第三透镜L3物侧面的曲率半径R5,第三透镜L3像侧面的曲率半径R6,满足下列关系式:-0.58≤(R5+R6)/(R5-R6)≤7.01,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-0.36≤(R5+R6)/(R5-R6)≤5.61。
第三透镜L3的轴上厚度为d5,满足下列关系式:0.02≤d5/TTL≤0.17,有利于实现超薄化。优选地,满足0.02≤d5/TTL≤0.13。
第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,满足下列关系式:0.55≤(R7+R8)/(R7-R8)≤33.07,可有效控制第四透镜L4的形状,有利于第四透镜L4成型,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足0.89≤(R7+R8)/(R7-R8)≤26.45。
第四透镜L4的轴上厚度为d7,满足下列关系式:0.05≤d7/TTL≤0.35,有利于实现超薄化。优选地,满足0.08≤d7/TTL≤0.28。
第五透镜L5物侧面的曲率半径R9,第五透镜L5像侧面的曲率半径R10,满足下列关系式:-17.49≤(R9+R10)/(R9-R10)≤-2.88,规定的是第五透镜L5的形状,在条件范围内时,随着超薄化发展,有利于补正轴外画角的像差等问题。优选地,满足-10.93≤(R9+R10)/(R9-R10)≤-3.60。
第五透镜L5的轴上厚度为d9,满足下列关系式:0.02≤d9/TTL≤0.10,有利于实现超薄化。优选地,满足0.03≤d9/TTL≤0.08。
本实施方式中,定义所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:0.29≤f12/f≤1.03,在条件式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选的,0.46≤f12/f≤0.83。
本实施方式中,摄像光学镜头10的焦距f与光学总长TTL的比值大于或等于1,摄像光学镜头10具有长焦距的特点。
本实施方式中,定义摄像光学镜头10的焦数为FNO,满足下列关系式:FNO≤2.45,有利于实现大光圈,成像性能好。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于9.56毫米,有利于实现超薄化。优选地,光学总长TTL小于或等于9.12毫米。
本实施方式中,摄像光学镜头10的光学总长为TTL,摄像光学镜头10的像高为IH,满足下列关系式:TTL/IH≤4.68,有利于实现超薄化。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的 单位为mm。
TTL:光学长度(第1透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2019127581-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:光学过滤片GF的物侧面的曲率半径;
R12:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
d11:光学过滤片GF的轴上厚度;
d12:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2019127581-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系。
IH:像高
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20       (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 1.875 0
P1R2 2 0.815 1.385
P2R1 0    
P2R2 0    
P3R1 1 0.145  
P3R2 0    
P4R1 1 1.465  
P4R2 1 1.695  
P5R1 2 0.725 2.085
P5R2 2 0.615 2.015
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1 0    
P1R2 0    
P2R1 0    
P2R2 0    
P3R1 1 0.235  
P3R2 0    
P4R1 0    
P4R2 0    
P5R1 1 1.455  
P5R2 2 1.365 2.205
图2、图3分别示出了波长为650nm、610nm、555nm、510nm和470nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表17示出各实例1、2、3、4中各种数值与条件式中已规定的参数所对应的值。
如表17所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.861mm,全视场像高为2.040mm,对角线方向的视场角为24.38°,有效焦距EFL为9.420,光学总长TTL为7.584,EFL/TTL为1.242,焦距长、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019127581-appb-000003
Figure PCTCN2019127581-appb-000004
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2019127581-appb-000005
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 1.835  
P1R2 0    
P2R1 2 0.445 0.805
P2R2 0    
P3R1 0    
P3R2 0    
P4R1 1 1.465  
P4R2 1 1.645  
P5R1 2 1.105 2.085
P5R2 2 1.415 2.085
【表8】
  驻点个数 驻点位置1 驻点位置2
P1R1 0    
P1R2 0    
P2R1 0    
P2R2 0    
P3R1 0    
P3R2 0    
P4R1 1 1.685  
P4R2 0    
P5R1 1 1.695  
P5R2 2 1.935 2.145
图6、图7分别示出了波长为650nm、610nm、555nm、510nm和470nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图,图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表17示出各实例1、2、3、4中各种数值与条件式中已规定的参 数所对应的值。
如表17所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.853mm,全视场像高为2.040mm,对角线方向的视场角为24.38°,有效焦距EFL为9.421,光学总长TTL为7.252,EFL/TTL为1.299,焦距长、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019127581-appb-000006
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2019127581-appb-000007
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1 0        
P1R2 1 1.075      
P2R1 0        
P2R2 0        
P3R1 0        
P3R2 0        
P4R1 0        
P4R2 0        
P5R1 4 0.465 1.075 1.335 1.985
P5R2 4 0.485 1.105 1.505 2.015
【表12】
  驻点个数 驻点位置1
