WO2021124977A1 - 繊維補強樹脂中空成形体及びその製造方法 - Google Patents

繊維補強樹脂中空成形体及びその製造方法 Download PDF

Info

Publication number
WO2021124977A1
WO2021124977A1 PCT/JP2020/045616 JP2020045616W WO2021124977A1 WO 2021124977 A1 WO2021124977 A1 WO 2021124977A1 JP 2020045616 W JP2020045616 W JP 2020045616W WO 2021124977 A1 WO2021124977 A1 WO 2021124977A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
resin
integrated
hollow molded
molded body
Prior art date
Application number
PCT/JP2020/045616
Other languages
English (en)
French (fr)
Inventor
飯尾隼人
高野直哉
平石陽一
田中忠玄
中明裕太
駒井優貴
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Priority to CN202080088199.1A priority Critical patent/CN114867595A/zh
Priority to EP20902026.2A priority patent/EP4079499A4/en
Priority to JP2021565495A priority patent/JPWO2021124977A1/ja
Priority to US17/786,907 priority patent/US20230021569A1/en
Publication of WO2021124977A1 publication Critical patent/WO2021124977A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • B29C70/207Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration arranged in parallel planes of fibres crossing at substantial angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/48Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling
    • B29C33/50Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling elastic or flexible
    • B29C33/505Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling elastic or flexible cores or mandrels, e.g. inflatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/562Winding and joining, e.g. winding spirally spirally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/226Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure comprising mainly parallel filaments interconnected by a small number of cross threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/446Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/462Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/543Fixing the position or configuration of fibrous reinforcements before or during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/545Perforating, cutting or machining during or after moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1808Handling of layers or the laminate characterised by the laying up of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • B32B7/035Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features using arrangements of stretched films, e.g. of mono-axially stretched films arranged alternately
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C2043/3665Moulds for making articles of definite length, i.e. discrete articles cores or inserts, e.g. pins, mandrels, sliders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • B29K2105/0881Prepregs unidirectional
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0094Geometrical properties
    • B29K2995/0097Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/16Structural features of fibres, filaments or yarns e.g. wrapped, coiled, crimped or covered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/073Parts immersed or impregnated in a matrix partially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/54Filled microcapsules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2313/00Elements other than metals
    • B32B2313/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes

