WO2021123469A1 - Método y equipo de refrigeración para la carga ultrarrápida de baterías de sistemas propulsivos híbridos o eléctricos - Google Patents

Método y equipo de refrigeración para la carga ultrarrápida de baterías de sistemas propulsivos híbridos o eléctricos Download PDF

Info

Publication number
WO2021123469A1
WO2021123469A1 PCT/ES2020/070648 ES2020070648W WO2021123469A1 WO 2021123469 A1 WO2021123469 A1 WO 2021123469A1 ES 2020070648 W ES2020070648 W ES 2020070648W WO 2021123469 A1 WO2021123469 A1 WO 2021123469A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air stream
stream
cooling
compressor
Prior art date
Application number
PCT/ES2020/070648
Other languages
English (en)
French (fr)
Inventor
José Mª DESANTES FERNÁNDEZ
Jesus Vicente Benajes Calvo
Jaime Alberto Broatch Jacobi
José GALINDO LUCAS
José Ramón SERRANO CRUZ
Pablo Cesar OLMEDA GONZÁLEZ
Vicente Dolz Ruiz
Manuel Fernandez Bono
Original Assignee
Universitat Politècnica De València
Fluid & Thermal Management, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De València, Fluid & Thermal Management, S.L. filed Critical Universitat Politècnica De València
Priority to EP20902640.0A priority Critical patent/EP4080137A4/en
Priority to PCT/ES2020/070801 priority patent/WO2021123484A1/es
Priority to US17/787,204 priority patent/US20230036416A1/en
Publication of WO2021123469A1 publication Critical patent/WO2021123469A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/08Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using ejectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention refers to a refrigeration method and equipment intended to be used in the ultra-fast charging of batteries of hybrid or electric propulsive systems, mainly due to the large amount of heat energy that must be evacuated in a short period of time.
  • An object of the invention is to provide a method that enables efficient cooling of a coolant flowing through a cooling circuit of a hybrid or electric propulsion system, through a cooling circuit of a supercharger, or both.
  • a second object of the invention is to provide a refrigeration equipment that allows to extract a large amount of heat energy with an efficient cycle that minimizes energy losses, to be used in the cooling of batteries of a hybrid or electric propulsive system, in the cooling of a supercharger or both.
  • Another object of the present invention is to provide a device that allows the cooling of batteries during a charging process.
  • the time to recharge about 50 liters of fuel in the vehicle is of the order of about 2 minutes, while in the case of batteries it can be about 12 hours (if the battery charge is slow) , between 3 and 6 hours (if the charge is fast) and between 10 and 60 minutes if the charging system and the battery itself allow ultra-fast charging.
  • the battery charge only reaches between 50% and 70% of its total capacity and, in addition, the size and weight of the charging system are considerable and, therefore, it cannot be installed integrated into the vehicle as increasing its weight would be unacceptable. For this reason, these charging systems are usually located outside the vehicle, generally in charging stations.
  • Document US2014292260A1 Electronic battery rapid recharging system and method for military and other applications describes the cooling of a battery with air, where the air is obtained from the Engine Cooling Unit (ECU).
  • the ECU is the vehicle's cooling system that carries the battery charging system.
  • no system dedicated to obtaining the cold air is presented. It also interacts with the cooling of the battery when the vehicle is running, which creates the potential for failure and makes battery design more difficult.
  • Document US2013294890A1 "Reverse Brayton cycle with bladeless turbo compressor for automotive environmental cooling” refers to a passenger air conditioning system in a vehicle, where the energy required to produce compression comes from the exhaust gases of a combustion engine. Likewise, a regenerator is installed to temper the cooled air (cooled air) by reheating it with ambient air.
  • the invention refers to a cooling method intended to reduce the temperature of a cooling liquid that circulates through a cooling circuit that surrounds batteries and electronic components of hybrid or electric propulsion systems of a vehicle, and / or a refrigeration circuit of a supercharger, by means of a refrigeration equipment.
  • the vehicle therefore comprises an electric or hybrid propulsion system, which, in turn, comprises batteries and other electronic components and a charging port.
  • a cooling circuit circulates, which, when the batteries are in operation or charging, allows them to be cooled.
  • the charging port allows the vehicle to be connected to a supercharger, which comprises a set of electronic components.
  • the supercharger can also have a cooling circuit.
  • the equipment of the invention is intended to be connected to one or both of the cooling circuits, of the vehicle or of the supercharger, through a heat exchanger mounted in one or both of the cooling circuits.
  • the cooling liquid that circulates through one or both of the cooling circuits is cooled in the heat exchanger by the equipment of the invention.
  • the equipment of the invention makes it possible to provide a low temperature fluid to cool the cooling liquid in a fast and adaptable way, since it allows a wide range of temperatures to be obtained without the need to modify the number of components of the equipment or its size.
  • the equipment of the invention is practically independent of environmental conditions, being able to operate in a wide variety of environmental conditions.
  • the cooling liquid can circulate through a cooling circuit that surrounds the batteries and electronic components of an electric or hybrid propulsion system, while the equipment of the invention cools said cooling liquid, without the need to extract the cooling liquid from the cooling circuit of the system. electric or hybrid propulsion.
  • the method of the invention in this case, is intended to cool the batteries during their charging.
  • the cooling circuit is equipped with at least one drive pump to move the cooling liquid and a heat exchanger on board the vehicle, which will allow the exchange of heat energy between said cooling liquid and the working fluid.
  • the coolant can circulate through a cooling circuit that extends inside a supercharger, and allows it to be cooled during the process of charging the batteries of a vehicle with a hybrid or electric propulsion system.
  • the supercharger cooling circuit is also equipped with at least one impulsion pump to move the cooling liquid and a heat exchanger, which will allow the exchange of heat energy between said cooling liquid and the working fluid.
  • the cooling method of the invention makes use of a stream of air as the working fluid.
  • Air is obtained at atmospheric pressure and temperature, and will go through multiple stages in order to reduce its temperature efficiently and, later, collect heat energy from the refrigerant liquid in the refrigeration circuit, cooling it.
  • the low thermal inertia of the air makes it possible to reduce the time required for the equipment to reach working conditions and to start cooling the cooling liquid.
  • the use of air reduces the cost of leakage losses, facilitates connection and disconnection in a clean and simple way and avoids the use of other coolant fluids that can be polluting, corrosive or even toxic; all this in a circuit that at some point will be open to the atmosphere.
  • the air stream first passes through a compression stage in a first mechanical compressor, preferably driven by an electric motor, to increase the pressure of the stream. This increase in pressure leads to an increase in the temperature of the air stream.
  • the air stream is cooled in a regeneration stage.
  • the method of the invention also comprises an expansion stage that further reduces the temperature of the air stream by expanding it, reducing the pressure of the air stream and extracting, thanks to this pressure reduction, mechanical energy. that is contributed to the compression stage in order to make it more efficient.
  • the reduction of temperature through the expansion of the air stream allows to reach lower temperatures almost instantaneously, avoiding the thermal inertia that occurs in the heat transfer processes in a conventional heat exchanger, which require more time.
  • the air stream whose temperature has already been reduced in the regeneration and expansion stages, is brought into thermal contact by means of an air-refrigerant heat exchanger, with the refrigerant liquid of the refrigeration circuit, so that said cooling liquid gives up heat energy to the air stream.
  • the heat exchanger can be incorporated in the cooling circuit of the propulsion system and / or in the cooling circuit of the supercharger. The air stream, therefore, increases its temperature, although the temperature of the stream will be lower than its temperature after the regeneration step.
  • the air stream that has been used to cool the refrigerant liquid from the refrigeration circuit in the refrigeration stage passes to the regeneration stage, where it is used to reduce the temperature of the air stream leaving the compression stage.
  • the air stream used by the refrigeration equipment has a low humidity, since excessive humidity can lead to water condensation as the temperature of the air stream decreases, which would lead to efficiency losses. energy, and even corrosion problems. Therefore, the method of the invention may comprise, prior to the compression stage, a drying stage, to reduce the humidity of the ambient air stream.
  • the drying step can preferably be carried out by using a filter drier, which, among others, can be made of silica gel.
  • the air stream can be recirculated, preferably by means of a 3-way valve without passing through the heat exchanger to return to the regeneration and compression stage, starting again the cycle described in the method of the invention.
  • This makes it possible to keep the air and the rest of the components used in the invention tempered to the working temperature between a first use and a subsequent use of the installation.
  • the drying stage is also included, the recirculation of the air stream avoids the need to reduce the humidity of the air stream again, which only has to be carried out in the case of introducing ambient air again, if there are air leaks due to leaks.
