WO2021122199A1 - Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l'isomerisation de la coupe c8 aromatique - Google Patents

Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l'isomerisation de la coupe c8 aromatique Download PDF

Info

Publication number
WO2021122199A1
WO2021122199A1 PCT/EP2020/085218 EP2020085218W WO2021122199A1 WO 2021122199 A1 WO2021122199 A1 WO 2021122199A1 EP 2020085218 W EP2020085218 W EP 2020085218W WO 2021122199 A1 WO2021122199 A1 WO 2021122199A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ppm
weight
izm
alkaline earth
Prior art date
Application number
PCT/EP2020/085218
Other languages
English (en)
Inventor
Christophe Bouchy
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to CN202080087704.0A priority Critical patent/CN114929383A/zh
Priority to JP2022536727A priority patent/JP2023506849A/ja
Priority to US17/783,734 priority patent/US20230008326A1/en
Priority to EP20819769.9A priority patent/EP4076739A1/fr
Publication of WO2021122199A1 publication Critical patent/WO2021122199A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • C07C5/2708Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2775Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/74Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/76Iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the sources of aromatics with eight carbon atoms come mainly from the reforming process (reformate) and steam cracking (pyrolysis gasolines).
  • the distribution of the aromatics with eight carbon atoms within these cuts is variable: generally from 10 to 30% ethylbenzene with the complement of the three xylene isomers: para-xylene, meta-xylene and ortho-xylene .
  • para-xylene is a particularly desirable isomer.
  • the latter through the intermediary of dimethyl terephthalate and terephthalic acid, allows the production of polyester fibers used for clothing and polyethylene terephthalate (PET) resins and films. It is thus desirable to maximize the production of para-xylene to the detriment of other aromatics with eight carbon atoms. This is achieved by implementing catalytic isomerization processes.
  • the residual cut, rich in meta-xylene, ortho-xylene and ethylbenzene is sent to a catalytic isomerization unit which gives a mixture of aromatics with eight carbon atoms in which the proportion of xylenes is close to thermodynamic equilibrium and the quantity of ethylbenzene reduced thanks to the conversion of ethylbenzene.
  • This mixture is again sent to a para-xylene extraction unit and the residual cut sent to the isomerization unit.
  • An “aromatic C8 loop” is thus created which makes it possible to maximize the production of para-xylene (E. Guillon, P. Leflaive, Techniques de l'In deepur, J5920, V3).
  • An isomerization unit can be used to isomerize xylenes to para-xylene and convert ethylbenzene to benzene by the dealkylation reaction of ethylbenzene.
  • dealkylating isomerization of the cut.
  • the residual cut can also be sent to a catalytic isomerization unit, to isomerize the xylenes to para-xylene and convert ethylbenzene to xylenes by the isomerization reaction of ethylbenzene. This is then referred to as “isomerizing” isomerization of the cut.
  • Ethylbenzene is first of all hydrogenated to ethylcyclohexenes at the metal sites, these cycloolefinic intermediates are then isomerized to dimethylcyclohexenes at the Bronsted acid sites. Finally, the dimethylcyclohexenes are dehydrogenated to xylenes at the metal sites.
  • a strong hydro-dehydrogenating function such as platinum also induces the production of naphthenic rings by hydrogenation of the corresponding aromatic rings.
  • Isomerization reactions as well as side reactions are mainly catalyzed by the acid function.
  • the properties of the zeolite (number and strength of Bronsted acid sites, topology of the microporous network, etc.), acting as an acid function, thus have a direct impact on the properties of the bifunctional catalyst, and in particular its selectivity.
  • EP0458378B1 claims a catalyst for the isomerization of C8 aromatic compounds containing a group VIII metal, a binder and a zeolite containing 2-3% of an alkali metal.
  • the examples bring into play catalysts using mordenite zeolites with variable sodium content.
  • the examples show that the presence of sodium in the MOR zeolite between 2 and 3% by weight makes it possible to reduce the losses of C8 aromatics.
  • Patent application US2009 / 0093662 A1 describes a C8 aromatic isomerization catalyst containing an MTW type zeolite, a binder, a noble metal and at least one alkali metal which may be lithium, sodium, potassium, rubidium, cesium, francium, or a combination thereof, wherein the total amount of alkali metal in the catalyst is about at least 100 ppm by weight based on the mass of the catalyst.
  • the catalyst does not comprise alkali metals other than those already included in the zeolite and / or the binder.
  • the total alkali content in the catalyst is at least about 200 ppm and preferably 300 ppm and preferably less than about 2500 ppm and preferably 2000 ppm and more preferably less than 1000 ppm by weight.
  • no washing with an ammonium nitrate solution is carried out so as to allow the alkali metals present to remain on the catalyst.
  • washing with an ammonium nitrate or ammonium hydroxide solution can be carried out so that the catalyst has the desired alkali metal content.
  • the examples bring into play catalysts using an MTW zeolite and binders as well as varying sodium and potassium contents.
  • the examples show that the catalysts having a total alkali metal content greater than about 200 ppm exhibit a loss of eight carbon cyclic molecules (C8RL) of between 2.0 and 2.4 mole% while the catalysts comprising a different alumina binder comprising a lower alkali metal content than the catalysts according to the invention exhibit a higher loss of cyclic molecules with eight carbon atoms (C8RL) of between 2.6 and 3.4 mole%.
  • C8RL eight carbon cyclic molecules
  • an objective of the present invention is to provide a novel catalyst for the isomerization of the aromatic C8 cut based on IZM-2 zeolite, said catalyst containing a limited content of alkali and / or alkaline-earth, in order to limit the production of net losses.
  • Another object of the present invention relates to a process for the isomerization of a cut containing at least one aromatic compound with eight carbon atoms per molecule, said process comprising bringing said aromatic cut into contact with at least said catalyst according to the invention present in a catalytic reactor.
  • the present invention relates to a catalyst comprising at least one IZM-2 zeolite, at least one matrix and at least one metal from group VIII of the Periodic Table of the Elements, said catalyst being characterized in that the total weight content of elements alkali and / or alkaline earth in said catalyst is less than 200 ppm by weight relative to the total mass of said catalyst, preferably less than 150 ppm, more preferably less than 100 ppm, preferably less than 90 ppm by weight, so preferably less than 85 ppm by weight more preferably less than 80 ppm by weight, very preferably less than 75 ppm by weight and even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight.
  • the dry mass of solid corresponds to the mass of the solid after calcination in air for two hours at 1000 ° C. in a muffle furnace.
  • the different ranges of parameters for a given step such as the pressure ranges and the temperature ranges can be used alone or in combination.
  • a preferred pressure value range can be combined with a more preferred temperature value range.
  • the catalyst according to the invention is advantageously used in a process for the isomerization of an aromatic cut comprising at least one aromatic compound containing eight carbon atoms per molecule, under the following operating conditions:
  • the catalyst according to the invention comprising at least one IZM-2 zeolite, a matrix, at least one metal from group VIII of the classification periodic elements, and a total weight content of alkali and / or alkaline earth elements in said catalyst of less than 200 ppm by weight and greater than 20 ppm exhibits improved catalytic performance in terms of activity, without loss of selectivity, during a process for isomerization of an aromatic charge comprising at least one aromatic cut comprising at least one aromatic compound containing eight carbon atoms per molecule.
  • Such a catalyst is appreciably more active than a catalyst comprising an IZM-2 zeolite and whose alkali and / or alkaline earth content is greater than 200 ppm.
  • the reduction in the alkali content to contents of less than 200 ppm thus makes it possible to improve the activity of such a catalyst without loss of selectivity.
  • This can be taken advantage of in two ways by those skilled in the art: increasing the activity of the catalyst for the same IZM-2 content or maintaining the activity of the catalyst by reducing the content of IZM-zeolite. 2 in the catalyst.
  • the total weight content of alkaline and / or alkaline earth elements in said catalyst is measured by atomic absorption spectroscopy on a VARIAN Spectr'AA 240FS Flame Atomic Absorption Spectrometer (SAAF) device after dissolving the solid by mineralization of the solid by wet way.
  • SAAF Flame Atomic Absorption Spectrometer
  • the term “mineralization of the solid” means the dissolution of said solid which is typically carried out in concentrated aqueous solutions of perchloric, hydrofluoric and hydrochloric acid. It can be carried out at temperature on a hot plate or by microwave.
  • the present invention relates to a catalyst comprising, and preferably consisting of, at least one IZM-2 zeolite preferably containing silicon atoms and optionally aluminum atoms, at least one matrix and at least one metal from group VIII of the invention.
  • periodic classification of the elements said catalyst being characterized in that the total weight content of alkali and / or alkaline earth elements in said catalyst is less than 200 ppm by weight and greater than 20 ppm by weight relative to the total mass of said catalyst.
  • said catalyst has a total weight content of alkali and / or alkaline earth elements less than 150 ppm by weight relative to the total mass of said catalyst, preferably less than 100 ppm by weight, preferably less than 90 ppm by weight , preferably less than 85 ppm by weight, more preferably less than 80 ppm by weight, more preferably less than 75 ppm by weight and more preferably less than 75 ppm by weight even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight.
  • said catalyst does not include added alkali and / or alkaline earth elements, other than those associated with the zeolite and / or with the matrix used in said catalyst.
  • Said catalyst according to the invention more particularly comprises, and preferably consists of:
  • a sulfur content preferably such that the ratio of the number of moles of sulfur to the number of moles of metal (s) of group VIII is between 0.3 and 3, - of a weight content total in alkaline and / or alkaline earth element less than
  • 200 ppm by weight relative to the total mass of said catalyst preferably less than 150 ppm, more preferably less than 100 ppm, preferably less than 90 ppm by weight, more preferably less than 85 ppm by weight, more preferably less than 80 ppm by weight, very preferably less than 75 ppm by weight and even more preferably less than 70 ppm by weight and greater than 20 ppm by weight and preferably greater than 30 ppm by weight,
  • the catalyst comprises an IZM-2 zeolite.
  • the IZM-2 zeolite has an X-ray diffraction pattern including at least the lines listed in Table 1.
  • IZM-2 has a crystal structure.
  • is calculated using the Bragg relation as a function of the absolute error D (2Q) assigned to the measurement of 2Q.
  • An absolute error D (2Q) equal to ⁇ 0.02 ° is commonly accepted.
  • the relative intensity l rei assigned to each value of d hW is measured from the height of the corresponding diffraction peak.
  • the X-ray diffraction diagram of the IZM-2 zeolite contained in the catalyst according to the invention comprises at least the lines at the values of d hki given in Table 1. In the column of d hki , the mean values of the d hki are indicated. inter-reticular distances in Angstroms ( ⁇ ). Each of these values must be affected by the measurement error A (d hki ) between ⁇ 0.6 ⁇ and ⁇ 0.01 ⁇ .
  • Table 1 represents the mean values of the d hki and relative intensities measured on an X-ray diffraction diagram of the calcined crystalline solid IZM-2.
  • the relative intensity l rei is given in relation to a relative intensity scale where a value of 100 is assigned to the most intense line of the X-ray diffraction pattern: ff ⁇ 15; £ 15 f ⁇ 30; 30 £ mf ⁇ 50; £ 50 ⁇ 65; £ 65 F ⁇ 85; FF 3 85.
  • Said IZM-2 solid advantageously has a chemical composition expressed on an anhydrous basis, in terms of moles of oxides, defined by the following general formula: X02: aY203: bM2 / nO, in which X represents at least one tetravalent element, Y represents at least one trivalent element and M is at least one alkali metal and / or one alkaline earth metal of valence n.
  • a represents the number of moles of Y203 and a is between 0 and 0.5, very preferably between 0 and 0.05 and even more preferably between and 0.0016 and 0, 02 and b represents the number of moles of M2 / nO and is between 0 and 1, preferably between 0 and 0.5 and even more preferably between 0.005 and 0.5.
  • X is chosen from silicon, germanium, titanium and the mixture of at least two of these tetravalent elements, very preferably X is silicon and Y is preferably chosen from aluminum, boron, iron, indium and gallium, very preferably Y is aluminum. M is preferably chosen from lithium, sodium, potassium, calcium, magnesium and the mixture of at least two of these metals and very preferably M is sodium.
  • X represents silicon, said crystallized solid IZM-2 is then an entirely silicic solid when the element Y is absent from the composition of said solid IZM-2. It is also advantageous to use as element X a mixture of several elements X, in particular a mixture of silicon with another element X chosen from germanium and titanium, preferably germanium.
  • said crystallized solid IZM-2 is then a crystallized metallosilicate exhibiting an X-ray diffraction pattern identical to that described in Table 1 when it is in its form. calcined. Even more preferably and in the presence of an element Y, X being silicon and Y being aluminum: said crystallized solid IZM-2 is then a crystallized aluminosilicate exhibiting an X-ray diffraction pattern identical to that described in Table 1 when in its calcined form.
  • said solid IZM-2 used in the support of the catalyst used in the process according to the invention advantageously exhibits a chemical composition expressed by the following general formula: X02: aY203: bM2 / nO: cR: dH20 in which R represents an organic species comprising two quaternary nitrogen atoms, X represents at least one tetravalent element, Y represents at least one trivalent element and M is an alkali metal and / or an alkaline earth metal of valence n; a, b, c and d respectively representing the number of moles of Y203, M2 / nO, R and H20 and a is between 0 and 0.5, b is between 0 and 1, c is between 0 and 2 and d is between 0 and 2.
  • This formula and the values taken by a, b, c and d are those for which said solid IZM-2 is preferably found in its calcined form.
  • said solid IZM-2 in its crude synthetic form, advantageously exhibits a chemical composition expressed by the following general formula: X02: aY203: bM2 / nO: cR: dH20 (I) in which R represents an organic species comprising two quaternary nitrogen atoms, X represents at least one tetravalent element, Y represents at least one trivalent element and M is an alkali metal and / or an alkaline earth metal of valence n; a, b, c and d respectively representing the number of moles of Y203, M2 / nO, R and H20 and a is between 0 and 0.5, b is between 0 and 1, c is between 0.005 and 2 and preferably between 0.01 and 0.5, and d is between 0.005 and 2 and preferably between 0.01 and 1.
  • the value of a is between 0 and 0.5, very preferably between 0 and 0.05 and even more preferably between 0.0016 and 0.02.
  • b is between 0 and 1
  • very preferably b is between 0 and 0.5 and even more preferably b is between 0.005 and 0.5.
  • the value of c is between 0.005 and 2, advantageously between 0.01 and 0.5.
  • the value taken by d is between 0.005 and 2, preferably between 0.01 and 1.
  • said solid IZM-2 advantageously comprises at least the species organic R having two quaternary nitrogen atoms such as that described below or its decomposition products or its precursors.
  • the element R is 1,6-bis (methylpiperidinium) hexane, the structural formula of which is given below.
  • Said organic species R which acts as a structuring agent, can be eliminated by conventional means known from the state of the art, such as heat and / or chemical treatments.
  • an aqueous mixture comprising at least one source of at least one SiO 2 oxide is reacted, optionally at least one source of at least one Al2O3 oxide, optionally at least one source of at least one alkali metal and / or alkaline earth metal of valence n, and preferably at least one organic species R comprising two nitrogen atoms quaternary, the mixture preferably having the following molar composition:
  • SI02 / AI203 at least 2, preferably at least 20, more preferably 60 to 600,
  • H2O / SI02 1 to 100, preferably 10 to 70,
  • R / Si 02 0.02 to 2, preferably from 0.05 to 0.5
  • M2 / n0 / Si02 0 to 1, preferably from 0.005 and 0.5, where M is one or more alkali metal (s) and / or alkaline earth metal chosen from lithium, sodium, potassium, calcium, magnesium and the mixture of at least two of these metals, preferably M is sodium.
  • the element R is 1,6-bis (methylpiperidinium) hexane.
  • the Si / Al molar ratio of the IZM-2 zeolite can also be adjusted to the desired value by post-treatment methods of the IZM-2 zeolite obtained after synthesis. Such methods are known to those skilled in the art, and make it possible to carry out dealumination or desilication of the zeolite.
  • the Si / Al molar ratio of the IZM-2 zeolite forming part of the composition of the catalyst according to the invention is adjusted by an appropriate choice of the conditions for the synthesis of said zeolite.
  • IZM-2 zeolites whose overall atomic ratio, silicon / aluminum (Si / Al), is greater than about 3 and more preferably IZM-2 zeolites whose Si / Al ratio.
  • Al is between 5 and 200 and even more preferably between 10 and 150.
  • an aqueous mixture comprising a silicon oxide, optionally alumina, 1,6-bis (methylpiperidinium) hexane dibromide and sodium hydroxide.
  • an aqueous mixture comprising a silicon oxide, optionally alumina and 1,6-bis (methylpiperidinium) hexane dihydroxide is reacted.
  • the process for preparing said crystallized solid IZM-2 advantageously consists in preparing an aqueous reaction mixture called a gel and containing at least one source of at least one oxide X02, optionally at least one source of at least one oxide Y203, at least. at least one organic species R, optionally at least one source of at least one alkali metal and / or alkaline earth metal of valence n.
  • the amounts of said reagents are advantageously adjusted so as to confer on this gel a composition allowing its crystallization in crystallized solid IZM-2 in its crude synthetic form of general formula (I) X02: aY203: bM2 / nO: cR: dH20, where a, b, c and d meet the criteria defined above when c and d are greater than 0.
  • the gel is then subjected to a hydrothermal treatment until said crystallized solid IZM-2 is formed.
