FR3104458A1 - Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l’isomerisation de la coupe c8 aromatique - Google Patents

Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l’isomerisation de la coupe c8 aromatique Download PDF

Info

Publication number
FR3104458A1
FR3104458A1 FR1914592A FR1914592A FR3104458A1 FR 3104458 A1 FR3104458 A1 FR 3104458A1 FR 1914592 A FR1914592 A FR 1914592A FR 1914592 A FR1914592 A FR 1914592A FR 3104458 A1 FR3104458 A1 FR 3104458A1
Authority
FR
France
Prior art keywords
catalyst
weight
ppm
alkaline
izm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1914592A
Other languages
English (en)
Other versions
FR3104458B1 (fr
Inventor
Christophe Bouchy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1914592A priority Critical patent/FR3104458B1/fr
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to US17/783,734 priority patent/US20230008326A1/en
Priority to JP2022536727A priority patent/JP2023506849A/ja
Priority to PCT/EP2020/085218 priority patent/WO2021122199A1/fr
Priority to EP20819769.9A priority patent/EP4076739A1/fr
Priority to CN202080087704.0A priority patent/CN114929383A/zh
Priority to TW109144472A priority patent/TW202130608A/zh
Publication of FR3104458A1 publication Critical patent/FR3104458A1/fr
Application granted granted Critical
Publication of FR3104458B1 publication Critical patent/FR3104458B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • C07C5/2708Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2775Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/74Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/76Iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention concerne un catalyseur comprenant au moins une zéolithe IZM-2, au moins une matrice et au moins un métal du groupe VIII de la classification périodique des éléments, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 100 ppm, de préférence inférieure à 90 ppm en poids, de manière préférée inférieure à 85 ppm en poids de manière plus préférée inférieure à 80 ppm en poids, de manière très préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieure à 30 ppm en poids. La présente invention concerne également un procédé d’isomérisation d'une coupe contenant au moins un composé aromatique à huit atomes de carbone par molécule, ledit procédé comprenant la mise en contact de ladite coupe aromatique avec au moins ledit catalyseur selon l'invention présent dans un réacteur catalytique. La présente invention se rapporte à un catalyseur comprenant une zéolithe désignée sous l'appellation IZM-2 et une teneur en composés alcalins ou alcalinoterreux spécifique. La présente invention se rapporte également à un procédé d’isomérisation d’une coupe C8 aromatiques mettant en œuvre ledit catalyseur d’isomérisation.

Description

CATALYSEUR A BASE DE ZEOLITHE IZM-2 AYANT UNE TENEUR EN ALCALIN FAIBLE ET SON UTILISATION POUR L’ISOMERISATION DE LA COUPE C8 AROMATIQUE
Les sources d’aromatiques à huit atomes de carbone sont principalement issues du procédé de reforming (reformat) et de vapocraquage (essences de pyrolyse). La distribution des aromatiques à huit atomes de carbone au sein de ces coupes est variable : généralement de 10 à 30% d’éthylbenzène avec pour complément les trois isomères de xylènes : le para-xylène, le méta-xylène et l’ortho-xylène. Typiquement la distribution au sein de ce complément de xylènes est de 50% en méta-xylène, 25% en ortho-xylène et 25% en para-xylène. Au sein de ce complément de xylènes, le para-xylène est un isomère particulièrement recherché. En effet ce dernier, par l’intermédiaire du diméthyltéréphtalate et de l’acide téréphtalique, permet la production de fibres polyesters utilisées pour les vêtements et résines et films de polyéthylène téréphtalate (PET). Il est ainsi souhaitable de maximiser la production de para-xylène au détriment des autres aromatiques à huit atomes de carbone. Ceci est réalisé par la mise en œuvre de procédés catalytiques d’isomérisation. Après extraction du para-xylène, la coupe résiduelle, riche en méta-xylène, ortho-xylène et éthylbenzène est envoyée vers une unité catalytique d’isomérisation qui redonne un mélange d’aromatiques à huit atomes de carbone dans lequel la proportion des xylènes est proche de l’équilibre thermodynamique et la quantité d’éthylbenzène amoindrie grâce à la conversion de l’éthylbenzène. Ce mélange est à nouveau envoyé dans une unité d’extraction du para-xylène et la coupe résiduelle envoyée à l’unité d’isomérisation. On crée ainsi une « boucle C8 aromatiques » qui permet de maximiser la production de para-xylène (E. Guillon, P. Leflaive, Techniques de l’Ingénieur, J5920, V3). On peut mettre en œuvre une unité d’isomérisation pour isomériser les xylènes en para-xylène et convertir l’éthylbenzène en benzène par la réaction de désalkylation de l’éthylbenzène. Dans ce cas on parle d’isomérisation « désalkylante » de la coupe. La coupe résiduelle peut aussi être envoyée vers une unité catalytique d’isomérisation, pour isomériser les xylènes en para-xylène et convertir l’éthylbenzène en xylènes par la réaction d’isomérisation de l’éthylbenzène. On parle alors d’isomérisation « isomérisante » de la coupe. Ces procédés industriels utilisent généralement des catalyseurs hétérogènes mis en œuvre en lit fixe et opérant en phase vapeur sous pression d’hydrogène. Ces deux types de procédés se distinguent par les conditions opératoires et par la formulation des catalyseurs mis en œuvre (par leur nature et/ou leur teneur en fonction hydro-déshydrogénante et/ou en acide). La présente invention s’inscrit dans le domaine de l’isomérisation « isomérisante ».
