WO2021124994A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2021124994A1
WO2021124994A1 PCT/JP2020/045742 JP2020045742W WO2021124994A1 WO 2021124994 A1 WO2021124994 A1 WO 2021124994A1 JP 2020045742 W JP2020045742 W JP 2020045742W WO 2021124994 A1 WO2021124994 A1 WO 2021124994A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
light source
source device
circuit
diode load
Prior art date
Application number
PCT/JP2020/045742
Other languages
English (en)
French (fr)
Inventor
森 大輔
浩伸 柴田
森 亮介
雅樹 大森
近藤 秀樹
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Priority to US17/785,899 priority Critical patent/US11956870B2/en
Priority to EP20902891.9A priority patent/EP4080995A4/en
Priority to KR1020227015853A priority patent/KR20220116431A/ko
Priority to CN202080088224.6A priority patent/CN114830828A/zh
Priority to JP2021565503A priority patent/JP7513909B2/ja
Publication of WO2021124994A1 publication Critical patent/WO2021124994A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • the present disclosure relates to a light source device in which a plurality of light emitting elements are connected in series.
  • a light source device that uses a light emitting diode as a light source may be lit by connecting to a constant current circuit because the electrical resistance of the light emitting diode changes depending on the voltage or current and the voltage-current characteristics do not change linearly. is there. Further, in this light source device, a plurality of light emitting diodes are connected in series and lit at the same time in order to increase the light emitting output.
  • This light source device includes a constant current circuit for lighting by passing a constant current through each light emitting diode connected in series. (See Patent Document 1)
  • the constant current circuit operates so as to detect an increase in current and control the current to a constant current, but there is a possibility that a time delay may occur until the increase in current is detected and controlled to a constant current.
  • the time delay causes an excessive peak current to flow instantaneously, and the peak current may damage a normal light emitting element due to the overcurrent.
  • the present disclosure is to provide a light source device capable of suppressing the failure of any light emitting element from being induced by another light emitting element.
  • the light source device of the present disclosure is a light source device in which a plurality of light emitting elements are connected in series to pass a constant current through a diode load, and is connected to a power supply circuit connected to the diode load and a diode load in series. It is equipped with a peak current limiting circuit. Further, the peak current limiting circuit includes a current detector connected in series with the diode load and a current adjusting circuit for controlling the current of the diode load by the detection voltage of the current detector. Further, the current detector consists of a series circuit of a resistor and a coil.
  • FIG. It is a block diagram of the light source apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram of the light source apparatus which concerns on Embodiment 2.
  • FIG. It is a block diagram of the light source apparatus which concerns on Embodiment 3.
  • FIG. It is a figure which shows the current waveform of the light source apparatus which does not provide a peak current limiting circuit. It is a figure which shows the current waveform of the light source apparatus provided with the peak current limiting circuit which concerns on embodiment.
  • the light source device is a light source device in which a plurality of light emitting elements are connected in series to pass a constant current through a diode load, and a power supply circuit connected to the diode load and a diode load in series. It is equipped with a peak current limiting circuit connected to, and the peak current limiting circuit controls the current of the diode load with the current detector connected in series with the diode load and the current detector's detection voltage.
  • the circuit is provided, and the current detector consists of a series circuit of a diode and a coil.
  • the above light source device includes a peak current limiting circuit in which a plurality of light emitting elements are connected in series and connected in series with a diode load, and the peak current limiting circuit is connected in series with a diode load.
  • a current detector and a current adjusting circuit that controls the current of the diode load by the detection voltage of the current detector are provided. Furthermore, since a coil is connected in series with the resistor to the current detector, the electrical resistance of the diode load drops sharply due to a failure such as an internal short circuit in one of the light emitting elements, causing the current to momentarily drop.
  • a peak voltage is instantaneously induced in the coil of the current detector in proportion to the sudden current fluctuation of the diode load and the coil inductance.
  • the momentarily induced peak voltage controls the current adjustment circuit to momentarily reduce the current of the diode load, which is the output current. Therefore, even in a state where one of the light emitting elements fails and the electrical resistance of the diode load is momentarily reduced, the current of the diode load can be controlled at an extremely fast response speed to suppress the increase in the current.
  • a coil is connected in series with the resistor of the current detector, and the current adjustment circuit is controlled by the peak voltage induced by this coil, that is, the peak voltage is input to the current adjustment circuit. Since the negative feedback to the side limits the current of the diode load, it is possible to suppress an instantaneous increase in the diode load current with a coil having an extremely small inductance.
  • the inductance of the coil connected in series with the resistor is as small as 0.9 ⁇ H.
  • the above light source device has a simple circuit configuration in which a coil with an extremely small inductance is connected to the current detector of the peak current limiting circuit provided to stabilize the current of the diode load to a constant current.
  • the diode load current can be restricted from increasing momentarily.
  • the diode load can be stabilized to a constant current value with the resistor of the current detector. Therefore, in a light source device in which a plurality of light emitting elements are connected in series, even if one of the light emitting elements has a decrease in electrical resistance due to a failure such as an internal short circuit, the other light emitting elements are protected from the harmful effects of overcurrent. However, after that, a predetermined constant current can be passed through the diode load as before the light emitting element fails.
  • the above light source device protects from the peak current that momentarily flows through the other light emitting element even if one of the light emitting elements fails, and even if the number of light emitting elements connected in series is reduced.
  • the light source of the diode load can be lit by stabilizing to a preset constant current value.
  • the current adjusting circuit is a transistor connected in series with a diode load and a current detector, a comparator connected to the input side of the transistor, and a comparator.
  • a reference voltage circuit for inputting a reference voltage to the input terminal of 1 is provided, the detection voltage induced by the current detector is input to the second input terminal of the comparator, the output of the comparator is input to the transistor, and the transistor is The current of the diode load can be controlled.
  • the transistor can be an FET. Furthermore, according to the light source device according to another embodiment, a plurality of FETs can be connected in parallel.
  • the reference voltage circuit can be a circuit capable of changing the reference voltage.
  • the light source device it is provided with a sub-amplifier that amplifies the voltage induced by the current detector, and the output voltage of the sub-amplifier can be input to the input terminal of the input of the comparator.
  • a buffer amplifier that lowers the output impedance of the comparator and outputs it can be connected between the output side of the comparator and the input side of the transistor.
  • the power supply circuit can be a constant current power supply.
  • the resistor can be a winding resistor.
  • the light emitting element can be a laser diode.
  • FIGS. 1 to 4 are block diagrams of the light source devices 100, 200, 300, and 400 according to the present embodiment.
  • a plurality of light emitting elements 1 are connected in series to form a diode load 10, the diode load 10 is connected to a constant current power supply 2, and a preset rated current is passed to light the light emitting element 1.
  • the light emitting element 1 is, for example, a light emitting diode (LED) or a laser diode (LD).
  • LED light emitting diode
  • LD laser diode