  • the gel is advantageously placed under hydrothermal conditions under an autogenous reaction pressure, optionally by adding gas, for example nitrogen, at a temperature between 120 ° C and 200 ° C, preferably between 140 ° C and 180 ° C, and even more preferably between 160 and 175 ° C until the formation of crystals of solid IZM-2 in its crude synthetic form.
  • the time required to obtain crystallization generally varies between 1 hour and several months depending on the composition of the reagents in the gel, the stirring and the reaction temperature. Preferably, the crystallization time varies between 2 hours and 21 days.
  • the reaction is generally carried out with stirring or in the absence of stirring, preferably in the presence of stirring.
  • seeds may be advantageous to add seeds to the reaction mixture in order to reduce the time required for crystal formation and / or the total crystallization time. It may also be advantageous to use seeds in order to promote the formation of said crystallized solid IZM-2 to the detriment of impurities.
  • Such seeds advantageously comprise crystalline solids, in particular crystals of solid IZM-2.
  • the seed crystals are generally added in a proportion of between 0.01 and 10% of the mass of the oxide X02 used in the reaction mixture.
  • the solid phase is advantageously filtered, washed, dried and then calcined.
  • the calcination step is advantageously carried out by one or more heating steps carried out at a temperature between 100 and 1000 ° C, preferably between 400 and 650 ° C, for a period of between a few hours and several days, preferably between 3 hours and 48 hours.
  • the calcination is carried out in two consecutive heating steps.
  • said solid IZM-2 obtained is advantageously that exhibiting the X-ray diffraction diagram including at least the lines listed in Table 1. It is devoid of water as well as of the species. organic R present in the solid IZM-2 in its crude synthetic form.
  • the zeolite IZM-2 can typically contain from 2000 to 8000 ppm of alkali and / or alkaline earth element and preferably sodium.
  • the solid IZM-2 entering into the composition of the support of the catalyst according to the invention is advantageously washed with at least one treatment with a solution of at least one ammonium salt so as to obtain the ammonium form of the solid IZM-2.
  • the M / Y atomic ratio is generally advantageously less than 0.1 and preferably less than 0.05 and even more preferably less than 0.01. This washing step can be carried out at any step in the preparation of the catalyst or catalyst support, that is to say after the step of preparing the IZM-2 solid, after the step of shaping the solid.
  • the washing step is carried out before the step of shaping the solid IZM-2.
  • the washing step is preferably carried out by immersing the solid with stirring in an aqueous solution of at least one ammonium salt.
  • the ammonium salt can be chosen from ammonium nitrate NH4N03, ammonium chloride NH4Cl, ammonium hydroxide NH40H, ammonium bicarbonate NH4HCO3, ammonium acetate NH4H3C202 or else sulphate of Ammonium (NH4) 2SO4.
  • the duration of immersion of the solid in the solution can typically vary from 15 minutes to several hours.
  • the concentration of ammonium salt (s) in the solution is typically between 0.1 mol per liter and 10 moles per liter. Washing is preferably carried out at a temperature between room and 100 ° C.
  • the ratio between the volume of solution involved (in ml) and the mass of zeolite involved (in grams) is preferably between 1 and 100.
  • the solid is filtered, washed with deionized water and then dried. Finally, the IZM-2 zeolite is calcined to obtain it in its proton form.
  • the calcination conditions are typically the same as those used to calcine the solid after the hydrothermal treatment step.
  • the zeolite can typically contain less than 200 ppm and preferably more than 20 ppm or even more than 30 ppm of alkali and / or alkaline earth element and preferably of sodium.
  • the catalyst comprises at least one matrix.
  • Said matrix can advantageously be amorphous or crystalline.
  • said matrix is advantageously chosen from the group formed by alumina, silica, silica-alumina, clays, titanium oxide, boron oxide and zirconia, taken alone or as a mixture or else one can also choose the aluminates.
  • alumina is used as a matrix.
  • said matrix contains alumina in all its forms known to those skilled in the art, such as, for example, aluminas of the alpha, gamma, eta, delta type. Said aluminas differ by their specific surface and their pore volume.
  • the alkali and / or alkaline earth content of the matrix is variable and depends on the method of obtaining said matrix as is well known for alumina for example (Handbook of Porous Solids, 2008, Wiley-VCH chapter 4.7.2 .).
  • the catalyst support used in the invention comprises and preferably consists of said matrix and said IZM-2 zeolite.
  • the content of alkali and / or alkaline earth element in the matrix can advantageously be adjusted by any method known to those skilled in the art to obtain a catalyst in accordance with the invention.
  • the matrix or the precursor of the matrix can thus be washed by bringing into contact an aqueous solution whose pH is less than or equal to the zero charge point of said matrix, as illustrated for an alumina matrix in Catalysis Supports and Supported Catalysts, Butterworth Publishers (1987).
  • boehmite can be washed by contacting said solid with an aqueous solution of ammonium nitrate.
  • the duration of immersion of the solid in the solution can typically vary from 15 minutes to several hours.
  • the concentration of ammonium salt (s) in the solution is typically between 0.1 mol per liter and 10 moles per liter. Washing is preferably carried out at a temperature between room and 100 ° C.
  • the ratio between the volume of solution engaged (in ml) and the mass of the boehmite engaged (in grams) is preferably between 1 and 100. To reduce the alkali and / or alkaline earth content to the desired level it may be necessary to necessary to repeat the washing step several times. After the last washing, the solid is filtered, washed with deionized water, then dried and calcined.
  • the matrix can typically contain less than 200 ppm and preferably more than 20 ppm, or even more than 30 ppm, of alkali and / or alkaline earth element and preferably of sodium. .
  • the catalyst comprises at least one metal from group VIII preferably chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, of preferably chosen from the noble metals of group VIII, very preferably chosen from palladium and platinum and even more preferably platinum is chosen.
  • group VIII preferably chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, of preferably chosen from the noble metals of group VIII, very preferably chosen from palladium and platinum and even more preferably platinum is chosen.
  • said catalyst comprises a group VIII metal content of between 0.01 and 5% by weight relative to the total mass of said catalyst and preferably of between 0.1 and 4% by weight.
  • the noble metal content of said catalyst is advantageously between 0.01 and 5% by weight, preferably between 0.1 and 4% by weight and preferably between 0.1 and 4% by weight. very preferably between 0.1 and 2% by weight relative to the total mass of said catalyst.
  • the catalyst of the invention can also advantageously contain at least one metal chosen from metals of groups NIA, IVA and VI IB chosen from gallium, indium, tin and rhenium.
  • the metal content chosen from the metals of groups NIA, IVA and VIIB is preferably between 0.01 and 2%, preferably between 0.05 and 1% by weight relative to the total mass of said catalyst.
  • the dispersion of the metal (s) of group VIII determined by chemisorption, for example by H2 / 02 titration or by chemisorption of carbon monoxide, is between 10% and 100%, preferably between 20% and 100% and even more preferably between 30% and 100%.
  • the macroscopic distribution coefficient of the metal (s) of group VIII, obtained from its (their) profile determined by Castaing microprobe, defined as the ratio of the concentrations of the metal (s) of group VIII to core of the grain with respect to the edge of this same grain is between 0.7 and 1.3, preferably between 0.8 and 1.2. The value of this ratio, close to 1, testifies to the homogeneity of the distribution of the metal (s) from group VIII in the catalyst.
  • the catalyst according to the invention can advantageously be prepared according to all the methods well known to those skilled in the art.
  • the various constituents of the support or of the catalyst can be shaped by mixing step to form a paste then extrusion of the paste obtained, or else by mixing powders then pelletizing, or else by any other known agglomeration process.
  • a powder containing alumina can be present in different shapes and sizes.
  • the shaping is carried out by mixing and extrusion.
  • said IZM-2 zeolite can be introduced during the dissolution or suspension of alumina compounds or alumina precursors such as bohemite for example.
  • Said IZM-2 zeolite can be, without this being limiting, for example in the form of powder, ground powder, suspension or suspension having undergone a deagglomeration treatment.
  • said zeolite can advantageously be suspended, acidulated or not, at a concentration adjusted to the final IZM-2 content targeted in the catalyst according to the invention.
  • This suspension commonly called a slip is then mixed with the alumina compounds or alumina precursors.
  • additives can advantageously be implemented to facilitate shaping and / or improve the final mechanical properties of the supports, as is well known to those skilled in the art.
  • additives mention may in particular be made of cellulose, carboxymethyl-cellulose, carboxy-ethyl-cellulose, tall oil (tall oil), xanthan gums, surfactants, agents. flocculants such as polyacrylamides, carbon black, starches, stearic acid, polyacrylic alcohol, polyvinyl alcohol, biopolymers, glucose, polyethylene glycols, etc.
  • Water can advantageously be added or removed to adjust the viscosity of the paste to be extruded. This step can advantageously be carried out at any stage of the mixing step.
  • a predominantly solid compound and preferably an oxide or a hydrate.
  • a hydrate is preferably used and even more preferably an aluminum hydrate is used. The loss on ignition of this hydrate is advantageously greater than 15%.
  • the extrusion of the paste resulting from the kneading step can advantageously be carried out by any conventional tool, available commercially.
  • the paste resulting from the mixing is advantageously extruded through a die, for example using a piston or a single or twin extrusion screw.
  • the extrusion can advantageously be carried out by any method known to those skilled in the art.
  • the catalyst supports according to the invention are generally in the form of cylindrical or polylobed extrudates such as bilobed, trilobed, polylobed in straight or twisted shape, but can optionally be manufactured and used in the form of powders. crushed, tablets, rings, balls and / or wheels.
  • the supports for the catalyst according to the invention are in the form of spheres or extrudates.
  • the support is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes may be cylindrical (which may or may not be hollow) and / or twisted cylindrical and / or multilobed (2, 3, 4 or 5 lobes for example) and / or rings.
  • the multilobed form is advantageously used in a preferred manner.
  • the support thus obtained can then be subjected to a drying step.
  • Said drying step is advantageously carried out by any technique known to those skilled in the art.
  • the drying is carried out under air flow. Said drying can also be carried out under a flow of any oxidizing, reducing or inert gas. Preferably, the drying is advantageously carried out at a temperature between 50 and 180 ° C, preferably between 60 and 150 ° C and very preferably between 80 and 130 ° C.
  • Said support optionally dried, then preferably undergoes a calcination step.
  • Said calcination step is advantageously carried out in the presence of molecular oxygen, for example by carrying out an air sweep, at a temperature advantageously greater than 200 ° C and less than or equal to 1100 ° C.
  • Said calcination step can advantageously be carried out in a traversed bed, in a lickbed bed or in a static atmosphere.
  • the furnace used can be a rotary rotary furnace or be a vertical furnace with radial traversed layers.
  • said calcination step is carried out between more than one hour at 200 ° C to less than one hour at 1100 ° C.
  • Calcination can advantageously be carried out in the presence of water vapor and / or in the presence of an acidic or basic vapor.
  • the calcination can be carried out under partial pressure of ammonia.
  • Post-calcination treatments can optionally be carried out, so as to improve the properties of the support, in particular the textural properties.
  • the support of the catalyst according to the present invention can be subjected to a hydrothermal treatment in a confined atmosphere.
  • hydrothermal treatment is understood to mean confined atmosphere treatment by autoclaving in the presence of water at a temperature above room temperature, preferably above 25 ° C, preferably above 30 ° C.
  • the support can advantageously be impregnated, prior to its passage in the autoclave (the autoclaving being carried out either in the vapor phase or in the liquid phase, this vapor or liquid phase of the autoclave possibly being acidic. or not).
  • This impregnation, prior to autoclaving may advantageously be acidic or not.
  • This impregnation, prior to autoclaving can advantageously be carried out dry or by immersing the support in an acidic aqueous solution.
  • dry impregnation is meant bringing the support into contact with a volume of solution less than or equal to the total pore volume of the support.
  • the impregnation is carried out dry.
  • the autoclave is preferably an autoclave with a rotating basket such as that defined in patent application EP 0 387 109 A.
  • the temperature during autoclaving can be between 100 and 250 ° C for a period of time between 30 minutes and 3 hours.
  • the mixture of the matrix and the shaped IZM-2 zeolite constitutes the catalyst support.
  • the alkali and / or alkaline earth content of the support can also be adjusted by any method known to those skilled in the art to obtain a catalyst in accordance with the invention.
  • washing treatments can also be carried out in order to reduce the alkali and / or alkaline earth content of the support.
  • the operating conditions for washing are typically the same as those described for washing the zeolite.
  • the support is then again calcined after washing, preferably under the same conditions as those described for washing the zeolite.
  • the deposition of the metal from group VIII of the Periodic Table of the Elements all the deposition techniques known to those skilled in the art and all the precursors of such metals may be suitable. It is possible to use deposition techniques by dry impregnation or in excess of a solution containing the precursors of the metals, in the presence of competitors or not.
  • the introduction of the metal can be carried out at any stage of the preparation of the catalyst: on the IZM-2 zeolite and / or on the matrix, in particular before the shaping step, during the shaping step, or after the shaping step, on the catalyst support.
  • the metal is deposited after the shaping step.
  • the control of certain parameters implemented during the deposition in particular the nature of the precursor of the group VIII metal (s) used (s), makes it possible to orient the deposition of the said metal (s) ( ux) mainly on the matrix or on the zeolite.
  • an anion exchange can be carried out with hexachloroplatinic acid and / or hexachloropalladic acid, in the presence of a competing agent, for example hydrochloric acid, the deposition generally being followed by calcination, for example at a temperature between 350 and 550 ° C and for a period of between 1 and 4 hours.
  • a competing agent for example hydrochloric acid
  • the metal (s) of group VIII is (are) deposited mainly on the matrix and the said metal (s) present (s) a good dispersion and a good macroscopic distribution across the grain of catalyst.
  • the metal (s) from group VIII, preferably platinum and / or palladium, by cation exchange so that the said metal (s) are themselves (in ) t deposited mainly on the zeolite.
  • the precursor can for example be chosen from:
  • X being a halogen chosen from the group formed by chlorine, fluorine, bromine and iodine, X preferably being chlorine, and "acac" representing the acetylacetonate group (of gross formula C5H702), derived from acetylacetone .
  • the metal (s) of group VIII is (are) deposited (s) mainly on the zeolite and the said metal (s) present (s) a good dispersion and a good macroscopic distribution across the grain of catalyst.
  • the impregnation solution can advantageously also comprise at least one ammonium salt chosen from ammonium nitrate NH4N03, ammonium chloride NH4Cl, ammonium hydroxide NH40H, ammonium bicarbonate NH4HC03, acetate ammonium NH4H3C202 alone or as a mixture, the molar ratio between the ammonium salt and the noble metal of the precursor being between 0.1 and 400.
  • the catalyst of the invention also contains at least one metal chosen from the metals of groups II IA, IVA and VI IB, all the techniques for depositing such a metal known to those skilled in the art and all the techniques for depositing such a metal. precursors of such metals may be suitable.
  • the metal (s) from group VIII and that (those) from groups NIA, IVA and VI IB can be added, either separately or simultaneously in at least one unitary step.
  • at least one metal from groups NIA, IVA and VII B is added separately, it is preferable that it is added after the metal from group VIII.
  • the additional metal chosen from metals from groups NIA, IVA and VII B can be introduced via compounds such as, for example, chlorides, bromides and nitrates of metals from groups NIA, IVA and VII B.
  • compounds such as, for example, chlorides, bromides and nitrates of metals from groups NIA, IVA and VII B.
  • chlorides, bromides and nitrates of metals from groups NIA, IVA and VII B for example in in the case of indium, nitrate or chloride is advantageously used and in the case of rhenium, perrhenic acid is advantageously used.
  • the additional metal chosen from the metals of groups NIA, IVA and VIIB can also be introduced in the form of at least one organic compound chosen from the group consisting of complexes of said metal, in particular polyketone complexes of the metal and hydrocarbylmetals such as as alkyls, cycloalkyls, aryls, alkylaryls and arylalkyls of metals.
  • the introduction of the metal is advantageously carried out using a solution of the organometallic compound of said metal in an organic solvent.
  • Organohalogen compounds of the metal can also be employed.
  • organic compounds of metals there may be mentioned in particular tetrabutyltin, in the case of tin, and triphenylindium, in the case of indium.
  • the compound of the metal NIA, IVA and / or VIIB used is generally chosen from the group consisting of the halide, the nitrate , the acetate, the tartrate, the carbonate and the oxalate of the metal.
  • the introduction is then advantageously carried out in aqueous solution. But it can also be introduced using a solution of an organometallic compound of the metal, for example tetrabutyltin. In this case, before proceeding with the introduction of at least one metal from group VIII, calcination in air will be carried out.
  • intermediate treatments such as, for example, calcination and / or reduction can be applied between the successive deposits of the different metals.