Dans le cas de l’isomérisation « isomérisante », le catalyseur est de type bifonctionnel et présente à la fois une fonction acide (généralement apportée par au moins une zéolithe) et une fonction hydro-déshydrogénante apportée par un métal noble (généralement le platine). Il a en effet été démontré que l’isomérisation de l’éthylbenzène en xylènes implique un mécanisme de type bifonctionnel. L’éthylbenzène est tout d’abord hydrogéné en éthylcyclohéxènes sur les sites métalliques, ces intermédiaires cyclo-oléfiniques sont ensuite isomérisés en diméthylcyclohéxènes sur les sites acides de Brønsted. Enfin les diméthylcyclohéxènes sont déshydrogénés en xylènes sur les sites métalliques. L’utilisation d’une fonction hydro-déshydrogénante forte telle que le platine induit également la production de cycles naphténiques par hydrogénation des cycles aromatiques correspondant.
En plus des réactions d’isomérisation désirées, il est souhaitable de limiter les réactions parasites de type :
- désalkylation de l’éthylbenzène en benzène et éthylène ;
- dismutation de l’éthylbenzène en diéthylbenzène et benzène, ou des xylènes en toluène et aromatiques à 9 atomes de carbone ;
- transfert d’alkyles entre l’éthylbenzène et les xylènes ; et entre les xylènes entre eux;
- ouverture de cycles naphténiques et craquage.
L’ensemble de ces réactions engendre la production de molécules moins valorisables, qui ne sont pas recyclées dans la « boucle C8 aromatiques » et sont considérées comme des pertes nettes pour le procédé. Sont ainsi considérées comme pertes nettes toutes les molécules autres que les molécules cycliques à huit atomes de carbone.
Les réactions d’isomérisation ainsi que les réactions parasites sont principalement catalysées par la fonction acide. Les propriétés de la zéolithe (nombre et force des sites acides de Brønsted, topologie du réseau microporeux, etc…), faisant office de fonction acide, ont ainsi un impact direct sur les propriétés du catalyseur bifonctionnel, et notamment sa sélectivité.
La catalyse de l’isomérisation d'une coupe C8 aromatiques en xylènes a ainsi fait l'objet de nombreux brevets portant sur différentes zéolithes. Parmi les zéolithes utilisées en isomérisation d'une coupe C8 aromatiques, on trouve la ZSM-5, utilisée seule ou en mélange avec d’autres zéolithes, comme par exemple la mordénite. Ces catalyseurs sont notamment décrits dans les brevets US 4 467 129 B et US 4 482 773 B. D’autres catalyseurs principalement à base de mordénite ont été décrits par exemple dans le brevet FR 2 477 903 B. Il a également été proposé un catalyseur à base d'une zéolithe de type structural EUO (EP 923 987) ou à base d'une zéolithe de type structural MTW (WO 2005 065380 A, WO 2010 000652 A, US 2014 0296601 A) ou encore à base d’une zéolithe UZM-8 dans le brevet US 7 091 190 B.