Definitions

  • the present invention relates to a fiber reinforced resin hollow molded body using a semipreg and a method for manufacturing the same.
  • Carbon fiber which is a reinforcing fiber material, is composited with various matrix resins, and the obtained fiber reinforced plastic has come to be widely used in various fields and applications.
  • unidirectional continuous fibers using a thermoplastic resin as a matrix resin are used.
  • a prepreg in which a carbon fiber base material is completely impregnated with a resin has been used, and it has been suggested that the impact resistance when used as a composite material is excellent, the molding time is short, and the molding cost can be reduced.
  • the prepreg completely impregnated with the resin has high hardness, poor flexibility, and is difficult to round.
  • Semipreg is an unimpregnated base sheet in which the matrix resin is adhered / fused on the fiber base material or in a semi-impregnated state, and is soft and has excellent shapeability. In addition, since molding can be performed directly, molding efficiency is also excellent.
  • Patent Document 1 proposes to integrate a fiber-reinforced resin preform into a metal molded body by using an expandable mandrel.
  • Patent Document 2 a long fiber oriented prepreg sheet is wound around the outer circumference of a mandrel with an internal pressure holding tube, and a short fiber two-dimensional random prepreg sheet is further wound around a nodal portion to expand the internal pressure holding tube in a mold.
  • a method for manufacturing a golf shaft has been proposed.
  • Patent Document 3 proposes a method for manufacturing a pipe in which a tape-shaped fiber-reinforced composite material containing a specific fluororesin and reinforcing fibers is wound around the outer periphery of the first layer.
  • Patent Document 4 proposes to use a sheet-shaped molding base material in which a non-woven fabric made of a thermoplastic resin is laminated on a sheet material in which reinforcing fibers are arranged in one direction as a pipe molding base material.
  • the above-mentioned conventional technique has a problem that the raw material base material is hard or cannot be handled by itself, and there is a problem that hollow molding processing is also difficult.
  • the present invention provides a thin fiber reinforced resin hollow molded body having excellent shapeability and a method for producing the same, using a semipreg that is easy to handle, in order to solve the above-mentioned conventional problems.
  • the present invention is a fiber-reinforced resin hollow molded body using a resin-integrated fiber sheet, wherein the resin-integrated fiber sheet is a unidirectional continuous fiber in which continuous fiber groups are opened and arranged in parallel in one direction. And, the hollow molded body contains a thermoplastic resin existing at least on the surface of the unidirectional continuous fiber, so that an overlapping portion is formed in a state where one or a plurality of the resin integrated fiber sheets are laminated. It is a fiber-reinforced resin hollow molded body that is wound, the unidirectional continuous fiber is impregnated with the thermoplastic resin, and the resin-integrated fiber sheet is integrated.
  • the method for producing a fiber-reinforced resin hollow molded body of the present invention includes a unidirectional continuous fiber in which continuous fiber groups are opened and arranged in parallel in one direction, and a thermoplastic resin existing on at least the surface of the unidirectional continuous fiber.
  • a resin-integrated sheet containing the above one or more of the resin-integrated fiber sheets are laminated on the surface of the elastic body, and the resin-integrated fiber sheet is wound so as to form an overlapping portion.
  • the wound elastic body is placed in a heating mold having a hollow shape, a pressure fluid is supplied to the inside of the elastic body to perform pneumatic molding, the thermoplastic resin is melted, and the one-way continuous
  • a heating mold having a hollow shape
  • a pressure fluid is supplied to the inside of the elastic body to perform pneumatic molding
  • the thermoplastic resin is melted, and the one-way continuous
  • the fiber reinforced resin hollow molded body of the present invention is a resin containing unidirectional continuous fibers in which continuous fiber groups are opened and arranged in parallel in one direction, and a thermoplastic resin existing at least on the surface of the unidirectional continuous fibers.
  • a fiber reinforced resin hollow molded body having good handleability of the semipreg and having excellent shapeability and a method for producing the same.
  • the method for producing a hollow molded product of the present invention has a fast molding cycle and can obtain a high-quality hollow molded product in a short time.
  • FIG. 1A is a schematic perspective view of a fiber reinforced resin hollow molded body according to an embodiment of the present invention
  • FIG. 1B is a schematic cross-sectional view of the same.
  • FIG. 2 is a schematic explanatory view showing a method of laminating the resin-integrated carbon fiber sheet used for molding the fiber-reinforced resin hollow molded body of FIG.
  • FIG. 3A is a schematic perspective view of a mandrel used for hollow molding
  • FIG. 3B is a schematic perspective view in which a resin-integrated carbon fiber sheet is wound around the mandrel
  • FIG. 3C is a cross-sectional view of FIG. 3B.
  • FIG. 4A is a schematic plan view showing a state in which a mandrel wound with a resin-integrated carbon fiber sheet is placed in a molding die
  • FIG. 4B is a sectional view taken along line II of FIG. 4A.
  • FIG. 5 is a schematic perspective view of a resin-integrated carbon fiber sheet used for molding a fiber-reinforced resin hollow molded product according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of the resin-integrated carbon fiber sheet shown in FIG. 5 in the width direction.
  • FIG. 7 is a schematic process diagram showing a method for manufacturing the resin-integrated carbon fiber sheet shown in FIG.
  • FIG. 8 is a test force-displacement measurement graph at the end and the center of the fiber reinforced resin hollow molded body of Example 1.
  • FIG. 9 is a test force-displacement measurement graph at the end and the center of the fiber reinforced resin hollow molded body of Example 2.
  • the present invention is a fiber reinforced resin hollow molded body using a resin integrated fiber sheet (hereinafter, the fiber reinforced resin hollow molded body may be abbreviated as "hollow molded body").
  • the resin-integrated fiber sheet includes unidirectional continuous fibers in which continuous fiber groups are opened and arranged in parallel in one direction, and a thermoplastic resin present at least on the surface of the unidirectional continuous fibers.
  • the hollow molded body of the present invention is wound so as to form an overlapping portion in a state where one or a plurality of resin-integrated fiber sheets are laminated, and the fiber sheet is impregnated with a thermoplastic resin to integrate the resin.
  • the synthetic fiber sheet is integrated.
  • the resin-integrated fiber sheet used in the production of a hollow molded body contains crosslinked fibers in a direction in which the unidirectional continuous fibers intersect, and the thermoplastic resin integrates the unidirectional continuous fibers and the crosslinked fibers. It is preferable that the fiber is used.
  • the resin-integrated fiber sheet may include auxiliary threads arranged in the other direction on the unidirectional continuous fiber.
  • the auxiliary yarn keeps the orientation of the fiber sheet constant, and examples of the auxiliary yarn include glass fiber, aramid fiber, polyester fiber, nylon fiber, vinylon fiber and the like.
  • the main components of the fibers of the resin-integrated fiber sheet used in the present invention are unidirectional continuous fibers that have been opened and arranged in parallel in one direction, and are unidirectionally long fibers.
  • the subcomponent of the fiber is preferably a crosslinked fiber arranged in a direction intersecting with the unidirectional continuous fiber.
  • the main component is preferably 75 to 99% by mass, and the sub-component is preferably 1 to 25% by mass, assuming that the fibers contained in the resin-integrated fiber sheet are 100% by mass.
  • the thermoplastic resin must be adhered as a powder from above the unidirectional continuous fiber and the crosslinked fiber, heat-sealed at least on the surface of the unidirectional continuous fiber, and the unidirectional continuous fiber and the crosslinked fiber are integrated. preferable. Since this sheet has unidirectional continuous fibers and crosslinked fibers integrated with a heat-sealed thermoplastic resin, it is easy to handle, and when laminating (including laminating accompanying winding) and when molding. The oper
  • the resin-integrated fiber sheet is preferably a semi-preg in which a thermoplastic powder resin serving as a matrix is attached to the surface of unidirectional continuous fibers and heat-sealed.
  • a thermoplastic powder resin serving as a matrix is attached to the surface of unidirectional continuous fibers and heat-sealed.
  • the unidirectional continuous fiber is preferably 75 to 99% by mass, more preferably 80 to 97% by mass, and further preferably 85 to 97% by mass. ..
  • the crosslinked fiber is preferably 1 to 25% by mass, more preferably 3 to 20% by mass, and further preferably 3 to 15% by mass.
  • the resin-integrated fiber sheet has high integrity of the unidirectional continuous fiber and high tensile strength in the width direction.
  • the fiber volume (Vf) of the resin-integrated fiber sheet is preferably 20 to 65% by volume and 35 to 80% by volume of the thermoplastic resin, more preferably 25 to 60% by volume of the fiber and 40 to 75% by volume of the resin.
  • the resin component of the resin-integrated fiber sheet can be directly used as the matrix resin component of the hollow molded product. That is, it is not necessary to add a new resin when manufacturing the hollow molded product.
  • the mass per unit area of the resin-integrated fiber sheet is preferably 10 to 3000 g / m 2 , more preferably 20 to 2000 g / m 2 , and even more preferably 30 to 1000 g / m 2 .
  • the fiber is preferably at least one selected from carbon fiber, glass fiber and high elastic modulus fiber having an elastic modulus of 380 cN / dtex or more.