  • washing treatments can also be carried out in order to adjust the alkali and alkaline earth content of the catalyst.
  • the operating conditions for washing are typically the same as those described for washing the zeolite.
  • the catalyst is then again calcined after washing.
  • the catalyst according to the invention is preferably reduced.
  • This reduction step is advantageously carried out by treatment under hydrogen at a temperature of between 150 ° C and 650 ° C and a total pressure of between 0.1 and 25 MPa.
  • a reduction consists of a plateau at 150 ° C for two hours then a rise in temperature to 450 ° C at a rate of 1 ° C / min then a plateau of two hours at 450 ° C; throughout this reduction step, the hydrogen flow rate is 1000 normal m3 of hydrogen per tonne of catalyst and the total pressure kept constant at 0.2 MPa.
  • Any ex-situ reduction method can advantageously be envisaged.
  • a prior reduction of the final catalyst ex situ, under a stream of hydrogen can be carried out, for example at a temperature of 450 ° C. to 600 ° C., for a period of 0.5 to 4 hours.
  • Said catalyst also advantageously comprises sulfur.
  • the catalyst of the invention contains sulfur
  • the latter can be introduced at any stage of the preparation of the catalyst: before or after the shaping stage, and / or drying and / or calcination, before and / or after the introduction of the metal (s) mentioned above, or alternatively by sulfurization in situ and / or ex situ before the catalytic reaction.
  • in situ sulfurization the reduction, if the catalyst has not been previously reduced, takes place before the sulfurization.
  • the reduction and then the sulfurization are also carried out.
  • the sulfurization is preferably carried out in the presence of hydrogen using any sulfurizing agent well known to those skilled in the art, such as, for example, dimethyl sulfide or hydrogen sulfide.
  • the catalysts according to the invention come in different shapes and sizes. They are generally used in the form of cylindrical and / or polylobed extrudates such as bilobed, trilobed, polylobed of straight and / or twisted shape, but can optionally be manufactured and employed in the form of crushed powders, tablets, rings, balls and / or wheels.
  • the catalysts used in the process according to the invention have the form of spheres or extrudates.
  • the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes may be cylindrical (which may or may not be hollow) and / or twisted cylindrical and / or multilobed (2, 3, 4 or 5 lobes for example) and / or rings.
  • the multilobed form is advantageously used in a preferred manner.
  • the deposition of the metal does not change the shape of the support.
  • a subject of the present invention is also a process for the isomerization of a cut containing at least one aromatic compound containing eight carbon atoms per molecule, said process comprising bringing said aromatic cut into contact with at least said catalyst according to the invention. present in a catalytic reactor.
  • Said aromatic cut containing at least one aromatic compound having eight carbon atoms per molecule comprises in particular as an aromatic compound having eight carbon atoms per molecule either only a mixture of xylenes, or only ethylbenzene, or a mixture of xylene (s ) and ethylbenzene.
  • Said isomerization process is carried out generally according to the following operating conditions: a temperature of 300 ° C to 500 ° C, preferably from 320 ° C to 450 ° C and even more preferably from 340 ° C to 430 ° VS ; a partial pressure of hydrogen of 0.3 to 1.5 MPa, preferably 0.4 and 1.2 MPa and more preferably 0.7 to 1.2 MPa; a total pressure of 0.45 to 1.9 MPa, preferably 0.6 to 1.5 MPa; and a feed space velocity, expressed in kilogram of feed introduced per kilogram of catalyst and per hour, from 0.25 to 30 h-1, preferably from 1 to 10 h-1 and more preferably from 2 to 6 h-1.
  • Example 1 synthesis of the IZM-2 zeolite.
  • the IZM-2 zeolite was synthesized in accordance with the teaching of patent FR 2 918 050 B.
  • the molar composition of the mixture is as follows: 1 SiO 2; 0.0042 AI203; 0.1666 Na20; 0.1666 1.6bis (methylpiperidinium) hexane; 33.3333 H2O. The mixture is stirred vigorously for half an hour.
  • the mixture is then transferred, after homogenization, into an autoclave of the PARR type.
  • the autoclave is heated for 5 days at 170 ° C with stirring in a spindle (30 revolutions / min).
  • the product obtained is filtered, washed with deionized water to reach a neutral pH and then dried overnight at 100 ° C. in an oven.
  • the solid is then introduced into a muffle furnace to be calcined there in order to remove the structuring agent.
  • the calcination cycle includes a rise in temperature up to 200 ° C, a plateau at this temperature of two hours, a rise in temperature up to 550 ° C followed by a plateau of eight hours at this temperature and finally a return at room temperature.
  • the temperature rises are carried out with a ramp of 2 ° C / min.
  • the solid thus obtained contains a sodium content measured by atomic absorption of 3695 ppm.
  • the solid thus obtained is then refluxed for 2 hours in an aqueous solution of ammonium nitrate (10 ml of solution per gram of solid, ammonium nitrate concentration of 3 M).
  • This refluxing step is carried out four times with a fresh solution of ammonium nitrate, then the solid is filtered, washed with deionized water and dried in an oven overnight at 100 ° C.
  • a calcination step is carried out at 550 ° C for ten hours (temperature rise ramp of 2 ° C / min) in a crossed bed in dry air (2 normal liters per hour and per gram of solid).
  • the solid thus obtained was analyzed by X-ray diffraction and identified as being constituted by zeolite IZM-2.
  • the solid thus obtained contains a sodium content measured by atomic absorption of 142 ppm.
  • the IZM-2 / alumina support is obtained by mixing and extruding the IZM-2 zeolite prepared in Example 1 with a first batch of boehmite supplied by the company AXENS containing 268 ppm by weight of sodium.
  • the kneaded dough is extruded through a quadrilobe die with a diameter of 1.5 mm. After drying in an oven overnight at 110 ° C, the extrudates are calcined at 550 ° C for two hours (temperature rise ramp of 5 ° C / min) in a crossed bed in dry air (2 normal liters per hour and per gram solid).
  • the support does not undergo a washing step.
  • the weight content of the IZM-2 zeolite in the support after calcination is 14% by weight.
  • the sodium content in the support measured by atomic absorption is 250 ppm.
  • Example 3 preparation of an isomerization catalyst A.
  • Catalyst A is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix.
  • This catalyst is prepared by dry impregnation of the IZM-2 / alumina support prepared in Example 2 with an aqueous solution containing platinum nitrate tetramine. Pt (NH3) 4 (N03) 2.
  • Pt (NH3) 4 (N03) 2.
  • 20 grams of support is used, which is dry impregnated in a bezel. After impregnation, the solid is left to mature for at least five hours in laboratory air then left to dry overnight in an oven at 110 ° C and a calcination step is finally carried out under a flow of dry air (1 normal liter per hour and per hour. gram of solid) in a tube furnace under the following conditions:
  • the Pt content measured by FX on the calcined catalyst is 0.3% by weight, its distribution coefficient measured by Castaing microprobe of 0.96.
  • the catalyst obtained does not undergo a washing step with an ammonium nitrate solution.
  • the sodium content in the catalyst measured by atomic absorption is 245 ppm.
  • the textural properties of catalyst A were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97.
  • the specific surface area of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed.
  • Catalyst A has a specific surface area of 294 m 2 / g, a total pore volume of 0.74 ml / g and a median diameter of 12 nm.
  • Example 4 preparation of a second IZM-2 / alumina support.
  • the IZM-2 / alumina support is obtained by kneading and extrusion of the IZM-2 zeolite prepared in Example 1 with a second batch of boehmite supplied by the company AXENS. This second batch of boehmite differs from the first batch by its lower sodium content. The second batch of boehmite containing 63 ppm by weight of sodium. The kneaded dough is extruded through a quadrilobe die with a diameter of 1.5 mm.
  • Example 5 preparation of an isomerization catalyst B.
  • Catalyst B is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix.
  • This catalyst is prepared by dry impregnation of the IZM-2 / alumina support prepared in Example 3 with an aqueous solution containing platinum nitrate tetramine Pt (NH3) 4 (NO3) 2.
  • NH3 4 (NO3) platinum nitrate tetramine Pt
  • 20 grams of carrier is used which is dry impregnated in a bezel. After impregnation, the solid is left to mature for at least five hours in laboratory air then left to dry overnight in an oven at 110 ° C and a calcination step is finally carried out under a flow of dry air (1 normal liter per hour and per hour. gram of solid) in a tube furnace under the following conditions:
  • the Pt content measured by FX on the calcined catalyst is 0.3% by weight, its distribution coefficient measured by Castaing microprobe of 1.03.
  • the catalyst obtained does not undergo a washing step with an ammonium nitrate solution.
  • the sodium content in the catalyst measured by atomic absorption is 69 ppm.
  • the textural properties of catalyst B were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97.
  • the specific surface area of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed.
  • Catalyst B has a specific surface area of 298 m 2 / g, a total pore volume of 0.76 ml / g and a median diameter of 13 nm.
  • Example 6 preparation of a third IZM-2 / alumina support.
  • the IZM-2 / alumina support is obtained by kneading and extrusion of the IZM-2 zeolite prepared in Example 1 with a third batch of boehmite supplied by the company AXENS containing 130 ppm by weight of sodium.
  • the kneaded dough is extruded through a quadrilobe die with a diameter of 1.5 mm. After drying in an oven overnight at 110 ° C., the extrudates are calcined under the following conditions: - temperature rise to room temperature at 150 ° C at 5 ° C / min in dry air (1 normal liter per hour and per gram of solid),
  • the support does not undergo a washing step.
  • the weight content of the IZM-2 zeolite in the support after calcination is 13% by weight.
  • the sodium content in the support measured by atomic absorption is 132 ppm.
  • Catalyst C is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix.
  • This catalyst is prepared by dry impregnation of the IZM-2 / alumina support prepared in Example 6 with an aqueous solution containing platinum nitrate tetramine Pt (NH3) 4 (NO3) 2.
  • NH3 4 (NO3) platinum nitrate tetramine Pt
  • 20 grams of carrier is used which is dry impregnated in a bezel. After impregnation, the solid is left to mature for at least five hours in laboratory air then left to dry overnight in an oven at 110 ° C and a calcination step is finally carried out under a flow of dry air (1 normal liter per hour and per hour. gram of solid) in a tube furnace under the following conditions:
  • the Pt content measured by FX on the calcined catalyst is 0.26% by weight, its distribution coefficient measured by Castaing microprobe of 1.1.
  • the catalyst obtained does not undergo a washing step with an ammonium nitrate solution.
  • the sodium content in the catalyst measured by atomic absorption is 130 ppm.
  • the textural properties of catalyst C were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97.
  • the specific surface area of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed.
  • Catalyst C has a specific surface area of 268 m 2 / g, a total pore volume of 0.73 ml / g and a median diameter of 14.5 nm.
  • Example 8 preparation of a fourth IZM-2 / alumina support.
  • the IZM-2 / alumina support is obtained by mixing and extruding the IZM-2 zeolite prepared in Example 1 with a fourth batch of boehmite supplied by the company AXENS containing 297 ppm by weight of sodium.
  • the kneaded dough is extruded through a quadrilobe die with a diameter of 1.5 mm. After drying in an oven overnight at 110 ° C., the extrudates are calcined under the following conditions:
  • the support does not undergo a washing step.
  • the weight content of the IZM-2 zeolite in the support after calcination is 13% by weight.
  • the sodium content in the support measured by atomic absorption is 276 ppm.
  • Example 9 preparation of an isomerization catalyst D.
  • Catalyst D is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix. This catalyst is prepared by dry impregnation of the IZM-2 / alumina support prepared in Example 8 with an aqueous solution containing platinum nitrate tetramine Pt (NH3) 4 (NO3) 2. Typically 20 grams of carrier is used which is dry impregnated in a bezel.
  • the solid After impregnation, the solid is left to mature for at least five hours in laboratory air then left to dry overnight in an oven at 110 ° C and a calcination step is finally carried out under a flow of dry air (1 normal liter per hour and per hour. gram of solid) in a tube furnace under the following conditions:
  • the Pt content measured by FX on the calcined catalyst is 0.26% by weight, its distribution coefficient measured by Castaing microprobe of 1.0.
  • the catalyst obtained does not undergo a washing step with an ammonium nitrate solution.
  • the sodium content in the catalyst measured by atomic absorption is 278 ppm.
  • the textural properties of catalyst D were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97. The specific surface area of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed. Catalyst D has a specific surface area of 276 m 2 / g, a total pore volume of 0.69 ml / g and a median diameter of 13 nm. Example 10: preparation of a fourth IZM-2 / alumina support.
  • the IZM-2 / alumina support is obtained by mixing and extruding the IZM-2 zeolite prepared in Example 1 with a fourth batch of boehmite supplied by the company AXENS containing 84 ppm by weight of sodium.
  • the kneaded dough is extruded through a quadrilobe die with a diameter of 1.5 mm. After drying in an oven overnight at 110 ° C., the extrudates are calcined under the following conditions:
  • the support does not undergo a washing step.
  • the weight content of the IZM-2 zeolite in the support after calcination is 13% by weight.
  • the sodium content in the support measured by atomic absorption is 91 ppm.
  • Example 11 (according to the invention): preparation of an isomerization catalyst E.
  • Catalyst E is a catalyst comprising an IZM-2 zeolite, platinum, and an alumina matrix.
  • This catalyst is prepared by dry impregnation of the IZM-2 / alumina support prepared in Example 10 with an aqueous solution containing platinum nitrate tetramine Pt (NH3) 4 (NO3) 2.
  • NH3 4 (NO3) platinum nitrate tetramine Pt
  • 20 grams of carrier is used which is dry impregnated in a bezel. After impregnation, the solid is left to mature for at least five hours in laboratory air then left to dry overnight in an oven at 110 ° C and a calcination step is finally carried out under a flow of dry air (1 normal liter per hour and per hour. gram of solid) in a tube furnace under the following conditions:
  • the Pt content measured by FX on the calcined catalyst is 0.27% by weight, its distribution coefficient measured by Castaing microprobe of 0.96.
  • the catalyst obtained does not undergo a washing step with an ammonium nitrate solution.
  • the sodium content in the catalyst measured by atomic absorption is 89 ppm.
  • the textural properties of catalyst E were characterized by nitrogen porosimetry at 196 ° C on a Micromeritics ASAP 2010 device. Before nitrogen adsorption, the solid is degassed under vacuum at 90 ° C for one hour then at 350 ° C. for four hours. The total pore volume corresponds to the volume of nitrogen adsorbed at a relative pressure of 0.97. The specific surface area of the solid is calculated by the BET method and the median pore diameter calculated according to the BJH adsorption model corresponds to the diameter for which half the volume of nitrogen is adsorbed. Catalyst D has a specific surface of 272 m 2 / g, a total pore volume of 0.67 ml / g and a median diameter of 12 nm. catalysts A, B, C, D and E in
  • the catalysts were tested for isomerization of an aromatic C8 cut composed of ethylbenzene (19% by weight), ortho-xylene (16% by weight), meta-xylene (58% by weight) and ethylcyclohexane (7% by weight).
  • the tests were carried out in a micro-unit implementing a fixed bed reactor and working in downdraft without recycling.
  • the analysis of hydrocarbon effluents is carried out online by gas chromatography. Before loading into the unit, the catalyst is dried beforehand at least one night in an oven at 110 ° C. Once loaded into the unit, the catalyst undergoes a first drying step under nitrogen under the following conditions:
  • the temperature then dropped to 385 ° C., and the catalyst is brought into contact with the C8 aromatic cut mentioned above under the following conditions:
  • the catalyst is maintained for 7 hours under these operating conditions then the catalytic performances are evaluated according to the various operating conditions which are summarized in Table 2 below.
  • Table 2 The variation of the feed space velocity makes it possible to vary the levels of conversion into ethylbenzene and of isomerization of xylenes and therefore the production of para-xylene.
  • two chromatographic analyzes are carried out in order to measure the performance of the catalysts.
  • PX % by weight of para-xylene in the hydrocarbon effluent, where PX is the yield of para-xylene in% by weight.
  • PN net loss yield
  • Table 3 thus reports the para-xylene yield of catalysts A, B, C, D and E at a space velocity of 20 h-1 as well as the estimated net losses for a para-xylene yield of 18% for the catalysts. .
  • the net losses (PN) at 18% of para-xylene yield are estimated by interpolation or linear extrapolation of the experimental data of the evolution of the yield in net losses as a function of the para-xylene yield. It is observed that the catalysts exhibit net losses, and therefore selectivities, which are identical for a para-xylene yield of 18%. On the other hand, they are distinguished by their activity: the catalysts according to the invention B, C and E with a reduced sodium content have a higher activity than the catalysts A and D which do not conform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention concerne un catalyseur comprenant au moins une zéolithe IZM-2, au moins une matrice et au moins un métal du groupe VIII de la classification périodique des éléments, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 100 ppm, de préférence inférieure à 90 ppm en poids, de manière préférée inférieure à 85 ppm en poids de manière plus préférée inférieure à 80 ppm en poids, de manière très préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieure à 30 ppm en poids. La présente invention concerne également un procédé d'isomérisation d'une coupe contenant au moins un composé aromatique à huit atomes de carbone par molécule, ledit procédé comprenant la mise en contact de ladite coupe aromatique avec au moins ledit catalyseur selon l'invention présent dans un réacteur catalytique. La présente invention se rapporte à un catalyseur comprenant une zéolithe désignée sous l'appellation IZM-2 et une teneur en composés alcalins ou alcalinoterreux spécifique. La présente invention se rapporte également à un procédé d'isomérisation d'une coupe C8 aromatiques mettant en œuvre ledit catalyseur d'isomérisation.