Ces exemples illustrent la recherche continue effectuée pour développer des catalyseurs toujours plus performants pour l’isomérisation de coupes C8 aromatiques, notamment en minimisant la production des pertes nettes par la mise en œuvre de zéolithes appropriées. Pour un catalyseur mettant en jeu une zéolithe donnée, il est reporté que la présence d’alcalin et/ou d’alcalinoterreux dans le catalyseur permet d’améliorer la sélectivité en isomérisation dudit catalyseur mais généralement au prix d’une perte d’activité dudit catalyseur. Les travaux de Moreau et all. (Microporous and Mesoporous Materials 51 (2002) 211-221 ; Applied Catalysis A : General 230 (2002) 253-262) ont porté sur l’étude de catalyseurs contenant des zéolithes mordenite partiellement échangées au sodium. Il est montré que l’échange au sodium améliore la sélectivité en isomérisation lors de la transformation du m-xylène et lors de la transformation de l’éthylbenzène. Dans les deux cas ce gain de sélectivité s’accompagne d’une perte d’activité du catalyseur causée par la neutralisation partielle des sites acides par le sodium. Les travaux de L.D. Fernandes et all. (Journal of Catalysis 177 (1998) 363-337) ont porté entre autre sur l’étude de catalyseurs contenant des zéolithes mordénite échangées ou non avec du calcium. La présence de calcium permet d’améliorer la sélectivité des catalyseurs lors de la transformation de l’ éthylbenzène. Une perte d’activité est également reportée en présence de calcium.
Le brevet EP0458378B1 revendique un catalyseur d’isomérisation de composés aromatiques en C8 contenant un métal du groupe VIII, un liant et une zéolithe contenant 2 à 3% d’un métal alcalin. Les exemples mettent en jeu des catalyseurs utilisant des zéolithes mordénite à teneur variable en sodium. Les exemples montrent que la présence de sodium dans la zéolithe MOR entre 2 et 3% en poids permet de diminuer la pertes des aromatiques en C8.
La demande de brevet US2009/0093662 A1 décrit un catalyseur d’isomérisation d’aromatiques en C8 contenant une zéolithe de type MTW, un liant, un métal noble et au moins un métal alcalin qui peut être du lithium, sodium, potassium, rubidium, césium, francium ou une combinaison de ces éléments, dans lequel la quantité totale de métal alcalin dans le catalyseur est d’environ au moins 100 ppm poids par rapport la masse du catalyseur. De préférence, le catalyseur ne comprend pas d’autres métaux alcalins que ceux déjà compris dans la zéolithe et/ou le liant. De préférence la teneur totale en alcalins dans le catalyseur est d’au moins environ 200 ppm et de préférence 300 ppm et de préférence inférieure à environ 2500 ppm et de préférence 2000 ppm et de manière préférée inférieure à 1000 ppm poids. De préférence, aucun lavage avec une solution de nitrate d’ammonium n’est réalisé de manière à permettre aux métaux alcalins présents de rester sur le catalyseur. Cependant, si le catalyseur et en particulier la zéolithe et/ou le liant contiennent une teneur en métaux alcalins trop élevée, un lavage avec une solution de nitrate d’ammonium ou d’hydroxyde d’ammonium peut être réalisé pour que le catalyseur ait la teneur désirée en métaux alcalins. Les exemples mettent en jeu des catalyseurs utilisant une zéolithe MTW et des liants ainsi que des teneurs en sodium et potassium variables. En particulier, les exemples montrent que les catalyseurs ayant une teneur totale en métaux alcalins supérieure à environ 200 ppm présentent une perte en molécules cycliques à huit atomes de carbone (C8RL) comprise entre 2,0 et 2,4 mole% alors que les catalyseurs comprenant un liant alumine différent comprenant une teneur en métaux alcalins plus faible que les catalyseurs selon l’invention présentent une perte en molécules cycliques à huit atomes de carbone (C8RL) plus élevée comprise entre 2,6 et 3,4 mole%.
Récemment, la demanderesse dans ses travaux a mis au point une nouvelle zéolithe, la zéolithe IZM-2 (FR2918050A1), ainsi que son utilisation dans un catalyseur d’isomérisation d’une coupe contenant au moins un composé aromatique à huit atomes de carbone (FR 2 934 793A1 et FR 3 054 454A1).
Lors de ses travaux visant à développer un catalyseur d’isomérisation de la coupe C8 aromatique comprenant ladite zéolithe IZM-2, la demanderesse a découvert un effet surprenant de la présence d’alcalin et/ou d’alcalino-terreux sur les performances du catalyseur. De manière surprenante, la demanderesse a mis en évidence qu’un catalyseur contenant une teneur totale en alcalin et/ou alcalinoterreux diminuée par rapport aux catalyseurs de l’art antérieur présente une activité augmentée sans diminution de sa sélectivité en isomérisation par rapport aux catalyseurs de l’art antérieur.