  • the compression and expansion stages are carried out by means of turbomachines, which can be compressors, for compression, and turbines, for expansion.
  • turbomachines instead of volumetric machines; such as: piston, vane or screw compressors; provides high specific power and very low mechanical inertia. So the regulation of the system is faster and the time required for the equipment to reach stable working conditions is reduced.
  • the cooling and regeneration stages are preferably carried out by means of heat exchangers, which can be: plate, shell-tube or cross-flow, among others.
  • the compression stage can preferably be carried out in stages, rather than using a single stage. Thus, a more pronounced pressure rise can be brought about with high efficiency.
  • a cooling phase can be included, aimed at reducing the temperature of the air stream leaving the compression stage, also increasing the efficiency of the compression process.
  • the cooling phases can be carried out preferably by means of a cooler, that is, a heat exchanger that allows the transfer of heat between the air stream and a cooling fluid, which preferably has a very low global warming potential (GWP). , especially ammonia or carbon dioxide.
  • a cooler that is, a heat exchanger that allows the transfer of heat between the air stream and a cooling fluid, which preferably has a very low global warming potential (GWP). , especially ammonia or carbon dioxide.
  • GWP global warming potential
  • Each of the cooling phases extracts a specific heat energy from the air stream.
  • Chillers for their part, can function as heat recuperators and evaporators of an ejection cycle that makes use of a low GWP refrigerant fluid.
  • the ejection cycle is included instead of a cycle with a volumetric compressor and comprises: an ejector, which is in charge of increasing the pressure of the refrigerant fluid, of low GWP, in the gas state; a bomb; a condenser and also makes use of the coolers, making the process more efficient.
  • the invention also relates to refrigeration equipment for the ultra-fast charging of batteries of electric or hybrid propulsion systems intended to cool a cooling liquid circulating in a refrigeration circuit.
  • the refrigeration equipment of the invention makes use of a stream of ambient air as the working fluid.
  • the equipment comprises a first compressor, which is driven by means of an electric current, preferably from the supercharger to which the propulsion system is connected.
  • the first compressor absorbs the ambient air stream, which is introduced into the refrigeration equipment through an inlet with an ambient pressure, which is increased by the action of the compressor on the air stream. Compression of the air by means of the compressor also causes an increase in the temperature of the air stream passing through the compressor.
  • the air stream introduced by the compressor into the equipment can have excessive humidity, which can lead to water condensation as the temperature of the air stream decreases, which would lead to energy efficiency losses.
  • a filter drier designed to reduce the humidity of the air stream.
  • This filter drier can preferably be made of silica gel.
  • it may further comprise a set of compressors and a set of coolers, interspersed with the compressors, so that the compression of the air stream is not carried out in a single phase, but in multiple phases. compression and cooling.
  • the air stream can pass through a first cooler, which reduces the temperature of the air stream, extracting a quantity of heat determined by heat transfer with a refrigerant fluid, which is preferably very low global warming potential (GWP).
  • GWP global warming potential
  • the air stream Once the air stream has passed through the first cooler, it can pass to a second compression stage, in which a second compressor increases the pressure of the air stream again. Likewise, the increase in pressure in the second compressor is associated with an increase in temperature in the air stream due to the thermodynamic compression process and its associated losses, which will determine its efficiency.
  • the air stream could then be passed through a variable set of chillers and compressors that increase the pressure of the air stream in an efficient way.
  • a variable set of chillers and compressors that increase the pressure of the air stream in an efficient way.
  • use is made of two compressors with two coolers sandwiched between them.
  • the equipment of the Invention can also comprise an ejection cycle, connected with the coolers.
  • the ejection cycle makes use of a low GWP refrigerant fluid at high pressure and comprises a pump, designed to direct a primary flow of refrigerant fluid towards the first cooler, which acts as a heat recuperator for the ejection cycle, and a pressure relief valve. lamination, designed to direct a secondary flow of refrigerant fluid towards the second cooler, which acts as an evaporator for the ejection cycle.
  • the ejection cycle also comprises an ejector, which comprises a nozzle, through which the primary flow of refrigerant fluid that is accelerated is introduced, an intake that absorbs the secondary flow of refrigerant fluid due to the depression of the primary flow that has been accelerated at the nozzle, the primary and secondary flow of refrigerant fluid mixing in a low GWP refrigerant fluid stream, and a diffuser that increases the pressure of the refrigerant fluid stream.
  • an ejector which comprises a nozzle, through which the primary flow of refrigerant fluid that is accelerated is introduced, an intake that absorbs the secondary flow of refrigerant fluid due to the depression of the primary flow that has been accelerated at the nozzle, the primary and secondary flow of refrigerant fluid mixing in a low GWP refrigerant fluid stream, and a diffuser that increases the pressure of the refrigerant fluid stream.
  • the ejection cycle also comprises a condenser that reduces the temperature of the cooling fluid stream so that it changes from a gas phase to a liquid phase.
  • the ejection cycle comprises a flow divider, designed to divide the stream of cooling fluid, and direct the primary flow of cooling fluid towards the pump and the secondary flow of cooling fluid towards the lamination valve, restarting the cycle ejection.
  • the flow divider consists of a bifurcation of a conduit containing the stream of cooling fluid, so that a first part of said stream forms the primary flow of refrigerant fluid and a second part of said stream forms the secondary flow of fluid. refrigerant.
  • the air stream After reaching the last of the compressors or coolers, the air stream passes to a regenerator, that is, a heat exchanger, intended to reduce the temperature of the air stream. Subsequently, the air stream passes through a turbine destined to produce an expansion of the air stream, thanks to which the temperature and pressure of the air stream are reduced.
  • the turbine is mechanically connected to one of the compressors in order to transmit the rotary kinetic energy generated in the turbine shaft to said compressor and thus reduce the external energy consumption, the compressor and turbine forming a turbo group.
  • a heat exchanger is placed, in which the air stream is brought into thermal contact with the cooling liquid of the vehicle and / or the supercharger, and collects heat energy from said cooling liquid.
  • the coolant is cooled and the air stream increases its temperature.
  • the air stream then returns to the regenerator, where it receives heat energy, thereby cooling the air stream leaving the last of the compressors or coolers.
  • the expansion ratio of the turbine is 3 or greater, in order to produce a high reduction in the temperature of the air stream, which is preferably 125 degrees centigrade below 0.
  • the equipment can also comprise a 3-way valve located just behind the turbine, so that when activated it redirects the air that leaves the turbine directly towards the regenerator without previously passing through the heat exchanger.
  • This valve allows the air stream to circulate through the equipment even when the refrigerant liquid of the vehicle's electrical equipment and / or of the supercharger itself is not cooling. This maintains the temperature of the air stream for when the coolant needs to be cooled again, rather than reconditioning the ambient air.
  • turbomachines that comprise the equipment can operate intermittently to consume less energy, acting on the air stream only when necessary.
  • the equipment of the invention makes it possible to generate air at a very low temperature, to continuously cool the refrigerant liquid in the refrigeration circuit. In a state of ultra-fast charge of the battery, the amount of heat to evacuate is very large, so the power of the equipment must be according to those needs.
  • the equipment of the invention makes it possible to obtain a very high cooling power without the need to increase the size of the equipment.
  • said circuit may comprise two sets of pipes each connected with a refrigerant drive pump. One will be activated when the vehicle is circulating and the batteries are in operation supplying energy to the electric motor and the other, with greater cooling capacity, will be activated when the vehicle is parked in battery recharging mode. DESCRIPTION OF THE DRAWINGS
  • Figure 1 Shows a schematic view of an embodiment of the refrigeration equipment of the invention.
  • Figure 2. Shows an inverse Brayton ddo diagram that represents the stages of a preferred embodiment of the invention method.
  • Figure 3. Shows a diagram of the ejection cycle that represents the stages of a preferred embodiment of the method of the Invention.
  • the present invention refers to a method and a refrigeration equipment, which makes use of a current of ambient air as a working fluid, intended to cool a refrigerant liquid that circulates in a refrigeration circuit (109) of a vehicle and / or of a supercharger.
  • Figure 1 shows a preferred embodiment of the refrigeration equipment of the invention, in which a reverse Brayton cycle is used to cool the refrigerant liquid that circulates through a refrigeration circuit that surrounds the batteries and electronic components of an electric propulsion system. or hybrid embedded in a vehicle.
  • the equipment of figure 1 comprises a first compressor (100), which is preferably driven by a first electric motor, powered by an electric current.