Description

CATALYSEUR A BASE DE ZEOLITHE IZM-2 AYANT UNE TENEUR EN ALCALIN FAIBLE ET SON UTILISATION POUR L’ISOMERISATION DE LA COUPE C8
AROMATIQUE
Domaine technique
Les sources d’aromatiques à huit atomes de carbone sont principalement issues du procédé de reforming (reformat) et de vapocraquage (essences de pyrolyse). La distribution des aromatiques à huit atomes de carbone au sein de ces coupes est variable : généralement de 10 à 30% d’éthylbenzène avec pour complément les trois isomères de xylènes : le para- xylène, le méta-xylène et l’ortho-xylène. Typiquement la distribution au sein de ce complément de xylènes est de 50% en méta-xylène, 25% en ortho-xylène et 25% en para- xylène. Au sein de ce complément de xylènes, le para-xylène est un isomère particulièrement recherché. En effet ce dernier, par l’intermédiaire du diméthyltéréphtalate et de l’acide téréphtalique, permet la production de fibres polyesters utilisées pour les vêtements et résines et films de polyéthylène téréphtalate (PET). Il est ainsi souhaitable de maximiser la production de para-xylène au détriment des autres aromatiques à huit atomes de carbone. Ceci est réalisé par la mise en œuvre de procédés catalytiques d’isomérisation. Après extraction du para-xylène, la coupe résiduelle, riche en méta-xylène, ortho-xylène et éthylbenzène est envoyée vers une unité catalytique d’isomérisation qui redonne un mélange d’aromatiques à huit atomes de carbone dans lequel la proportion des xylènes est proche de l’équilibre thermodynamique et la quantité d’éthylbenzène amoindrie grâce à la conversion de l’éthylbenzène. Ce mélange est à nouveau envoyé dans une unité d’extraction du para-xylène et la coupe résiduelle envoyée à l’unité d’isomérisation. On crée ainsi une « boucle C8 aromatiques » qui permet de maximiser la production de para-xylène (E. Guillon, P. Leflaive, Techniques de l’Ingénieur, J5920, V3). On peut mettre en œuvre une unité d’isomérisation pour isomériser les xylènes en para-xylène et convertir l’éthylbenzène en benzène par la réaction de désalkylation de l’éthylbenzène. Dans ce cas on parle d’isomérisation « désalkylante » de la coupe. La coupe résiduelle peut aussi être envoyée vers une unité catalytique d’isomérisation, pour isomériser les xylènes en para-xylène et convertir l’éthylbenzène en xylènes par la réaction d’isomérisation de l’éthylbenzène. On parle alors d’isomérisation « isomérisante » de la coupe. Ces procédés industriels utilisent généralement des catalyseurs hétérogènes mis en œuvre en lit fixe et opérant en phase vapeur sous pression d’hydrogène. Ces deux types de procédés se distinguent par les conditions opératoires et par la formulation des catalyseurs mis en œuvre (par leur nature et/ou leur teneur en fonction hydro-déshydrogénante et/ou en acide). La présente invention s’inscrit dans le domaine de l’isomérisation « isomérisante ». Dans le cas de l’isomérisation « isomérisante », le catalyseur est de type bifonctionnel et présente à la fois une fonction acide (généralement apportée par au moins une zéolithe) et une fonction hydro-déshydrogénante apportée par un métal noble (généralement le platine). Il a en effet été démontré que l’isomérisation de l’éthylbenzène en xylènes implique un mécanisme de type bifonctionnel. L’éthylbenzène est tout d’abord hydrogéné en éthylcyclohéxènes sur les sites métalliques, ces intermédiaires cyclo-oléfiniques sont ensuite isomérisés en diméthylcyclohéxènes sur les sites acides de Bronsted. Enfin les diméthylcyclohéxènes sont déshydrogénés en xylènes sur les sites métalliques. L’utilisation d’une fonction hydro-déshydrogénante forte telle que le platine induit également la production de cycles naphténiques par hydrogénation des cycles aromatiques correspondant.
En plus des réactions d’isomérisation désirées, il est souhaitable de limiter les réactions parasites de type :
- désalkylation de l’éthylbenzène en benzène et éthylène ;
- dismutation de l’éthylbenzène en diéthylbenzène et benzène, ou des xylènes en toluène et aromatiques à 9 atomes de carbone ;
- transfert d’alkyles entre l’éthylbenzène et les xylènes ; et entre les xylènes entre eux ;
- ouverture de cycles naphténiques et craquage.
L’ensemble de ces réactions engendre la production de molécules moins valorisables, qui ne sont pas recyclées dans la « boucle C8 aromatiques » et sont considérées comme des pertes nettes pour le procédé. Sont ainsi considérées comme pertes nettes toutes les molécules autres que les molécules cycliques à huit atomes de carbone.
Les réactions d’isomérisation ainsi que les réactions parasites sont principalement catalysées par la fonction acide. Les propriétés de la zéolithe (nombre et force des sites acides de Bronsted, topologie du réseau microporeux, etc...), faisant office de fonction acide, ont ainsi un impact direct sur les propriétés du catalyseur bifonctionnel, et notamment sa sélectivité.
La catalyse de l’isomérisation d'une coupe C8 aromatiques en xylènes a ainsi fait l'objet de nombreux brevets portant sur différentes zéolithes. Parmi les zéolithes utilisées en isomérisation d'une coupe C8 aromatiques, on trouve la ZSM-5, utilisée seule ou en mélange avec d’autres zéolithes, comme par exemple la mordénite. Ces catalyseurs sont notamment décrits dans les brevets US 4 467 129 B et US 4 482 773 B. D’autres catalyseurs principalement à base de mordénite ont été décrits par exemple dans le brevet FR 2 477 903 B. Il a également été proposé un catalyseur à base d'une zéolithe de type structural EUO (EP 923 987) ou à base d'une zéolithe de type structural MTW (WO 2005 065380 A, WO 2010 000652 A, US 2014 0296601 A) ou encore à base d’une zéolithe UZM-8 dans le brevet US 7091 190 B.
Ces exemples illustrent la recherche continue effectuée pour développer des catalyseurs toujours plus performants pour l’isomérisation de coupes C8 aromatiques, notamment en minimisant la production des pertes nettes par la mise en œuvre de zéolithes appropriées. Pour un catalyseur mettant en jeu une zéolithe donnée, il est reporté que la présence d’alcalin et/ou d’alcalinoterreux dans le catalyseur permet d’améliorer la sélectivité en isomérisation dudit catalyseur mais généralement au prix d’une perte d’activité dudit catalyseur. Les travaux de Moreau et ail. (Microporous and Mesoporous Materials 51 (2002) 211-221 ; Applied Catalysis A : General 230 (2002) 253-262) ont porté sur l’étude de catalyseurs contenant des zéolithes mordenite partiellement échangées au sodium. Il est montré que l’échange au sodium améliore la sélectivité en isomérisation lors de la transformation du m-xylène et lors de la transformation de l’éthylbenzène. Dans les deux cas ce gain de sélectivité s’accompagne d’une perte d’activité du catalyseur causée par la neutralisation partielle des sites acides par le sodium. Les travaux de L.D. Fernandes et ail. (Journal of Catalysis 177 (1998) 363-337) ont porté entre autre sur l’étude de catalyseurs contenant des zéolithes mordénite échangées ou non avec du calcium. La présence de calcium permet d’améliorer la sélectivité des catalyseurs lors de la transformation de I’ éthylbenzène. Une perte d’activité est également reportée en présence de calcium.
Le brevet EP0458378B1 revendique un catalyseur d’isomérisation de composés aromatiques en C8 contenant un métal du groupe VIII, un liant et une zéolithe contenant 2 à 3% d’un métal alcalin. Les exemples mettent en jeu des catalyseurs utilisant des zéolithes mordénite à teneur variable en sodium. Les exemples montrent que la présence de sodium dans la zéolithe MOR entre 2 et 3% en poids permet de diminuer la pertes des aromatiques en C8.
La demande de brevet US2009/0093662 A1 décrit un catalyseur d’isomérisation d’aromatiques en C8 contenant une zéolithe de type MTW, un liant, un métal noble et au moins un métal alcalin qui peut être du lithium, sodium, potassium, rubidium, césium, francium ou une combinaison de ces éléments, dans lequel la quantité totale de métal alcalin dans le catalyseur est d’environ au moins 100 ppm poids par rapport la masse du catalyseur. De préférence, le catalyseur ne comprend pas d’autres métaux alcalins que ceux déjà compris dans la zéolithe et/ou le liant. De préférence la teneur totale en alcalins dans le catalyseur est d’au moins environ 200 ppm et de préférence 300 ppm et de préférence inférieure à environ 2500 ppm et de préférence 2000 ppm et de manière préférée inférieure à 1000 ppm poids. De préférence, aucun lavage avec une solution de nitrate d’ammonium n’est réalisé de manière à permettre aux métaux alcalins présents de rester sur le catalyseur. Cependant, si le catalyseur et en particulier la zéolithe et/ou le liant contiennent une teneur en métaux alcalins trop élevée, un lavage avec une solution de nitrate d’ammonium ou d’hydroxyde d’ammonium peut être réalisé pour que le catalyseur ait la teneur désirée en métaux alcalins. Les exemples mettent en jeu des catalyseurs utilisant une zéolithe MTW et des liants ainsi que des teneurs en sodium et potassium variables. En particulier, les exemples montrent que les catalyseurs ayant une teneur totale en métaux alcalins supérieure à environ 200 ppm présentent une perte en molécules cycliques à huit atomes de carbone (C8RL) comprise entre 2,0 et 2,4 mole% alors que les catalyseurs comprenant un liant alumine différent comprenant une teneur en métaux alcalins plus faible que les catalyseurs selon l’invention présentent une perte en molécules cycliques à huit atomes de carbone (C8RL) plus élevée comprise entre 2,6 et 3,4 mole%.
Récemment, la demanderesse dans ses travaux a mis au point une nouvelle zéolithe, la zéolithe IZM-2 (FR2918050A1 incorporée dans la présente demande par référence), ainsi que son utilisation dans un catalyseur d’isomérisation d’une coupe contenant au moins un composé aromatique à huit atomes de carbone (FR 2 934793A1 et FR 3 054454A1).
Lors de ses travaux visant à développer un catalyseur d’isomérisation de la coupe C8 aromatique comprenant ladite zéolithe IZM-2, la demanderesse a découvert un effet surprenant de la présence d’alcalin et/ou d’alcalino-terreux sur les performances du catalyseur. De manière surprenante, la demanderesse a mis en évidence qu’un catalyseur contenant une teneur totale en alcalin et/ou alcalinoterreux diminuée par rapport aux catalyseurs de l’art antérieur présente une activité augmentée sans diminution de sa sélectivité en isomérisation par rapport aux catalyseurs de l’art antérieur.
Aussi, un objectif de la présente invention est de fournir un nouveau catalyseur d’isomérisation de la coupe C8 aromatiques à base de zéolithe IZM-2, ledit catalyseur contenant une teneur limitée en alcalin et/ou alcalino-terreux, pour limiter la production des pertes nettes.
Un autre objet de la présente invention concerne un procédé d'isomérisation d'une coupe contenant au moins un composé aromatique à huit atomes de carbone par molécule, ledit procédé comprenant la mise en contact de ladite coupe aromatique avec au moins ledit catalyseur selon l'invention présent dans un réacteur catalytique. Résumé de l’invention
En particulier, la présente invention concerne un catalyseur comprenant au moins une zéolithe IZM-2, au moins une matrice et au moins un métal du groupe VIII de la classification périodique des éléments, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 100 ppm, de préférence inférieure à 90 ppm en poids, de manière préférée inférieure à 85 ppm en poids de manière plus préférée inférieure à 80 ppm en poids, de manière très préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieure à 30 ppm en poids.
Dans la suite de ce document, les teneurs pondérales fournies sont considérées par rapport à la masse sèche de solide. La masse sèche de solide correspond à la masse du solide après calcination sous air durant deux heures à 1000°C en four à moufle.
Dans le sens de la présente invention, les différents modes de réalisation présentés peuvent être utilisés seuls ou en combinaison les uns avec les autres, sans limitation de combinaison lorsque c’est techniquement réalisable.
Dans le sens de la présente invention, les différentes plages de paramètres pour une étape donnée tels que les plages de pression et les plages de température peuvent être utilisées seul ou en combinaison. Par exemple, dans le sens de la présente invention, une plage de valeur préférée de pression peut être combinée avec une plage de valeur de température plus préférée.
Le catalyseur selon l'invention est avantageusement utilisé dans un procédé d'isomérisation d'une coupe aromatique comprenant au moins un composé aromatique à huit atomes de carbone par molécule, dans les conditions opératoires suivantes :
- une température de 300°C à 500°C,
- une pression partielle d’hydrogène de 0,3 à 1,5 MPa,
- une pression totale de 0,45 à 1,9 MPa, et
- une vitesse spatiale d'alimentation, exprimée en kilogramme de charge introduite par kilogramme de catalyseur et par heure, de 0,25 à 30 h 1.
Il a été découvert, de façon surprenante que le catalyseur selon l’invention comprenant au moins une zéolithe IZM-2, une matrice, au moins un métal du groupe VIII de la classification périodique des éléments, et une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur inférieure à 200 ppm poids et supérieure à 20 ppm présente des performances catalytiques améliorées en terme d’activité, sans perte de sélectivité, lors d’un procédé d'isomérisation d'une charge aromatique comprenant au moins une coupe aromatique comprenant au moins un composé aromatique à huit atomes de carbone par molécule.
Un tel catalyseur est sensiblement plus actif qu'un catalyseur comprenant une zéolithe IZM-2 et dont la teneur en alcalin et/ou alcalinoterreux est supérieure à 200 ppm. La diminution de la teneur en alcalin à des teneurs inférieures à 200 ppm permet ainsi d’améliorer l’activité d’un tel catalyseur sans perte de sélectivité. Ceci peut être mis à profit de deux manières par l’homme de l’art : augmentation de l’activité du catalyseur pour une même teneur en IZM-2 ou maintien de l’activité du catalyseur par diminution de la teneur en zéolithe IZM-2 dans le catalyseur.
La teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est mesurée par spectroscopie d’absorption atomique sur un appareil Spectromètre d’Absorption Atomique Flamme (SAAF) VARIAN Spectr’AA 240FS après mise en solution du solide par minéralisation du solide par voie humide. On entend par minéralisation du solide, la dissolution dudit solide qui est typiquement effectuée dans des solutions aqueuses concentrées en acide perchlorique, fluorhydrique et chlorhydrique. Elle peut être effectuée en température sur plaque chauffante ou par micro-ondes.
Description des modes de réalisation
La présente invention porte sur catalyseur comprenant, et de préférence constitué de, au moins une zéolithe IZM-2 contenant de préférence des atomes de silicium et éventuellement des atomes d'aluminium, au moins une matrice et au moins un métal du groupe VIII de la classification périodique des éléments, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est inférieure à 200 ppm en poids et supérieure à 20 ppm en poids par rapport à la masse totale dudit catalyseur.
De préférence, ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 150 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 100 ppm en poids, de manière préférée inférieure à 90 ppm en poids, de préférence inférieure à 85 ppm en poids, de manière préférée inférieure à 80 ppm en poids, de manière plus préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieur à 30 ppm en poids.
De préférence, ledit catalyseur ne comprend pas d’éléments alcalins et/ou alcalinoterreux ajoutés, autres que ceux associés à la zéolithe et/ou à la matrice utilisées dans ledit catalyseur.
Ledit catalyseur selon l'invention comprend plus particulièrement, et de préférence est constitué de:
- de 1 à 90% poids, de préférence de 3 à 80% poids et de manière encore plus préférée de 4 à 60% poids de la zéolithe IZM-2 par rapport à la masse totale dudit catalyseur selon l’invention,
- de 0,01 à 4%, de préférence de 0,05 à 2% poids d'au moins un métal du groupe VIII de la classification périodique des éléments, de préférence le platine par rapport à la masse totale dudit catalyseur,
- éventuellement de 0,01 à 2% poids, de préférence de 0,05 à 1% poids d'au moins un métal additionnel choisi dans le groupe formé par les métaux des groupes II IA, IVA et
VI IB par rapport à la masse totale dudit catalyseur,
- éventuellement une teneur en soufre, de préférence telle que le rapport du nombre de moles de soufre sur le nombre de moles de(s) métal(ux) du groupe VIII soit compris entre 0,3 et 3, - d’une teneur pondérale totale en élément alcalin et/ou alcalino-terreux inférieure à
200 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 100 ppm, de préférence inférieure à 90 ppm en poids, de manière préférée inférieure à 85 ppm en poids de manière plus préférée inférieure à 80 ppm en poids, de manière très préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieur à 30 ppm en poids,
- au moins une matrice, de préférence l’alumine, assurant le complément à 100% dans le catalyseur. Zéolithe IZM-2