  • a circuit board not shown
  • the number of light emitting elements 1 connected in series can be increased, and a large number of light emitting elements 1 can be turned on to increase the light emitting output.
  • all the light emitting elements 1 are driven by a constant set current supplied from the constant current power supply 2.
  • the diode load 10 As the electrical resistance decreases, the current of the diode load 10 increases.
  • the constant current power supply 2 detects an increase in current and controls it to a set value, but there is a time delay until the increased current is controlled to a set value.
  • the delay in the response time causes an excessive current to flow through the light emitting element 1 that has not failed, causing a failure due to the current.
  • the failure of one of the light emitting elements is induced in the other light emitting element.
  • a light source device in which a light emitting element is a laser diode has good response characteristics of the laser diode, and therefore is liable to fail due to overcurrent or excessive output due to laser light.
  • the constant current power supply 2 has an analog method in which a semiconductor switching element is connected in series with the output side, the internal resistance of the semiconductor switching element is adjusted, and the voltage drop value of the semiconductor switching element is controlled to control the output current.
  • a constant current characteristic can be realized with a duty of switching the semiconductor switching element on and off, and high power efficiency can be realized.
  • an electrolytic capacitor with a large capacitance is connected to the output side in order to reduce the ripple of the output voltage and make it a clean direct current, but this electrolytic capacitor is a response that controls the output current to a constant value. It causes the speed to slow down.
  • a high power efficiency switching type constant current power supply can reduce the power loss of the semiconductor switching element, but the delay in response time due to the large capacity electrolytic capacitor connected to the output side is excessive for the light emitting element that has not failed. It causes damage due to overpower of electric current and laser light.
  • FIG. 1 is a block diagram of the light source device 100 according to the first embodiment.
  • the light source device 100 includes a power supply circuit 20 for passing a current through a diode load 10 in which a plurality of light emitting elements 1 are connected in series, and a peak current limiting circuit 30 in which the diode load 10 is connected in series.
  • the peak current limiting circuit 30 is a current detector 31 connected in series with the diode load 10 and a current adjusting circuit 32 that controls the current of the diode load 10 with the detection voltage output to both ends of the current detector 31.
  • the current detector 31 is a series circuit of the resistor 4 and the coil 5.
  • the power supply circuit 20 includes a constant current power supply 2 that allows a pre-controlled current to flow through the diode load 10.
  • the power supply circuit 20 preferably uses a constant voltage constant current power supply.
  • the constant voltage constant current power supply controls the current of the diode load 10 to the set value while supplying the output voltage below the set value.
  • the constant current power supply 2 preferably includes a circuit for changing the value of the current flowing through the diode load 10.
  • the constant current power supply 2 whose current value can be changed changes the current value to be passed through the diode load 10, that is, the output current in the range of 1A to 10A, for example, and causes the light emitting element 1 to be lit with an optimum current.
  • the constant current power supply 2 is a DC / DC converter output voltage and a switching system or an analog system.
  • the switching type constant current power supply 2 has a feature that the weight can be reduced while increasing the power efficiency. Weight reduction can be achieved by omitting a heavy power transformer. Since the constant current power supply 2 controls the output current to a set value by the duty of the semiconductor switching element that switches on and off, the set current can be significantly changed and the amount of heat generated can be reduced.
  • the light source device 100 using the power supply circuit 20 as the constant current power supply 2 sets the set current of the peak current limiting circuit 30 to be the same set current as the constant current power supply 2 of the power supply circuit 20, or to be substantially the same set current.
  • the light source device 100 supplies a constant current set to the diode load 10 from the constant current power supply 2, and any of the light emitting elements 1 is internally short-circuited, or the operating voltage of any of the light emitting elements 1 drops sharply.
  • the peak current limiting circuit 30 suppresses this peak current.
  • the current characteristics in FIG. 5 show the current waveform of the light source device without the peak current limiting circuit.
  • This figure shows a state in which a plurality of (for example, 20) light emitting elements 1 are connected in series, both ends of a specific light emitting element 1 are short-circuited, and the current flowing through the diode load 10 changes.
  • the specific light emitting element 1 is short-circuited, the electric resistance of the diode load 10 decreases and a peak current flows.
  • the time width of the peak current that is, the time width until the peak current decays is close to about 20 msec.
  • the time during which the peak current flows changes depending on the delay in the response time of the constant current power supply 2, but the light emitting element 1 is hindered by overcurrent or overoutput due to laser light.
  • the peak current limiting circuit 30 suppresses the peak current and suppresses the failure of the light emitting element 1 due to the overcurrent or the overoutput due to the laser beam.
  • the current adjustment circuit 32 of the peak current limiting circuit 30 includes a transistor 3 that increases the internal resistance to suppress the peak current at the timing when the current detector 31 detects the peak current, and a timing at which the current detector 31 detects the peak current. It is provided with a comparator 33 that increases the internal resistance of the transistor 3.
  • the comparator 33 compares the detection voltage input from the current detector 31 with the reference voltage, and transmits a signal for increasing the internal resistance of the transistor 3 at the timing when the current detector 31 detects the peak current and the detection voltage becomes high. Output to transistor 3.
  • the current detector 31 connects the resistor 4 and the coil 5 in series.
  • the current detector 31 of FIG. 1 has a coil 5 connected in series with the resistor 4.
  • the current detector 31 can adjust the electric resistance of the resistor 4 and the inductance of the coil 5 to the optimum values.
  • As the resistor 4 a wound resistor in which a resistance wire is wound in a coil shape on the surface of an insulating material such as an insulator can be used.
  • the winding resistor has an inductance, and the electrical resistance is adjusted by the resistivity and length of the resistance wire, and the inductance is adjusted by the number of windings of the resistance wire.
  • the winding resistor has a structure in which the resistor and the coil are integrated, but in the equivalent circuit, the resistor and the coil are connected in series.
  • the voltage across the resistor 4 increases in proportion to the flowing current.
  • the coil 5 raises the detection voltage of the current detector 31 at the timing when the peak current flows and the current suddenly changes, and suppresses the peak current of the diode load 10.
  • the coil 5 raises the induced voltage at both ends at the timing when the peak current is generated.
  • di is the amount of change in the current
  • dt is the time during which the current changes
  • di / dt is the rate at which the peak current increases in a unit time. Since the peak current rapidly increases at the time of rising, the di / dt becomes extremely large at this timing, and the induced voltage becomes considerably high. Therefore, in the current detector 31 in which the coil 5 is connected in series with the resistor 4, the induced voltage across the coil 5 becomes high at the moment when the peak current flows, especially at the rising timing of the peak current, and the detected voltage becomes high. It gets higher. The instantaneously increased detection voltage is input to the input terminal of the comparator 33.
  • the inductance of the coil 5 is set to an optimum value in consideration of the electric resistance of the resistor 4 connected in series, the current flowing through the diode load 10, the transistor 3, the required response speed, and the like.
  • the current of the load 10 is 1A to 10A and the electric resistance of the resistor 4 is 0.2 ⁇ to 0.5 ⁇