  • the first compressor (100) absorbs the ambient air stream, which is introduced into the refrigeration equipment, and the pressure of said air stream is increased by the action of the first compressor (100). Compression of the air by means of the first compressor (100) also causes an increase in the temperature of the air stream. Once the air stream has been compressed, the air stream passes through a first cooler (103), which reduces the temperature of the air stream, extracting a certain amount of heat by heat transfer with a refrigerant fluid, in this case carbon dioxide.
  • a refrigerant fluid in this case carbon dioxide.
  • the air stream once it has passed through the first cooler (103), passes to a second compression stage, in which a second compressor (101), driven by a turbine (106), which forms a turbo-group with the second compressor (101) increases the pressure of the air stream again.
  • the increase in pressure in the second compressor (101) is associated with an increase in temperature in the air stream, for which a second cooler (104) is arranged, similar to the first cooler (103), intended to reduce the temperature of the air stream.
  • the first (103) and the second cooler (104) are connected with an ejection circuit.
  • the ejection circuit makes use of a refrigerant fluid with a low global warming potential (GWP), to which an ejection cycle is applied.
  • the cooling fluid of the ejection cycle is divided into a primary flow of cooling fluid and a secondary flow of cooling fluid.
  • the primary flow of refrigerant fluid is directed towards a pump (112), which increases its pressure, then passes through the first cooler (103) that functions as a heat recuperator for the ejection cycle, where the thermal energy of the primary flow increases. of refrigerant fluid, which turns into a gaseous state. This gas then circulates through the ejector (102).
  • the secondary flow of cooling fluid is directed to a lamination valve (111). It then passes through the second cooler (104), which functions as an evaporator for the ejection cycle, where the thermal energy of the secondary flow of refrigerant fluid increases in an isobaric manner, which passes into a gaseous state and continues towards the ejector (102) .
  • the primary flow of refrigerant fluid passes through a nozzle, accelerates increasing its speed and reducing its pressure, and mixes with the secondary flow of refrigerant fluid that is sucked due to the depression of the main flow, forcing the mixing of the primary and secondary flow into a low GWP coolant stream.
  • the refrigerant fluid stream passes through a diffuser to increase the pressure of the refrigerant fluid stream, and is directed toward a condenser (108), which isobarically reduces the thermal energy of the refrigerant fluid stream so that it changes phase. gas to liquid phase.
  • the stream of refrigerant fluid is then directed to a bifurcate where it divides into the primary flow and the secondary fluid flow, re-initiating the ejection direction.
  • a regenerator (105) the air stream exiting the second cooler (104) dissipates heat energy.
  • the air stream leaving the regenerator (105) has a much lower temperature, which is further reduced by the expansion carried out by a turbine (106) positioned behind the regenerator (105).
  • the turbine (106) of the invendón extracts energy from the current in the form of mechanical energy in the shaft of the turbine (106), and transmits said energy to the second compressor (101), so that it is not necessary to provide external energy to move said compressor.
  • the air that comes out of the turbine (106) is used to cool the cooling liquid that circulates through the vehicle's cooling circuit (109), by means of a heat exchanger (107), shipped in said vehicle.
  • the cooling liquid gives up heat energy to the air stream, which increases its temperature.
  • the air stream then passes through the regenerator (105) again, where it absorbs the heat energy released by the air stream leaving the second cooler (104).
  • Figure 1 also shows that just behind the turbine (106) a three-way valve (113) is placed that directs the flow in two possible configurations.
  • a first configuration in which the equipment of the invention is connected to the cooling circuit (109) of the vehicle through the heat exchanger (107).
  • the valve (113) is configured so that the air current that leaves the turbine (106) is not headed for the heat exchanger (107), but is directed directly to the regenerator (105), skipping said heat exchanger (107).
  • the second configuration makes it possible to maintain a low temperature air stream with low electrical energy consumption, instead of having to re-regulate the temperature of the ambient air and the rest of the equipment of the invention when it is connected to the heat exchanger ( 107) of the cooling circuit (109) of some batteries (110) and return to the first configuration.
  • Figure 2 shows the Inverse Brayton cycle diagram of the equipment shown in Figure 1, where the entropy is represented on the ordinate axis and the temperature is represented on the abscissa axis.
  • the cycle diagram further represents a preferred embodiment of the method of the invention.
  • Point 1 represents the thermodynamic state of the air that enters the equipment absorbed by the first compressor (100), before entering the compression stage of the method of the invention, which in the case shown in figure 2 is a compression by phases with intercalated cooling phases.
  • the action of the first compressor (100) on the air stream is shown in the line that joins point 1 with point 2, so that the compressor increases the temperature, in the case of the figure from 20 degrees centigrade to 160 degrees Celsius, and the entropy of the air stream increases.
  • the increase in the temperature of the air stream is due to the process losses and the thermodynamics of the pressure increase process, in this case from 1 bar to 2.7 bar.
  • Said compression implies the need to introduce energy into the equipment, which in this case is preferably obtained from an electric motor.
  • the action of the first cooler (103) is reflected, which implies a decrease in the entropy and the temperature of the air stream at constant pressure, in this case from 160 degrees centigrade to 60 degrees centigrade.
  • the second compression phase is carried out by the second compressor (101), whose action on the fluid is similar to that of the first compressor (100), but raising the pressure to a higher level, in this case at 3 bar, leaving the temperature around 85 degrees Celsius.
  • the second cooler (104) repeats the same action as the first cooler (103) and reduces the temperature of the air stream, in this case from 85 degrees Celsius at point 4 to 30 degrees Celsius at point 5. So the overall effect of the compression and cooling phases of the compression stage is an increase in pressure from 1 bar to 3 bar with an increase in temperature from 20 to 30 degrees Celsius, which is reached at point 5 in figure 2.
  • the air stream passes to the regeneration stage, where by means of the regenerator (105) it is cooled at constant pressure from 30 degrees Celsius to about 100 degrees Celsius below zero, producing in this process a decrease in entropy, as shown in point 6 of figure 2.
  • the air stream passes to the expansion stage, where the turbine (106) expands the air stream reducing the pressure with a high expansion coefficient, in this case 3, and extracting mechanical energy in the form of rotation of the shaft. of the turbine (106).
  • the expansion of the air stream also causes a decrease in temperature, in this case from minus 100 degrees Celsius to minus 125 degrees Celsius, at point 7 in figure 2.
  • the air current passes through the heat exchanger (107) where it receives heat energy from the cooling liquid that circulates through the cooling circuit (109) of the batteries (110), until it reaches 110 degrees Celsius below zero in the point 8 of figure 2.
  • the air stream passes through the regenerator (105) again, to receive the heat energy given off by the air stream that leaves the second cooler (104).
  • the temperature of the air stream increases, until it reaches 20 degrees Celsius again at point 1 in Figure 2, at constant pressure, increasing the entropy.
  • FIG. 3 shows the diagram of the ejection cycle in which the pressure of the refrigerant fluid is represented on the abscissa and the enthalpy on the ordinate.
  • the working pressure and temperature data presented below have been obtained for the ejection cycle working with R1234yf, which is a state-of-the-art working fluid with low environmental impact. However, these values could change depending on the working fluid used.
  • the cooling fluid stream splits into a primary cooling fluid flow and a secondary cooling fluid flow. refrigerant fluid.
  • the primary flow passes through a pump (112), which drives it and increases its pressure until it reaches 27.7 bar at point F in figure 3.
  • the primary flow passes to the first air cooler (103), which is the heat recovery unit of the ejection cycle, where it increases its temperature at constant pressure and passes into a gaseous state, reaching 110 ° C at point G of the Figure 3. Then, the primary flow is introduced into the ejector (102).
  • the secondary flow passes through a lamination valve (111), where a pressure loss occurs that causes the secondary flow of refrigerant fluid to reach a pressure of 3.5 bar at point A of figure 3.
  • the secondary flow passes through the second cooler (104), which is the evaporator of the ejection cycle, so that its thermal energy increases at constant pressure and passes into a gaseous state at point B of figure 3. After which , the secondary flow is introduced into the ejector (102).
  • the primary flow passes through a nozzle, increasing its speed and decreasing its pressure to point C in figure 3.
  • the secondary flow is sucked into the ejector ( 102), due to the depression caused by the primary flow at the outlet of the nozzle, so that at point C of Figure 3 the primary and secondary flow mix, again forming a single stream of cooling fluid.
  • This stream of refrigerant fluid passes through a diffuser increasing its pressure until it reaches 8.3 bar at point D in figure 3.
  • the stream of refrigerant fluid After leaving the ejector (102), the stream of refrigerant fluid passes through a condenser (108), which decreases the thermal energy of said stream of refrigerant fluid at constant pressure to 32 ° C, passing the stream of refrigerant fluid to a liquid state and going back to point E in figure 3.
  • a condenser 108