Conformément à l’invention, le catalyseur comprend une zéolithe IZM-2. La zéolithe IZM-2 présente un diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le tableau 1. IZM-2 présente une structure cristalline. Avantageusement, le diagramme de diffraction est obtenu par analyse radiocristallographique au moyen d’un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Kai du cuivre (l = 1,5406 Â).. A partir de la position des pics de diffraction représentée par l’angle 2Q, on calcule, par la relation de Bragg, les équidistances réticulaires dhki caractéristiques de l’échantillon. L’erreur de mesure A(dhki) sur dhk| est calculée grâce à la relation de Bragg en fonction de l’erreur absolue D(2Q) affectée à la mesure de 2Q. Une erreur absolue D(2Q) égale à ± 0,02° est communément admise. L’intensité relative lrei affectée à chaque valeur de dhW est mesurée d’après la hauteur du pic de diffraction correspondant. Le diagramme de diffraction des rayons X de la zéolithe IZM-2 contenue dans le catalyseur selon l'invention comporte au moins les raies aux valeurs de dhki données dans le tableau 1. Dans la colonne des dhki, on indique les valeurs moyennes des distances inter-réticulaires en Angstroms (Â). Chacune de ces valeurs doit être affectée de l’erreur de mesure A(dhki) comprise entre ± 0,6Â et ± 0,01 Â.
Le tableau 1 représente les valeurs moyennes des dhki et intensités relatives mesurées sur un diagramme de diffraction de rayons X du solide cristallisé IZM-2 calciné.
Figure imgf000010_0001
où FF = très fort ; F = fort ; m = moyen ; mf = moyen faible ; f = faible ; ff = très faible. L'intensité relative lrei est donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction des rayons X : ff <15 ; 15 £f <30 ; 30 £ mf <50 ; 50 £m < 65 ; 65 £F < 85 ; FF ³ 85.
Ledit solide IZM-2 présente avantageusement une composition chimique exprimée sur une base anhydre, en termes de moles d'oxydes, définie par la formule générale suivante : X02 : aY203 : bM2/nO, dans laquelle X représente au moins un élément tétravalent, Y représente au moins un élément trivalent et M est au moins un métal alcalin et/ou un métal alcalino- terreux de valence n. Dans ladite formule donnée ci-dessus, a représente le nombre de moles de Y203 et a est compris entre 0 et 0,5, très préférentiellement compris entre 0 et 0,05 et de manière encore plus préférée entre et 0,0016 et 0,02 et b représente le nombre de moles de M2/nO et est compris entre 0 et 1, de préférence entre 0 et 0,5 et de manière encore plus préférée entre 0,005 et 0,5.
De préférence, X est choisi parmi le silicium, le germanium, le titane et le mélange d'au moins deux de ces éléments tétravalents, très préférentiellement X est le silicium et Y est préférentiellement choisi parmi l'aluminium, le bore, le fer, l'indium et le gallium, très préférentiellement Y est l'aluminium. M est préférentiellement choisi parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux et très préférentiellement M est le sodium. De manière préférée, X représente le silicium, ledit solide cristallisé IZM-2 est alors un solide entièrement silicique lorsque l'élément Y est absent de la composition dudit solide IZM-2. Il est également avantageux d'employer comme élément X un mélange de plusieurs éléments X, en particulier un mélange de silicium avec un autre élément X choisi parmi le germanium et le titane, de préférence le germanium. Ainsi, lorsque le silicium est présent en mélange avec un autre élément X, ledit solide cristallisé IZM-2 est alors un métallosilicate cristallisé présentant un diagramme de diffraction des rayons X identique à celui décrit dans le tableau 1 lorsqu'il se trouve sous sa forme calcinée. De manière encore plus préférée et en présence d'un élément Y, X étant le silicium et Y étant l'aluminium : ledit solide cristallisé IZM-2 est alors un aluminosilicate cristallisé présentant un diagramme de diffraction des rayons X identique à celui décrit dans le tableau 1 lorsqu'il se trouve sous sa forme calcinée.
D'une manière plus générale, ledit solide IZM-2 utilisé dans le support du catalyseur mis en œuvre dans le procédé selon l'invention présente avantageusement une composition chimique exprimée par la formule générale suivante : X02 : aY203 : bM2/nO : cR : dH20 dans laquelle R représente une espèce organique comportant deux atomes d'azote quaternaires, X représente au moins un élément tétravalent, Y représente au moins un élément trivalent et M est un métal alcalin et/ou un métal alcalino-terreux de valence n ; a, b, c et d représentant respectivement le nombre de moles de Y203, M2/nO, R et H20 et a est compris entre 0 et 0,5, b est compris entre 0 et 1, c est compris entre 0 et 2 et d est compris entre 0 et 2. Cette formule et les valeurs prises par a, b, c et d sont celles pour lesquelles ledit solide IZM-2 se trouve préférentiellement sous sa forme calcinée.
Plus précisément, ledit solide IZM-2, sous sa forme brute de synthèse, présente avantageusement une composition chimique exprimée par la formule générale suivante : X02 : aY203 : bM2/nO : cR : dH20 (I) dans laquelle R représente une espèce organique comportant deux atomes d'azote quaternaires, X représente au moins un élément tétravalent, Y représente au moins un élément trivalent et M est un métal alcalin et/ou un métal alcalino-terreux de valence n ; a, b, c et d représentant respectivement le nombre de moles de Y203, M2/nO, R et H20 et a est compris entre 0 et 0,5, b est compris entre 0 et 1, c est compris entre 0,005 et 2 et de préférence entre 0,01 et 0,5, et d est compris entre 0,005 et 2 et de préférence entre 0,01 et 1.
Dans la formule (I) donnée ci-dessus pour définir la composition chimique dudit solide cristallisé IZM-2 sous sa forme brute de synthèse, la valeur de a est comprise entre 0 et 0,5, très préférentiellement comprise entre 0 et 0,05 et de manière encore plus préférée comprise entre 0,0016 et 0,02. De manière préférée, b est compris entre 0 et 1, de manière très préférée b est compris entre 0 et 0,5 et de manière encore plus préférée b est compris entre 0,005 et 0,5. La valeur de c est comprise entre 0,005 et 2, avantageusement entre 0,01 et 0,5. La valeur prise par d est comprise entre 0,005 et 2, de préférence comprise entre 0,01 et 1.
Sous sa forme brute de synthèse, c'est-à-dire directement issu de la synthèse et préalablement à toute étape de calcination(s) bien connue de l'Homme du métier, ledit solide IZM-2 comporte avantageusement au moins l'espèce organique R ayant deux atomes d'azote quaternaires telle que celle décrite ci-après ou encore ses produits de décomposition ou encore ses précurseurs. Selon un mode préféré de l'invention, dans la formule (I) donnée ci-dessus, l'élément R est le 1,6-bis(méthylpiperidinium)hexane dont la formule développée est donnée ci-dessous. Ladite espèce organique R, qui joue le rôle de structurant, peut être éliminée par les voies classiques connues de l'état de la technique comme des traitements thermiques et/ou chimiques.
Un procédé de préparation de la zéolithe IZM-2 est enseigné dans le brevet FR 2 918 050 B incorporé ici par référence.
De manière avantageuse, dans le cas ou X est le silicium et Y est l’aluminium, on fait réagir un mélange aqueux comportant au moins une source d'au moins un oxyde Si02, éventuellement au moins une source d’au moins un oxyde AI203, éventuellement au moins une source d'au moins un métal alcalin et/ou alcalino-terreux de valence n, et de préférence au moins une espèce organique R comportant deux atomes d'azote quaternaires, le mélange présentant préférentiellement la composition molaire suivante :
SÎ02/AI203: au moins 2, de préférence au moins 20, de manière plus préférée de 60 à 600,
H20/SÎ02: 1 à 100, de préférence de 10 à 70,
R/Si 02: 0,02 à 2, de préférence de 0,05 à 0,5,
M2/n0/Si02: 0 à 1, de préférence de 0,005 et 0,5, où M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de préférence M est le sodium. Avantageusement, l'élément R est le 1,6- bis(méthylpiperidinium)hexane.
Le rapport molaire Si/Al de la zéolithe IZM-2 peut être aussi ajusté à la valeur désirée par des méthodes de post traitement de la zéolithe IZM-2 obtenue après synthèse. De telles méthodes sont connues de l’homme du métier, et permettent d’effectuer de la désalumination ou de la désilication de la zéolithe. De manière préférée le rapport molaire Si/Al de la zéolithe IZM-2 entrant dans la composition du catalyseur selon l’invention est ajusté par un choix approprié des conditions de synthèse de ladite zéolithe.
Parmi les zéolithes IZM-2 on préfère habituellement employer des zéolithes IZM-2 dont le rapport atomique global, silicium/aluminium (Si/Al), est supérieur à environ 3 et de manière plus préférée des zéolithes IZM-2 dont le rapport Si/Al est compris entre 5 et 200 et de manière encore plus préféré entre 10 et 150.
Aussi, selon un mode de réalisation préféré du procédé de préparation dudit solide cristallisé IZM-2, on fait réagir un mélange aqueux comportant un oxyde de silicium, éventuellement de l'alumine, du dibromure de 1,6-bis(méthylpiperidinium)hexane et de l'hydroxyde de sodium. Selon un autre mode de réalisation préféré du procédé selon l'invention, on fait réagir un mélange aqueux comportant un oxyde de silicium, éventuellement de l'alumine et du dihydroxyde de 1,6-bis(méthylpiperidinium)hexane.
Le procédé de préparation dudit solide cristallisé IZM-2 consiste avantageusement à préparer un mélange réactionnel aqueux appelé gel et renfermant au moins une source d'au moins un oxyde X02, éventuellement au moins une source d’au moins un oxyde Y203, au moins une espèce organique R, éventuellement au moins une source d'au moins un métal alcalin et/ou alcalino-terreux de valence n. Les quantités desdits réactifs sont avantageusement ajustées de manière à conférer à ce gel une composition permettant sa cristallisation en solide cristallisé IZM-2 sous sa forme brute de synthèse de formule générale (I) X02 : aY203 : bM2/nO : cR : dH20, où a, b, c et d répondent aux critères définis plus haut lorsque c et d sont supérieurs à 0. Puis le gel est soumis à un traitement hydrothermal jusqu'à ce que ledit solide cristallisé IZM-2 se forme. Le gel est avantageusement mis sous conditions hydrothermales sous une pression de réaction autogène, éventuellement en ajoutant du gaz, par exemple de l'azote, à une température comprise entre 120°C et 200°C, de préférence entre 140°C et 180°C, et de manière encore plus préférée entre 160 et 175°C jusqu'à la formation des cristaux de solide IZM-2 sous sa forme brute de synthèse. La durée nécessaire pour obtenir la cristallisation varie généralement entre 1 heure et plusieurs mois en fonction de la composition des réactifs dans le gel, de l'agitation et de la température de réaction. De préférence la durée de cristallisation varie entre 2 heures et 21 jours. La mise en réaction s'effectue généralement sous agitation ou en absence d'agitation, de préférence en présence d'agitation.
Il peut être avantageux d'additionner des germes au mélange réactionnel afin de réduire le temps nécessaire à la formation des cristaux et/ou la durée totale de cristallisation. Il peut également être avantageux d'utiliser des germes afin de favoriser la formation dudit solide cristallisé IZM-2 au détriment d'impuretés. De tels germes comprennent avantageusement des solides cristallisés, notamment des cristaux de solide IZM-2. Les germes cristallins sont généralement ajoutés dans une proportion comprise entre 0,01 et 10% de la masse de l’oxyde X02 utilisée dans le mélange réactionnel.
A l'issue de l'étape de traitement hydrothermal conduisant à la cristallisation dudit solide IZM-2, la phase solide est avantageusement filtrée, lavée, séchée puis calcinée. L'étape de calcination s'effectue avantageusement par une ou plusieurs étapes de chauffage réalisée à une température comprise entre 100 et 1000°C, de préférence comprise entre 400 et 650°C, pour une durée comprise entre quelques heures et plusieurs jours, de préférence comprise entre 3 heures et 48 heures. De manière préférée, la calcination s'effectue en deux étapes de chauffage consécutives.
A l'issue de ladite étape de calcination, ledit solide IZM-2 obtenu est avantageusement celui présentant le diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le tableau 1. Il est dépourvu d'eau ainsi que de l'espèce organique R présentes dans le solide IZM-2 sous sa forme brute de synthèse. Après ladite étape de calcination, la zéolithe IZM-2 peut contenir typiquement de 2000 à 8000 ppm en élément alcalin et/ou alcalino terreux et de préférence de sodium.
Après calcination, afin de diminuer la teneur en alcalin et/ou alcalino-terreux et de préférence en sodium, dans ladite zéolithe, le solide IZM-2 entrant dans la composition du support du catalyseur selon l'invention est avantageusement lavé par au moins un traitement par une solution d’au moins un sel d’ammonium de manière à obtenir la forme ammonium du solide IZM-2. Le rapport atomique M/Y est généralement avantageusement inférieur à 0,1 et de préférence inférieur à 0,05 et de manière encore plus préférée inférieur à 0,01. Cette étape de lavage peut être effectuée à toute étape de la préparation du support du catalyseur ou du catalyseur, c'est-à-dire après l'étape de préparation du solide IZM-2, après l'étape de mise en forme du solide IZM-2, ou encore après l'étape d'introduction du métal hydro- déshydrogénant. De préférence l'étape de lavage est effectuée avant l'étape de mise en forme du solide IZM-2. L’étape de lavage est de préférence effectuée en immergeant sous agitation le solide dans une solution aqueuse d’au moins un sel d’ammonium. Le sel d’ammonium peut être choisi parmi le nitrate d’ammonium NH4N03, le chlorure d’ammonium NH4CI, l’hydroxyde d’ammonium NH40H, le bicarbonate d’ammonium NH4HC03, l’acétate d’ammonium NH4H3C202 ou encore le sulfate d’ammonium (NH4)2S04. La durée d’immersion du solide dans la solution peut varier typiquement de 15 minutes à plusieurs heures. La concentration en sel(s) d’ammonium(s) dans la solution est typiquement comprise entre 0,1 mol par litre et 10 moles par litre. Le lavage s’effectue de préférence à une température comprise entre l’ambiante et 100 °C. Le rapport entre le volume de solution engagée (en ml) et la masse de zéolithe engagée (en gramme) est de préférence compris entre 1 et 100. Pour diminuer la teneur en alcalin et/ou alcalinoterreux et de préférence en sodium au niveau désiré il peut s’avérer nécessaire de répéter l’étape de lavage plusieurs fois. A l’issue du dernier lavage le solide est filtré, lavé à l’eau déionisée puis séché. La zéolithe IZM-2 est enfin calcinée afin de l’obtenir sous sa forme protonique. Les conditions de calcination sont typiquement les mêmes que celles employées pour calciner le solide à l’issue de l’étape de traitement hydrothermal.
Après lavage, la zéolithe peut contenir typiquement moins de 200 ppm et de préférence plus de 20 ppm voire plus de 30 ppm d’élément alcalin et/ou alcalino terreux et de préférence de sodium.
Matrice
Conformément à l’invention, le catalyseur comprend au moins une matrice. Ladite matrice peut avantageusement être amorphe ou cristallisée. De préférence, ladite matrice est avantageusement choisie dans le groupe formé par l'alumine, la silice, la silice-alumine, les argiles, l’oxyde de titane, l’oxyde de bore et la zircone, pris seuls ou en mélange ou bien on peut choisir également les aluminates. De préférence, l’alumine est utilisée comme matrice. De manière préférée, ladite matrice contient de l'alumine sous toutes ses formes connues de l'homme du métier, telles que par exemple les alumines de type alpha, gamma, êta, delta. Lesdites alumines diffèrent par leur surface spécifique et leur volume poreux. La teneur en alcalin et/ou alcalino terreux de la matrice est variable et dépend du mode d’obtention de ladite matrice comme cela est bien connu pour l’alumine par exemple (Handbook of Porous Solids, 2008, Wiley-VCH chapitre 4.7.2.).
Le support du catalyseur utilisé dans l’invention comprend et est de préférence constitué de ladite matrice et de ladite zéolithe IZM-2.
La teneur en élément alcalin et/ou alcalino terreux de la matrice peut avantageusement être ajustée par toute méthode connue de l’homme de l’art pour obtenir un catalyseur conforme à l’invention. La matrice ou le précurseur de la matrice pourra ainsi être lavé par mise au contact d’une solution aqueuse dont le pH est inférieur ou égal au point de charge nulle de ladite matrice, comme cela est illustré pour une matrice alumine dans Catalysis Supports and Supported Catalysts, Butterworth Publishers (1987). A titre illustratif, de la boehmite peut être lavée par mise au contact dudit solide avec une solution aqueuse de nitrate d’ammonium. La durée d’immersion du solide dans la solution peut varier typiquement de 15 minutes à plusieurs heures. La concentration en sel(s) d’ammonium(s) dans la solution est typiquement comprise entre 0,1 mol par litre et 10 moles par litre. Le lavage s’effectue de préférence à une température comprise entre l’ambiante et 100 °C. Le rapport entre le volume de solution engagée (en ml) et la masse de la boehmite engagée (en gramme) est de préférence compris entre 1 et 100. Pour diminuer la teneur en alcalin et/ou alcalinoterreux au niveau désiré il peut s’avérer nécessaire de répéter l’étape de lavage plusieurs fois. A l’issue du dernier lavage le solide est filtré, lavé à l’eau déionisée puis séché et calciné.
Lorsqu’elle contient des éléments alcalins et/ou alcalino terreux, la matrice peut contenir typiquement moins de 200 ppm et de préférence plus de 20 ppm, voire plus de 30 ppm, d’élément alcalin et/ou alcalino terreux et de préférence de sodium.
Phase métallique
Conformément à l’invention, le catalyseur comprend au moins un métal du groupe VIII de préférence choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium et le platine, de préférence choisi parmi les métaux nobles du groupe VIII, de manière très préférée choisi parmi le palladium et le platine et de manière encore plus préférée on choisit le platine.