  • the high elasticity fiber include aramid fiber, particularly para-aramid fiber (elasticity: 380 to 980 cN / dtex), polyallylate fiber (elasticity: 600 to 741 cN / dtex), and heterocyclic polymer (PBO, elasticity). : 1060 to 2200 cN / dtex) Fiber, high molecular weight polyethylene fiber (elasticity: 883 to 1413 cN / dtex), polyvinyl alcohol fiber (PVA, strength: 14 to 18 cN / dtex), etc. (Encyclopedia of Fibers, p. 522, March 25, 2002, Maruzen). These fibers are useful as resin reinforcing fibers. Carbon fiber is particularly useful.
  • the thickness of one of the resin-integrated fiber sheets is preferably 0.01 to 5.0 mm.
  • a resin-integrated fiber sheet having a thickness in this range is easy to mold.
  • one or two or more resin-integrated fiber sheets are laminated and wound.
  • the preferred number of layers is 2 to 20, and more preferably 3 to 15.
  • thermoplastic resin examples include polyamide resins, polycarbonate resins, polypropylene resins, polyester resins, polyethylene resins, acrylic resins, phenoxy resins, polystyrene resins, polyimide resins, and polyether ether ketone resins. It can be used, but is not limited to these.
  • the resin adhered state of the resin-integrated fiber sheet of the present invention is that the resin is melted and solidified near the surface of the spread fiber sheet and adhered, and the resin is impregnated inside the spread fiber sheet. It is preferably absent or partially impregnated. In the above state, it is preferable to laminate and mold a plurality of resin-integrated fiber sheets.
  • the width of the spread fiber sheet (hereinafter, also referred to as “spread fiber sheet”) is preferably 0.1 to 5.0 mm per 1000 constituent fibers. Specifically, the width of the spread fiber sheet is about 0.1 to 1.5 mm per 1000 constituent fibers in the case of a large tow such as 50K or 60K, and the constituent fibers in the case of a regular tow such as 12K or 15K. It is about 0.5 to 5.0 mm per 1000 pieces.
  • K indicates that the number of constituent fibers is 1000. As the number of constituent fibers of the tow per fiber increases, the twist of the fibers increases and it becomes difficult to open the fibers, so that the width of the opening sheet also becomes narrower.
  • the unopened fiber tow sold by the carbon fiber manufacturer can be expanded to form an easy-to-use spread fiber sheet, which can be supplied for molding various hollow molded bodies.
  • the number of carbon fiber bundles (tows) supplied for manufacturing the resin-integrated fiber sheet is preferably 5,000 to 50,000 / bundle, and 10 to 280 carbon fiber bundles (tows) are used for fiber opening means. It is preferable to supply.
  • a plurality of carbon fiber bundles (tow) are supplied and opened to form a single sheet in this way, the space between the carbon fiber bundle (toe) and the carbon fiber bundle (toe) is easily cleaved, but in various directions.
  • the crosslinked fibers having the property are adhered and fixed to the spread fiber sheet by the resin, the cleavage between the toes can be prevented.
  • the average length of the crosslinked fibers is preferably 1 mm or more, more preferably 5 mm or more.
  • the carbon fiber sheet has high strength in the width direction and is excellent in handleability.
  • the method for producing a resin-integrated fiber sheet used for producing a hollow molded product of the present invention includes, for example, the following steps.
  • a carbon fiber sheet will be described as a fiber sheet.
  • the carbon fiber filament group is opened by at least one means selected from passing through a plurality of rolls, passing through a spread bar, and air spread, and arranged in parallel in one direction, at the time of opening.
  • the crosslinked fibers are generated from the carbon fiber filament group after the opening of the fibers, or the crosslinked fibers are dropped onto the carbon fiber sheet during or after the opening of the fibers.
  • the crosslinked fibers is an average one or more per area 10 mm 2 of the carbon fiber sheet.
  • crosslinked fibers When the carbon fiber filament group is opened by passing through a roll or an opening bar, by applying tension to the carbon fiber filament group, crosslinked fibers can be generated from the carbon fiber filament group at the time of opening.
  • the tension of the carbon fiber filament group can be, for example, in the range of 2.5 to 30 N per 15,000 fibers.
  • air defibration it is preferable to generate crosslinked fibers by a roll or a defibration bar after this.
  • the crosslinked fibers are generated from the carbon fiber filament group, the crosslinked fibers are in a state of being interlaced with the carbon fibers constituting the carbon fiber sheet.
  • crossing includes entanglement.
  • some or all of the crosslinked fibers are present in the carbon fiber sheet and are sterically interlaced with the carbon fibers arranged in one direction.
  • a powder resin is applied to the opened carbon fiber sheet.
  • the powder resin is heated and melted in a pressure-free (no pressure) state, cooled, and the resin is partially present on at least a part of the surface of the carbon fiber sheet.
  • the crosslinked fibers are adhered and fixed to the carbon fiber sheet with the resin on the surface.
  • the hollow molded body of the present invention is formed by laminating one or more of the resin-integrated fiber sheets on the surface of an elastic body and winding them so as to form an overlapping portion. It is preferable that the resin-integrated fiber sheet is wound at least two times or more in a state where one or a plurality of resin-integrated fiber sheets are laminated.
  • the width of the overlap portion is preferably 3 mm or more, more preferably 10 mm or more. In the present invention, when two turns are wound, an overlap portion having a width equivalent to the circumference is generated, and when three turns are wound, an overlap portion having a width twice the circumference is generated. To do.
  • the elastic body may be a mandrel.
  • the elastic body may be a mandrel.
  • the elastic body when two sheets are laminated, it can be set to 0 ° / 90 °.
  • a hollow molded body having the mechanical properties required for the hollow molded body can be obtained.
  • one resin-integrated fiber sheet for example, a long molded body wound diagonally with respect to the length direction of the mandrel, or a plurality of molded bodies in the 90 ° direction with respect to the length direction of the mandrel.
  • a wound hollow molded body is obtained.
  • the hollow molded body includes a pipe, a shaft, a frame, and the like, and the cross section can be a circular hollow body, a quadrangular hollow body, or a hollow body having various other shapes.
  • the hollow molded body of the present invention is preferably molded by a fluid that expands outward from the hollow portion.
  • the fluid include pressure fluids such as compressed air.
  • the method for producing a hollow molded product of the present invention includes the following steps.
  • the elastic body around which the resin-integrated fiber sheet is wound is placed in a heating die having a hollow shape, and a pressure fluid is supplied to the inside of the elastic body to perform compressed air molding (for example,).
  • C A step of melting a thermoplastic resin and integrating the resin-integrated fiber sheet impregnated and wound in a unidirectional continuous fiber.
  • the method for producing a hollow molded product of the present invention includes the following steps.
  • A' A step of winding one or more resin-integrated fiber sheets around the surface of an elastic body.
  • B' A step of arranging the elastic body around which the resin-integrated fiber sheet is wound in a heating mold having a hollow cavity.
  • C' A pressure fluid is supplied to the inside of the elastic body, and the resin-integrated fiber sheet is expanded outward from the elastic body to form a hollow, and the thermoplastic resin is melted to melt the entire laminated portion (winding). The step of impregnating the entire resin-integrated fiber sheet).
  • D' Next, the step of cooling.
  • the plurality of resin-integrated fiber sheets are wound in the step (a) and the step (a'), the plurality of resin-integrated resin sheets are laminated so that the directions of the unidirectional continuous fibers are different. It is preferable to wind it around. As a result, a hollow molded body having the mechanical properties required for the hollow molded body can be obtained. Further, the resin-integrated fiber sheet may be wound directly on the surface of the elastic body, or the resin-integrated fiber sheet may be wound to form a preform and then arranged on the surface of the elastic body.
  • FIG. 1A is a schematic perspective view of the hollow molded body 30 according to the embodiment of the present invention
  • FIG. 1B is a schematic cross-sectional view of the hollow molded body 30.
  • the inside of the hollow molded body 30 is hollow in the length direction, and the fiber reinforced resin portion 31 is integrated by laminating a plurality of resin-integrated carbon fiber sheets.
  • Reference numeral 32 denotes an overlapping portion of the resin-integrated carbon fiber sheet.
  • the hollow molded body 30 has a preferred diameter (outer diameter) of 10 to 200 mm, a preferred length of 50 to 5000 mm, a preferred thickness of 0.03 to 5 mm, and a more preferred thickness of 0.04 to 5 mm.
  • FIG. 2 is a schematic explanatory view showing a method of laminating the resin-integrated carbon fiber sheet used for molding the fiber-reinforced resin hollow molded body of FIG.
  • the resin-integrated carbon fiber sheet 33a has a unidirectional continuous fiber at 0 °
  • the resin-integrated carbon fiber sheet 33b has a unidirectional continuous fiber at 90 °.
  • the portion 34 where the resin-integrated carbon fiber sheets 33a and 33b overlap is cut out and wound around the mandrel.
  • the number of windings may be one or a plurality of times. In the case of one-time winding, partially overlap.
  • FIG. 3A is a schematic perspective view of a mandrel 35 used for hollow molding
  • FIG. 3B is a schematic perspective view of a resin-integrated carbon fiber sheet 37 wound around the mandrel 35
  • FIG. 3C is a sectional view of FIG. 3B. ..
  • a jig 36 is attached to the tip of the mandrel 35 to seal the pressure fluid in the mandrel.
  • the mandrel is, for example, a tube made of fluororubber (heat resistant limit temperature 230 ° C.) or silicone rubber (heat resistant limit temperature 230 ° C.), for example, a tube having an outer diameter of 19 mm, an inner diameter of 15 mm, and a length of 500 mm.
  • the resin-integrated carbon fiber sheet is wound around n times, and the width of the overlapping portion is the sum of the circumference of n-1 circumference and the length of the portion shown by 38 in the figure. It is a thing.