P1R1 0  
P1R2 0  
P2R1 0  
P2R2 0  
P3R1 0  
P3R2 0  
P4R1 0  
P4R2 0  
P5R1 1 1.605
P5R2 1 1.735
图10、图11分别示出了波长为650nm、610nm、555nm、510nm和470nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过第三实施方式的摄像光学镜头20后的场曲及畸变示意图,图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表17示出各实例1、2、3、4中各种数值与条件式中已规定的参数所对应的值。
如表17所示,第三实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.568mm,全视场像高为2.040mm,对角线方向的视场角为26.00°,有效焦距EFL为8.706,光学总长TTL为8.688,EFL/TTL为1.002,焦距长、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第四实施方式)
第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
Figure PCTCN2019127581-appb-000008
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
Figure PCTCN2019127581-appb-000009
表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 1 1.895    
P1R2 2 0.805 1.405  
P2R1 0      
P2R2 0      
P3R1 1 0.105    
P3R2 0      
P4R1 1 1.515    
P4R2 1 1.755    
P5R1 3 0.685 2.035 2.255
P5R2 2 0.675 1.975  
【表16】
  驻点个数 驻点位置1 驻点位置2
P1R1 0    
P1R2 0    
P2R1 0    
P2R2 0    
P3R1 1 0.165  
P3R2 0    
P4R1 0    
P4R2 0    
P5R1 1 1.375  
P5R2 2 1.385 2.195
图14、图15分别示出了波长为650nm、610nm、555nm、510nm和470nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图 16则示出了,波长为555nm的光经过第四实施方式的摄像光学镜头40后的场曲及畸变示意图,图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表17示出各实例1、2、3、4中各种数值与条件式中已规定的参数所对应的值。
如表17所示,第四实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.853mm,全视场像高为2.040mm,对角线方向的视场角为24.30°,有效焦距EFL为9.400,光学总长TTL为7.586,EFL/TTL为1.239,焦距长、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表17】
参数及条件式 实施例1 实施例2 实施例3 实施例4
f/TTL 1.24 1.30 1.00 1.24
d4/(d2+d6+d8) 1.27 1.15 1.00 1.50
f5/f -1.67 -1.20 -1.20 -2.00
f4/f 0.91 0.82 1.20 0.70
f 9.420 9.421 8.706 9.400
f1 3.503 3.270 5.052 3.486
f2 -5.605 -5.155 -21.865 -5.433
f3 -5.517 -4.749 -39.480 -4.699
f4 8.592 7.761 10.446 6.589
f5 -15.736 -11.306 -10.449 -18.790
f12 6.064 5.470 6.007 6.091
Fno 2.44 2.45 2.44 2.44
其中,Fno:光圈F数。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均 属于本发明的保护范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,以及第五透镜;
    所述摄像光学镜头的焦距为f,所述摄像光学镜头的光学总长为TTL,所述第四透镜的焦距为f4,所述第五透镜的焦距为f5,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,满足下列关系式:
    1.00≤f/TTL≤1.30;
    1.00≤d4/(d2+d6+d8)≤1.50;
    -2.00≤f5/f≤-1.20;
    0.70≤f4/f≤1.20。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:
    1.50≤(R3+R4)/(R3-R4)≤10.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,且满足下列关系式:
    0.17≤f1/f≤0.87;
    -1.51≤(R1+R2)/(R1-R2)≤-0.40;
    0.05≤d1/TTL≤0.36。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,所述第二透镜的轴上厚度为d3,且满足下列关系式:
    -5.02≤f2/f≤-0.36;
    0.01≤d3/TTL≤0.05。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式:
    -9.07≤f3/f≤-0.33;
    -0.58≤(R5+R6)/(R5-R6)≤7.01;
    0.02≤d5/TTL≤0.17。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
    0.55≤(R7+R8)/(R7-R8)≤33.07;
    0.05≤d7/TTL≤0.35。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
    -17.49≤(R9+R10)/(R9-R10)≤-2.88;
    0.02≤d9/TTL≤0.10。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜与所述第二透镜的组合焦距为f12,满足下列关系式:
    0.29≤f12/f≤1.03。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:
    TTL/IH≤4.68。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦数为FNO,满足下列关系式:
    FNO≤2.45。
PCT/CN2019/127581 2019-12-23 2019-12-23 摄像光学镜头 WO2021127898A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127581 WO2021127898A1 (zh) 2019-12-23 2019-12-23 摄像光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127581 WO2021127898A1 (zh) 2019-12-23 2019-12-23 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021127898A1 true WO2021127898A1 (zh) 2021-07-01