De préférence, ledit catalyseur comprend une teneur en métal du groupe VIII comprise entre 0,01 et 5% poids par rapport à la masse totale dudit catalyseur et de préférence comprise entre 0,1 et 4 % poids.
Dans le cas où ledit catalyseur comprend au moins un métal noble du groupe VIII, la teneur en métal noble dudit catalyseur est avantageusement comprise entre 0,01 et 5% en poids de manière préférée entre 0,1 et 4% en poids et de manière très préférée entre 0,1 et 2% en poids par rapport à la masse totale dudit catalyseur.
Le catalyseur de l'invention peut également avantageusement contenir au moins un métal choisi parmi les métaux des groupes NIA, IVA et VI IB choisis parmi le gallium, l'indium, l'étain et le rhénium. Dans ce cas, la teneur en métal choisi parmi les métaux des groupes NIA, IVA et VIIB est de préférence comprise entre 0,01 et 2%, de préférence entre 0,05 et 1% poids par rapport à la masse totale dudit catalyseur.
La dispersion du(es) métal(ux) du groupe VIII, déterminée par chimisorption, par exemple par titration H2/02 ou par chimisorption du monoxyde de carbone, est comprise entre 10% et 100%, de préférence entre 20% et 100% et de manière encore plus préférée entre 30% et 100%. Le coefficient de répartition macroscopique du(es) métal(ux) du groupe VIII, obtenu à partir de son (leur) profil déterminé par microsonde de Castaing, défini comme le rapport des concentrations du(es) métal(ux) du groupe VIII au cœur du grain par rapport au bord de ce même grain, est compris entre 0,7 et 1,3, de préférence entre 0,8 et 1,2. La valeur de ce rapport, voisine de 1, témoigne de l'homogénéité de la répartition du(es) métal(ux) du groupe VIII dans le catalyseur.
Préparation du catalyseur
Le catalyseur selon l'invention peut avantageusement être préparé selon toutes les méthodes bien connues de l'homme du métier.
Mise en forme
Avantageusement, les différents constituants du support ou du catalyseur peuvent être mis en forme par étape de malaxage pour former une pâte puis extrusion de la pâte obtenue, ou alors par mélange de poudres puis pastillage, ou alors par tout autre procédé connu d’agglomération d’une poudre contenant de l’alumine. Les supports ainsi obtenus peuvent se présenter sous différentes formes et dimensions. De manière préférée la mise en forme est effectuée par malaxage et extrusion.
Lors de la mise en forme du support par malaxage puis extrusion, ladite zéolithe IZM-2 peut être introduite au cours de la mise en solution ou en suspension des composés d'alumine ou précurseurs d’alumine tels que la boéhmite par exemple. Ladite zéolithe IZM-2 peut être, sans que cela soit limitatif, par exemple sous forme de poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération. Ainsi, par exemple, ladite zéolithe peut avantageusement être mise en suspension acidulée ou non à une concentration ajustée à la teneur finale en IZM-2 visée dans le catalyseur selon l’invention. Cette suspension appelée couramment une barbotine est alors mélangée avec les composés d'alumine ou précurseurs d’alumine.
Par ailleurs, l’utilisation d’additifs peut avantageusement être mise en œuvre pour faciliter la mise en forme et/ou améliorer les propriétés mécaniques finales des supports comme cela est bien connu par l’homme du métier. A titre d’exemple d’additifs, on peut citer notamment la cellulose, la carboxyméthyl-cellulose, la carboxy-éthyl-cellulose, du tall-oil (huile de tall), les gommes xanthaniques, des agents tensio-actifs, des agents floculants comme les polyacrylamides, le noir de carbone, les amidons, l’acide stéarique, l’alcool polyacrylique, l’alcool polyvinylique, des biopolymères, le glucose, les polyéthylènes glycols, etc.
On peut avantageusement ajouter ou retirer de l'eau pour ajuster la viscosité de la pâte à extruder. Cette étape peut avantageusement être réalisée à tout stade de l'étape de malaxage.
Pour ajuster la teneur en matière solide de la pâte à extruder afin de la rendre extrudable, on peut également ajouter un composé majoritairement solide et de préférence un oxyde ou un hydrate. On utilise de manière préférée un hydrate et de manière encore plus préférée un hydrate d'aluminium. La perte au feu de cet hydrate est avantageusement supérieure à 15%.
L'extrusion de la pâte issue de l'étape de malaxage peut avantageusement être réalisée par n'importe quel outil conventionnel, disponible commercialement. La pâte issue du malaxage est avantageusement extrudée à travers une filière, par exemple à l'aide d'un piston ou d'une mono-vis ou double vis d'extrusion. L'extrusion peut avantageusement être réalisée par toute méthode connue de l'homme de métier.
Les supports du catalyseur selon l’invention sont en général sous la forme d'extrudés cylindriques ou polylobés tels que bilobés, trilobés, polylobés de forme droite ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudres concassées, de tablettes, d'anneaux, de billes et/ou de roues. De préférence, les supports du catalyseur selon l’invention ont la forme de sphères ou d'extrudés. Avantageusement le support se présente sous forme d’extrudés d’un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes peuvent être cylindriques (qui peuvent être creuses ou non) et/ou cylindriques torsadés et/ou multilobées (2, 3, 4 ou 5 lobes par exemple) et/ou anneaux. La forme multilobée est avantageusement utilisée de manière préférée.
Séchage
Le support ainsi obtenu peut ensuite être soumis à une étape de séchage. Ladite étape de séchage est avantageusement effectuée par toute technique connue de l’homme du métier.
De préférence, le séchage est effectué sous flux d'air. Ledit séchage peut également être effectué sous flux de tout gaz oxydant, réducteur ou inerte. De préférence, le séchage est avantageusement effectué à une température comprise entre 50 et 180°C, de manière préférée entre 60 et 150°C et de manière très préférée entre 80 et 130°C.
Calcination
Ledit support, éventuellement séché, subit ensuite de préférence une étape de calcination.
Ladite étape de calcination est avantageusement réalisée en présence d'oxygène moléculaire, par exemple en effectuant un balayage d'air, à une température avantageusement supérieure à 200°C et inférieure ou égale à 1100°C. Ladite étape de calcination peut avantageusement être effectuée en lit traversé, en lit léché ou en atmosphère statique. Par exemple, le four utilisé peut être un four rotatif tournant ou être un four vertical à couches traversées radiales. De préférence, ladite étape de calcination est effectuée entre plus d'une heure à 200°C à moins d'une heure à 1100°C. La calcination peut avantageusement être opérée en présence de vapeur d'eau et/ou en présence d’une vapeur acide ou basique. Par exemple, la calcination peut être réalisée sous pression partielle d’ammoniaque.
Traitements post-calcination
Des traitements post-calcination peuvent éventuellement être effectués, de manière à améliorer les propriétés du support, notamment les propriétés texturales.
Ainsi, le support du catalyseur selon la présente invention peut être soumis à un traitement hydrothermal en atmosphère confinée. On entend par traitement hydrothermal en atmosphère confinée un traitement par passage à l'autoclave en présence d'eau à une température supérieure à la température ambiante, de préférence supérieure à 25°C, de préférence supérieure à 30°C.
Au cours de ce traitement hydrothermal, on peut avantageusement imprégner le support, préalablement à son passage à l'autoclave (l'autoclavage étant fait soit en phase vapeur, soit en phase liquide, cette phase vapeur ou liquide de l'autoclave pouvant être acide ou non). Cette imprégnation, préalable à l'autoclavage, peut avantageusement être acide ou non. Cette imprégnation, préalable à l'autoclavage peut avantageusement être effectuée à sec ou par immersion du support dans une solution aqueuse acide. Par imprégnation à sec, on entend mise en contact du support avec un volume de solution inférieur ou égal au volume poreux total du support. De préférence, l'imprégnation est réalisée à sec. L'autoclave est de préférence un autoclave à panier rotatif tel que celui défini dans la demande brevet EP 0 387 109 A. La température pendant l'autoclavage peut être comprise entre 100 et 250°C pendant une période de temps comprise entre 30 minutes et 3 heures.
Le mélange de la matrice et de la zéolithe IZM-2 mis en forme constitue le support du catalyseur. La teneur en alcalin et/ou alcalino terreux du support pourra également être ajustée par toute méthode connue de l’homme du métier pour obtenir un catalyseur conforme à l’invention.
De préférence, des traitements de lavage peuvent aussi être effectués afin de diminuer la teneur en alcalin et/ou alcalino-terreux du support. Les conditions opératoires du lavage sont typiquement les mêmes que celles décrites pour le lavage de la zéolithe. Le support est alors à nouveau calciné après lavage, de préférence dans les mêmes conditions que celles décrites pour le lavage de la zéolithe.
Dépôt de la phase métallique
Pour le dépôt du métal du groupe VIII de la classification périodique des éléments, toutes les techniques de dépôt connues de l'homme du métier et tous les précurseurs de tels métaux peuvent convenir. On peut utiliser des techniques de dépôt par imprégnation à sec ou en excès d’une solution contenant les précurseurs des métaux, en présence de compétiteurs ou non. L’introduction du métal peut s’effectuer à toute étape de la préparation du catalyseur: sur la zéolithe IZM-2 et/ou sur la matrice, notamment avant l’étape de mise en forme, pendant l’étape de mise en forme, ou après l’étape de mise en forme, sur le support du catalyseur. De manière préférée le dépôt du métal s’effectue après l’étape de mise en forme. Le contrôle de certains paramètres mis en œuvre lors du dépôt, en particulier la nature du précurseur du (des) métal(ux) du groupe VIII utilisé(s), permet d'orienter le dépôt du(es)dit(s) métal(ux) majoritairement sur la matrice ou sur la zéolithe.
Ainsi, pour introduire le(s) métal(ux) du groupe VIII, préférentiellement le platine et/ou le palladium, majoritairement sur la matrice, on peut mettre en œuvre un échange anionique avec de l’acide hexachloroplatinique et/ou de l’acide hexachloropalladique, en présence d’un agent compétiteur, par exemple de l’acide chlorhydrique, le dépôt étant en général suivi d'une calcination, par exemple à une température comprise entre 350 et 550°C et pendant une durée comprise entre 1 et 4 heures. Avec de tels précurseurs, le(s) métal(ux) du groupe VIII est(sont) déposé(s) majoritairement sur la matrice et le(s)dit(s) métal(ux) présente(nt) une bonne dispersion et une bonne répartition macroscopique à travers le grain de catalyseur.
On peut aussi envisager de déposer le(s) métal(ux) du groupe VIII, préférentiellement le platine et/ou le palladium, par échange cationique de manière à ce que le(s)dit(s) métal(ux) soi(en)t déposé(s) majoritairement sur la zéolithe. Ainsi, dans le cas du platine, le précurseur peut être par exemple choisi parmi :
- les composés ammoniaqués tels que les sels de platine (II) tétramines de formule Pt(NH3)4X2, les sels de platine (IV) hexamines de formule Pt(NH3)6X4 ; les sels de platine (IV) halogénopentamines de formule (PtX(NH3)5)X3 ; les sels de platine N- tétrahalogénodiamines de formule PtX4(NH3)2 ; et
- les composés halogénés de formule H(Pt(acac)2X);
X étant un halogène choisi dans le groupe formé par le chlore, le fluor, le brome et l'iode, X étant de préférence le chlore, et "acac" représentant le groupe acétylacétonate (de formule brute C5H702), dérivé de l'acétylacétone. Avec de tels précurseurs, le(s) métal(ux) du groupe VIII est(sont) déposé(s) majoritairement sur la zéolithe et le(s)dit(s) métal(ux) présente(nt) une bonne dispersion et une bonne répartition macroscopique à travers le grain de catalyseur.
La solution d’imprégnation peut avantageusement également comprendre au moins un sel d’ammonium choisi parmi le nitrate d’ammonium NH4N03, le chlorure d’ammonium NH4CI, l’hydroxyde d’ammonium NH40H, le bicarbonate d’ammonium NH4HC03, l’acétate d’ammonium NH4H3C202 seul ou en mélange, le rapport molaire entre le sel d’ammonium et le métal noble du précurseur étant compris entre 0,1 et 400. Dans le cas où le catalyseur de l'invention contient également au moins un métal choisi parmi les métaux des groupes II IA, IVA et VI IB, toutes les techniques de dépôt d'un tel métal connues de l'homme du métier et tous les précurseurs de tels métaux peuvent convenir.
On peut ajouter le(s) métal(ux) du groupe VIII et celui(ceux) des groupes NIA, IVA et VI IB, soit séparément soit simultanément dans au moins une étape unitaire. Lorsqu’au moins un métal des groupes NIA, IVA et VII B est ajouté séparément, il est préférable qu’il soit ajouté après le métal du groupe VIII.
Le métal additionnel choisi parmi les métaux des groupes NIA, IVA et VII B peut être introduit par l'intermédiaire de composés tels que par exemple les chlorures, les bromures et les nitrates des métaux des groupes NIA, IVA et VII B. Par exemple dans le cas de l’indium, on utilise avantageusement le nitrate ou le chlorure et dans le cas du rhénium, on utilise avantageusement l'acide perrhénique. Le métal additionnel choisi parmi les métaux des groupes NIA, IVA et VIIB peut également être introduit sous la forme d'au moins un composé organique choisi dans le groupe constitué par les complexes dudit métal, en particulier les complexes polycétoniques du métal et les hydrocarbylmétaux tels que les alkyles, les cycloalkyles, les aryles, les alkylaryles et les arylalkyles de métaux. Dans ce dernier cas, l'introduction du métal est avantageusement effectuée à l'aide d'une solution du composé organométallique dudit métal dans un solvant organique. On peut également employer des composés organohalogénés du métal. Comme composés organiques de métaux, on peut citer en particulier le tétrabutylétain, dans le cas de l'étain, et le triphénylindium, dans le cas de l'indium.
Si le métal additionnel choisi parmi les métaux des groupes NIA, IVA et VIIB est introduit avant le métal du groupe VIII, le composé du métal NIA, IVA et/ou VIIB utilisé est généralement choisi dans le groupe constitué par l'halogénure, le nitrate, l'acétate, le tartrate, le carbonate et l'oxalate du métal. L'introduction est alors avantageusement effectuée en solution aqueuse. Mais il peut également être introduit à l’aide d’une solution d’un composé organométallique du métal par exemple le tétrabutylétain. Dans ce cas, avant de procéder à l'introduction d'au moins un métal du groupe VIII, on procédera à une calcination sous air.
De plus, des traitements intermédiaires tels que par exemple une calcination et/ou une réduction peuvent être appliqués entre les dépôts successifs des différents métaux.
Après calcination, des traitements de lavage peuvent aussi être effectués afin d’ajuster la teneur en alcalin et alcalino terreux du catalyseur. Les conditions opératoires du lavage sont typiquement les mêmes que celles décrites pour le lavage de la zéolithe. Le catalyseur est alors à nouveau calciné après lavage.
Avant son utilisation dans un procédé d’isomérisation, le catalyseur selon l’invention est de préférence réduit. Cette étape de réduction est avantageusement réalisée par un traitement sous hydrogène à une température comprise entre 150°C et 650°C et une pression totale comprise entre 0,1 et 25 MPa. Par exemple, une réduction consiste en un palier à 150°C de deux heures puis une montée en température jusqu'à 450°C à la vitesse de 1°C/min puis un palier de deux heures à 450°C; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 normaux m3 d’hydrogène par tonne catalyseur et la pression totale maintenue constante à 0,2 MPa. Toute méthode de réduction ex-situ peut avantageusement être envisagée. Une réduction préalable du catalyseur final ex situ, sous courant d'hydrogène, peut être mise en œuvre, par exemple à une température de 450°C à 600°C, pendant une durée de 0,5 à 4 heures.
Ledit catalyseur comprend également avantageusement du soufre. Dans le cas où le catalyseur de l'invention contient du soufre, celui-ci peut être introduit à n’importe quelle étape de la préparation du catalyseur: avant ou après étape de mise en forme, et/ou séchage et/ou calcination, avant et/ou après l’introduction du ou des métaux cités précédemment, ou encore par sulfuration in situ et ou ex situ avant la réaction catalytique. Dans le cas d’une sulfuration in situ, la réduction, si le catalyseur n’a pas été préalablement réduit, intervient avant la sulfuration. Dans le cas d’une sulfuration ex situ, on effectue également la réduction puis la sulfuration. La sulfuration s’effectue de préférence en présence d’hydrogène en utilisant tout agent sulfurant bien connu de l’homme de métier, tel que par exemple le sulfure de diméthyle ou le sulfure d’hydrogène.
Les catalyseurs selon l’invention se présentent sous différentes formes et dimensions. Ils sont utilisés en général sous la forme d'extrudés cylindriques et/ou polylobés tels que bilobés, trilobés, polylobés de forme droite et/ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudres concassées, de tablettes, d'anneaux, de billes et/ou de roues. De préférence, les catalyseurs mis en œuvre dans le procédé selon l'invention ont la forme de sphères ou d'extrudés. Avantageusement le catalyseur se présente sous forme d’extrudés d’un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes peuvent être cylindriques (qui peuvent être creuses ou non) et/ou cylindriques torsadés et/ou multilobées (2, 3, 4 ou 5 lobes par exemple) et/ou anneaux. La forme multilobée est avantageusement utilisée de manière préférée. Le dépôt du métal ne change pas la forme du support. Le procédé d’isomérisation