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Método de refrigeración destinado a enfriar un liquido refrigerante que circula en un circuito de refrigeración de un vehículo y/o de un supercargador, que hace uso de una corriente de aire ambiente como fluido de trabajo y comprende las etapas de compresión, enfriamiento en enfriadores acopiados a un ciclo de eyección, expansión, para reducir la temperatura de la corriente de aire y obtener energía mecánica de la misma, refrigeración, para permitir un intercambio de energía calorífica entre la corriente de aire que sale de la etapa de expansión y el líquido refrigerante del circuito de refrigeración, y regeneración, para permitir un intercambio de energía calorífica entre la corriente de aire que sale de la etapa de compresión, reduciendo su temperatura, y la que sale de la etapa de regeneración, aumentando su temperatura.

Description

MÉTODO Y EQUIPO DE REFRIGERACIÓN PARA LA CARGA ULTRARRÁPIDA DE
BATERÍAS DE SISTEMAS PROPULSIVOS HÍBRIDOS O ELÉCTRICOS
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un método y a un equipo de refrigeración destinado a ser usado en la carga ultrarrápida de baterías de sistemas propulsivos híbridos o eléctricos, debido principalmente a la gran cantidad de energía calorífica que es necesario evacuar en un corto periodo de tiempo.
Un objeto de la invención es proveer un método que permíta la refrigeración eficiente de un líquido refrigerante que circula por un circuito de refrigeración de un sistema propulsivo híbrido o eléctrico, por un circuito de refrigeración de un supercargador o ambos.
Un segundo objeto de la invención consiste en proveer un equipo de refrigeración que permita extraer una gran cantidad de energía calorífica con un ciclo eficiente que minimice las pérdidas de energía, para ser usado en la refrigeración de baterías de un sistema propulsivo híbrido o eléctrico, en la refrigeración de un supercargador o ambos.
Otro objeto de la presente invención consiste en proveer un dispositivo que permita la refrigeración de baterías durante un proceso de carga.
ANTECEDENTES DE LA INVENCIÓN
En el mundo de la automoción los motores eléctricos son una de las alternativas existentes. Pese a su larga historia, ha sido recientemente cuando están empezando a conquistar un nicho de mercado relevante en los países más desarrollados. Sin embargo, las dos mayores desventajas de éstos frente a los motores de combustión interna alternativos (MCIA), que se vienen usando tradicionalmente de forma masiva, son: la poca densidad de energía de las baterías frente al combustible líquido, unas cien veces menos energía disponible para el mismo peso; y el tiempo necesario para la reposición de esta energía. En el caso de los MCIA el tiempo para recargar unos 50 litros de combustible en el vehículo es del orden de unos 2 minutos, mientras que en el caso de las baterías puede ser de unas 12 horas (si la carga de la batería es lenta), de entre 3 y 6 horas (si la carga es rápida) y de entre 10 y 60 minutos si el sistema de carga y la propia batería permiten realizar la carga de manera ultrarrápida.
En este último caso, la carga de la batería solamente llega entre el 50% y el 70% de su capacidad total y, además, el tamaño y el peso del sistema de carga son considerables y, por tanto, no puede instalarse integrado en el vehículo ya que el aumento de su peso sería inadmisible. Por ese motivo, estos sistemas de carga se ubican habitualmente fuera del vehículo, generalmente en estaciones de recarga.
Uno de los factores limitantes al realizar la carga ultrarrápida en las baterías es que, debido a la cantidad de energía que se suministra en un periodo de tiempo limitado, provoca el aumento de la temperatura de éstas. Esta temperatura acorta de manera drástica la vida de las baterías frente a la vida útil que tendrían las mismas si la carga se realizase siempre de manera lenta, con una temperatura controlada. Además, hay que regular la temperatura para evitar el riesgo de incendio de las baterías. Para poder utilizar este sistema de recarga sin peligro de incendio y sin afectar tan drásticamente a la vida útil de las baterías es necesario disponer de un sistema que permita controlar y mantener la temperatura de la batería bajo unos umbrales aceptables y seguros.
Actualmente, los sistemas de refrigeración de las baterías más habituales se basan en la utilización de un circuito de refrigeración con líquido que, finalmente evacúa el calor extraído de las baterías al circuito de aire acondicionado del vehículo, basado en fluidos refrigerantes orgánicos, como hidrocarburos de cadenas muy larga, con cambio de fase, o al aire ambiente de diferentes formas posibles, como, por ejemplo, a través de grandes baterías de intercambiadores con ventilación forzada.
El uso de fluido/s refrigerante/s orgánicos con cambio de fase o vectores refrigerantes en estado líquido tiene varios inconvenientes, entre los que caben destacar cuatro. Primero, suelen ser poco respetuosos con el medio ambiente ya que tienen un elevado potencial de calentamiento atmosférico (GWP). Segundo, debido al uso de compresores y ventiladores, suelen ser ruidosos con el consiguiente malestar por parte del usuario. Tercero, acoplar y desacoplar conexiones de líquidos a presión en el vehículo supone problemas de entrada de aire, purgado de aire, fugas de líquidos e incomodidades para el usuario. Y cuarto, la Inercia térmica, es decir, el tiempo que tarda el sistema en llegar a las temperaturas de trabajo, de estos sistemas es muy grande debido a las características de los fluidos empleados, lo que los hace poco atractivos para esta aplicación.
Se ha localizado en el estado de la técnica el documento US2013029193A1 “Rapid charging electric vehicle and method and apparatus for rapid charging" que describe un sistema para soplar, con el ventilador del vehículo, aire hacia las baterías o de proporcionar un fluido refrigerado externo y líquido. Sin embargo, esta solución conlleva dificultades en el sistema de acople como las comentadas anteriormente. También, al estar conectado con el circuito de refrigeración por líquido del vehículo puede provocar fallos, como, por ejemplo, Infiltraciones de aire o daños en el mismo. Finalmente, el documento no describe cómo se consigue enfriar el fluido usado como vector del frío.
El documento US2014292260A1 “Electric battery rapid recharging system and method for military and other applications” describe la refrigeración de una batería con aire, donde el aire se obtiene de la Engine Cooling Unit (ECU). La ECU es el sistema de refrigeración del vehículo que transporta el sistema de carga de la batería. Sin embargo, no se presenta ningún sistema dedicado a obtener el aire frío. Asimismo, se interacciona con la refrigeración de la batería cuando el vehículo está en marcha, lo que da la posibilidad de producir fallos y dificulta el diseño de la batería. El documento US2013294890A1 “Reverse Brayton cycle with bladeless turbo compressor for automotive environmental cooling” se refiere a un sistema de aire acondicionado de pasajeros en un vehículo, donde la energía necesaria para producir compresión proviene de gases de escape de un motor de combustión. Asimismo, se instala un regenerador para atemperar el aire refrigerado (cooled air) recalentándolo con aire ambiente.
El documento US2011239659A1 “Cooling fbr hybrid electric vehicle”, se refiere a la refrigeración del habitáculo del pasajero y presenta para ello un ciclo de Brayton inverso a vacío (CBIV). El documento US2002043413A1 “Vehicle battery cooling apparatus”, revela el uso adicional que se puede hacer para refrigerar baterías durante su carga, de un ciclo convencional Rankine inverso usado para el aire acondicionado de los pasajeros del vehículo, el cual tiene una potencia que no es compatible con las necesidades de disipación de potencia de los sistemas ultrarrápidos de carga de baterías.
El documento US2013086927A1 “Integrated air-cycle refrigeration and power generation system", revela un ciclo de Brayton inverso no a vacío con un regenerador, que utiliza la energía térmica residual de un motor para su funcionamiento. Asimismo, la energía residual del ciclo de Brayton inverso se disipa al ambiente en un intercambiador gas-gas.
DESCRIPCIÓN DE LA INVENCIÓN La invención se refiere a un método de refrigeración destinado a reducir la temperatura de un líquido refrigerante que circula por un circuito de refrigeración que rodea baterías y componentes electrónicos de sistemas de propulsión híbridos o eléctricos de un vehículo, y/o un circuito de refrigeración de un supercargador, mediante un equipo de refrigeración.
El vehículo, por tanto, comprende un sistema de propulsión eléctrico o híbrido, el cual, a su vez, comprende baterías y otros componentes electrónicos y un puerto de carga. En tomo a las baterías y los componentes electrónicos, circula un circuito de refrigeración, que, cuando las baterías están en operación ó en proceso de carga, permite refrigerarlas.
El puerto de carga permite conectar el vehículo a un supercargador, que comprende un conjunto de componentes electrónicos. El supercargador también puede contar con un circuito de refrigeración.
El equipo de la invención está destinado a conectarse a uno o ambos circuitos de refrigeración, del vehículo o del supercargador, a través de un intercambiador de calor montado en uno o ambos circuitos de refrigeración. Así, el líquido refrigerante que circula por uno o ambos circuitos de refrigeración es refrigerado en el intercambiador de calor por el equipo de la invención. El equipo de la invención permite proporcionar un fluido a baja temperatura para enfriar el líquido refrigerante de una manera rápida y adaptable, ya que permite obtener un amplio rango de temperaturas sin necesidad de modificar el número de componentes del equipo o el tamaño de éste. Además, el equipo de la invención es prácticamente independiente de las condiciones ambientales, pudiendo operar en una amplia variedad de condiciones medioambientales.