Family

ID=76573225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127581 WO2021127898A1 (zh) 2019-12-23 2019-12-23 摄像光学镜头

Country Status (1)

Country Link
WO (1) WO2021127898A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873165B1 (en) * 2013-12-19 2014-10-28 Glory Science Co., Ltd. Optical lens system
CN205485021U (zh) * 2016-03-22 2016-08-17 浙江舜宇光学有限公司 摄远镜头
CN108152936A (zh) * 2018-03-15 2018-06-12 欧菲影像技术(广州)有限公司 镜头和成像装置
CN110361852A (zh) * 2019-07-24 2019-10-22 Oppo广东移动通信有限公司 镜头、摄像模组及电子设备
CN110361841A (zh) * 2019-06-30 2019-10-22 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110398819A (zh) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110531491A (zh) * 2019-08-16 2019-12-03 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873165B1 (en) * 2013-12-19 2014-10-28 Glory Science Co., Ltd. Optical lens system
CN205485021U (zh) * 2016-03-22 2016-08-17 浙江舜宇光学有限公司 摄远镜头
CN108152936A (zh) * 2018-03-15 2018-06-12 欧菲影像技术(广州)有限公司 镜头和成像装置
CN110361841A (zh) * 2019-06-30 2019-10-22 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110398819A (zh) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110361852A (zh) * 2019-07-24 2019-10-22 Oppo广东移动通信有限公司 镜头、摄像模组及电子设备
CN110531491A (zh) * 2019-08-16 2019-12-03 瑞声通讯科技(常州)有限公司 摄像光学镜头

Similar Documents

Publication Publication Date Title
WO2021248576A1 (zh) 摄像光学镜头
WO2021248577A1 (zh) 摄像光学镜头
WO2021097929A1 (zh) 摄像光学镜头
WO2021097925A1 (zh) 摄像光学镜头
WO2021168887A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2021168886A1 (zh) 摄像光学镜头
WO2021168878A1 (zh) 摄像光学镜头
WO2021253518A1 (zh) 摄像光学镜头
WO2021127895A1 (zh) 摄像光学镜头
WO2021127893A1 (zh) 摄像光学镜头
WO2021127892A1 (zh) 光学摄像镜头
WO2021119894A1 (zh) 摄像光学镜头
WO2021109078A1 (zh) 摄像光学镜头
WO2021128261A1 (zh) 摄像光学镜头
WO2021128195A1 (zh) 摄像光学镜头
WO2021127827A1 (zh) 摄像光学镜头
WO2021127898A1 (zh) 摄像光学镜头
WO2021253555A1 (zh) 摄像光学镜头
WO2021168892A1 (zh) 摄像光学镜头
WO2021127891A1 (zh) 摄像光学镜头
WO2021128235A1 (zh) 摄像光学镜头
WO2021127899A1 (zh) 摄像光学镜头
WO2021127874A1 (zh) 摄像光学镜头
WO2021127849A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957298

Country of ref document: EP

Kind code of ref document: A1