  • the current is set to 0.5 ⁇ H to 5 ⁇ H.
  • the current adjusting circuit 32 controls the current flowing through the diode load 10 with the detection voltage input from the current detector 31.
  • the current adjustment circuit 32 limits the current to suppress the peak current. Since the current detector 31 raises the detection voltage when the peak current rises, the current adjustment circuit 32 effectively suppresses the current at the timing when the detection voltage rises, that is, when the peak current flows through the diode load 10.
  • the current adjusting circuit 32 increases the internal resistance of the transistor 3 to suppress the peak current of the diode load 10. Therefore, it includes a transistor 3 connected in series with the diode load 10, and further includes a comparator 33 that controls the internal resistance of the transistor 3 with a detection voltage input from the current detector 31.
  • FET is preferably used.
  • MOSFETs with excellent high current characteristics are suitable. This is because the FET has a large input resistance and a small on-resistance and can efficiently control the current.
  • the transistor 3 is not limited to the FET, and any transistor whose internal resistance can be controlled by an input signal, such as a bipolar transistor or an IGBT, can also be used.
  • the internal resistance of the FET is controlled by the input voltage. In the FET, the input voltage can be increased to reduce the internal resistance, and the input voltage can be decreased to increase the internal resistance.
  • the current adjustment circuit 32C of the light source device 400 shown in FIG. 4 includes a plurality of FETs, and by connecting the plurality of FETs in parallel, it is possible to increase the maximum allowable current in proportion to the number of parallel FETs. It is said.
  • the comparator 33 compares the detection voltage input from the current detector 31 with the reference voltage to control the internal resistance of the transistor 3.
  • the comparator 33 of FIG. 1 includes a differential amplifier 6.
  • the differential amplifier 6 connects the output side to the input side of the transistor 3 and controls the internal resistance of the transistor 3 with the output voltage.
  • a reference voltage circuit 34 for inputting a reference voltage is connected to the first input terminal 6A, and the detection voltage of the current detector 31 is input to the second input terminal 6B.
  • the differential amplifier 6 amplifies the difference voltage between the first input terminal 6A and the second input terminal 6B, or outputs the difference voltage to the transistor 3 without amplifying it.
  • the first input terminal 6A is a + side input terminal
  • the second input terminal 6B is a minus side input terminal.
  • the reference voltage circuit 34 can change the set current of the peak current limiting circuit 30 as a circuit capable of changing the reference voltage.
  • the above peak current limiting circuit 30 operates as follows to suppress the peak current of the diode load 10. 1.
  • the detection voltage of the current detector 31 rises in response to the peak current.
  • the instantaneously increased detection voltage is input to the second input terminal 6B provided in the differential amplifier 6 which is the comparator 33.
  • the differential amplifier 6 compares the voltage of the second input terminal 6B with the reference voltage of the first input terminal 6A, and changes the output voltage to the ⁇ side when the voltage of the second input terminal 6B becomes high. 4.
  • the output voltage changed to the ⁇ side is input to the input side of the transistor 3. 5.
  • the transistor 3 whose input voltage is changed to the ⁇ side increases the internal resistance. 6.
  • the transistor 3 with increased internal resistance reduces the current of the diode load 10 to suppress the peak current.
  • the peak current limiting circuit 30 performs the above operation to suppress the peak current of the diode load 10, but the coil 5 connected in series with the resistor 4 momentarily raises the detected voltage when the peak current rises. Then, at this timing, the internal resistance of the transistor 3 is instantaneously increased. The transistor 3 whose internal resistance is instantaneously increased rapidly suppresses the peak current flowing through the diode load 10.
  • FIG. 6 shows the current characteristics of the current detector 31 flowing through the diode load 10 in the light source device 100 in which the coil 5 is connected in series with the resistor 4.
  • FIG. 5 shows a current waveform flowing through a diode load in a light source device that uses a current detector containing only a resistor without connecting a coil.
  • the time width in which a peak current flows is considerably long, about 20 msec, and the light emitting element has an overcurrent or an overcurrent of laser light. It suffers from output failure.
  • the light source device 100 to which the coil 5 is connected in the current detector 31 as shown in FIG.
  • the time width in which the peak current flows is about 100 ⁇ sec, which is shortened to about 1/200, and further.
  • the maximum current of the peak current is also reduced, and it is possible to prevent obstacles due to the overcurrent of the light emitting element 1 and the overoutput of the laser beam.
  • FIG. 6 shows the current characteristics measured with the diode load current as 2A, the electrical resistance of the resistor as 0.5 ⁇ , and the coil inductance as 0.9 ⁇ H.
  • FIG. 2 is a block diagram of the light source device 200 according to the second embodiment.
  • the current adjustment circuit 32A of the light source device 200 in this figure includes a sub-amplifier 7 that amplifies the voltage induced by the current detector 31.
  • the light source device 200 is characterized in that the heat generated by the Joule heat of the current detector 31 can be reduced to reduce the detection error due to the temperature change of the current detector 31. Since the sub-amplifier 7 amplifies the voltage of the current detector 31 and inputs it to the comparator 33, the electric resistance and the inductance of the current detector 31 are reduced to lower the detection voltage of the current detector 31 while being input to the comparator 33. Is because a predetermined voltage can be input.
  • the electric resistance and inductance of the current detector 31 can be reduced to 1/10, and the amount of heat generated by the Joule heat of the current detector 31 can be reduced to 1/10. If the input reference voltage and the detection voltage of the comparator 33 are too small, it becomes difficult for the comparator 33 to control the current with high accuracy. For example, assuming that the electrical resistance of the resistor 4 is 0.2 ⁇ , the current value of the diode load 10 is 2A, the detection voltage is 0.4V, and this voltage is input to the comparator 33.
  • the electrical resistance of the resistor 4 can be reduced to 1/10 to 0.02 ⁇ to reduce the calorific value of Joule heat, but the input voltage of the comparator 33 drops to 0.04V and the internal resistance of the transistor 3 is reduced. It becomes difficult to control with high precision.
  • the detection voltage of the current detector 31 is amplified 10 times and input to the comparator 33, the input voltage of the comparator 33 becomes 0.4V, and the current can be controlled with high accuracy.
  • FIG. 3 is a block diagram of the light source device 300 according to the third embodiment.
  • the buffer amplifier 8 is connected between the output side of the comparator 33 and the input side of the transistor.
  • the buffer amplifier 8 can lower the output impedance by using an amplifier circuit with 100% negative feedback.
  • the buffer amplifier 8 converts the output of the comparator 33 into impedance and inputs it to the transistor 3. Since the light source device 300 lowers the output impedance of the comparator 33 by the buffer amplifier 8 and inputs it to the transistor 3, the input capacitance of the transistor 3 is quickly charged. Therefore, the internal resistance of the transistor 3 is quickly controlled by the output signal of the comparator 33, responds to the increase in the peak current in a short time, and is suppressed more efficiently.
  • the peak current limiting circuit in which the transistor 3 is a MOSFET or an IGBT can increase the current of the diode load to increase the light emission output, but the large input capacitance of the transistor 3 causes a delay in the response time.
  • the output impedance of the 100% negative feedback buffer amplifier 8 is small, and the response time delay of the transistor 3 having a large input capacitance can be shortened. Therefore, the peak current limiting circuit 30 can quickly suppress the peak current of the diode load 10 while increasing the current of the diode load 10 to increase the light emission output.
  • the light source device can be effectively used as a light source device in which a plurality of light emitting elements are connected in series to increase the light emission output.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