El líquido refrigerante puede circular por un circuito de refrigeración que rodea las baterías y componentes electrónicos de un sistema propulsivo eléctrico o híbrido, mientras que el equipo de la Invención enfría dicho líquido refrigerante, sin necesidad de extraer el líquido refrigerante del circuito de refrigeración del sistema de propulsión eléctrico o híbrido. El método de la invención, en este caso, está destinado a refrigerar las baterías durante su carga. En este caso, el circuito de refrigeración es equipado con al menos una bomba de impulsión para mover el líquido refrigerante y un intercambiador de calor embarcado en el vehículo, que permitirá el intercambio de energía calorífica entre dicho líquido refrigerante y el fluido de trabajo.
Asimismo, el líquido refrigerante puede circular por un circuito de refrigeración que se extiende por el interior de un supercargador, y permite refrigerarlo durante el proceso de carga de baterías de un vehículo con un sistema de propulsión híbrido o eléctrico. El circuito de refrigeración del supercargador también es equipado con al menos una bomba de impulsión para mover el líquido refrigerante y un intercambiador de calor, que permitirá el intercambio de energía calorífica entre dicho líquido refrigerante y el fluido de trabajo.
El método de refrigeración de la invención hace uso de una corriente de aire como fluido de trabajo. El aire se obtiene a presión y temperatura atmosféricas, y pasará por múltiples etapas con el fin de reducir su temperatura de forma eficiente y, posteriormente, recoger energía calorífica del líquido refrigerante del circuito de refrigeración, enfriando el mismo. La baja inercia térmica del aire permite reducir el tiempo necesario para que el equipo alcance condiciones de trabajo y empezar a enfriar el líquido de refrigeración. Asimismo, el uso de aire reduce el coste de las pérdidas por fugas, facilita la conexión y desconexión de forma limpia y sencilla y evita el uso de otros fluidos refrigerantes que pueden ser contaminantes, corrosivos o incluso tóxicos; todo esto en un circuito que en algún momento quedará abierto a la atmósfera.
La corriente de aire pasa en primer lugar por una etapa de compresión en un primer compresor mecánico, preferiblemente, accionado por un motor eléctrico, para aumentar la presión de la corriente. Este aumento de presión conlleva un aumento de la temperatura de la corriente de aire.
Posteriormente, la corriente de aire es enfriada en una etapa de regeneración.
El método de la invención también comprende una etapa de expansión que reduce aún más la temperatura de la corriente de aire por medio de la expansión de ésta, reduciendo la presión de la corriente de aire y extrayendo, gracias a esa reducción de presión, energía mecánica que se aporta a la etapa de compresión con el fin de hacerla más eficiente. La reducción de temperatura mediante la expansión de la corriente de aire, permite alcanzar temperaturas más bajas de forma casi instantánea, evitando la inercia térmica que se produce en los procesos de transferencia de calor en un intercambiador de calor convencional, que requieren de más tiempo. A continuación, la corriente de aire, cuya temperatura ya ha sido reducida en las etapas de regeneración y expansión, se pone en contacto térmico por medio de un intercambiador de calor aire-refrigerante, con el líquido refrigerante del circuito de refrigeración, de modo que dicho líquido refrigerante cede energía calorífica a la corriente de aire. El intercambiador de calor puede incorporarse en el circuito de refrigeración del sistema propulsivo y/o en el circuito de refrigeración del supercargador. La corriente de aire, por tanto, aumenta su temperatura, aunque la temperatura de la corriente será menor que la temperatura de ésta tras la etapa de regeneración.
La corriente de aire que ha sido usada para enfriar el líquido refrigerante del circuito de refrigeración en la etapa de refrigeración, pasa a la etapa de regeneración, donde es usada para reducir la temperatura de la corriente de aire que sale de la etapa de compresión. Así se produce una transferencia de la energía calorífica entre la misma corriente de aire, pero en dos etapas del ciclo diferentes, por un lado, la corriente de aire que sale de la etapa de compresión cede energía calorífica mientras que la corriente de aire que sale de la etapa de refrigeración recibe dicha energía calorífica. Preferentemente, la corriente de aire de la que hace uso el equipo de refrigeración tiene una humedad baja, ya que la humedad excesiva puede llevar a la condensación de agua al disminuir la temperatura de la corriente de aire, lo que daría lugar a pérdidas de eficiencia energética, e incluso a problemas de corrosión. Por ello, el método de la invención puede comprender, previa a la etapa de compresión, una etapa de secado, para reducir la humedad de la corriente de aire ambiente. La etapa de secado puede realizarse preferentemente mediante el uso de un filtro secador, que, entre otros, puede ser de gel de sílice.
Por otro lado, tras la etapa de expansión la corriente de aire puede ser recirculada, preferiblemente mediante una válvula de 3 vías sin pasar por el intercambiador de calor para volver a la etapa de regeneración y compresión, iniciando nuevamente el ciclo descrito en el método de la invención. Esto permite mantener el aire y el resto de los componentes usados en la invención atemperados a la temperatura de trabajo entre un primer uso y un uso subsiguiente de la instalación. En caso de que además se incluya la etapa de secado, la recirculación de la corriente de aire evita la necesidad de volver a reducir la humedad de la comente de aire, que sólo se ha de realizar en el caso de introducir aire ambiente nuevamente, si existieran perdidas de aire debido a fugas.
De forma preferente, las etapas de compresión y expansión son llevadas a cabo mediante turbomáquinas, que pueden ser compresores, para compresión, y turbinas, para expansión. El uso de turbomáquinas, en lugar de máquinas volumétricas; como podrían ser: compresores de pistón, de paletas o de tomillos; proporciona una alta potencia específica y una inercia mecánica muy reducida. De modo que la regulación del sistema es más rápida y el tiempo necesario para que el equipo alcance condiciones de trabajo estables se reduce. Asimismo, las etapas de refrigeración y regeneración son llevadas a cabo preferentemente por medio de intercambiadores de calor, que pueden ser: de placas, de carcasa-tubo o de flujo cruzado, entre otros.
La etapa de compresión, de forma preferente, puede realizarse por fases, en lugar de hacer uso de una etapa única. De ese modo, se puede provocar un aumento de presión más acentuado con una alta eficiencia. Asimismo, entre cada fase de la etapa de compresión, se puede incluir una fase de enfriamiento, destinada a reducir la temperatura de la corriente de aire que sale de la etapa de compresión, Incrementándose además la eficiencia del proceso de compresión.
Las fases de enfriamiento pueden ser llevadas a cabo preferentemente mediante un enfriador, es decir, un intercambiador de calor que permite la transferencia de calor entre la corriente de aire y un fluido refrigerante, que preferentemente es de muy bajo potencial de calentamiento atmosférico (GWP), en especial, amoniaco o dióxido de carbono. Cada una de las fases de enfriamiento extraen de la corriente de aire una energía calorífica determinada.
Los enfriadores, por su parte, pueden funcionar como los recuperadores de calor y los evaporadores de un ciclo de eyección que hace uso de un fluido refrigerante de bajo GWP. El ciclo de eyección se incluye en lugar de un ciclo con compresor volumétrico y comprende: un eyector, que se encarga de aumentar la presión del fluido refrigerante, de bajo GWP, en estado gas; una bomba; un condensador y además hace uso de los enfriadores, haciendo el proceso más eficiente.
La invención también se refiere al equipo de refrigeración para la carga ultrarrápida de baterías de sistemas propulsivos eléctricos o híbridos destinado a enfriar un líquido refrigerante que circula en un circuito de refrigeración.
El equipo de refrigeración de la invención hace uso de una corriente de aire del ambiente como fluido de trabajo. El equipo comprende un primer compresor, que es accionado por medio de una corriente eléctrica, preferiblemente del supercargador al que se conecta el sistema propulsivo. El primer compresor absorbe la corriente de aire ambiente, que se introduce en el equipo de refrigeración a través de una entrada con una presión ambiente, la cual es incrementada por efecto de la acción del compresor sobre la corriente de aire. La compresión del aire por medio del compresor también provoca un aumento en la temperatura de la comente de aire que pasa a través del compresor. La corriente de aire introducida por el compresor en el equipo puede contar con una humedad excesiva, que puede llevar a la condensación de agua al disminuir la temperatura de la corriente de aire, lo que daría lugar a pérdidas de eficiencia energética. Por esta razón, en la entrada del equipo, previo al primer compresor, se puede colocar, de forma preferente, un filtro secador, destinado a reducir la humedad de la corriente de aire. Este filtro secador puede estar preferentemente hecho de gel de sílice.