La présente invention a également pour objet un procédé d'isomérisation d'une coupe contenant au moins un composé aromatique à huit atomes de carbone par molécule, ledit procédé comprenant la mise en contact de ladite coupe aromatique avec au moins ledit catalyseur selon l'invention présent dans un réacteur catalytique.
Ladite coupe aromatique contenant au moins un composé aromatique ayant huit atomes de carbone par molécule comprend en particulier comme composé aromatique ayant huit atomes de carbone par molécule soit uniquement un mélange de xylènes, soit uniquement de l’éthylbenzène, soit un mélange de xylène(s) et d’éthylbenzène.
Ledit procédé d'isomérisation est mis en œuvre généralement selon les conditions opératoires suivantes : une température de 300°C à 500°C, de préférence de 320°C à 450°C et de manière encore plus préférée de 340°C à 430°C ; une pression partielle d’hydrogène de 0,3 à 1,5 MPa, de préférence de 0,4 et 1,2 MPa et de manière encore préférée de 0,7 à 1,2 MPa ; une pression totale de 0,45 à 1,9 MPa, de préférence de 0,6 à 1,5 MPa ; et une vitesse spatiale d'alimentation, exprimée en kilogramme de charge introduite par kilogramme de catalyseur et par heure, de 0,25 à 30 h-1, de préférence de 1 à 10 h-1 et de manière encore préférée de 2 à 6 h-1.
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.
EXEMPLES
Exemple 1 : synthèse de la zéolithe IZM-2.
La zéolithe IZM-2 a été synthétisée conformément à l'enseignement du brevet FR 2 918 050 B. Une suspension colloïdale de silice connue sous le terme commercial Ludox HS-40 commercialisée par Aldrich, est incorporée dans une solution composée de soude (Prolabo), de structurant dibromure de 1,6bis(méthylpiperidinium)hexane, d’hydroxyde d’aluminium (Aldrich) et d’eau déionisée. La composition molaire du mélange est la suivante : 1 Si02; 0,0042 AI203; 0,1666 Na20; 0,1666 1,6bis(méthylpiperidinium)hexane; 33,3333 H20. Le mélange est agité vigoureusement pendant une demi-heure. Le mélange est ensuite transféré, après homogénéisation, dans un autoclave de type PARR. L’autoclave est chauffé pendant 5 jours à 170°C sous agitation en tourne broche (30 tours/min). Le produit obtenu est filtré, lavé à l’eau déionisée pour atteindre un pH neutre puis séché une nuit à 100°C en étuve. Le solide est ensuite introduit dans un four à moufle pour y être calciné afin d’éliminer le structurant. Le cycle de calcination comprend une montée en température jusqu’à 200°C, un palier à cette température de deux heures, une montée en température jusqu’à 550°C suivi d’un palier de huit heures à cette température et enfin un retour à température ambiante. Les montées en température sont effectuées avec une rampe de 2°C/min. Le solide ainsi obtenu contient une teneur en sodium mesurée par absorption atomique de 3695 ppm.
Pour diminuer la teneur en sodium, le solide ainsi obtenu est ensuite mis sous reflux durant 2 heures dans une solution aqueuse de nitrate d'ammonium (10 ml de solution par gramme de solide, concentration en nitrate d'ammonium de 3 M). Cette étape de mise sous reflux est effectuée quatre fois avec une solution fraîche de nitrate d’ammonium, puis le solide est filtré, lavé à l’eau déionisée et séché en étuve une nuit à 100°C. Enfin, pour obtenir la zéolithe sous sa forme acide (protonée H+) on réalise une étape de calcination à 550°C durant dix heures (rampe de montée en température de 2°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le solide ainsi obtenu a été analysé par Diffraction des Rayons X et identifié comme étant constitué par de la zéolithe IZM-2. Le solide ainsi obtenu contient une teneur en sodium mesurée par absorption atomique de 142 ppm.
Figure imgf000025_0001
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée dans l’exemple 1 avec une premier lot de boehmite fournie par la société AXENS contenant 268 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière quadrilobes de diamètre 1,5 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés à 550°C durant deux heures (rampe de montée en température de 5°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 14% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 250 ppm.
Exemple 3 (non conforme à l’invention) : préparation d’un catalyseur d’isomérisation A.
Le catalyseur A est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé dans l’exemple 2 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(N03)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min ;
- palier d’une heure à 150°C ;
- montée de la 150°C à 450°C à 5°C/min ;
- palier d’une heure à 450°C ;
- descente à l'ambiante.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,3% en poids, son coefficient de répartition mesuré par microsonde de Castaing de 0,96. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 245 ppm.
Les propriétés texturales du catalyseur A ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégasé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0,97. La surface spécifique du solide est calculée par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur A présente une surface spécifique de 294 m2/g, un volume poreux total de 0,74 ml/g et un diamètre médian de 12 nm.
Exemple 4 : préparation d’un second support IZM-2/alumine.
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée dans l’exemple 1 avec une second lot de boehmite fournie par la société AXENS. Ce second lot de boehmite se distingue du premier lot par sa teneur en sodium plus faible. Le second lot de boehmite contenant 63 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière quadrilobes de diamètre 1,5 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés à 550°C durant deux heures (rampe de montée en température de 5°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le second support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 14% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 74 ppm. Exemple 5 (conforme à l’invention) : préparation d’un catalyseur d’isomérisation B.
Le catalyseur B est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé dans l’exemple 3 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(N03)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min ;
- palier d’une heure à 150°C ;
- montée de la 150°C à 450°C à 5°C/min ;
- palier d’une heure à 450°C ;
- descente à l'ambiante.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,3% en poids, son coefficient de répartition mesuré par microsonde de Castaing de 1 ,03. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 69 ppm.
Les propriétés texturales du catalyseur B ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0,97. La surface spécifique du solide est calculée par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur B présente une surface spécifique de 298 m2/g, un volume poreux total de 0,76 ml/g et un diamètre médian de 13 nm.
Exemple 6 : préparation d’un troisième support IZM-2/alumine.
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée dans l’exemple 1 avec un troisième lot de boehmite fournie par la société AXENS contenant 130 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière quadrilobes de diamètre 1,5 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés dans les conditions suivantes : - montée de la température à l'ambiante à 150°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide),
- palier d'une heure à 150°C sous air sec (1 normal litre par heure et par gramme de solide),
- montée de 150 à 550°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide) jusqu’à 480°C puis sous mélange air et eau (30% en volume d’eau) à partir de 480°C,
- palier de deux heures à 550°C sous mélange air et eau (1 normal litre par heure et par gramme de solide),
- descente à 480°C sous mélange air et eau (1 normal litre par heure et par gramme de solide),
- descente de 480°C à l’ambiante sous air sec (1 normal litre par heure et par gramme de solide).
Le support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 13% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 132 ppm.
Figure imgf000028_0001
Le catalyseur C est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé dans l’exemple 6 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(N03)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min,
- palier d’une heure à 150°C,
- montée de la 150°C à 450°C à 5°C/min,
- palier d’une heure à 450°C, descente à l'ambiante. La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,26% en poids, son coefficient de répartition mesuré par microsonde de Castaing de 1,1. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 130 ppm.
Les propriétés texturales du catalyseur C ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0,97. La surface spécifique du solide est calculée par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur C présente une surface spécifique de 268 m2/g, un volume poreux total de 0,73 ml/g et un diamètre médian de 14,5 nm.
Exemple 8 : préparation d’un quatrième support IZM-2/alumine.
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée dans l’exemple 1 avec un quatrième lot de boehmite fournie par la société AXENS contenant 297 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière quadrilobes de diamètre 1,5 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide),
- palier d'une heure à 150°C sous air sec (1 normal litre par heure et par gramme de solide),
- montée de 150 à 550°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide) jusqu’à 480°C puis sous mélange air et eau (30% en volume d’eau) à partir de 480°C,
- palier de deux heures à 550°C sous mélange air et eau (1 normal litre par heure et par gramme de solide),
- descente à 480°C sous mélange air et eau (1 normal litre par heure et par gramme de solide),
- descente de 480°C à l’ambiante sous air sec (1 normal litre par heure et par gramme de solide). Le support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 13% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 276 ppm.
Exemple 9 (non conforme à l’invention) : préparation d’un catalyseur d’isomérisation D. Le catalyseur D est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé dans l’exemple 8 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(N03)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min,
- palier d’une heure à 150°C, - montée de la 150°C à 450°C à 5°C/min,
- palier d’une heure à 450°C,
- descente à l'ambiante.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,26% en poids, son coefficient de répartition mesuré par microsonde de Castaing de 1,0. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 278 ppm.
Les propriétés texturales du catalyseur D ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0,97. La surface spécifique du solide est calculée par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur D présente une surface spécifique de 276 m2/g, un volume poreux total de 0,69 ml/g et un diamètre médian de 13 nm. Exemple 10 : préparation d’un quatrième support IZM-2/alumine.
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée dans l’exemple 1 avec un quatrième lot de boehmite fournie par la société AXENS contenant 84 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière quadrilobes de diamètre 1,5 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide),
- palier d'une heure à 150°C sous air sec (1 normal litre par heure et par gramme de solide),
- montée de 150 à 550°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide) jusqu’à 480°C puis sous mélange air et eau (30% en volume d’eau) à partir de 480°C,
- palier de deux heures à 550°C sous mélange air et eau (1 normal litre par heure et par gramme de solide),
- descente à 480°C sous mélange air et eau (1 normal litre par heure et par gramme de solide)
- descente de 480°C à l’ambiante sous air sec (1 normal litre par heure et par gramme de solide).
Le support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 13% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 91 ppm.
Exemple 11 (conforme à l’invention) : préparation d’un catalyseur d’isomérisation E.
Le catalyseur E est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé dans l’exemple 10 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(N03)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min, - palier d’une heure à 150°C,
- montée de la 150°C à 450°C à 5°C/min,
- palier d’une heure à 450°C,
- descente à l'ambiante.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,27% en poids, son coefficient de répartition mesuré par microsonde de Castaing de 0,96. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 89 ppm.
Les propriétés texturales du catalyseur E ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0,97. La surface spécifique du solide est calculée par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur D présente une surface spécifique de 272 m2/g, un volume poreux total de 0,67 ml/g et un diamètre médian de 12 nm. des catalyseurs A, B, C, D et E en
Figure imgf000032_0001
Les catalyseurs ont été testés en isomérisation d’une coupe C8 aromatiques composée par de l’éthylbenzène (19% poids), de l’ortho-xylène (16% poids), du méta-xylène (58% poids) et de l’éthylcyclohexane (7% poids). Les tests ont été effectués dans une micro-unité mettant en œuvre un réacteur lit fixe et travaillant en courant descendant sans recyclage. L’analyse des effluents hydrocarbonés est effectuée en ligne par chromatographie en phase gazeuse. Avant chargement dans l'unité, le catalyseur est préalablement séché au moins une nuit en étuve à 110°C. Une fois chargé dans l’unité, le catalyseur subit une première étape de séchage sous azote dans les conditions suivantes :
- débit d’azote: 5 normaux litres par heure et par gramme de catalyseur,
- pression totale: 1,3 MPa,
- rampe de montée en température de l’ambiante à 150°C: 10°C/min,
- palier à 150°C de 30 minutes. Après séchage l’azote est remplacé par l’hydrogène et une étape de réduction sous débit d'hydrogène pur est effectuée ensuite dans les conditions suivantes:
- débit d'hydrogène: 4 normaux litres par heure et par gramme de catalyseur,
- pression totale: 1,3 MPa, - rampe de montée en température de 150 à 480°C: 5°C/min,
- palier à 480°C de 2 heures.
La température est alors descendue à 425°C puis le catalyseur est stabilisé durant 24 heures sous flux d’hydrogène et d’hydrocarbures (mélange d’éthylbenzène à 20% poids et d’ortho-xylène à 80% poids), dans les conditions opératoires suivantes : - vitesse spatiale d'alimentation de 5 grammes d’hydrocarbures par heure et par gramme de catalyseur,
- rapport molaire hydrogène sur hydrocarbures de 4,
- pression totale de 1,3 MPa.
Après étape de stabilisation, La température est ensuite descendue à 385°C, et le catalyseur est mis en contact de la coupe C8 aromatiques mentionnée plus haut dans les conditions suivantes :
- vitesse spatiale d'alimentation de 3,5 grammes de la coupe C8 aromatiques par heure et par gramme de catalyseur,
- rapport molaire hydrogène sur hydrocarbures de 4, - pression totale de 0,86 MPa.
Le catalyseur est maintenu durant 7 heures dans ces conditions opératoires puis les performances catalytiques sont évaluées selon les différentes conditions opératoires qui sont récapitulées dans le Tableau 2 ci-dessous. La variation de la vitesse spatiale d’alimentation permet de faire varier les niveaux de conversion en éthylbenzène et d’isomérisation des xylènes et donc la production de para-xylène. A chaque condition opératoire deux analyses par chromatographie sont effectuées afin de mesurer les performances des catalyseurs.
Figure imgf000034_0001
Le rendement en para-xylène (PX) dans l’effluent hydrocarboné obtenu à la vitesse spatiale d’alimentation de 12 h-1 permet d’évaluer l’activité des catalyseurs pour la production de para-xylène :
PX = % poids de para-xylène dans l’effluent hydrocarboné, où PX est le rendement en para-xylène en % poids.
L’évolution du rendement en pertes nettes (PN) en fonction du rendement en para-xylène permet quant à lui d’évaluer la sélectivité du catalyseur. Sont considérées comme pertes nettes toutes les molécules hydrocarbonées autres que les molécules cycliques à huit atomes de carbone : PN = 100-PX-EB-OX-MX-N8 avec :
PN : rendement en pertes nettes dans l’effluent hydrocarboné, en % poids,
PX : % poids de para-xylène dans l’effluent hydrocarboné,
EB : % poids d’éthylbenzène dans l’effluent hydrocarboné, OX : % poids d’ortho-xylène dans l’effluent hydrocarboné,
MX : % poids de méta-xylène dans l’effluent hydrocarboné,
N8 : % poids des naphtènes à huit atomes de carbone dans l’effluent hydrocarboné. Le Tableau 3 reporte ainsi le rendement en para-xylène des catalyseurs A, B, C, D et E à une vitesse spatiale de 20 h-1 ainsi que les pertes nettes estimées pour un rendement en para-xylène de 18% pour les catalyseurs. Les pertes nettes (PN) à 18% de rendement en para-xylène sont estimées par interpolation ou extrapolation linéaire des données expérimentales de l’évolution du rendement en pertes nettes en fonction du rendement en para-xylène. On observe que les 5 catalyseurs présentent des pertes nettes, et donc des sélectivités, identiques pour un rendement en para-xylène de 18%. En revanche ils se distinguent par leur activité : les catalyseurs selon l’invention B, C et E à teneur réduite en sodium présentent une activité plus élevée que les catalyseurs A et D non conformes.
Figure imgf000035_0001