  • FIG. 4A is a schematic plan view showing a state in which a mandrel 35 wound with a resin-integrated carbon fiber sheet 37 is placed in a molding die
  • FIG. 4B is a sectional view taken along line II of FIG. 4A.
  • the molding die is composed of a lower mold 39 and an upper mold 40 and is heated.
  • a mandrel 35 wound with a resin-integrated carbon fiber sheet 37 is placed in the mold and fixed to one end of the mandrel 35. Pressure air is supplied from the air supply port 41 to expand the mandrel.
  • the resin-integrated carbon fiber sheet 37 wound around the mandrel 35 expands to the mold, and the thermoplastic resin on the surface of the resin-integrated carbon fiber sheet 37 is melted by being heated by the mold, and the entire laminated portion is formed. (The entire wound resin-integrated carbon fiber sheet 37) is impregnated. Next, the mold is water-cooled and cooled. As a result, a fiber reinforced resin hollow molded body is obtained.
  • FIG. 5 is a schematic perspective view of the resin-integrated carbon fiber sheet 1 used for manufacturing the hollow molded product according to the embodiment of the present invention
  • FIG. 6 is a schematic view of the resin-integrated carbon fiber sheet 1 in the width direction. It is a cross-sectional view.
  • Crosslinked fibers 3 are arranged in various directions on the surface of the opened unidirectional carbon fibers 2.
  • the resin 4 is melt-solidified and adhered to the vicinity of the surface of the unidirectional carbon fiber 2, and the resin 4 is not impregnated or partially impregnated inside the unidirectional carbon fiber 2.
  • the resin 4 adheres and fixes the crosslinked fiber 3 to the surface of the unidirectional carbon fiber 2. As shown in FIG.
  • crosslinked fibers 3a and 3b are present on the surface of the unidirectional carbon fiber 2.
  • the crosslinked fibers 3a are all on the surface of the unidirectional carbon fibers 2.
  • a part of the crosslinked fiber 3b is on the surface of the unidirectional carbon fiber 2, and a part of the crosslinked fiber 3b is in a state of entering the inside and interlacing with the carbon fiber.
  • the resin 4 adheres and fixes the crosslinked fiber 3 to the surface of the unidirectional carbon fiber 2.
  • the surface of the unidirectional carbon fiber 2 has a portion to which the resin 4 is attached and a portion 5 to which the resin is not attached.
  • the portion 5 to which the resin does not adhere serves as a passage through which the air inside the fiber sheet escapes when the resin-integrated carbon fiber sheet 1 is heated in a laminated state and molded into a fiber-reinforced resin molded product. Pressurization makes it easier for the resin on the surface to impregnate the entire inside of the fiber sheet. As a result, the resin 4 becomes a matrix resin of a fiber-reinforced resin hollow molded body.
  • FIG. 7 is a schematic process diagram showing a method for manufacturing a resin-integrated carbon fiber sheet used for manufacturing a hollow molded product according to an embodiment of the present invention.
  • the carbon fiber filament group (toe) 8 is passed.
  • the fiber is opened (roll opening step 23). Air defibration may be used instead of roll defibration.
  • the spread fiber roll may be fixed or rotated, or may vibrate in the width direction.
  • the opened tow is nipated between the nip rolls 9a and 9b, passed between a plurality of bridge rolls 12a-12b installed between the nip rolls 9a and 9b, and the tension of the toe is applied per 15,000, for example (1).
  • the tension of the toe is applied per 15,000, for example (1).
  • crosslinked fibers are generated (crosslinked fiber generation step 24).
  • the bridge roll may rotate or oscillate in the width direction.
  • the bridge roll is, for example, a plurality of rolls having a satin finish, uneven surface, or a mirror surface, and the bridge roll is arranged in a bent state with respect to the carbon fiber filament group, fixed, rotated, vibrated in the width direction, or bridged by a combination thereof.
  • Generate fibers. 13a-13g is a guide roll.
  • the dry powder resin 15 is sprinkled on the surface of the spread sheet from the powder supply hopper 14, supplied into the heating device 16 in a pressure-free state and heated to melt the dry powder resin 15, and between the guide rolls 13e and 13 g. Cooling.
  • the dry powder resin 18 is sprinkled on the back surface of the spread fiber sheet from the powder supply hopper 17, and the dry powder resin 18 is supplied into the heating device 19 in a pressure-free state and heated to melt the dry powder resin 18, cool it, and wind up the roll 20. (Powder resin applying step 25).
  • the dry powder resins 15 and 18 are, for example, polypropylene resins (melting point: 150 to 165 ° C.), and the temperatures in the heating devices 16 and 19 are, for example, + 5 to 60 ° C. of the melting point, softening point or fluidization point of the dry powder resin.
  • the residence time is, for example, 4 seconds each.
  • Powder resin can be applied by powder coating method, electrostatic coating method, spraying method, fluid immersion method, etc.
  • a powder coating method in which the powder resin is dropped on the surface of the carbon fiber spread sheet is preferable.
  • a dry powder-like powder resin is sprinkled on the opened carbon fiber sheet.
  • the resin-integrated carbon fiber sheet is a semi-preg, so that it can be directly molded. Therefore, the hollow molded body can be molded without softening before molding and moving to the molding die of the softened material. Further, the shaping of the resin-integrated carbon fiber sheet and the impregnation of the entire fiber base material of the thermoplastic resin can be performed almost at the same time.
  • the resin-integrated carbon fiber sheet is a semi-preg, so that it can be molded in a high cycle, and has excellent shapeability and moldability. (3) Since the powdery thermoplastic resin is heat-sealed, the impregnation property between fibers is good.
  • the hollow molded body is excellent in air release during molding, and voids are less likely to occur.
  • the main component of the fiber of the fiber-integrated resin sheet is a continuous fiber (not a short fiber) such as a carbon fiber. Therefore, a thin and high-strength hollow molded body can be obtained.
  • the semipreg is used in the present invention, the thermal history for the resin can be reduced. Thereby, deterioration of the resin can be prevented.
  • Prepreg Long time during sheet preparation + Preheating (softening of prepreg) + Molding + Thermosetting
  • Semipreg Short time during sheet preparation + Heating only during molding
  • the semipreg can speed up the molding time.
  • the prepreg is softened and then cooled when it is moved to the molding die, the molded product needs to have a certain thickness (thin molded products cannot be formed). Since direct molding is possible in the present invention, it is not necessary to transfer the base material (prepreg) to the molding die after preheating and before molding. Therefore, a thin hollow molded body can be manufactured.
  • Example 1 Carbon fiber unopened fiber tow
  • the carbon fiber unopened fiber tow used was manufactured by Mitsubishi Chemical Corporation, product number: PYROFILE TR 50S15L, shape: regular tow filament 15K (15,000), and single fiber diameter 7 ⁇ m.
  • An epoxy compound is attached to the carbon fiber of this unopened carbon fiber tow as a sizing agent.
  • (2) Means for opening the unopened fiber tow The fiber was opened using the means for opening the fiber shown in FIG. 7 (opening step). In the fiber opening step, the tension of the carbon fiber filament group (toe) was set to 15 N per 15,000 fibers. In this way, an spread sheet having a carbon fiber filament composition of 15 K, a spread width of 500 mm, and a thickness of 0.08 mm was obtained.
  • the crosslinked fiber was 3.3% by mass.
  • Polypropylene (melting point: 150 to 165 ° C. (manufactured by Prime Polymer Co., Ltd.)) was used as the semi-preg dry powder resin.
  • the average particle size of the dry powder resin was 80 ⁇ m.
  • An average of 28.2 g on one side and 56.4 g on both sides of this resin were applied to 1 m 2 of carbon fibers.
  • the temperatures in the heating devices 16 and 19 were 220 ° C., and the residence time was 8 seconds each (powder resin applying step).
  • the mass of the obtained resin-integrated fiber sheet was 132.4 g / m 2 , the thickness was 0.2 mm, the fiber volume (Vf) was 40% by volume, and the thermoplastic resin was 60% by volume.
  • Example 2 The experiment was carried out in the same manner as in Example 1 except that the lamination conditions were as follows and the heat molding time was 5 minutes.
  • -Number of laminated resin-integrated fiber sheets 4 (8 overlapping parts, 53.1 mm width of overlapping parts)
  • -Fiber direction of resin-integrated fiber sheet bidirectional (laminated in the orthogonal direction), 0 ° / 90 ° / 0 ° / 90 ° (outside 90 °)
  • the size of the hollow molded body (pipe) of Examples 1 and 2 was measured. The diameter (outer diameter) and length were measured using a caliper, and the thickness was measured using a micrometer. The thickness was measured at 5 points and used as the average value. The results are shown in Table 1.
  • Example 1 the hollow compacts of Examples 1 and 2 were subjected to a compression test in the diameter direction.
  • a compression test a disk having a diameter of 50 mm was pressed against a hollow molded body (end or center) using an autograph (model: AG-50kNXplus manufactured by Shimadzu Corporation).
  • Example 2 the strokes of 2.5 mm and 5.0 mm were compressed, and in Example 2, the stroke of 2.5 mm was compressed, but the hollow compacts of Examples 1 and 2 were not broken or deformed. It was.
  • the results of the compression test are shown in Table 2 and FIGS. 8-9.
  • FIG. 8 is a test force-displacement measurement graph at the end and center of the hollow molded body of Example 1, and FIG.
  • FIGS. 8 to 9 is a test force-displacement measurement graph at the end and center of the hollow molded body of Example 2. is there.
  • a shows the measurement result at the end portion of the hollow molded body
  • b shows the measurement result at the central portion of the hollow molded body.
  • the hollow molded body of the present invention is a pipe, a shaft, a frame, etc., and the cross section can be a circular hollow, a quadrangular hollow, or a hollow body having various shapes.
  • the present invention can be widely applied to general industrial applications such as building materials, sporting goods, wind turbines, bicycles, automobiles, railways, ships, aerospace, and the like.