Aussi, un objectif de la présente invention est de fournir un nouveau catalyseur d’isomérisation de la coupe C8 aromatiques à base de zéolithe IZM-2, ledit catalyseur contenant une teneur limitée en alcalin et/ou alcalino-terreux, pour limiter la production des pertes nettes.
Un autre objet de la présente invention concerne un procédé d'isomérisation d'une coupe contenant au moins un composé aromatique à huit atomes de carbone par molécule, ledit procédé comprenant la mise en contact de ladite coupe aromatique avec au moins ledit catalyseur selon l'invention présent dans un réacteur catalytique.
En particulier, la présente invention concerne un catalyseur comprenant au moins une zéolithe IZM-2, au moins une matrice et au moins un métal du groupe VIII de la classification périodique des éléments, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 100 ppm, de préférence inférieure à 90 ppm en poids, de manière préférée inférieure à 85 ppm en poids de manière plus préférée inférieure à 80 ppm en poids, de manière très préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieure à 30 ppm en poids.
Dans la suite de ce document, les teneurs pondérales fournies sont considérées par rapport à la masse sèche de solide. La masse sèche de solide correspond à la masse du solide après calcination sous air durant deux heures à 1000°C en four à moufle.
Dans le sens de la présente invention, les différents modes de réalisation présentés peuvent être utilisés seuls ou en combinaison les uns avec les autres, sans limitation de combinaison lorsque c’est techniquement réalisable.
Dans le sens de la présente invention, les différentes plages de paramètres pour une étape donnée tels que les plages de pression et les plages de température peuvent être utilisées seul ou en combinaison. Par exemple, dans le sens de la présente invention, une plage de valeur préférée de pression peut être combinée avec une plage de valeur de température plus préférée.
Le catalyseur selon l'invention est avantageusement utilisé dans un procédé d'isomérisation d'une coupe aromatique comprenant au moins un composé aromatique à huit atomes de carbone par molécule, dans les conditions opératoires suivantes:
- une température de 300°C à 500°C,
- une pression partielle d’hydrogène de 0,3 à 1,5 MPa,
- une pression totale de 0,45 à 1,9 MPa, et
- une vitesse spatiale d'alimentation, exprimée en kilogramme de charge introduite par kilogramme de catalyseur et par heure, de 0,25 à 30h-1.
Il a été découvert, de façon surprenante que le catalyseur selon l’invention comprenant au moins une zéolithe IZM-2, une matrice, au moins un métal du groupe VIII de la classification périodique des éléments, et une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur inférieure à 200 ppm poids et supérieure à 20 ppm présente des performances catalytiques améliorées en terme d’activité, sans perte de sélectivité, lors d’un procédé d'isomérisation d'une charge aromatique comprenant au moins une coupe aromatique comprenant au moins un composé aromatique à huit atomes de carbone par molécule.
Un tel catalyseur est sensiblement plus actif qu'un catalyseur comprenant une zéolithe IZM-2 et dont la teneur en alcalin et/ou alcalinoterreux est supérieure à 200 ppm. La diminution de la teneur en alcalin à des teneurs inférieures à 200 ppm permet ainsi d’améliorer l’activité d’un tel catalyseur sans perte de sélectivité. Ceci peut être mis à profit de deux manières par l’homme de l’art: augmentation de l’activité du catalyseur pour une même teneur en IZM-2 ou maintien de l’activité du catalyseur par diminution de la teneur en zéolithe IZM-2 dans le catalyseur.
La teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est mesurée par spectroscopie d’absorption atomique sur un appareil Spectromètre d’Absorption Atomique Flamme (SAAF) VARIAN Spectr’AA 240FS après mise en solution du solide par minéralisation du solide par voie humide. On entend par minéralisation du solide, la dissolution dudit solide qui est typiquement effectuée dans des solutions aqueuses concentrées en acide perchlorique, fluorhydrique et chlorhydrique. Elle peut être effectuée en température sur plaque chauffante ou par micro-ondes.
La présente invention porte sur catalyseur comprenant, et de préférence constitué de, au moins une zéolithe IZM-2 contenant de préférence des atomes de silicium et éventuellement des atomes d'aluminium, au moins une matrice et au moins un métal du groupe VIII de la classification périodique des éléments, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est inférieure à 200 ppm en poids et supérieure à 20 ppm en poids par rapport à la masse totale dudit catalyseur.