Con el fin de aumentar la eficiencia del equipo, puede comprender además un conjunto de compresores y un conjunto de enfriadores, Intercalados con los compresores, de modo que la compresión de la corriente de aire no se realiza en una sola fase, sino en múltiples fases de compresión y enfriamiento.
Así, una vez que la corriente de aire ha sido comprimida, su presión ha sido aumentada, por efecto de la acción del primer compresor, la corriente de aire puede pasar por un primer enfriador, que reduce la temperatura de la corriente de aire, extrayendo una cantidad de calor determinada por transferencia de calor con un fluido refrigerante, que preferiblemente es de muy bajo potencial de calentamiento atmosférico (GWP).
La corriente de aire una vez que ha pasado por el primer enfriador, puede pasar a una segunda etapa de compresión, en la que un segundo compresor vuelve a aumentar la presión de la corriente de aire. Asimismo, el aumento de presión en el segundo compresor lleva asociado un aumento de temperatura en la corriente de aire debido al proceso termodinámico de compresión y sus pérdidas asociadas, que determinarán su eficiencia.
A continuación, la corriente de aire podría pasar por un conjunto variable de enfriadores y compresores que aumenten la presión de la corriente de aire de un modo eficiente. Preferentemente, se hace uso de dos compresores con dos enfriadores Intercalados entre ellos.
El equipo de la Invención también puede comprender un ciclo de eyección, conectado con los enfriadores.
El ciclo de eyección hace uso de un fluido refrigerante de bajo GWP a alta presión y comprende una bomba, destinada a dirigir un flujo primario de fluido refrigerante hacia el primer enfriador, que actúa como recuperador de calor del ciclo de eyección, y una válvula de laminación, destinada a dirigir un flujo secundario de fluido refrigerante hacia el segundo enfriador, que actúa como evaporador del ciclo de eyección. El ciclo de eyección además comprende un eyector, que comprende una tobera, por la que se Introduce el flujo primario de fluido refrigerante que se acelera, una toma que absorbe el flujo secundario de fluido refrigerante debido a la depresión del flujo primario que se ha acelerado en la tobera, mezclándose el flujo primario y secundario de fluido refrigerante en una corriente de fluido refrigerante de bajo GWP, y un difusor que aumenta la presión de la corriente de fluido refrigerante.
Asimismo, el ciclo de eyección comprende también un condensador que reduce la temperatura de la corriente de fluido refrigerante de modo que cambia de fase gaseosa a fase líquida.
Además, el ciclo de eyección comprende un divisor de flujo, destinado a dividir la comente de fluido refrigerante, y dirigir el flujo primario de fluido refrigerante hacia la bomba y el flujo secundario de fluido refrigerante hacia la válvula de laminación, volviendo a iniciarse el ciclo de eyección. Preferentemente, el divisor de flujo consiste en una bifurcación de un conducto que contiene la corriente de fluido refrigerante, de modo que una primera parte de dicha corriente forma el flujo primario de fluido refrigerante y una segunda parte de dicha corriente forma el flujo secundario de fluido refrigerante.
Tras alcanzar el último de los compresores o enfriadores, la corriente de aire pasa a un regenerador, es decir, un intercambiador de calor, destinado a reducir la temperatura de la corriente de aire. Posteriormente, la corriente de aire pasa por una turbina destinada a producir una expansión de la corriente de aire, gracias a la cual, la temperatura y la presión de la comente de aire se reducen. Preferentemente, la turbina está conectada mecánicamente con uno de los compresores con el fin de transmitir la energía cinética rotativa generada en el eje de la turbina a dicho compresor y así reducir el consumo de energía externa, formando compresor y turbina un turbogrupo.
A continuación, se coloca un intercambiador de calor, en el que la corriente de aire se pone en contacto térmico con el líquido refrigerante del vehículo y/o del supercargador, y recoge energía calorífica de dicho líquido refrigerante. De ese modo, el líquido refrigerante es enfriado y la corriente de aire aumenta su temperatura. Entonces, la corriente de aire vuelve al regenerador, donde recibe energía calorífica, enfriando así la corriente de aire que sale del último de los compresores o enfriadores. Preferentemente, la relación de expansión de la turbina es 3 o mayor, con el fin de producir una elevada reducción de la temperatura de la corriente de aire, la cual preferentemente, es de 125 grados centígrados bajo 0.
El equipo también puede comprender una válvula de 3 vías situada justo detrás de la turbina, de modo que al ser activada redirige el aire que sale de la turbina directamente hacia el regenerador sin pasar previamente por el intercambiador de calor. Esta válvula permite mantener la circulación de la corriente de aire por el equipo aun cuando no se está enfriando el líquido refrigerante del equipamiento eléctrico del vehículo y/o del propio supercargador. Así se mantiene la temperatura de la corriente de aire para cuando se vuelva a necesitar enfriar el líquido refrigerante, en lugar de volver a acondicionar el aire ambiente.
Asimismo, las turbomáquinas que comprende el equipo pueden funcionar de manera intermitente para consumir menos energía, actuando sobre la corriente de aire sólo cuando es necesario.
El equipo de la invención permite generar aire a una temperatura muy baja, para enfriar de forma continua el líquido refrigerante del circuito de refrigeración. En estado de carga ultrarrápida de la batería la cantidad de calor a evacuar es muy grande, por lo que la potencia del equipo deberá ser acorde a esas necesidades. El equipo de la invención permite obtener una potencia de refrigeración muy elevada sin necesidad de aumentar el tamaño del equipo.
En el caso de que se refrigere el líquido refrigerante que circula por el circuito de refrigeración del vehículo, dicho circuito puede comprender dos conjuntos de tuberías conectadas cada una con una bomba de impulsión del refrigerante. Una se accionará cuando el vehículo esté circulando y las baterías en operación suministrando energía al motor eléctrico y la otra, con mayor capacidad de refrigeración, se accionará cuando el vehículo está estacionado en modo de recarga de baterías. DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripdón que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invendón, de acuerdo con un ejemplo preferente de realizadón práctica de la misma, se acompaña como parte integrante de dicha descripdón, un juego de dibujos en donde con carácter Ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 Muestra una vista esquemática de una realización del equipo de refrigeración de la invención.
Figura 2.- Muestra un diagrama del ddo Brayton inverso que representa las etapas de una realizadón preferente del método de la invendón. Figura 3.- Muestra un diagrama del ciclo de eyección que representa las etapas de una realización preferente del método de la Invención.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
La presente Invención se refiere a un método y a un equipo de refrigeración, que hace uso de una corriente de aire ambiental como fluido de trabajo, destinado a enfriar un líquido refrigerante que circula en un circuito de refrigeración (109) de un vehículo y/o de un supercargador. La figura 1 muestra una realización preferente del equipo de refrigeración de la invención, en el que se hace uso de un ciclo Brayton inverso para refrigerar el líquido refrigerante que circula por un circuito de refrigeración que rodea las baterías y componentes electrónicos de un sistema propulsivo eléctrico o híbrido embarcado en un vehículo. El equipo de la figura 1 comprende un primer compresor (100), que es accionado preferentemente por un primer motor eléctrico, alimentado por una corriente eléctrica. El primer compresor (100) absorbe la corriente de aire ambiente, que se introduce en el equipo de refrigeración, y se aumenta la presión de dicha corriente de aire por efecto de la acción del primer compresor (100). La compresión del aire por medio del primer compresor (100) también provoca un aumento en la temperatura de la comente de aire. Una vez que la comente de aire ha sido comprimida, la corriente de aire pasa por un primer enfriador (103), que reduce la temperatura de la corriente de aire, extrayendo una cantidad de calor determinada por transferencia de calor con un fluido refrigerante, en este caso dióxido de carbono.
La corriente de aire una vez que ha pasado por el primer enfriador (103), pasa a una segunda etapa de compresión, en la que un segundo compresor (101), accionado por una turbina (106), que forma un turbogrupo con el segundo compresor (101), vuelve a aumentar la presión de la corriente de aire. Asimismo, el aumento de presión en el segundo compresor (101) lleva asociado un aumento de temperatura en la corriente de aire, por lo que se dispone un segundo enfriador (104), similar al primer enfriador (103), destinado a reducir la temperatura de la corriente de aire. El primer (103) y el segundo enfriador (104) se conectan con un circuito de eyección. El circuito de eyección hace uso de un fluido refrigerante de bajo potencial de calentamiento atmosférico (GWP), al que se aplica un ciclo de eyección. El fluido refrigerante del ciclo de eyección se divide en un flujo primario de fluido refrigerante y un flujo secundario de fluido refrigerante.
El flujo primario de fluido refrigerante se dirige hacia una bomba (112), que aumenta su presión, a continuación, pasa por el primer enfriador (103) que funciona como recuperador de calor del ciclo de eyección, donde aumenta la energía térmica del flujo primario de fluido refrigerante, que pasa a estado gaseoso. Este gas circula luego por el eyector (102).