複数の発光素子を同時に点灯して発光出力を大きくしながら、何れかの発光素子の障害が他の発光素子に誘発されるのを抑制できる光源装置を提供する。 光源装置は、複数の発光素子(1)が直列に接続されたダイオード負荷(10)に一定の電流を流す光源装置であって、ダイオード負荷(10)に接続してなる電源回路(20)と、ダイオード負荷(10)と直列に接続してなるピーク電流制限回路(30)を備える。また、ピーク電流制限回路(30)は、ダイオード負荷(10)と直列に接続してなる電流検出器(31)と、電流検出器(31)の検出電圧でダイオード負荷(10)の電流を制御する電流調整回路(32)とを備える。さらに、電流検出器(31)は、抵抗器(4)とコイル(5)との直列回路からなる。

Description

光源装置
 本開示は、複数の発光素子を直列に接続している光源装置に関する。
 発光ダイオードを光源に使用する光源装置は、発光ダイオードが電圧、あるいは電流によって電気抵抗が変化して、電圧-電流特性が直線的に変化しないので、定電流回路に接続して点灯されることがある。さらに、この光源装置は発光出力を大きくするために、複数の発光ダイオードを直列に接続して同時に点灯している。この光源装置は、直列に接続している各々の発光ダイオードに一定の電流を流して点灯するために、定電流回路を備える。(特許文献1参照)
特開2016-129129号公報
 定電流回路は、電流の増加を検出して電流を一定の電流に制御するように動作するが、電流の増加を検出して一定の電流に制御するまでに時間遅れが生じるおそれがある。時間遅れは、瞬時的に過大なピーク電流を流す原因となり、ピーク電流は正常な発光素子に過電流による障害を与えるおそれがある。
 本開示は、何れかの発光素子の障害が他の発光素子に誘発されるのを抑制できる光源装置を提供することにある。
 本開示の光源装置は、複数の発光素子を直列に接続してなるダイオード負荷に一定の電流を流す光源装置であって、ダイオード負荷に接続してなる電源回路と、ダイオード負荷と直列に接続してなるピーク電流制限回路を備える。また、ピーク電流制限回路が、ダイオード負荷と直列に接続してなる電流検出器と、電流検出器の検出電圧でダイオード負荷の電流を制御する電流調整回路とを備える。さらに、電流検出器が、抵抗器とコイルとの直列回路からなる。
 本開示によると、何れかの発光素子の障害が他の発光素子に誘発されるのを抑制できる。
実施形態1に係る光源装置のブロック図である。 実施形態2に係る光源装置のブロック図である。 実施形態3に係る光源装置のブロック図である。 実施形態4に係る光源装置のブロック図である。 ピーク電流制限回路を設けない光源装置の電流波形を示す図である。 実施形態に係るピーク電流制限回路が設けられた光源装置の電流波形を示す図である。
 一実施形態に係る光源装置によれば、複数の発光素子が直列に接続されたダイオード負荷に一定の電流を流す光源装置であって、ダイオード負荷に接続してなる電源回路と、ダイオード負荷と直列に接続してなるピーク電流制限回路を備えており、ピーク電流制限回路が、ダイオード負荷と直列に接続してなる電流検出器と、電流検出器の検出電圧でダイオード負荷の電流を制御する電流調整回路とを備え、電流検出器が、抵抗器とコイルとの直列回路からなる。
 以上の光源装置は、複数の発光素子を直列に接続してなるダイオード負荷と直列に接続しているピーク電流制限回路を備えており、このピーク電流制限回路には、ダイオード負荷と直列に接続している電流検出器と、電流検出器の検出電圧でダイオード負荷の電流を制御する電流調整回路とを設ける。さらに、電流検出器には、抵抗器と直列にコイルを接続しているので、発光素子のいずれかが内部ショートなどの故障でダイオード負荷の電気抵抗が急激に低下して、電流が瞬間的に増加すると、電流検出器のコイルには、ダイオード負荷の急激な電流変動とコイルのインダクタンスに比例して瞬間的にピーク電圧が誘導される。瞬間的に誘導されるピーク電圧は、電流調整回路を制御して、出力電流であるダイオード負荷の電流を瞬間的に減少させる。したがって、いずれかの発光素子が故障してダイオード負荷の電気抵抗が瞬間的に小さくなる状態においても、極めて早い応答速度でダイオード負荷の電流を制御して、電流の増加を抑制できる。
 とくに、以上の光源装置は、電流検出器の抵抗器と直列にコイルを接続して、このコイルに誘導されるピーク電圧で電流調整回路を制御して、すなわち、ピーク電圧を電流調整回路の入力側に負帰還してダイオード負荷の電流を制限するので、極めて小さいインダクタンスのコイルで、ダイオード負荷電流の瞬間的増加を抑制できる。たとえば、以下の実施例の光源装置にあっては、抵抗器と直列に接続するコイルのインダクタンスが0.9μHと極めて小さい。とくに、以上の光源装置は、ダイオード負荷の電流を一定の電流に安定化するために設けているピーク電流制限回路の電流検出器に、極めて小さいインダクタンスのコイルを接続するという簡単な回路構成としながら、ダイオード負荷の電流が瞬間的に増加するのを制限できる。
 また、コイルのインダクタンスで瞬間的なピーク電流を抑制した後は、電流検出器の抵抗器で、ダイオード負荷を一定の電流値に安定化できる。このため、複数の発光素子を直列に接続している光源装置において、いずれかの発光素子が内部ショートなどの故障で電気抵抗が低下しても、他の発光素子を過電流の弊害から保護しながら、その後は発光素子が故障する以前と同様にあらかじめ設定している一定の電流をダイオード負荷に流すことができる。したがって、以上の光源装置は、いずれかの発光素子が故障しても他の発光素子に瞬間的に流れるピーク電流から保護し、さらに、直列に接続している発光素子の個数が少なくなっても、あらかじめ設定している一定の電流値に安定化して、ダイオード負荷の発光素子を点灯できる。
 また、他の実施形態に係る光源装置によれば、電流調整回路が、ダイオード負荷及び電流検出器と直列に接続してなるトランジスタと、トランジスタの入力側に接続してなるコンパレータと、コンパレータの第1の入力端子に基準電圧を入力する基準電圧回路とを備え、電流検出器に誘導される検出電圧がコンパレータの第2の入力端子に入力され、コンパレータの出力がトランジスタに入力されて、トランジスタがダイオード負荷の電流を制御することができる。
 さらに、他の実施形態に係る光源装置によれば、トランジスタをFETとすることができる。さらにまた、他の実施形態に係る光源装置によれば、複数のFETを並列に接続することができる。
 さらにまた、他の実施形態に係る光源装置によれば、基準電圧回路は、基準電圧を変更できる回路とすることができる。
 さらにまた、他の実施形態に係る光源装置によれば、電流検出器に誘導される電圧を増幅するサブアンプを備え、サブアンプの出力電圧をコンパレータの入力の入力端子に入力することができる。
 さらにまた、他の実施形態に係る光源装置によれば、コンパレータの出力側とトランジスタの入力側との間に、コンパレータの出力インピーダンスを低下して出力するバッファーアンプを接続することができる。
 さらにまた、他の実施形態に係る光源装置によれば、電源回路を定電流電源とすることができる。
 さらにまた、他の実施形態に係る光源装置によれば、抵抗器を巻き線抵抗器とすることができる。
 さらにまた、他の実施形態に係る光源装置によれば、発光素子をレーザーダイオードとすることができる。
 以下、図面に基づいて本開示を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。
 さらに以下に示す実施形態は、本発明の技術思想の具体例を示すものであって、本開示を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