Claims

REVENDICATIONS
1. Catalyseur comprenant au moins une zéolithe IZM-2, au moins une matrice et au moins un métal du groupe VIII de la classification périodique des éléments, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, et supérieure à 20 ppm en poids.
2. Catalyseur selon la revendication 1 dans lequel ledit catalyseur comprend au moins un métal du groupe VIII choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium et le platine.
3. Catalyseur selon la revendication 2 dans lequel ledit catalyseur comprend au moins un métal du groupe VIII choisi parmi le palladium et le platine et de manière préférée le platine.
4. Catalyseur selon l’une des revendication 1 à 3 dans lequel ledit catalyseur comprend une teneur en métal du groupe VIII comprise entre 0,01 et 5% poids par rapport à la masse totale dudit catalyseur.
5. Catalyseur selon l’une des revendication 1 à 4 dans lequel ladite matrice est choisie dans le groupe formé par l'alumine, la silice, la silice-alumine, les argiles, l’oxyde de titane, l’oxyde de bore et la zircone, pris seuls ou en mélange.
6. Catalyseur selon l’une des revendication 1 à 5 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 150 ppm en poids par rapport à la masse totale dudit catalyseur.
7. Catalyseur selon la revendication 6 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 100 ppm en poids par rapport à la masse totale dudit catalyseur.
8. Catalyseur selon la revendication 7 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 90 ppm en poids par rapport à la masse totale dudit catalyseur.
9. Catalyseur selon la revendication 8 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 80 ppm en poids par rapport à la masse totale dudit catalyseur.
10. Catalyseur selon la revendication 9 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 70 ppm en poids par rapport à la masse totale dudit catalyseur.
11. Catalyseur selon l’une des revendications 1 à 10 dans lequel les éléments alcalins et/ou alcalinoterreux sont choisis parmi le lithium, le sodium, le potassium, le berylium, le magnésium, le barium, et le calcium et de préférence le sodium.
12. Procédé d'isomérisation d'une coupe contenant au moins un composé aromatique à huit atomes de carbone par molécule, ledit procédé comprenant la mise en contact de ladite coupe aromatique avec au moins ledit catalyseur selon l’une des revendications 1 à 11 dans les conditions opératoires suivantes :
- une température de 300°C à 500°C,
- une pression partielle d’hydrogène de 0,3 à 1,5 MPa,
- une pression totale de 0,45 à 1,9 MPa, et
- une vitesse spatiale d'alimentation, exprimée en kilogramme de charge introduite par kilogramme de catalyseur et par heure, de 0,25 à 30 h-1.
13. Procédé d'isomérisation selon la revendication 12 dans lequel ladite coupe aromatique contenant au moins un composé aromatique ayant huit atomes de carbone par molécule comprend comme composé aromatique ayant huit atomes de carbone par molécule soit uniquement un mélange de xylènes, soit uniquement de l’éthylbenzène, soit un mélange de xylène(s) et d’éthylbenzène.
PCT/EP2020/085218 2019-12-17 2020-12-09 Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l'isomerisation de la coupe c8 aromatique WO2021122199A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080087704.0A CN114929383A (zh) 2019-12-17 2020-12-09 具有低碱金属含量的izm-2沸石催化剂及其用于芳族c8馏分的异构化的用途
JP2022536727A JP2023506849A (ja) 2019-12-17 2020-12-09 低含有率のアルカリ金属を有するizm-2ゼオライトをベースとする触媒、および芳香族c8留分の異性化のためのその使用
US17/783,734 US20230008326A1 (en) 2019-12-17 2020-12-09 Catalyst based on izm-2 zeolite with a low content of alkali metal, and use thereof for the isomerization of aromatic c8 cuts
EP20819769.9A EP4076739A1 (fr) 2019-12-17 2020-12-09 Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l'isomerisation de la coupe c8 aromatique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1914592 2019-12-17
FR1914592A FR3104458B1 (fr) 2019-12-17 2019-12-17 Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l’isomerisation de la coupe c8 aromatique

Publications (1)

Publication Number Publication Date
WO2021122199A1 true WO2021122199A1 (fr) 2021-06-24

Family

ID=70738618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/085218 WO2021122199A1 (fr) 2019-12-17 2020-12-09 Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l'isomerisation de la coupe c8 aromatique

Country Status (7)

Country Link
US (1) US20230008326A1 (fr)
EP (1) EP4076739A1 (fr)
JP (1) JP2023506849A (fr)
CN (1) CN114929383A (fr)
FR (1) FR3104458B1 (fr)
TW (1) TW202130608A (fr)
WO (1) WO2021122199A1 (fr)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2477903A1 (fr) 1980-03-13 1981-09-18 Inst Francais Du Petrole Nouveau catalyseur zeolithique d'isomerisation des hydrocarbures alkylaromatiques
US4467129A (en) 1982-11-24 1984-08-21 Toray Industries, Inc. Conversion of xylenes containing ethylbenzene
US4482773A (en) 1982-02-25 1984-11-13 Mobil Oil Corporation Catalyst for xylene isomerization
EP0387109A1 (fr) 1989-02-01 1990-09-12 Rhone-Poulenc Chimie Procédé de fabrication d'agglomérés d'alumine activée, agglomérés obtenus par le procédé et dispositif pour sa mise en oeuvre
EP0458378B1 (fr) 1990-05-22 1994-01-05 Shell Internationale Researchmaatschappij B.V. Composition catalytique
EP0923987A1 (fr) 1997-12-22 1999-06-23 Institut Français du Pétrole Catalyseur contenant une zéolithe EUO et son utilisation en isomérisation des composés C8 aromatiques
WO2005065380A2 (fr) 2003-12-30 2005-07-21 Uop Llc Procede et catalyseur pour l'isomerisation de c8-alkylaromatiques
US7091190B2 (en) 1996-09-17 2006-08-15 Avanir Pharmaceuticals Synergistic inhibition of viral replication by long-chain hydrocarbons and nucleoside analogs
FR2918050A1 (fr) 2007-06-29 2009-01-02 Inst Francais Du Petrole Solide cristallise izm-2 et son procede de preparation
US20090093662A1 (en) 2007-10-08 2009-04-09 Whitchurch Patrick C Aromatic isomerization catalyst
WO2010000652A1 (fr) 2008-07-04 2010-01-07 Shell Internationale Research Maatschappij B.V. Catalyseur et procédé d'isomérisation
FR2934793A1 (fr) 2008-08-08 2010-02-12 Inst Francais Du Petrole Catalyseur comprenant une zeolithe izm-2 et au moins un metal et son utilisation en transformation d'hydrocarbures
US20140296601A1 (en) 2013-03-29 2014-10-02 Uop Llc Isomerization process with mtw catalyst
FR3054454A1 (fr) 2016-07-26 2018-02-02 IFP Energies Nouvelles Catalyseur comprenant une zeolithe izm-2 ayant un rapport molaire si/al optimise pour l'isomerisation de coupes c8 aromatiques

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934794B1 (fr) * 2008-08-08 2010-10-22 Inst Francais Du Petrole Procede de production de distillats moyens par hydrocraquage de charges issues du procede fischer-trospch en presence d'un catalyseur comprenant un solide izm-2
FR2997948B1 (fr) * 2012-11-15 2014-11-28 IFP Energies Nouvelles Procede d'isomerisation d'une coupe c8 aromatique en presence d'un catalyseur a base d'une zeolithe euo et une teneur en sodium particuliere

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2477903A1 (fr) 1980-03-13 1981-09-18 Inst Francais Du Petrole Nouveau catalyseur zeolithique d'isomerisation des hydrocarbures alkylaromatiques
US4482773A (en) 1982-02-25 1984-11-13 Mobil Oil Corporation Catalyst for xylene isomerization
US4467129A (en) 1982-11-24 1984-08-21 Toray Industries, Inc. Conversion of xylenes containing ethylbenzene
EP0387109A1 (fr) 1989-02-01 1990-09-12 Rhone-Poulenc Chimie Procédé de fabrication d'agglomérés d'alumine activée, agglomérés obtenus par le procédé et dispositif pour sa mise en oeuvre
EP0458378B1 (fr) 1990-05-22 1994-01-05 Shell Internationale Researchmaatschappij B.V. Composition catalytique
US7091190B2 (en) 1996-09-17 2006-08-15 Avanir Pharmaceuticals Synergistic inhibition of viral replication by long-chain hydrocarbons and nucleoside analogs
EP0923987A1 (fr) 1997-12-22 1999-06-23 Institut Français du Pétrole Catalyseur contenant une zéolithe EUO et son utilisation en isomérisation des composés C8 aromatiques
WO2005065380A2 (fr) 2003-12-30 2005-07-21 Uop Llc Procede et catalyseur pour l'isomerisation de c8-alkylaromatiques
FR2918050A1 (fr) 2007-06-29 2009-01-02 Inst Francais Du Petrole Solide cristallise izm-2 et son procede de preparation
US20090093662A1 (en) 2007-10-08 2009-04-09 Whitchurch Patrick C Aromatic isomerization catalyst
WO2010000652A1 (fr) 2008-07-04 2010-01-07 Shell Internationale Research Maatschappij B.V. Catalyseur et procédé d'isomérisation
FR2934793A1 (fr) 2008-08-08 2010-02-12 Inst Francais Du Petrole Catalyseur comprenant une zeolithe izm-2 et au moins un metal et son utilisation en transformation d'hydrocarbures
US20140296601A1 (en) 2013-03-29 2014-10-02 Uop Llc Isomerization process with mtw catalyst
FR3054454A1 (fr) 2016-07-26 2018-02-02 IFP Energies Nouvelles Catalyseur comprenant une zeolithe izm-2 ayant un rapport molaire si/al optimise pour l'isomerisation de coupes c8 aromatiques

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Catalysis Supports and Supported Catalysts", 1987, BUTTERWORTH PUBLISHERS
"Handbook of Porous Solids", 2008, WILEY-VCH
APPLIED CATALYSIS A : GENERAL, vol. 230, 2002, pages 253 - 262
FILIPE MARQUES MOTA ET AL: "IZM-2: A promising new zeolite for the selective hydroisomerization of long-chain n-alkanes", JOURNAL OF CATALYSIS., vol. 301, 28 February 2013 (2013-02-28), US, pages 20 - 29, XP055495311, ISSN: 0021-9517, DOI: 10.1016/j.jcat.2013.01.017 *
L.D. FERNANDES, JOURNAL OF CATALYSIS, vol. 177, 1998, pages 363 - 337
LI YUNXIANG ET AL: "Microporous pure-silica IZM-2", MICROPOROUS AND MESOPOROUS MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 237, 21 September 2016 (2016-09-21), pages 222 - 227, XP029777580, ISSN: 1387-1811, DOI: 10.1016/J.MICROMESO.2016.09.033 *
MOREAU, MICROPOROUS AND MESOPOROUS MATERIALS, vol. 51, 2002, pages 211 - 221
YUNXIANG LI ET AL: "Supplementary Information of "Microporous pure-silica IZM-2"", MICROPOROUS AND MESOPOROUS MATERIALS, 21 September 2016 (2016-09-21), pages 1 - 11, XP055723402 *

Also Published As

Publication number Publication date
FR3104458A1 (fr) 2021-06-18
EP4076739A1 (fr) 2022-10-26
JP2023506849A (ja) 2023-02-20
CN114929383A (zh) 2022-08-19
US20230008326A1 (en) 2023-01-12
FR3104458B1 (fr) 2022-01-07
TW202130608A (zh) 2021-08-16

Similar Documents

Publication Publication Date Title
EP2313343B1 (fr) Catalyseur comprenant une zeolithe izm-2 et au moins un metal et son utilisation en transformation d&#39;hydrocarbures
EP0999183B1 (fr) Procédé de préparation d&#39;une zéolithe de type structural EUO a l&#39;aide de precurseurs du structurant et son utilisation comme catalyseur d&#39;isomerisation des AC8
EP3275538B1 (fr) Procede d&#39;isomerisation de coupes c8 aromatiques avec un catalyseur comprenant une zeolithe izm-2 ayant un rapport molaire si/al optimise pour l&#39;isomerisation de coupes c8 aromatiques
EP0999182B1 (fr) Procédé de préparation d&#39;une zéolithe de type structural EUO à l&#39;aide de germes de matériaux zéolitiques et son utilisation comme catalyseur d&#39;isomérisation des aromatiques à huit atomes de carbone
FR2915112A1 (fr) Procede d&#39;isomerisation d&#39;une coupe c8 aromatique en presence d&#39;un catalyseur a base d&#39;une zeolithe euo desaluminee.
EP3027312B1 (fr) Modification de zeolithe de type euo et son utilisation en isomerisation des composes c8 aromatiques
CA2346312C (fr) Procede de preparation d&#39;une zeolithe de types structural euo, la zeolithe obtenue et son utilisation en tant que catalyseur d&#39;isomerisation des coupes c8 aromatiques
EP0755717B1 (fr) Catalyseurs à base de zéolithe mordénite modifié au cérium, et son utilisation en isomérisation d&#39;une coupe C8 aromatique
FR2909906A1 (fr) Procede d&#39;isomerisation des composes c8 aromatiques en presence d&#39;un catalyseur comprenant une zeolithe euo modifiee
CA2346315C (fr) Zeolithe de type structural euo de faible rapport si/al et son utilisation en tant que catalyseur d&#39;isomerisation des coupes c8 aromatiques
FR2997948A1 (fr) Procede d&#39;isomerisation d&#39;une coupe c8 aromatique en presence d&#39;un catalyseur a base d&#39;une zeolithe euo et une teneur en sodium particuliere
EP2934747B1 (fr) Catalyseur modifie de type structural mtw, sa méthode de préparation et son utilisation dans un procédé d&#39;isomérisation d&#39;une coupe c8 aromatique
FR2974801A1 (fr) Procede d&#39;isomerisation d&#39;une coupe c8 aromatique en presence d&#39;un catalyseur specifique constitue par un composite de type zeolithe/carbure de silicium et d&#39;une fonction hydro-deshydrogenante
WO2021122199A1 (fr) Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l&#39;isomerisation de la coupe c8 aromatique
FR2920423A1 (fr) Preparation d&#39;un materiau composite poreux a base de zeolithe eu-1 et sa mise en oeuvre en isomerisation des aromatiques en c8.
WO2018099832A1 (fr) Utilisation d&#39;un catalyseur a base de zeolithe izm-2 et d&#39;un catalyseur a base de zeolithe euo pour l&#39;isomerisation de coupes c8 aromatiques
FR2862299A1 (fr) Zeolithe de type structural euo contenant le structurant alkylquinuclidinium, procede de preparation et utilisation en tant que catalyseur
FR2691914A1 (fr) Catalyseur à base de zéolithe mordénite modifiée et son utilisation en isomérisation d&#39;une coupe C8 aromatique.
WO2021122198A1 (fr) Utilisation d&#39;un catalyseur a base d&#39;izm-2 ayant une faible teneur en alcalin pour l&#39;isomerisation de charges paraffiniques en distillats moyens
WO2023104554A1 (fr) Dispositif et procédé de conversion des aromatiques à 9 atomes de carbones
FR2984308A1 (fr) Procede d&#39;isomerisation d&#39;une coupe c8 aromatique en presence d&#39;un catalyseur a base d&#39;une zeolithe euo et d&#39;un liant particulier
FR2787780A1 (fr) Procede de preparation d&#39;un catalyseur a base de zeolithe de structure euo, obtenue en presence de germes et son utilisation en isomerisation d&#39;une coupe c8 aromatique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536727

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020819769

Country of ref document: EP

Effective date: 20220718