De préférence, ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 150 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 100 ppm en poids, de manière préférée inférieure à 90 ppm en poids, de préférence inférieure à 85 ppm en poids, de manière préférée inférieure à 80 ppm en poids, de manière plus préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieur à 30 ppm en poids.
De préférence, ledit catalyseur ne comprend pas d’éléments alcalins et/ou alcalinoterreux ajoutés, autres que ceux associés à la zéolithe et/ou à la matrice utilisées dans ledit catalyseur.
De préférence, les éléments alcalins et/ou alcalinoterreux sont choisis parmi le lithium, le sodium, le potassium, le berylium, le magnésium, le barium, et le calcium et de préférence le sodium.
Ledit catalyseur selon l'invention comprend plus particulièrement, et de préférence est constitué de:
- de 1 à 90% poids, de préférence de 3 à 80% poids et de manière encore plus préférée de 4 à 60% poids de la zéolithe IZM-2 par rapport à la masse totale dudit catalyseur selon l’invention,
- de 0,01 à 4%, de préférence de 0,05 à 2% poids d'au moins un métal du groupe VIII de la classification périodique des éléments, de préférence le platine par rapport à la masse totale dudit catalyseur,
- éventuellement de 0,01 à 2% poids, de préférence de 0,05 à 1% poids d'au moins un métal additionnel choisi dans le groupe formé par les métaux des groupes IIIA, IVA et VIIB par rapport à la masse totale dudit catalyseur,
- éventuellement une teneur en soufre, de préférence telle que le rapport du nombre de moles de soufre sur le nombre de moles de(s) métal(ux) du groupe VIII soit compris entre 0,3 et 3,
- d’une teneur pondérale totale en élément alcalin et/ou alcalino-terreux inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, de préférence inférieure à 150 ppm, de manière préférée inférieure à 100 ppm, de préférence inférieure à 90 ppm en poids, de manière préférée inférieure à 85 ppm en poids de manière plus préférée inférieure à 80 ppm en poids, de manière très préférée inférieure à 75 ppm en poids et de manière encore plus préférée inférieure à 70 ppm en poids et supérieure à 20 ppm en poids et de préférence supérieur à 30 ppm en poids,
- au moins une matrice, de préférence l’alumine, assurant le complément à 100% dans le catalyseur.
Zéolithe IZM-2
Conformément à l’invention, le catalyseur comprend une zéolithe IZM-2. La zéolithe IZM-2 présente un diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le tableau 1. IZM-2 présente une structure cristalline.
Avantageusement, le diagramme de diffraction est obtenu par analyse radiocristallographique au moyen d’un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Kα1du cuivre (λ = 1,5406 Å).. A partir de la position des pics de diffraction représentée par l’angle 2θ, on calcule, par la relation de Bragg, les équidistances réticulaires dhklcaractéristiques de l’échantillon. L’erreur de mesure Δ(dhkl) sur dhklest calculée grâce à la relation de Bragg en fonction de l’erreur absolue Δ(2θ) affectée à la mesure de 2θ. Une erreur absolue Δ(2θ) égale à ± 0,02° est communément admise. L’intensité relative Irelaffectée à chaque valeur de dhklest mesurée d’après la hauteur du pic de diffraction correspondant. Le diagramme de diffraction des rayons X de la zéolithe IZM-2 contenue dans le catalyseur selon l'invention comporte au moins les raies aux valeurs de dhkldonnées dans le tableau 1. Dans la colonne des dhkl, on indique les valeurs moyennes des distances inter-réticulaires en Angströms (Å). Chacune de ces valeurs doit être affectée de l’erreur de mesure Δ(dhkl) comprise entre ± 0,6Å et ± 0,01 Å.
Le tableau 1 représente les valeurs moyennes des dhklet intensités relatives mesurées sur un diagramme de diffraction de rayons X du solide cristallisé IZM-2 calciné.
2 thêta (°) dhkl(Å) Irel 2 thêta (°) dhkl(Å) Irel
5,07 17,43 ff 19,01 4,66 ff
7,36 12,01 FF 19,52 4,54 ff
7,67 11,52 FF 21,29 4,17 m
8,78 10,07 F 22,44 3,96 f
10,02 8,82 ff 23,10 3,85 mf
12,13 7,29 ff 23,57 3,77 f
14,76 6,00 ff 24,65 3,61 ff
15,31 5,78 ff 26,78 3,33 f
15,62 5,67 ff 29,33 3,04 ff
16,03 5,52 ff 33,06 2,71 ff
17,60 5,03 ff 36,82 2,44 ff
18,22 4,87 ff 44,54 2,03 ff
où FF = très fort ; F = fort ; m = moyen ; mf = moyen faible ; f = faible ; ff = très faible.