 図1~図4は、本実施形態に係る光源装置100、200、300、400のブロック図である。発光素子1は、複数個を直列に接続してダイオード負荷10とし、このダイオード負荷10を定電流電源2に接続して、予め設定している定格電流を流して点灯される。発光素子1は、例えば、発光ダイオード(LED)やレーザーダイオード(LD)である。ダイオード負荷10は、複数の発光素子1を直列に接続して回路基板(図示せず)に実装しているダイオードアレイ、あるいは複数個の発光素子1を脱着できるように電気接続したものが使用される。光源装置100、200、300、400は、直列に接続する発光素子1の個数を多くして、多数の発光素子1を点灯して発光出力を大きくできる。すべての発光素子1の正常な動作状態では、すべての発光素子1が定電流電源2から供給される一定の設定電流で駆動される。しかしながら、複数の発光素子1を直列に接続して点灯しているタイミングで、何れかの発光素子1が内部ショート、あるいは何れかの発光素子1の動作電圧が急峻に低下すると、ダイオード負荷10の電気抵抗が低下するので、ダイオード負荷10の電流が増加する。定電流電源2は、電流の増加を検出して設定値に制御するが、増加した電流を設定値に制御するまでに時間遅れがある。応答時間の遅れは、故障していない発光素子1に過大な電流を流して電流による障害を与える。例えば、何れかの発光素子の障害が他の発光素子に誘発される。とくに、発光素子をレーザーダイオードとする光源装置は、レーザーダイオードの応答特性が良いため、過電流やレーザー光による過出力で故障しやすい。
 定電流電源2は、出力側に直列に半導体スイッチング素子を接続し、この半導体スイッチング素子の内部抵抗を調整して、半導体スイッチング素子の電圧降下値をコントロールして出力電流を制御するアナログ方式と、DC/DCコンバータで出力電流を制御するスイッチング方式とがある。スイッチング方式は、半導体スイッチング素子をオンオフに切り換えるデューティーで定電流特性を実現して高い電力効率を実現できる。スイッチング方式は、出力電圧のリップルを少なくして綺麗な直流とするために、出力側に大きな静電容量の電解コンデンサが接続されるが、この電解コンデンサは、出力電流を一定値にコントロールする応答速度を遅くする原因となる。電解コンデンサの放電と充電の時間遅れが、出力電流の応答時間を遅らせるからである。高い電力効率のスイッチング方式の定電流電源は、半導体スイッチング素子の電力ロスを少なくできるが、出力側に接続している大容量の電解コンデンサによる応答時間の遅れが、故障していない発光素子に過電流やレーザー光の過出力による損傷を与える。
1.実施形態1
(光源装置)
 図1は、実施形態1に係る光源装置100のブロック図である。
 光源装置100は、複数の発光素子1を直列に接続しているダイオード負荷10に電流を流す電源回路20と、ダイオード負荷10と直列に接続しているピーク電流制限回路30とを備える。また、ピーク電流制限回路30は、ダイオード負荷10と直列に接続している電流検出器31と、電流検出器31の両端に出力される検出電圧でダイオード負荷10の電流を制御する電流調整回路32とを備える。電流検出器31は、抵抗器4とコイル5との直列回路である。
(電源回路)
 電源回路20は、ダイオード負荷10に予め制御している電流を流す定電流電源2を備える。電源回路20は、好ましくは定電圧定電流電源を使用する。定電圧定電流電源は、出力電圧を設定値以下で供給しながら、ダイオード負荷10の電流を設定値に制御する。定電流電源2は、好ましくは、ダイオード負荷10に流す電流値を変更する回路を備えている。電流値を変更できる定電流電源2は、ダイオード負荷10に流す電流値、すなわち出力電流を、例えば1A~10Aの範囲で変更して、発光素子1に最適な電流を流して点灯する。定電流電源2は、DC/DCコンバータの出力電圧とスイッチング方式又はアナログ方式である。スイッチング方式の定電流電源2は、電力効率を高くしながら、軽量化できる特徴がある。軽量化は、重い電源トランスを省略することで実現できる。この定電流電源2は、オンオフに切り換える半導体スイッチング素子のデューティーで、出力電流を設定値に制御するので、設定電流を大幅に変更でき、しかも発熱量も少なくできる。
(ピーク電流制限回路)
 ピーク電流制限回路30の電流調整回路32は、何れかの発光素子1が内部ショート、あるいは何れかの発光素子1の動作電圧が急峻に低下して、ダイオード負荷10の電流が瞬時的に増加するのを制限して、発光素子1の過電流やレーザー光の過出力による弊害を防止する。電源回路20を定電流電源2とする光源装置100は、ピーク電流制限回路30の設定電流を、電源回路20の定電流電源2と同じ設定電流とし、あるいはほぼ同じ設定電流とする。この光源装置100は、定電流電源2からダイオード負荷10に設定された一定の電流を供給し、何れかの発光素子1が内部ショート、あるいは何れかの発光素子1の動作電圧が急峻に低下して、定電流電源2の応答時間の遅れが原因で、ダイオード負荷10にピーク電流が流れると、このピーク電流をピーク電流制限回路30が抑制する。
 図5の電流特性は、ピーク電流制限回路を設けない光源装置の電流波形を示している。この図は、複数(たとえば20個)の発光素子1を直列にして、特定の発光素子1の両端を短絡して、ダイオード負荷10に流れる電流が変化する状態を示している。特定の発光素子1が短絡すると、ダイオード負荷10の電気抵抗が減少してピーク電流が流れる。図5の電流特性において、ピーク電流の時間幅、すなわちピーク電流が減衰するまでの時間幅は約20msec近くになる。ピーク電流が流れる時間は、定電流電源2の応答時間の遅れによって変化するが、発光素子1は過電流やレーザー光による過出力の障害を受ける。
 ピーク電流制限回路30は、ピーク電流を抑制して過電流やレーザー光による過出力による発光素子1の障害を抑制する。ピーク電流制限回路30の電流調整回路32は、電流検出器31がピーク電流を検出するタイミングで内部抵抗を増加してピーク電流を抑制するトランジスタ3と、電流検出器31がピーク電流を検出するタイミングでトランジスタ3の内部抵抗を大きくするコンパレータ33を備えている。コンパレータ33は、電流検出器31から入力される検出電圧を基準電圧に比較して、電流検出器31がピーク電流を検出して検出電圧が高くなるタイミングでトランジスタ3の内部抵抗を大きくする信号をトランジスタ3に出力する。
(電流検出器)
 電流検出器31は、抵抗器4とコイル5を直列に接続している。図1の電流検出器31は、抵抗器4と直列にコイル5を接続している。この電流検出器31は、抵抗器4の電気抵抗と、コイル5のインダクタンスを最適値に調整できる。抵抗器4には、抵抗線を碍子などの絶縁材の表面にコイル状に巻き付けた巻き線抵抗器を使用することができる。巻き線抵抗器にはインダクタンスがあり、抵抗線の抵抗率と長さで電気抵抗を調整して、抵抗線の巻き回数でインダクタンスを調整する。巻き線抵抗器は、抵抗器とコイルとが一体構造であるが、等価回路において、抵抗器とコイルは直列に接続される。
 抵抗器4は、流れる電流に比例して両端の電圧が高くなる。コイル5は、ピーク電流が流れて電流が急激に変化するタイミングで、電流検出器31の検出電圧を高くして、ダイオード負荷10のピーク電流を抑制する。コイル5は、ピーク電流が発生するタイミングで両端の誘導電圧を高くする。とくに、ピーク電流の立ち上がり時において検出電圧を高くする。ピーク電流がコイル5の両端に誘導する電圧(E)が、以下の式(I)で示すように、コイル5のインダクタンス(L)に比例して大きくなるからである。
   E=L×di/dt  式(I)
 ただし、式(I)において、diは電流の変化量、dtは電流が変化する時間で、di/dtはピーク電流が単位時間に増加する割合を示している。ピーク電流は、立ち上がり時に急激に電流が増加するので、このタイミングでdi/dtが極めて大きくなって、誘導電圧が相当に高くなる。したがって、抵抗器4と直列にコイル5を接続している電流検出器31は、ピーク電流が流れる瞬間、とくにピーク電流の立ち上がりタイミングにおいて、コイル5の両端の誘導電圧が高くなって、検出電圧が高くなる。瞬時的に大きくなった検出電圧は、コンパレータ33の入力端子に入力される。コイル5のインダクタンスは、直列に接続している抵抗器4の電気抵抗、ダイオード負荷10に流れる電流、トランジスタ3、要求される応答速度などを考慮して最適値に設定されるが、たとえば、ダイオード負荷10の電流を1A~10A、抵抗器4の電気抵抗を0.2Ω~0.5Ωとする回路構成において、0.5μH~5μHに設定する。
(電流調整回路)