Por otro lado, el flujo secundario de fluido refrigerante se dirige a una válvula de laminación (111). A continuación, pasa por el segundo enfriador (104), que funciona como evaporador del ciclo de eyección, donde aumenta de manera isobárica la energía térmica del flujo secundario de fluido refrigerante, que pasa a estado gaseoso y, continúa hacia el eyector (102).
En el eyector (102), el flujo primario de fluido refrigerante pasa por una tobera, se acelera aumentando su velocidad y reduciendo su presión, y se mezcla con el flujo secundario de fluido refrigerante que, es succionado debido a la depresión del flujo principal, forzando la mezcla del flujo primario y el secundario en una comente de fluido refrigerante de bajo GWP.
La corriente de fluido refrigerante pasa por un difusor para aumentar la presión de la corriente de fluido refrigerante, y se dirige hada un condensador (108), que reduce de manera isobárica la energía térmica de la corriente de fluido refrigerante de modo que cambia de fase gaseosa a fase líquida. Entonces, la corriente de fluido refrigerante se dirige hada una bifurcadón en la que se divide en el flujo primario y el flujo secundario de fluido, volviendo a inidar el ddo de eyecdón.
En un regenerador (105) la corriente de aire que sale del segundo enfriador (104) disipa energía calorífica. La corriente de aire que sale del regenerador (105) tiene una temperatura mucho más baja, que se reduce aún más en la expansión realizada por una turbina (106) colocada tras el regenerador (105). La turbina (106) de la invendón extrae energía de la corriente en forma de energía mecánica en el eje de la turbina (106), y transmite dicha energía al segundo compresor (101), de modo que no es necesario aportar energía extema para mover dicho compresor.
El aire que sale de la turbina (106) se usa para enfriar el líquido refrigerante que circula por el circuito de refrigeración (109) del vehículo, por medio de un intercambiador de calor (107), embarcado en dicho vehículo. Así, el líquido refrigerante cede energía calorífica a la corriente de aire, que aumenta su temperatura. La corriente de aire pasa entonces nuevamente por el regenerador (105), donde absorbe la energía calorífica que desprende la corriente de aire que sale del segundo enfriador (104).
Finalmente, la corriente de aire es recirculada nuevamente hada el primer compresor (100).
La figura 1 también muestra que justo detrás de la turbina (106) se coloca una válvula de tres vías (113) que dirige el flujo en dos configuradones posibles. Una primera configuradón en la que se conecta el equipo de la invendón al drcuito de refrigeración (109) del vehículo a través del intercambiador de calor (107). Y una segunda configuradón, en la que no se conecta el equipo de la invendón al drcuito de refrigeradón de las baterías, más bien, en este caso, la válvula (113) se configura de modo que la corriente de aire que sale de la turbina (106) no se dirige hada el intercambiador de calor (107), sino que se dirige directamente al regenerador (105), saltándose dicho intercambiador de calor (107).
La segunda configuración, permite mantener una corriente de aire a baja temperatura con un consumo bajo de energía eléctrica, en lugar de tener que volver a regular la temperatura del aire ambiente y del resto de equipos de la invención cuando se conecte al intercambiador de calor (107) del circuito de refrigeración (109) de unas baterías (110) y se vuelva a la primera configuración. La figura 2 muestra el diagrama del ciclo Brayton Inverso del equipo mostrado en la figura 1, donde en el eje de ordenadas se representa la entropía y en el eje de abscisas se representa la temperatura. El diagrama del ciclo representa además una realización preferente del método de la invención. El punto 1 , representa el estado termodinámico del aire que entra en el equipo absorbido por el primer compresor (100), antes de entrar en la etapa de compresión del método de la invención, que en el caso mostrado en la figura 2 es una compresión por fases con fases de enfriamiento intercaladas. La acción del primer compresor (100) sobre la corriente de aire se muestra en la línea que une el punto 1 con el punto 2, de modo que, el compresor aumenta la temperatura, en el caso de la figura de 20 grados centígrados a 160 grados centígrados, y aumenta la entropía de la corriente de aire. El aumento de la temperatura de la corriente de aire se debe a las pérdidas de proceso y a la termodinámica del proceso de aumento de presión, en este caso de 1 bar a 2.7 bar. Dicha compresión implica la necesidad de introducir energía en el equipo, que en este caso se obtiene preferentemente de un motor eléctrico.
Entre el punto 2 y el punto 3, que se muestran en la figura 2, se refleja la acción del primer enfriador (103), la cual implica una disminución de la entropía y de la temperatura de la corriente de aire a presión constante, en este caso de 160 grados centígrados a 60 grados centígrados. Entre el punto 3 y el 4 se produce la segunda fase de compresión realizada por el segundo compresor (101), cuya acción sobre el fluido es similar a la del primer compresor (100), pero elevando la presión a un nivel superior, en este caso a 3 bar, quedando la temperatura en torno a 85 grados centígrados. El segundo enfriador (104) repite la misma acción que el primer enfriador (103) y reduce la temperatura de la corriente de aire, en este caso de 85 grados centígrados en el punto 4 a 30 grados centígrados en el punto 5. De modo que el efecto global de las fases de compresión y enfriamiento de la etapa de compresión es un aumento de la presión de 1 bar a 3 bar con un aumento en la temperatura de 20 a 30 grados centígrados, que se alcanza en el punto 5 de la figura 2.
Luego, la corriente de aire pasa a la etapa de regeneración, donde medíante el regenerador (105) se enfría a presión constante desde 30 grados centígrados hasta unos 100 grados centígrados bajo cero, produciendo en este proceso una disminución de la entropía, tal y como se muestra en el punto 6 de la figura 2.
A continuación, la corriente de aire pasa a la etapa de expansión, donde la turbina (106) expande la corriente de aire reduciendo la presión con un alto coeficiente de expansión, en este caso 3, y extrayendo energía mecánica en forma de rotación del eje de la turbina (106). Además, la expansión de la corriente de aire también produce una disminución de la temperatura, en este caso de 100 grados centígrados bajo cero a 125 grados centígrados bajo cero, en el punto 7 de la figura 2.
Seguidamente, la comente de aire pasa por el intercambiador de calor (107) donde recibe energía calorífica procedente del líquido refrigerante que circula por el circuito de refrigeración (109) de las baterías (110), hasta alcanzar los 110 grados centígrados bajo cero en el punto 8 de la figura 2.
Entonces, la corriente de aire pasa nuevamente por el regenerador (105), para recibir la energía calorífica que desprende la corriente de aire que sale del segundo enfriador (104). En este proceso, aumenta la temperatura de la corriente de aire, hasta alcanzar nuevamente los 20 grados centígrados en el punto 1 de la figura 2, a presión constante, aumentando la entropía.
La figura 3 muestra el diagrama del ciclo de eyección en el que se representan la presión del fluido refrigerante en abscisas y la entalpia en ordenadas. Los datos de presión y temperatura de trabajo que se presentan a continuación se han obtenido para el ciclo de eyección trabajando con R1234yf que es un fluido de trabajo de última generación con bajo impacto medioambiental. No obstante, estos valores podrían cambiar en función del fluido de trabajo utilizado. En el punto E de la figura 3, la comente de fluido refrigerante se divide en un flujo primario de fluido refrigerante y un flujo secundario de fluido refrigerante. El flujo primario pasa a través de una bomba (112), que lo impulsa y aumenta su presión hasta alcanzar 27.7 bar en el punto F de la figura 3.
A continuación, el flujo primario pasa al primer enfriador de aire (103), que es el recuperador de calor del ciclo de eyección, donde aumenta su temperatura a presión constante y pasa a estado gaseoso, alcanzando 110 °C en el punto G de la figura 3. Luego, el flujo primario se introduce en el eyector (102).
Por su parte, el flujo secundario pasa a través de una válvula de laminación (111), donde se produce una pérdida de presión que hace que el flujo secundario de fluido refrigerante alcance una presión de 3.5 bar en el punto A de la figura 3.
Seguidamente, el flujo secundario pasa por el segundo enfriador (104), que es el evaporador del ciclo de eyección, de modo que aumenta su energía térmica a presión constante y pasa a estado gaseoso en el punto B de la figura 3. Tras lo cual, el flujo secundario se introduce en el eyector (102).
En el interior del eyector (102), el flujo primario pasa a través de una tobera, aumentando su velocidad y disminuyendo su presión hasta el punto C de la figura 3. Por su parte, el flujo secundario es succionado hacia el interior del eyector (102), debido a la depresión causada por el flujo primario a la salida de la tobera, de modo que en el punto C de la figura 3 el flujo primario y el secundario se mezclan formando de nuevo una corriente única de fluido refrigerante. Esta corriente de fluido refrigerante, pasa por un difusor aumentando su presión hasta alcanzar los 8.3 bar en el punto D de la figura 3.
Tras salir del eyector (102), la corriente de fluido refrigerante pasa por un condensador (108), que disminuye la energía térmica de dicha corriente de fluido refrigerante a presión constante hasta los 32 °C pasando la corriente de fluido refrigerante a estado líquido y volviendo al punto E de la figura 3.