Abstract

樹脂一体化繊維シートを使用した繊維補強樹脂中空成形体30であって、前記樹脂一体化繊維シートは、連続繊維群が開繊され一方向に並列状に配列された一方向連続繊維と、前記一方向連続繊維の少なくとも表面に存在する熱可塑性樹脂を含み、前記中空成形体30は、前記樹脂一体化繊維シートが1枚又は複数枚積層された状態で、オーバーラップ部が生じるように巻回され、前記一方向連続繊維内には前記熱可塑性樹脂が含浸し、前記樹脂一体化繊維シートが一体化されている。

Description

繊維補強樹脂中空成形体及びその製造方法
 本発明は、セミプレグを用いた繊維補強樹脂中空成形体及びその製造方法に関する。
 強化繊維材料である炭素繊維は、各種のマトリックス樹脂と複合化され、得られる繊維強化プラスチックは種々の分野・用途に広く利用されるようになってきた。そして、高度の機械的特性や耐熱性等を要求される航空・宇宙分野や、一般産業分野では、熱可塑性樹脂をマトリックス樹脂とする、一方向性の連続繊維が用いられている。従来から、炭素繊維基材に樹脂を完全含浸したプリプレグが用いられており、複合材料としたときの耐衝撃性が優れ、成形時間が短く、かつ成形コスト低減の可能性が示唆されている。しかし、樹脂が完全含浸しているプリプレグは硬度が高く、柔軟性も乏しく、丸くすることが困難である。そのため、樹脂が強化繊維基材内に未含浸のセミプレグが注目されている。セミプレグは、マトリックス樹脂が繊維基材上に付着・融着している状態又は半含浸状態の未含浸の基材シートで、柔らかく賦形性が優れている。また、ダイレクトに成形を行うことができるため、成形効率も優れている。
 しかし、強化繊維樹脂を成形する時に熱可塑性樹脂を繊維基材に含浸させることが必要となるが、短繊維の場合は不織布に加工する必要があり、効率が極めて悪くなる。また、連続繊維の場合は配向がずれて乱れたり、ボイドやシワなどの欠陥が生じることがある。そのため、ダイレクトな成形に使用できるより適したセミプレグ基材が求められている。
 特許文献1には、膨張可能なマンドレルを使用して繊維強化樹脂プリフォームを金属成形体に一体化させることが提案されている。特許文献2には、内圧保持チューブ付きマンドレルの外周に長繊維配向プリプレグシートを巻回し、節状部付近にはさらに短繊維二次元ランダムプリプレグシートを巻回し、金型内で内圧保持チューブを膨張させて加熱加圧成形する、ゴルフシャフトの製造方法が提案されている。特許文献3には、特定のフッ素樹脂と強化繊維を含むテープ状の繊維強化複合材料を第1層の外周に巻き付ける、パイプの製造方法が提案されている。特許文献4には、パイプの成形基材として、一方向に強化繊維を引き揃えたシート材に熱可塑性樹脂からなる不織布を重ねたシート状の成形基材を用いることが提案されている。
特開2018-172116号公報 特開2013-106782号公報 WO2017/191735明細書 特開2011-62818号公報
 しかし、前記従来技術は原料基材が硬く、あるいは単独で取り扱えないという問題があり、中空成形加工も困難である問題があった。
 本発明は、前記従来の問題を解決するため、取り扱い性の良いセミプレグを用いて、薄くて賦形性に優れた繊維補強樹脂中空成形体及びその製造方法を提供する。
 本発明は、樹脂一体化繊維シートを使用した繊維補強樹脂中空成形体であって、前記樹脂一体化繊維シートは、連続繊維群が開繊され一方向に並列状に配列された一方向連続繊維と、前記一方向連続繊維の少なくとも表面に存在する熱可塑性樹脂を含み、前記中空成形体は、前記樹脂一体化繊維シートが1枚又は複数枚積層された状態で、オーバーラップ部が生じるように巻回され、前記一方向連続繊維内には前記熱可塑性樹脂が含浸し、前記樹脂一体化繊維シートが一体化されている繊維補強樹脂中空成形体である。
 本発明の繊維補強樹脂中空成形体の製造方法は、連続繊維群が開繊され一方向に並列状に配列された一方向連続繊維と、前記一方向連続繊維の少なくとも表面に存在する熱可塑性樹脂を含む樹脂一体化シートを用い、弾性体の表面に、前記樹脂一体化繊維シートを1枚又は複数枚積層された状態で、オーバーラップ部が生じるように巻回し、前記樹脂一体化繊維シートが巻きつけられた前記弾性体を、中空形状を有する加熱金型内に配置し、前記弾性体の内部へ圧力流体を供給して圧空成形を行い、前記熱可塑性樹脂を溶融させ、前記一方向連続繊維に前記熱可塑性樹脂を含浸および前記樹脂一体化繊維シートを一体化させる、繊維補強樹脂中空成形体の製造方法である。
 本発明の繊維補強樹脂中空成形体は、連続繊維群が開繊され一方向に並列状に配列された一方向連続繊維と、前記一方向連続繊維の少なくとも表面に存在する熱可塑性樹脂を含む樹脂一体化繊維シートを用いることにより、セミプレグの取り扱い性がよく、薄くて賦形性に優れた繊維補強樹脂中空成形体及びその製造方法を提供できる。また、本発明の中空成形体の製造方法は、成形サイクルが速く、短時間で高品質の中空成形体を得ることができる。
図1Aは本発明の一実施形態の繊維補強樹脂中空成形体の模式的斜視図、図1Bは同模式的断面図である。 図2は、図1の繊維補強樹脂中空成形体の成形に使用した樹脂一体化炭素繊維シートの積層方法を示す模式的説明図である。 図3Aは、中空成形に使用するマンドレルの模式的斜視図、図3Bは同マンドレルに樹脂一体化炭素繊維シートを巻回した模式的斜視図、図3Cは図3Bの断面図である。 図4Aは、成形金型に樹脂一体化炭素繊維シートを巻回したマンドレルを入れた状態を示す模式的平面図、図4Bは図4AのI-I線断面図である。 図5は本発明の一実施形態の繊維補強樹脂中空成形体の成形に使用する樹脂一体化炭素繊維シートの模式的斜視図である。 図6は、図5に示した樹脂一体化炭素繊維シートの幅方向の模式的断面図である。 図7は、図5に示した樹脂一体化炭素繊維シートの製造方法を示す模式的工程図である。 図8は、実施例1の繊維補強樹脂中空成形体の端部及び中央部における試験力-変位測定グラフである。 図9は、実施例2の繊維補強樹脂中空成形体の端部及び中央部における試験力-変位測定グラフである。
1 樹脂一体化炭素繊維シート
2 一方向炭素繊維
3,3a,3b 架橋繊維
4 樹脂
5 樹脂が付着していない部分
6 開繊装置
7 供給ボビン
8 炭素繊維フィラメント群(炭素繊維未開繊トウ)
9a,9b ニップロール
12a-12b ブリッジロール
13a-13g ガイドロール
14,17 粉体供給ホッパー
15,18 ドライパウダー樹脂
16,19 加熱装置
20 巻き上げロール
21a-21j 開繊ロール
23 ロール開繊工程
24 架橋繊維発生工程
25 粉体樹脂付与工程
30 中空成形体
31 繊維補強樹脂部
32 樹脂一体化炭素繊維シートのオーバーラップ部
33a,33b 樹脂一体化炭素繊維シート
34 重なり部分
35 マンドレル
36 治具
37 樹脂一体化炭素繊維シート
39 下金型
40 上金型
41 エアー供給口
 本発明は、樹脂一体化繊維シートを使用した繊維補強樹脂中空成形体(以下、繊維補強樹脂中空成形体を「中空成形体」と略称する場合もある。)である。前記樹脂一体化繊維シートは、連続繊維群が開繊され一方向に並列状に配列された一方向連続繊維と、前記一方向連続繊維の少なくとも表面に存在する熱可塑性樹脂を含む。本発明の中空成形体は、樹脂一体化繊維シートが1枚又は複数枚積層された状態で、オーバーラップ部が生じるように巻回され、繊維シート内には熱可塑性樹脂が含浸し、樹脂一体化繊維シートが一体化されている。中空成形体の製造に使用される前記樹脂一体化繊維シートは、前記一方向連続繊維と交錯する方向の架橋繊維を含み、かつ前記熱可塑性樹脂は前記一方向連続繊維と前記架橋繊維とを一体化していることが好ましい。前記樹脂一体化繊維シートは、前記一方向連続繊維上に他方向に配置されている補助糸を含んでもよい。補助糸とは、繊維シートの配向性を一定に保つものであり、補助糸としては、例えば、ガラス繊維、アラミド繊維、ポリエステル繊維、ナイロン繊維、ビニロン繊維等が挙げられる。
 本発明で使用する樹脂一体化繊維シートの繊維の主成分は、開繊され一方向に並列状に配列された一方向連続繊維であり、一方向長繊維である。繊維の副成分は、一方向連続繊維と交錯する方向に配列された架橋繊維であることが好ましい。ここで主成分は、樹脂一体化繊維シートに含まれる繊維を100質量%としたとき、75~99質量%が好ましく、副成分は1~25質量%が好ましい。熱可塑性樹脂は、粉体で一方向連続繊維及び架橋繊維の上から付着させ、一方向連続繊維の少なくとも表面で熱融着させ、かつ一方向連続繊維と架橋繊維とを一体化していることが好ましい。このシートは、一方向連続繊維と架橋繊維が、熱融着した熱可塑性樹脂により一体化しているため、取り扱い性が良好で、積層(巻回に伴う積層も含む)する際、及び成形する際の操作性が良い。
 前記樹脂一体化繊維シートは、一方向連続繊維の表面にマトリックスとなる熱可塑性粉体樹脂を付着させ熱融着させたセミプレグであることが好ましい。このセミプレグは、成形により、表面の熱可塑性樹脂が樹脂一体化繊維シート内及び樹脂一体化繊維シート間に一様に浸透かつ拡散する。これにより、賦形性(成形性)に優れ、ボイドを起こさない中空成形体が得られる。
 前記一方向連続繊維と架橋繊維の合計を100質量%としたとき、一方向連続繊維は75~99質量%が好ましく、より好ましくは80~97質量%、さらに好ましくは85~97質量%である。また、架橋繊維は1~25質量%が好ましく、より好ましくは3~20質量%、さらに好ましくは3~15質量%である。質量割合が前記の範囲であれば、一方向連続繊維の一体性が高く、幅方向の引張強度の高い樹脂一体化繊維シートとなる。
 前記樹脂一体化繊維シートの繊維体積(Vf)は、20~65体積%、熱可塑性樹脂35~80体積%が好ましく、より好ましくは繊維25~60体積%、樹脂40~75体積%である。これにより、樹脂一体化繊維シートの樹脂成分を、そのまま中空成形体のマトリックス樹脂成分にすることができる。すなわち、中空成形体を製造する際に、新たな樹脂の追加は不要である。樹脂一体化繊維シートの単位面積あたりの質量は10~3000g/m2が好ましく、より好ましくは20~2000g/m2であり、さらに好ましくは30~1000g/m2である。