 電流調整回路32は、電流検出器31から入力される検出電圧でダイオード負荷10に流れる電流を制御する。電流調整回路32は、ダイオード負荷10にピーク電流が流れて、電流検出器31から入力される検出電圧が瞬時的に高くなると、電流を制限してピーク電流を抑制する。電流検出器31は、ピーク電流の立ち上がり時に検出電圧を高くするので、電流調整回路32は、検出電圧が高くなるタイミング、すなわちダイオード負荷10にピーク電流が流れるタイミングで効果的に電流を抑制する。電流調整回路32は、トランジスタ3の内部抵抗を大きくしてダイオード負荷10のピーク電流を抑制する。したがって、ダイオード負荷10と直列に接続しているトランジスタ3を備え、さらに電流検出器31から入力される検出電圧でトランジスタ3の内部抵抗を制御するコンパレータ33を備える。
(トランジスタ)
 トランジスタ3は、好ましくはFETを使用する。とくに、優れた大電流特性のMOSFETが適している。FETは入力抵抗が大きく、オン抵抗が小さくて効率よく電流をコントロールできるからである。ただ、トランジスタ3はFETに限らず入力信号で内部抵抗をコントロールできる全てのトランジスタ、たとえばバイポーラトランジスタやIGBT等も使用できる。FETは入力電圧で内部抵抗がコントロールされる。FETは、入力電圧を高くして内部抵抗を小さく、入力電圧を低くして内部抵抗を大きくできる。さらに、図4に示す光源装置400の電流調整回路32Cは、FETを複数備えており、複数のFET同士を並列接続することでFETの並列数に比例して最大許容電流を増加させることを可能としている。
(コンパレータ)
 コンパレータ33は、電流検出器31から入力される検出電圧を基準電圧に比較して、トランジスタ3の内部抵抗をコントロールする。図1のコンパレータ33は差動アンプ6を備えている。差動アンプ6は、出力側をトランジスタ3の入力側に接続して、出力電圧でトランジスタ3の内部抵抗をコントロールする。差動アンプ6は、第1の入力端子6Aには基準電圧を入力する基準電圧回路34を接続して、第2の入力端子6Bには電流検出器31の検出電圧を入力している。差動アンプ6は、第1の入力端子6Aと第2の入力端子6Bの差電圧を増幅し、あるいは増幅することなくトランジスタ3に出力する。差動アンプ6は、第1の入力端子6Aを+側入力端子、第2の入力端子6Bを-側入力端子としている。基準電圧回路34は、基準電圧を変更できる回路として、ピーク電流制限回路30の設定電流を変更できる。
 以上のピーク電流制限回路30は、以下の動作をしてダイオード負荷10のピーク電流を抑制する。
1.ダイオード負荷10にピーク電流が流れると、ピーク電流に対応して電流検出器31の検出電圧が上昇する。
 とくに、ピーク電流の立ち上がり時に電流の変化値が大きくなるので、このタイミングでコイル5に誘導される電圧が高くなって、検出電圧は瞬時的に高くなる。
2.瞬時的に上昇した検出電圧はコンパレータ33である差動アンプ6に設けている第2の入力端子6Bに入力される。
3.差動アンプ6は、第2の入力端子6Bの電圧を第1の入力端子6Aの基準電圧に比較し、第2の入力端子6Bの電圧が高くなると、出力電圧を-側に変化させる。
4.-側に変化した出力電圧は、トランジスタ3の入力側に入力される。
5.入力電圧が-側に変化したトランジスタ3は、内部抵抗を増加させる。
6.内部抵抗の増加したトランジスタ3は、ダイオード負荷10の電流を減少して、ピーク電流を抑制する。
 ピーク電流制限回路30は、以上の動作をしてダイオード負荷10のピーク電流を抑制するが、抵抗器4に直列に接続しているコイル5が、ピーク電流の立ち上がり時に検出電圧を瞬時的に高くして、このタイミングでトランジスタ3の内部抵抗を瞬時的に増加させる。内部抵抗が瞬時的に増加したトランジスタ3は、ダイオード負荷10に流れるピーク電流を速やかに抑制する。
 図6は、電流検出器31において、コイル5を抵抗器4に直列に接続している光源装置100におけるダイオード負荷10に流れる電流特性を示している。図5はコイルを接続しない抵抗器のみの電流検出器を使用する光源装置におけるダイオード負荷に流れる電流波形を示している。図5に示すように、電流検出器においてコイルを接続しない抵抗器のみからなる光源装置は、ピーク電流が流れる時間幅が約20msecと相当に長くなって、発光素子が過電流やレーザー光の過出力による障害を受ける。これに対して電流検出器31においてコイル5を接続している光源装置100は、図6に示すように、ピーク電流が流れる時間幅が約100μsecとなって、約1/200に短縮され、さらにピーク電流の最大電流も小さくなって、発光素子1の過電流やレーザー光の過出力による障害を防止できる。ただし、図6はダイオード負荷の電流を2A、抵抗器の電気抵抗を0.5Ω、コイルのインダクタンスを0.9μHとして測定した電流特性を示している。
2.実施形態2
 図2は、実施形態2に係る光源装置200のブロック図である。この図の光源装置200の電流調整回路32Aは、電流検出器31に誘導される電圧を増幅するサブアンプ7を備える。この光源装置200は、電流検出器31のジュール熱による発熱を小さくして、電流検出器31の温度変化による検出誤差を少なくできる特徴がある。サブアンプ7が、電流検出器31の電圧を増幅してコンパレータ33に入力するので、電流検出器31の電気抵抗とインダクタンスを小さくして、電流検出器31の検出電圧を低くしながら、コンパレータ33には所定の電圧を入力できるからである。たとえば、サブアンプ7の増幅率を10倍とすれば、電流検出器31の電気抵抗とインダクタンスを1/10として、電流検出器31のジュール熱による発熱量を1/10にできる。コンパレータ33は、入力される基準電圧と検出電圧が小さすぎると、高い精度で電流をコントロールするのが難しくなる。たとえば、抵抗器4の電気抵抗を0.2Ω、と仮定すると、ダイオード負荷10の電流値を2Aで検出電圧は0.4Vとなって、この電圧がコンパレータ33に入力される。抵抗器4の電気抵抗を1/10に低下して、0.02Ωとして、ジュール熱の発熱量は小さくできるが、コンパレータ33の入力電圧が0.04Vと低下して、トランジスタ3の内部抵抗を高精度でコントロールするのが難しくなる。電流検出器31の検出電圧を10倍に増幅してコンパレータ33に入力すると、コンパレータ33の入力電圧は0.4Vとなって、電流を高い精度でコントロールできる。
3.実施形態3
 図3は、実施形態3に係る光源装置300のブロック図である。この図の光源装置300の電流調整回路32Bは、コンパレータ33の出力側とトランジスタの入力側との間にバッファーアンプ8を接続している。バッファーアンプ8は、100%負帰還の増幅回路で出力インピーダンスを低くできる。バッファーアンプ8は、コンパレータ33の出力をインピーダンス変換してトランジスタ3に入力する。この光源装置300は、バッファーアンプ8でコンパレータ33の出力インピーダンスを低下させてトランジスタ3に入力するので、トランジスタ3の入力容量を速やかに充電する。したがって、コンパレータ33の出力信号でトランジスタ3の内部抵抗を速やかにコントロールして、ピーク電流の増加に短時間に応答して、さらに効率よく抑制する。
 電流容量の大きいトランジスタ、たとえばMOSFETやIGBTは入力容量が大きい。したがって、トランジスタ3をMOSFETやIGBTとするピーク電流制限回路は、ダイオード負荷の電流を大きくして発光出力を大きくできるが、トランジスタ3の大きな入力容量が、応答時間を遅らせる原因となる。図3のピーク電流制限回路30は、100%負帰還のバッファーアンプ8の出力インピーダンスが小さく、入力容量の大きいトランジスタ3の応答時間遅れを短縮できる。したがって、このピーク電流制限回路30は、ダイオード負荷10の電流を大きくして発光出力を大きくしながら、ダイオード負荷10のピーク電流を速やかに抑制できる。
 以上、本発明に係るいくつかの実施形態について例示したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない限り任意のものとすることができることは言うまでもない。
 本開示に係る光源装置は、複数の発光素子を直列に接続して発光出力を大きくする光源装置として有効に利用することができる。
100、200、300、400…光源装置
1…発光素子
2…定電流電源
3…トランジスタ
4…抵抗器
5…コイル
6…差動アンプ
6A…第1の入力端子
6B…第2の入力端子
7…サブアンプ
8…バッファーアンプ
10…ダイオード負荷
20…電源回路
30…ピーク電流制限回路
31…電流検出器
32、32A、32B、32C…電流調整回路
33…コンパレータ
34…基準電圧回路