Claims

R E I V I N D I C A C I O N E S
1. Método de refrigeración para la carga ultrarrápida de baterías de sistemas propulsivos eléctricos o híbridos destinado a enfriar un líquido refrigerante que circula por un circuito de refrigeración (109) que rodea por unas baterías (110) y unos componentes electrónicos de un vehículo con un sistema propulsivo eléctrico o híbrido, y/o por un circuito de refrigeración de un supercargador para las baterías del sistema propulsivo, que hace uso de una corriente de aire ambiental como fluido de trabajo y que comprende las etapas de: a. compresión, para aumentar la presión de la corriente de aire, b. expansión, para reducir la temperatura de la corriente de aire previamente comprimida, al mismo tiempo que se obtiene energía mecánica mediante la reducción de la presión de dicha corriente de aire, c. refrigeración, para permitir un intercambio de energía calorífica entre la corriente de aire que sale de la etapa de expansión, y el líquido refrigerante del circuito de refrigeración (109), d. regeneración, para permitir un intercambio de energía calorífica entre la corriente de aire que sale de la etapa de compresión y la que sale de la etapa de refrigeración, aumentando la temperatura de la corriente de aire que sale de la etapa de refrigeración y reduciendo la temperatura de la corriente que sale de la etapa de compresión.
2. Método de refrigeración de acuerdo con la reivindicación 1, donde la etapa de compresión se realiza por fases, alternando una fase de compresión con una fase de enfriamiento del aire de trabajo, en la que uno o más enfriadores extraen calor de la corriente de aire.
3. Método de refrigeración de acuerdo con la reivindicación 2, donde la fase de enfriamiento comprende el uso de al menos dos enfriadores conectados con un circuito de eyección, en el cual los enfriadores funcionan como recuperador de calor o evaporador.
4. Equipo de refrigeración para la carga ultrarápida de baterías de sistemas propulsivos eléctricos o híbridos destinado a enfriar un líquido refrigerante que circula por un circuito de refrigeración (109) que rodea unas baterías (110) y unos componentes electrónicos de un vehículo con un sistema propulslvo eléctrico o híbrido, y/o por un circuito de refrigeración de un supercargador para las baterías del sistema propulslvo, que hace uso de una corriente de aire ambiental como fluido de trabajo y comprende:
- al menos un primer compresor (100), configurado para absorber aire ambiente y aumentar su presión, produciendo una corriente de aire comprimido,
- un regenerador (105), conectado con el primer compresor (100), para recibir la corriente de aire comprimido,
- una turbina (106), conectada con el regenerador (105), para recibir la corriente de aire del regenerador y producir una expansión de ésta,
- un intercambiador de calor (107), conectado con la turbina (106), con el circuito de refrigeración (109) y con el regenerador, para recibir la corriente de aire expandida en la turbina (106), permitir la transferencia de calor entre el líquido refrigerante del circuito de refrigeración (109) y dicha corriente de aire expandida y, entonces, entregar la corriente de aire al regenerador (105), que la recircula hacia el primer compresor (100), donde el regenerador recibe la corriente de aire comprimido del primer compresor, para reducir su temperatura, y la corriente de aire del intercambiador de calor, para calentarla, mediante el intercambio de calor entre ambas, y donde el equipo además comprende:
- un primer enfriador (103), conectado al primer compresor (100) y destinado a reducir la temperatura de la corriente de aire comprimido por el primer compresor (100),
- al menos un segundo compresor (101), configurado para absorber aire procedente del primer enfriador (103) y aumentar su presión, y
- al menos un segundo enfriador (104), conectado al segundo compresor (101) y al regenerador, para reducir la temperatura de la corriente de aire comprimido por el segundo compresor (101) y entregarla al regenerador, donde la turbina (106) está conectada mecánicamente al segundo compresor (102), de modo que transfiere energía mecánica al mismo y caracterizado porque el primer (103) y el segundo enfriador (104) funcionan con un líquido refrigerante seleccionado de entre los de más bajo potencial de calentamiento atmosférico (GWP), como el amoniaco o el dióxido de carbono.
5. Equipo según la reivindicación 4, que además comprende un filtro secador, adaptado para reducir la humedad del aire ambiente absorbido por el primer compresor (100), y conectado al primer compresor (100) para suministrar al mismo una corriente de aire seco.
6. Equipo según la reivindicación 5, donde el filtro secador está fabricado con gel de sílice.
7. Equipo según la reivindicación 4, que también comprende un ciclo de eyección que comprende:
- una bomba, destinada a dirigir un flujo primario de fluido refrigerante en estado líquido hacia el primer enfriador, para recibir energía calorífica de la corriente de aire, de modo que pasa a estado gaseoso,
- una válvula de laminación, destinada a dirigir un flujo secundario de fluido refrigerante hacia el segundo enfriador, para recibir energía calorífica de la corriente de aire, de modo que pasa a estado gaseoso,
- un eyector, que comprende una tobera, que recibe el flujo primario del primer enfriador y acelera dicho flujo primario hasta la zona de mezclado; una toma, conectada al segundo enfriador para recibir el flujo secundario, que es succionado hacia la zona de mezcla del eyector debido a la depresión del flujo principal, mezclándose el flujo primario y secundario de fluido refrigerante en una única corriente de fluido refrigerante; y un difusor que decelera y aumenta la presión de la corriente de fluido refrigerante a la salida del eyector ,
- un condensador (107) que reduce la temperatura de la corriente de fluido refrigerante de modo que cambia de fase gaseosa a fase líquida, y
- un divisor de flujo, destinado a dividir la corriente de fluido refrigerante condensada, dirigiendo el flujo primario hacia la bomba y el flujo secundario hacia la válvula de laminación.
8. Equipo según la reivindicación 4, donde la relación de presiones de la turbina (106) es 3 o mayor que 3.
9. Equipo según la reivindicación 4, donde la temperatura del aire al salir de la turbina (106) es del entorno de 125 grados centígrados bajo 0.
10. Equipo según la reivindicación 4, que además comprende una válvula (113) de 3 vías conectada a la turbina (106), de modo que al ser activada redirige el aire que sale de la turbina (106) directamente hacia el regenerador (105) sin pasar previamente por el intercambiador de calor (107).
11. Equipo según la reivindicación 4, donde el al menos un compresor (100, 101) funciona de manera intermitente para consumir menos energía.
PCT/ES2020/070648 2019-12-18 2020-10-23 Método y equipo de refrigeración para la carga ultrarrápida de baterías de sistemas propulsivos híbridos o eléctricos WO2021123469A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20902640.0A EP4080137A4 (en) 2019-12-18 2020-12-17 METHOD AND APPARATUS FOR COOLING
PCT/ES2020/070801 WO2021123484A1 (es) 2019-12-18 2020-12-17 Método y equipo de refrigeración
US17/787,204 US20230036416A1 (en) 2019-12-18 2020-12-17 Method and equipment for refrigeration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201931124 2019-12-18
ES201931124A ES2747856B2 (es) 2019-12-18 2019-12-18 Metodo y equipo de refrigeracion para la carga ultrarrapida de baterias de sistemas propulsivos hibridos o electricos

Publications (1)

Publication Number Publication Date
WO2021123469A1 true WO2021123469A1 (es) 2021-06-24

Family

ID=69725741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070648 WO2021123469A1 (es) 2019-12-18 2020-10-23 Método y equipo de refrigeración para la carga ultrarrápida de baterías de sistemas propulsivos híbridos o eléctricos

Country Status (2)

Country Link
ES (1) ES2747856B2 (es)
WO (1) WO2021123469A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465519B2 (en) * 2018-06-27 2022-10-11 Abb Schweiz Ag Electric vehicle charge equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683364A2 (en) * 1994-05-16 1995-11-22 Air Products And Chemicals, Inc. Refrigeration system
WO2012045955A1 (fr) * 2010-10-05 2012-04-12 Peugeot Citroën Automobiles SA Installation de refroidissement de batteries pour un vehicule electrique ou hybride
ES2399801T3 (es) * 2008-12-30 2013-04-03 Renault S.A.S. Dispositivo para refrigerar las baterías de un vehículo especialmente eléctrico y vehículo equipado con un dispositivo de este tipo
US20140308559A1 (en) * 2011-12-16 2014-10-16 Lg Electronics Inc. Battery-cooling system for an electric vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2828914A1 (de) * 1978-06-30 1980-01-10 Linde Ag Verfahren und vorrichtung zum trocknen und kuehlen eines gutes
GB2307734B (en) * 1995-12-01 1999-08-04 Peter William Fitt Improvements in or relating to the air conditioning of habitable enclosures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683364A2 (en) * 1994-05-16 1995-11-22 Air Products And Chemicals, Inc. Refrigeration system
ES2399801T3 (es) * 2008-12-30 2013-04-03 Renault S.A.S. Dispositivo para refrigerar las baterías de un vehículo especialmente eléctrico y vehículo equipado con un dispositivo de este tipo
WO2012045955A1 (fr) * 2010-10-05 2012-04-12 Peugeot Citroën Automobiles SA Installation de refroidissement de batteries pour un vehicule electrique ou hybride
US20140308559A1 (en) * 2011-12-16 2014-10-16 Lg Electronics Inc. Battery-cooling system for an electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465519B2 (en) * 2018-06-27 2022-10-11 Abb Schweiz Ag Electric vehicle charge equipment

Also Published As

Publication number Publication date
ES2747856B2 (es) 2022-10-10
ES2747856A1 (es) 2020-03-11

Similar Documents

Publication Publication Date Title
ES2753409T3 (es) Dispositivo compresor de etapas múltiples
ES2215355T3 (es) Circuito de refrigeracion-calefaccion para un vehiculo.
ES2733503T3 (es) Dispositivo de almacenamiento de energía, así como procedimiento para almacenar energía
KR100528392B1 (ko) 냉동 사이클 및 랭킨 사이클을 갖는 증기-압축 냉동사이클 시스템
ES2399836T3 (es) Sistema refrigerante con refrigerador intermedio utilizado para una función de recalentamiento
ES2901458T3 (es) Dispositivo y método de refrigeración
ES2911751T3 (es) Sistema de refrigeración con recuperación de calor mejorado por eyectores
US20120234518A1 (en) Battery heating and cooling system
RU2017102764A (ru) Система рекуперации тепловой энергии двигателя внутреннего сгорания
US10352190B2 (en) Cooling of an oil circuit of a turbomachine
KR102024077B1 (ko) 차량용 배터리 히팅장치
JP2012516800A (ja) 吸収式冷凍機を備えた車両、特に自動車
EP3690350A1 (en) Heat-recovery-enhanced refrigeration system
JP2002240540A (ja) 車載空気調和機
JP2012083100A (ja) 車両冷却システム
ES2737706T3 (es) Dispositivo de acondicionamiento de atmósfera para el ensayo de motores de combustión, procedimiento y uso relacionados
US20230191867A1 (en) Thermal conditioning circuit
CN113173050B (zh) 热管理系统
ES2279045T3 (es) Sistema de climatizacion.
US11098935B2 (en) Method for operating an air-conditioning system of a motor vehicle
ES2947219T3 (es) Mejoras en la refrigeración
JP2007127316A (ja) 車載用冷暖房システム。
CN112313098A (zh) 车辆热处理系统
ES2747856B2 (es) Metodo y equipo de refrigeracion para la carga ultrarrapida de baterias de sistemas propulsivos hibridos o electricos
ES2257450T3 (es) Dispositivo y procedimiento para refrigerar.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900964

Country of ref document: EP

Kind code of ref document: A1