 前記繊維は、炭素繊維、ガラス繊維及び弾性率が380cN/dtex以上の高弾性率繊維から選ばれる少なくとも一つが好ましい。前記高弾性率繊維としては、例えばアラミド繊維、とくにパラ系アラミド繊維(弾性率:380~980cN/dtex)、ポリアリレート繊維(弾性率:600~741cN/dtex)、ヘテロ環ポリマー(PBO,弾性率:1060~2200cN/dtex)繊維、高分子量ポリエチレン繊維(弾性率:883~1413cN/dtex)、ポリビニルアルコール繊維(PVA,強度:14~18cN/dtex)などがある(繊維の百科事典,522頁,2002年3月25日,丸善)。これらの繊維は樹脂強化繊維として有用である。とくに炭素繊維は有用である。
 前記樹脂一体化繊維シートの1枚の厚みは0.01~5.0mmが好ましい。この範囲の厚さの樹脂一体化繊維シートは成形しやすい。中空成形体の成形の際には、この樹脂一体化繊維シートを1枚又は2枚以上積層させて巻回する。好ましい積層数は2~20枚、さらに好ましくは3~15枚である。
 前記熱可塑性樹脂は、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリエチレン系樹脂、アクリル系樹脂、フェノキシ樹脂、ポリスチレン系樹脂、ポリイミド系樹脂、及びポリエーテルエーテルケトン系樹脂などが使用可能であるが、これらに限定されない。
 本発明の樹脂一体化繊維シートの樹脂の付着状態は、開繊された繊維シートの表面付近に樹脂が溶融固化して付着しており、樹脂は開繊された繊維シート内部には含浸していないか又は一部含浸しているのが好ましい。前記状態であると、樹脂一体化繊維シートを複数枚積層し、成形するのに好ましい。
 開繊された繊維シート(以下、「開繊シート」ともいう)の幅は、炭素繊維の場合、構成繊維本数1000本当たり0.1~5.0mmが好ましい。具体的には、開繊シートの幅は、50K又は60Kなどのラージトウの場合は構成繊維本数1000本当たり0.1~1.5mm程度であり、12K又は15Kなどのレギュラートウの場合は構成繊維本数1000本当たり0.5~5.0mm程度である。ここで、Kは構成繊維本数1000本のことを示す。1本当たりのトウの構成繊維本数が増加するほど、繊維の捩れが大きくなり開繊しにくくなるので、開繊シートの幅も狭くなる。このようにして炭素繊維メーカーの販売する未開繊トウを拡開し、使用し易い開繊シートとし、様々な中空成形体の成形のために供給できる。樹脂一体化繊維シートの製造のために供給される炭素繊維束(トウ)は5,000~50,000本/束が好ましく、この炭素繊維束(トウ)を10~280本、開繊手段へ供給するのが好ましい。このように炭素繊維束(トウ)を複数本供給して開繊し、1枚のシートにすると、炭素繊維束(トウ)と炭素繊維束(トウ)の間が開裂しやすいが、様々な方向性を有する架橋繊維が樹脂により開繊シートに接着固定されていると、トウ間の開裂も防止できる。
 架橋繊維の平均長さは、1mm以上が好ましく、さらに好ましくは5mm以上である。架橋繊維の平均長さが前記の範囲であれば、幅方向の強度が高く、取り扱い性に優れた炭素繊維シートとなる。
 本発明の中空成形体の製造に使用する樹脂一体化繊維シートの製造方法は、例えば、次の工程を含む。繊維シートとして炭素繊維シートを挙げて説明する。
(1)炭素繊維フィラメント群を、複数のロールを通過、開繊バーを通過、及びエアー開繊から選ばれる少なくとも一つの手段により開繊させ、一方向に並列状に配列させるに際し、開繊時もしくは開繊後に架橋繊維を炭素繊維フィラメント群から発生させるか、又は開繊時もしくは開繊後に架橋繊維を炭素繊維シートに落下させる。前記架橋繊維は炭素繊維シートの面積10mm2あたり平均1本以上とする。ロール又は開繊バーを通過させて炭素繊維フィラメント群を開繊する場合、炭素繊維フィラメント群に張力をかけることで、開繊時に炭素繊維フィラメント群から架橋繊維を発生させることができる。炭素繊維フィラメント群の張力は、例えば、15,000本あたり2.5~30Nの範囲とすることができる。エアー開繊を採用する場合は、この後にロール又は開繊バーにより架橋繊維を発生させるのが好ましい。架橋繊維を炭素繊維フィラメント群から発生させた場合は、架橋繊維は、炭素繊維シートを構成する炭素繊維と交錯した状態となる。ここで交錯とは、絡み合いを含む。例えば、架橋繊維の一部又は全部は炭素繊維シート内に存在し、一方向に配列されている炭素繊維と立体的に交錯している。
(2)開繊された炭素繊維シートに粉体樹脂を付与する。
(3)加圧フリー(加圧なし)状態で粉体樹脂を加熱溶融し、冷却し、炭素繊維シートの少なくとも表面の一部に部分的に樹脂を存在させる。この際に、架橋繊維を表面の樹脂により炭素繊維シートに接着固定させる。
 本発明の中空成形体は、前記の樹脂一体化繊維シートを弾性体の表面に1枚又は2枚以上積層させてオーバーラップ部が生じるように巻回し、成形したものである。前記樹脂一体化繊維シートは、1枚又は複数枚積層された状態で少なくとも2周以上巻回されていることが好ましい。前記オーバーラップ部の幅は3mm以上が好ましく、より好ましくは10mm以上である。なお、本発明では、2周巻回している場合は円周分の幅のオーバーラップ部が生じ、3周巻回している場合は円周の2倍分の幅のオーバーラップ部が生じるものとする。樹脂一体化繊維シートを2枚以上積層する際には、一方向連続繊維の方向性(一方向連続繊維の繊維の長手方向)が異なるように積層されていてもよい。また、弾性体はマンドレルであってよい。例えば、2枚積層する場合は、0°/90°とすることができる。これにより、中空成形体に要求される力学特性を有する中空成形体が得られる。樹脂一体化繊維シートを1枚用いる際には、例えば、マンドレルの長さ方向に対して斜め方向に巻回させた長尺の成形体や、マンドレルの長さ方向に対して90°方向に複数回巻回させた中空成形体が得られる。中空成形体としては、パイプ、シャフト、フレームなどであり、断面は円形中空、四角形中空、その他様々な形状の中空体が可能である。
 本発明の中空成形体は、中空部から外側に膨張する流体により成形されていることが好ましい。流体としては、例えば、圧力空気等の圧力流体が挙げられる。
 本発明の中空成形体の製造方法は、一実施形態において、次の工程を含む。
(a)弾性体の表面に、前記樹脂一体化繊維シートを1枚又は複数枚、オーバーラップ部が生じるように巻回する工程。
(b)前記樹脂一体化繊維シートが巻きつけられた前記弾性体を、中空形状を有する加熱金型内に配置し、前記弾性体の内部へ圧力流体を供給して圧空成形を行う(例えば、圧縮空気で前記樹脂一体化繊維シートを前記加熱金型に密着させて、目的の形状を得る)工程。
(c)熱可塑性樹脂を溶融させ、一方向連続繊維に含浸および巻回された前記樹脂一体化繊維シートを一体化させる工程。
 本発明の中空成形体の製造方法は、その他の実施形態において、次の工程を含む。
(a´)弾性体の表面に、樹脂一体化繊維シートを1枚又は複数枚巻回する工程。
(b´)前記樹脂一体化繊維シートが巻きつけられた前記弾性体を、中空キャビティーを有する加熱金型内に配置する工程。
(c´)前記弾性体の内部に圧力流体を供給し、前記弾性体から外側に向かって樹脂一体化繊維シートを膨張させて中空成形するとともに、熱可塑性樹脂を溶融させ積層部全体(巻回された前記樹脂一体化繊維シート全体)に含浸させる工程。
(d´)次いで冷却する工程。
 前記工程(a)及び前記工程(a´)において、樹脂一体化繊維シートを複数枚巻回する際、複数枚の樹脂一体化樹脂シートは、一方向連続繊維の方向性が異なるように積層されて巻回されることが好ましい。これにより、中空成形体に要求される力学特性を有する中空成形体が得られる。また、弾性体の表面に直接樹脂一体化繊維シートを巻回してもよいし、樹脂一体化繊維シートを巻回してプリフォームとした後に、それを弾性体の表面に配置してもよい。
 以下図面を用いて説明する。以下の図面において、同一符号は同一物を示す。図1Aは本発明の一実施形態の中空成形体30の模式的斜視図、図1Bは同模式的断面図である。この中空成形体30は、内部が長さ方向に中空で、繊維補強樹脂部31は樹脂一体化炭素繊維シートが複数枚積層されて一体化されている。32は樹脂一体化炭素繊維シートのオーバーラップ部である。中空成形体30の好ましい直径(外径)は10~200mmであり、好ましい長さは50~5000mmであり、好ましい厚みは0.03~5mm、より好ましい厚みは0.04~5mmである。
 図2は、図1の繊維補強樹脂中空成形体の成形に使用した樹脂一体化炭素繊維シートの積層方法を示す模式的説明図である。樹脂一体化炭素繊維シート33aは一方向連続繊維が0°であり、樹脂一体化炭素繊維シート33bは一方向連続繊維が90°である。樹脂一体化炭素繊維シート33aと33bが重なっている部分34を切り取り、マンドレルに巻き付ける。巻き付け回数は1回でもよいし、複数回でもよい。1回巻き付けの場合は、一部分重ね合わせる。
 図3Aは、中空成形に使用するマンドレル35の模式的斜視図、図3Bは同マンドレル35に樹脂一体化炭素繊維シート37を巻回した模式的斜視図、図3Cは図3Bの断面図である。マンドレル35の先端には治具36を取り付け、マンドレル内の圧力流体を封止する。マンドレルは例えばフッ素ゴム(耐熱限界温度230℃)、又はシリコーンゴム(耐熱限界温度230℃)製のチューブで、例えば、外径19mm、内径15mm、長さ500mmのものを使用する。図3Cでは、樹脂一体化炭素繊維シートをn周巻回した場合であり、オーバーラップ部の幅は、n-1周分の円周の長さと図中38で示す部分の長さの合算したものである。