Claims (10)

  1.  複数の発光素子が直列に接続されたダイオード負荷に一定の電流を流す光源装置であって、
      前記ダイオード負荷に接続してなる電源回路と、
      前記ダイオード負荷と直列に接続してなるピーク電流制限回路と、
    を備えており、
     前記ピーク電流制限回路が、
      前記ダイオード負荷と直列に接続してなる電流検出器と、
      前記電流検出器の検出電圧で前記ダイオード負荷の電流を制御する電流調整回路とを備え、
     前記電流検出器が、抵抗器とコイルとの直列回路からなることを特徴する光源装置。
  2.  請求項1に記載する光源装置であって、
     前記電流調整回路が、
      前記ダイオード負荷及び前記電流検出器と直列に接続してなるトランジスタと、
      前記トランジスタの入力側に接続してなるコンパレータと、
      前記コンパレータの第1の入力端子に基準電圧を入力する基準電圧回路と、を備え、
     前記電流検出器に誘導される検出電圧が前記コンパレータの第2の入力端子に入力され、
     前記コンパレータの出力が前記トランジスタに入力されて、
     前記トランジスタが前記ダイオード負荷の電流を制御するようにしてなる光源装置。
  3.  請求項2に記載する光源装置であって、
     前記トランジスタがFETであることを特徴とする光源装置。
  4.  請求項3に記載する光源装置であって、
     前記FETを複数備え、前記複数のFETが並列に接続されてなることを特徴とする光源装置。
  5.  請求項2ないし4のいずれかに記載する光源装置であって、
     前記基準電圧回路が、基準電圧を変更できる回路であることを特徴とする光源装置。
  6.  請求項2ないし5のいずれかに記載する光源装置であって、
     前記電流検出器に誘導される電圧を増幅するサブアンプを備え、
     前記サブアンプの出力電圧が前記コンパレータの入力端子に入力されてなることを特徴とする光源装置。
  7.  請求項2ないし6のいずれかに記載する光源装置であって、
     前記コンパレータの出力側と前記トランジスタの入力側との間に、前記コンパレータの出力インピーダンスを低下して出力するバッファーアンプを接続してなることを特徴とする光源装置。
  8.  請求項1ないし7のいずれかに記載する光源装置であって、
     前記電源回路が定電流電源であることを特徴とする光源装置。
  9.  請求項1ないし8のいずれかに記載する光源装置であって、
     前記抵抗器が巻き線抵抗器であることを特徴とする光源装置。
  10.  請求項1ないし9のいずれかに記載する光源装置であって、
     前記発光素子はレーザーダイオードであることを特徴とする光源装置。
PCT/JP2020/045742 2019-12-18 2020-12-08 光源装置 WO2021124994A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/785,899 US11956870B2 (en) 2019-12-18 2020-12-08 Light-source device
EP20902891.9A EP4080995A4 (en) 2019-12-18 2020-12-08 LIGHT SOURCE DEVICE
KR1020227015853A KR20220116431A (ko) 2019-12-18 2020-12-08 광원 장치
CN202080088224.6A CN114830828A (zh) 2019-12-18 2020-12-08 光源装置
JP2021565503A JP7513909B2 (ja) 2019-12-18 2020-12-08 光源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019228191 2019-12-18
JP2019-228191 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021124994A1 true WO2021124994A1 (ja) 2021-06-24

Family

ID=76476589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045742 WO2021124994A1 (ja) 2019-12-18 2020-12-08 光源装置

Country Status (6)

Country Link
US (1) US11956870B2 (ja)
EP (1) EP4080995A4 (ja)
JP (1) JP7513909B2 (ja)
KR (1) KR20220116431A (ja)
CN (1) CN114830828A (ja)
WO (1) WO2021124994A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117729666B (zh) * 2023-12-08 2024-07-16 深圳市谐振电子有限公司 一种用于深度调光的电源控制电路及新型开关电源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244801A1 (en) * 2009-03-27 2010-09-30 Diodes Zetex Semiconductors Limited Controller for switching regulator, switching regulator and light source
JP2012138279A (ja) * 2010-12-27 2012-07-19 Sanken Electric Co Ltd Led駆動装置
US20140203709A1 (en) * 2013-01-23 2014-07-24 Infineon Technologies Austria Ag LED Driver Circuit
JP2016129129A (ja) 2015-01-09 2016-07-14 パナソニックIpマネジメント株式会社 照明システムおよび照明器具

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194383A (ja) 1982-05-07 1983-11-12 Sumitomo Electric Ind Ltd 連続組立発光ダイオ−ド
CN2037326U (zh) * 1988-09-25 1989-05-10 黄照朝 一种照明和转弯示向及其供电装置
JPH05161253A (ja) 1991-12-09 1993-06-25 Fuji Electric Co Ltd 半導体電力変換装置のスナバ回路
JP3375411B2 (ja) 1994-02-25 2003-02-10 富士写真フイルム株式会社 発光ダイオードの選別方法
JP2006013557A (ja) 2005-09-16 2006-01-12 Yasuo Fujita 直列接続した多数の発光ダイオードを任意に明るさを変更できる電子回路。
CN201051011Y (zh) * 2006-10-09 2008-04-23 李全 模拟电子秤检测分析仪
CN101389168B (zh) * 2007-09-12 2010-05-26 深圳市泉芯电子技术有限公司 高压大功率led恒流驱动装置
US7919936B2 (en) 2008-08-05 2011-04-05 O2 Micro, Inc Driving circuit for powering light sources
US20100283773A1 (en) 2009-05-08 2010-11-11 Yong-Hun Kim Driving integrated circuit and image display device including the same
JP5110197B2 (ja) 2011-01-18 2012-12-26 サンケン電気株式会社 Led駆動装置及びled照明装置
JP2013033644A (ja) 2011-08-02 2013-02-14 Panasonic Corp Led駆動装置及びそれを用いた照明装置
DE102015217712B4 (de) 2014-09-16 2017-01-19 Koito Manufacturing Co., Ltd. Beleuchtungsschaltkreis und Fahrzeugleuchte, die einen solchen aufweist
JP6591814B2 (ja) 2014-09-16 2019-10-16 株式会社小糸製作所 点灯回路およびそれを用いた車両用灯具
US9730289B1 (en) * 2016-02-08 2017-08-08 Cree, Inc. Solid state light fixtures having ultra-low dimming capabilities and related driver circuits and methods
JP6692071B2 (ja) * 2016-07-26 2020-05-13 パナソニックIpマネジメント株式会社 点灯装置、および照明器具
US10511142B2 (en) * 2017-05-03 2019-12-17 Analog Modules, Inc. Pulsed laser diode drivers and methods
CN109496008A (zh) 2017-09-12 2019-03-19 上海明石光电科技有限公司 Led驱动电路、led电子整流器及led照明设备
JP6928840B2 (ja) 2018-01-17 2021-09-01 古河電気工業株式会社 発光装置、ファイバレーザ装置、および発光素子の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244801A1 (en) * 2009-03-27 2010-09-30 Diodes Zetex Semiconductors Limited Controller for switching regulator, switching regulator and light source
JP2012138279A (ja) * 2010-12-27 2012-07-19 Sanken Electric Co Ltd Led駆動装置
US20140203709A1 (en) * 2013-01-23 2014-07-24 Infineon Technologies Austria Ag LED Driver Circuit
JP2016129129A (ja) 2015-01-09 2016-07-14 パナソニックIpマネジメント株式会社 照明システムおよび照明器具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080995A4

Also Published As

Publication number Publication date
EP4080995A1 (en) 2022-10-26
US20230023001A1 (en) 2023-01-26
JPWO2021124994A1 (ja) 2021-06-24
EP4080995A4 (en) 2024-01-03
JP7513909B2 (ja) 2024-07-10
CN114830828A (zh) 2022-07-29
US11956870B2 (en) 2024-04-09
KR20220116431A (ko) 2022-08-23

Similar Documents

Publication Publication Date Title
US4716274A (en) Distributed station welding system
US7279878B2 (en) Output regulating device for regulating output of electric power source depending on input therefrom
US7990202B2 (en) System and method for driving bipolar transistors in switching power conversion
JP6045611B2 (ja) ゲート駆動回路
US8331111B2 (en) Switching power supply device
JP6932347B2 (ja) 駆動回路及び発光装置
US7400118B1 (en) High efficiency single-inductor dual-control loop power converter
JP5168413B2 (ja) 電圧駆動型素子を駆動する駆動装置
US9974129B1 (en) Circuit and method for LED current regulation and ripple control
US11791081B2 (en) Coil driving device
US20170155385A1 (en) Control circuit with feedback
JP6099581B2 (ja) スイッチング電源装置
US4785149A (en) Distributed station welding system
TW201340779A (zh) 功率切換雙極接面電晶體之動態控制
US4814966A (en) Shunt switched resistor regulator with diode snubber
US5073695A (en) Welding power supply with short circuit protection
WO2021124994A1 (ja) 光源装置
US20220321018A1 (en) Switching power supply circuit
US20040022074A1 (en) Overcurrent output protecting circuit and constant-voltage switching power supply incorporating the same
US10615681B2 (en) Switching power supply circuit
KR101998434B1 (ko) 전류 측정 장치 및 전류 측정 장치의 작동 방법
US4816741A (en) Switched resistor regulator with diode-snubber for parasitic inductance in switched resistor
US8461818B1 (en) Transient response device, having parallel connected diode and transistor, for improving transient response of power supply
JP2020180943A (ja) 発光ダイオードの検査装置
JPH11206116A (ja) 定電圧定電流電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902891

Country of ref document: EP

Effective date: 20220718