 図4Aは、成形金型内に樹脂一体化炭素繊維シート37を巻回したマンドレル35を入れた状態を示す模式的平面図、図4Bは図4AのI-I線断面図である。成形金型は、下金型39と上金型40で構成され、加熱されており、金型内に樹脂一体化炭素繊維シート37を巻回したマンドレル35を入れ、マンドレル35の一端に固定したエアー供給口41から圧空を供給し、マンドレルを膨張させる。これにより、マンドレル35に巻回された樹脂一体化炭素繊維シート37は金型まで膨張し、金型から加熱を受けて樹脂一体化炭素繊維シート37表面の熱可塑性樹脂が溶融し、積層部全体(巻回された樹脂一体化炭素繊維シート37全体)に含浸する。次いで、金型を水冷し冷却する。これにより、繊維補強樹脂中空成形体が得られる。
 図5は本発明の一実施形態の中空成形体の製造に使用する、樹脂一体化炭素繊維シート1の模式的斜視図、図6は同、樹脂一体化炭素繊維シート1の幅方向の模式的断面図である。開繊された一方向炭素繊維2の表面には架橋繊維3が様々な方向に配置している。また一方向炭素繊維2の表面付近に樹脂4が溶融固化して付着しており、樹脂4は一方向炭素繊維2の内部には含浸していないか又は一部含浸している程度である。樹脂4は架橋繊維3を一方向炭素繊維2の表面に接着固定している。図6に示すように、一方向炭素繊維2の表面には架橋繊維3a,3bが存在する。架橋繊維3aは全部が一方向炭素繊維2の表面にある。架橋繊維3bは一部が一方向炭素繊維2の表面にあり、一部は内部に入って炭素繊維と交錯した状態である。樹脂4は架橋繊維3を一方向炭素繊維2の表面に接着固定している。また、一方向炭素繊維2の表面には樹脂4が付着している部分と、樹脂が付着していない部分5がある。樹脂が付着していない部分5は、樹脂一体化炭素繊維シート1を複数枚積層状態で加熱し、繊維強化樹脂成形品に成形する際に、繊維シート内部の空気がこの部分から抜ける通路となり、加圧により表面の樹脂が繊維シート内全体に含浸しやすくなる。これにより樹脂4は繊維強化樹脂中空成形体のマトリックス樹脂となる。
 図7は本発明の一実施形態の中空成形体の製造に使用する、樹脂一体化炭素繊維シートの製造方法を示す模式的工程図である。多数個の供給ボビン7(図7では1つのみ記載し、他は省略している。)から炭素繊維フィラメント群(トウ)8を引き出し、開繊ロール21a-21jの間を通過させることで、開繊させる(ロール開繊工程23)。ロール開繊に代えて、エアー開繊としてもよい。開繊ロールは固定又は回転してもよく、幅方向に振動してもよい。
 開繊工程の後、開繊されたトウをニップロール9a,9b間でニップし、この間に設置した複数のブリッジロール12a-12bの間を通過させ、トウの張力を例えば15,000本あたり(1個の供給ボビンから供給される炭素繊維フィラメント群に相当)2.5~30Nの範囲でかけることで、架橋繊維を発生させる(架橋繊維発生工程24)。ブリッジロールは回転してもよく、幅方向に振動してもよい。ブリッジロールは、例えば表面が梨地、凹凸、または鏡面の複数ロールであり、ブリッジロールを炭素繊維フィラメント群に対して屈曲状態で配置する、固定、回転、幅方向に振動させる又はこれらの組み合わせにより架橋繊維を発生させる。13a-13gはガイドロールである。
 その後、粉体供給ホッパー14からドライパウダー樹脂15を開繊シートの表面に振りかけ、圧力フリー状態で加熱装置16内に供給し加熱し、ドライパウダー樹脂15を溶融し、ガイドロール13e-13g間で冷却する。その後、開繊シートの裏面にも粉体供給ホッパー17からドライパウダー樹脂18を振りかけ、圧力フリー状態で加熱装置19内に供給し加熱し、ドライパウダー樹脂18を溶融し、冷却し、巻き上げロール20に巻き上げられる(粉体樹脂付与工程25)。ドライパウダー樹脂15、18は、例えばポリプロピレン樹脂(融点:150~165℃)とし、加熱装置16,19内の各温度は例えばドライパウダー樹脂の融点、軟化点又は流動化点の+5~60℃、滞留時間は例えば各4秒とする。これにより、炭素繊維開繊シートは幅方向の強度が高くなり、構成炭素繊維がバラバラになることはなく、シートとして扱えるようになる。
 粉体樹脂の付与は、粉体塗布法、静電塗装法、吹付法、流動浸漬法などが採用できる。炭素繊維開繊シート表面に粉体樹脂を落下させる粉体塗布法が好ましい。例えばドライパウダー状の粉体樹脂を開繊された炭素繊維シートに振りかける。
 本発明の利点をまとめると次のようになる。
(1)樹脂一体化炭素繊維シートは、プリプレグと異なり、セミプレグであるためダイレクト成形が可能である。故に、成形前の軟化、および軟化された材料の成形金型へ移動を行わなくても、中空成形体の成形が行える。また、樹脂一体化炭素繊維シートへの賦形と、熱可塑性樹脂の繊維基材全体への含浸とを、ほぼ同時に行える。
(2)樹脂一体化炭素繊維シートは、プリプレグと異なり、セミプレグであるため高サイクル成形ができ、賦形性、成形性が優れている。
(3)パウダー状の熱可塑性樹脂が熱融着しているため繊維間への含浸性が良い。すなわち、フィルム状の樹脂と異なり、中空成形体の成形時に空気抜けが優れていて、ボイドが発生しにくい。
(4)繊維一体化樹脂シートの繊維の主成分が、例えば炭素繊維のように連続繊維である(短繊維ではない)。このため、薄くて強度の高い中空成形体が得られる。
(5)次の比較から分かるように、本発明ではセミプレグを用いるため、樹脂に対する熱履歴を減らすことができる。これにより、樹脂の劣化を防ぐことができる。
・プリプレグ:シート作製時長時間+予備加熱時(プリプレグの軟化)+成形時+熱硬化時
・セミプレグ:シート作製時短時間+成形時のみ加熱
 以上のとおり、セミプレグは成形時間を高速にできる。
(6)プリプレグでは軟化後、成形金型へ移動させるときに冷えるため、成形品表面の平滑性(金型の転写性)が悪い。本発明はダイレクト成形が可能であるため成形品表面の平滑性が良い。
(7)プリプレグでは軟化後、成形金型へ移動させるときに冷えるため、成形品にある程度の厚みが必要(薄い成形品はできない)。本発明はダイレクト成形が可能であるため、予備加熱後、成形前の基材(プリプレグ)の成形型への移し替えが不要である。このため、薄い中空成形体の製造もできる。
 以下実施例を用いて本発明を具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。
 (実施例1)
(1)炭素繊維未開繊トウ
 炭素繊維未開繊トウは三菱ケミカル社製、品番:PYROFILE TR 50S15L、形状:レギュラートウ フィラメント15K(15,000本)、単繊維直径7μmを使用した。この炭素繊維未開繊トウの炭素繊維にはエポキシ系化合物がサイジング剤として付着されている。
(2)未開繊トウの開繊手段
 図7の開繊手段を使用して開繊した(開繊工程)。開繊工程において、炭素繊維フィラメント群(トウ)の張力は15,000本あたり15Nとした。このようにして炭素繊維フィラメント構成本数15K、開繊幅500mm、厚み0.08mmの開繊シートとした。架橋繊維は3.3質量%であった。
(3)セミプレグ
 ドライパウダー樹脂としてポリプロピレン(融点:150~165℃(プライムポリマー社製))を使用した。ドライパウダー樹脂の平均粒子径は80μmであった。この樹脂は、炭素繊維1m2に対して平均片面28.2g、両面で56.4g付与した。加熱装置16,19内の温度は各220℃、滞留時間は各8秒とした(粉体樹脂付与工程)。得られた樹脂一体化繊維シートの質量は132.4g/m2、厚みは0.2mm、繊維体積(Vf)は40体積%、熱可塑性樹脂60体積%であった。
(4)積層条件
・樹脂一体化繊維シートの積層枚数:2枚(オーバーラップ部は4枚分、オーバーラップ部の幅53.9mm)
・樹脂一体化繊維シートの繊維方向:二方向(直行方向に積層)、0°/90°(外側が90°)
(5)中空成形
 図4に示す装置で、次の条件で中空成形を実施した。
・金型温度200℃
・エアー圧0.6MPa
・加熱成形時間3分
・水冷却時間5分
 冷却後にエアラインを切り、中空成形体を脱型した。
 (実施例2)
 積層条件を下記とし、加熱成形時間を5分とした以外は実施例1と同様に実験した。 
・樹脂一体化繊維シートの積層枚数:4枚(オーバーラップ部は8枚分、オーバーラップ部の幅53.1mm)
・樹脂一体化繊維シートの繊維方向:二方向(直行方向に積層)、0°/90°/0°/90°(外側が90°)
(評価)
 実施例1、2の中空成形体(パイプ)のサイズを測定した。直径(外径)及び長さはノギスを用いて測定し、厚みはマイクロメーターを用いて測定した。厚みに関しては、各々、5点測定しその平均値とした。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 また、実施例1及び2の中空成形体を直径方向に圧縮試験を行った。圧縮試験は、オートグラフ(島津製作所社製の型式:AG-50kNXplus)を用いてφ50mmの円盤を中空成形体(端部又は中央部)に押し当て行った。実施例1ではストローク2.5mm、および5.0mmの圧縮を行い、実施例2ではストローク2.5mmの圧縮を行ったが、実施例1及び2の中空成形体が破壊・変形することは無かった。圧縮試験の結果を表2及び図8~9に示す。図8は、実施例1の中空成形体の端部及び中央部における試験力-変位測定グラフ、図9は、実施例2の中空成形体の端部及び中央部における試験力-変位測定グラフである。図8~9において、aは、中空成形体の端部での測定結果を示し、bは、中空成形体の中央部での測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
 以上の通り、実施例1及び2の中空成形体は、実用に十分な性能を有していることがわかった。
 本発明の中空成形体は、パイプ、シャフト、フレームなどであり、断面は円形中空、四角形中空、その他様々な形状の中空体が可能である。本発明は、建築部材、スポーツ用品、風車、自転車、自動車、鉄道、船舶、航空、宇宙などの一般産業用途等において広く応用できる。

Claims (15)

  1.  樹脂一体化繊維シートを使用した繊維補強樹脂中空成形体であって、
     前記樹脂一体化繊維シートは、連続繊維群が開繊され一方向に並列状に配列された一方向連続繊維と、前記一方向連続繊維の少なくとも表面に存在する熱可塑性樹脂を含み、
     前記中空成形体は、前記樹脂一体化繊維シートが1枚又は複数枚積層された状態で、オーバーラップ部が生じるように巻回され、前記一方向連続繊維内には前記熱可塑性樹脂が含浸し、前記樹脂一体化繊維シートが一体化されていることを特徴とする繊維補強樹脂中空成形体。
  2.  前記複数枚積層された樹脂一体化繊維シートは、一方向連続繊維の方向性が異なるように積層されている請求項1に記載の繊維補強樹脂中空成形体。
  3.  前記樹脂一体化繊維シートは、1枚又は複数枚積層された状態で少なくとも2周以上巻回されている、請求項1又は2に記載の繊維補強樹脂中空成形体。
  4.  前記樹脂一体化繊維シートは、前記一方向連続繊維と交錯する方向の架橋繊維を含み、かつ前記熱可塑性樹脂は前記一方向連続繊維と前記架橋繊維とを一体化している請求項1~3のいずれかに記載の繊維補強樹脂中空成形体。
  5.  前記中空成形体は、中空部から外側に膨張する流体により成形されている請求項1~4のいずれかに記載の繊維補強樹脂中空成形体。
  6.  前記繊維補強樹脂中空成形体の製造に使用される前記樹脂一体化繊維シートは、前記一方向連続繊維の表面にマトリックスとなる熱可塑性粉体樹脂を付着させ熱融着させたセミプレグである請求項1~5のいずれかに記載の繊維補強樹脂中空成形体。
  7.  前記一方向連続繊維と前記架橋繊維の合計を100質量%としたとき、前記一方向連続繊維は75~99質量%であり、前記架橋繊維は1~25質量%である請求項4に記載の繊維補強樹脂中空成形体。
  8.  前記樹脂一体化繊維シートの厚みは0.01~5.0mmである請求項1~7のいずれかに記載の繊維補強樹脂中空成形体。
  9.  前記樹脂一体化繊維シートの単位面積当たりの質量は、10~3000g/m2である請求項1~8のいずれかに記載の繊維補強樹脂中空成形体。
  10.  連続繊維群が開繊され一方向に並列状に配列された一方向連続繊維と、前記一方向連続繊維の少なくとも表面に存在する熱可塑性樹脂を含む樹脂一体化繊維シートを用い、
     弾性体の表面に、前記樹脂一体化繊維シートを1枚又は複数枚積層された状態で、オーバーラップ部が生じるように巻回し、
     前記樹脂一体化繊維シートが巻きつけられた前記弾性体を、中空形状を有する加熱金型内に配置し、
     前記弾性体の内部へ圧力流体を供給することにより圧空成形を行い、前記熱可塑性樹脂を溶融させ、前記一方向連続繊維に前記熱可塑性樹脂を含浸および前記樹脂一体化繊維シートを一体化させる、繊維補強樹脂中空成形体の製造方法。
  11.  前記樹脂一体化繊維シートが複数枚であり、前記複数枚の樹脂一体化繊維シートは一方向連続繊維の方向性が異なるように積層されて巻回される、請求項10に記載の繊維補強樹脂中空成形体の製造方法。
  12.  前記繊維補強樹脂中空成形体の製造に使用する前記樹脂一体化繊維シートは、前記一方向連続繊維の表面にマトリックスとなる熱可塑性粉体樹脂を付着させ熱融着させたセミプレグである請求項10又は11に記載の繊維補強樹脂中空成形体の製造方法。
  13.  前記繊維補強樹脂中空成形体の製造に使用する前記樹脂一体化繊維シートは、前記一方向連続繊維と交錯する方向の架橋繊維を含み、かつ前記熱可塑性樹脂は前記一方向連続繊維と前記架橋繊維とを一体化している請求項10~12のいずれかに記載の繊維補強樹脂中空成形体の製造方法。
  14.  前記一方向連続繊維と前記架橋繊維の合計を100質量%としたとき、前記一方向連続繊維は75~99質量%であり、前記架橋繊維は1~25質量%である請求項13に記載の繊維補強樹脂中空成形体の製造方法。
  15.  前記樹脂一体化繊維シートの厚みは0.01~5.0mmである請求項10~14のいずれかに記載の繊維補強樹脂中空成形体の製造方法。
PCT/JP2020/045616 2019-12-19 2020-12-08 繊維補強樹脂中空成形体及びその製造方法 WO2021124977A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080088199.1A CN114867595A (zh) 2019-12-19 2020-12-08 纤维增强树脂中空成形体及其制造方法
EP20902026.2A EP4079499A4 (en) 2019-12-19 2020-12-08 HOLLOW FIBER REINFORCED RESIN MOLDED BODY AND METHOD FOR MANUFACTURING SAME
JP2021565495A JPWO2021124977A1 (ja) 2019-12-19 2020-12-08
US17/786,907 US20230021569A1 (en) 2019-12-19 2020-12-08 Fiber-reinforced resin hollow molded body and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019229732 2019-12-19
JP2019-229732 2019-12-19

Publications (1)

Publication Number Publication Date
WO2021124977A1 true WO2021124977A1 (ja) 2021-06-24

Family

ID=76478307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045616 WO2021124977A1 (ja) 2019-12-19 2020-12-08 繊維補強樹脂中空成形体及びその製造方法

Country Status (6)

Country Link
US (1) US20230021569A1 (ja)
EP (1) EP4079499A4 (ja)
JP (1) JPWO2021124977A1 (ja)
CN (1) CN114867595A (ja)
TW (1) TW202132091A (ja)
WO (1) WO2021124977A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772187B (zh) * 2021-09-23 2022-07-21 國立勤益科技大學 熱塑複合材料車架及車架管件的成型方法
DE102022128601A1 (de) * 2022-10-28 2024-05-08 Diehl Aviation Laupheim Gmbh Luftführungsbauteil mit Spread-Tow-Gewebe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014843A (ja) * 1998-04-27 2000-01-18 Fujikura Rubber Ltd ゴルフクラブシャフト
JP2005270515A (ja) * 2004-03-26 2005-10-06 Toray Ind Inc 繊維強化複合材料製管状体
JP2011062818A (ja) 2009-09-15 2011-03-31 Doshisha パイプ成形装置及びパイプ成形方法
JP2013106782A (ja) 2011-11-21 2013-06-06 Bridgestone Sports Co Ltd ゴルフクラブシャフト
WO2017191735A1 (ja) 2016-05-02 2017-11-09 ダイキン工業株式会社 繊維強化複合材料、積層体、パイプ、ライザー管及びフローライン
JP2018172116A (ja) 2017-03-31 2018-11-08 アイシン テクニカル センター オブ アメリカ インコーポレイテッドAisin Technical Center Of America,Inc. 車両のためのハイブリッド・バンパー・ビーム、および、それを製造するための方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270270A (ja) * 1993-03-19 1994-09-27 Mazda Motor Corp 液晶樹脂複合体の成形方法およびその装置
US6565793B1 (en) * 1998-09-11 2003-05-20 Essef Corporation Method for fabricating composite pressure vessels
EP1145841B8 (en) * 1998-10-12 2009-08-12 Nitto Boseki Co., Ltd. Method of fabrication of a multi-directional reinforcing fiber base for composite materials
DE102012104370B4 (de) * 2012-05-21 2016-02-18 Cotesa Gmbh Verfahren zur Herstellung eines Hohlkörpers aus faserverstärktem Kunststoff

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014843A (ja) * 1998-04-27 2000-01-18 Fujikura Rubber Ltd ゴルフクラブシャフト
JP2005270515A (ja) * 2004-03-26 2005-10-06 Toray Ind Inc 繊維強化複合材料製管状体
JP2011062818A (ja) 2009-09-15 2011-03-31 Doshisha パイプ成形装置及びパイプ成形方法
JP2013106782A (ja) 2011-11-21 2013-06-06 Bridgestone Sports Co Ltd ゴルフクラブシャフト
WO2017191735A1 (ja) 2016-05-02 2017-11-09 ダイキン工業株式会社 繊維強化複合材料、積層体、パイプ、ライザー管及びフローライン
JP2018172116A (ja) 2017-03-31 2018-11-08 アイシン テクニカル センター オブ アメリカ インコーポレイテッドAisin Technical Center Of America,Inc. 車両のためのハイブリッド・バンパー・ビーム、および、それを製造するための方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"encyclopedia of fibers", 25 March 2002, MARUZEN CO., LTD., pages: 522
See also references of EP4079499A4

Also Published As

Publication number Publication date
CN114867595A (zh) 2022-08-05
JPWO2021124977A1 (ja) 2021-06-24
TW202132091A (zh) 2021-09-01
EP4079499A1 (en) 2022-10-26
EP4079499A4 (en) 2023-12-27
US20230021569A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
KR101260088B1 (ko) 강화 섬유 직물과 그의 제조 방법
US11141949B2 (en) Methods of producing thermoplastic composites using fabric-based thermoplastic prepregs
EP0814916B1 (en) Flexible low bulk pre-impregnated tow
CN112166282B (zh) 具有增强内衬的复合材料压力容器及其制造方法
WO2021124977A1 (ja) 繊維補強樹脂中空成形体及びその製造方法
JP4899692B2 (ja) 強化繊維織物とその製造方法
JPH02209929A (ja) 繊維強化プラスチック成形用プリフォーム及びその製造方法
US20210316483A1 (en) Reinforcing fiber tape material and production method thereof, reinforcing fiber layered body and fiber reinforced resin molded body using reinforcing fiber tape material
WO2022075265A1 (ja) 繊維補強樹脂引抜成形体及びその製造方法
JPH04122631A (ja) 炭素繊維強化プラスチックの管状物及びその製造方法
JP7337509B2 (ja) 繊維強化樹脂シート
WO2020246440A1 (ja) 繊維強化樹脂成形体
WO2021095626A1 (ja) 真空成形用樹脂一体化繊維シート、これを用いた成形体と成形体の製造方法
US10272651B1 (en) Fiber composite and manufacturing method thereof
JP2022127466A (ja) 繊維強化中空成形体及びその製造方法
TWI668104B (zh) 纖維複合材料及其製法
CN114728439B (zh) 真空成形用树脂一体化纤维片、采用其的成形体和成形体的制造方法
JPH08174701A (ja) 中空状繊維強化熱可塑性樹脂製品の製造方法
WO1995000319A1 (en) Process for making a continuous cowound fiber reinforced thermoplastic composite article
WO2023182258A1 (ja) リブ補強成形体及びその製造方法
JP2021126776A (ja) 繊維強化金属成形体及びその製造方法
JP2022060962A (ja) 軽金属複合材及びこれを用いた使用方法
JP3311851B2 (ja) 強化繊維シート
JP2022081847A (ja) 成形物の製造方法
JPH04163130A (ja) 繊維強化樹脂成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902026

Country of ref document: EP

Effective date: 20220719