L'intensité relative Irelest donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction des rayons X : ff <15 ; 15 ≤f <30 ; 30 ≤ mf <50 ; 50 ≤m < 65 ; 65 ≤F < 85 ; FF ≥ 85.
Ledit solide IZM-2 présente avantageusement une composition chimique exprimée sur une base anhydre, en termes de moles d'oxydes, définie par la formule générale suivante : XO2 : aY2O3 : bM2/nO, dans laquelle X représente au moins un élément tétravalent, Y représente au moins un élément trivalent et M est au moins un métal alcalin et/ou un métal alcalino-terreux de valence n. Dans ladite formule donnée ci-dessus, a représente le nombre de moles de Y2O3 et a est compris entre 0 et 0,5, très préférentiellement compris entre 0 et 0,05 et de manière encore plus préférée entre et 0,0016 et 0,02 et b représente le nombre de moles de M2/nO et est compris entre 0 et 1, de préférence entre 0 et 0,5 et de manière encore plus préférée entre 0,005 et 0,5.
De préférence, X est choisi parmi le silicium, le germanium, le titane et le mélange d'au moins deux de ces éléments tétravalents, très préférentiellement X est le silicium et Y est préférentiellement choisi parmi l'aluminium, le bore, le fer, l'indium et le gallium, très préférentiellement Y est l'aluminium. M est préférentiellement choisi parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux et très préférentiellement M est le sodium. De manière préférée, X représente le silicium, ledit solide cristallisé IZM-2 est alors un solide entièrement silicique lorsque l'élément Y est absent de la composition dudit solide IZM-2. Il est également avantageux d'employer comme élément X un mélange de plusieurs éléments X, en particulier un mélange de silicium avec un autre élément X choisi parmi le germanium et le titane, de préférence le germanium. Ainsi, lorsque le silicium est présent en mélange avec un autre élément X, ledit solide cristallisé IZM-2 est alors un métallosilicate cristallisé présentant un diagramme de diffraction des rayons X identique à celui décrit dans le tableau 1 lorsqu'il se trouve sous sa forme calcinée. De manière encore plus préférée et en présence d'un élément Y, X étant le silicium et Y étant l'aluminium : ledit solide cristallisé IZM-2 est alors un aluminosilicate cristallisé présentant un diagramme de diffraction des rayons X identique à celui décrit dans le tableau 1 lorsqu'il se trouve sous sa forme calcinée.
D'une manière plus générale, ledit solide IZM-2 utilisé dans le support du catalyseur mis en oeuvre dans le procédé selon l'invention présente avantageusement une composition chimique exprimée par la formule générale suivante : XO2 : aY2O3 : bM2/nO : cR : dH2O dans laquelle R représente une espèce organique comportant deux atomes d'azote quaternaires, X représente au moins un élément tétravalent, Y représente au moins un élément trivalent et M est un métal alcalin et/ou un métal alcalino-terreux de valence n ; a, b, c et d représentant respectivement le nombre de moles de Y2O3, M2/nO, R et H2O et a est compris entre 0 et 0,5, b est compris entre 0 et 1, c est compris entre 0 et 2 et d est compris entre 0 et 2. Cette formule et les valeurs prises par a, b, c et d sont celles pour lesquelles ledit solide IZM-2 se trouve préférentiellement sous sa forme calcinée.
Plus précisément, ledit solide IZM-2, sous sa forme brute de synthèse, présente avantageusement une composition chimique exprimée par la formule générale suivante : XO2 : aY2O3 : bM2/nO : cR : dH2O (I) dans laquelle R représente une espèce organique comportant deux atomes d'azote quaternaires, X représente au moins un élément tétravalent, Y représente au moins un élément trivalent et M est un métal alcalin et/ou un métal alcalino-terreux de valence n ; a, b, c et d représentant respectivement le nombre de moles de Y2O3, M2/nO, R et H2O et a est compris entre 0 et 0,5, b est compris entre 0 et 1, c est compris entre 0,005 et 2 et de préférence entre 0,01 et 0,5, et d est compris entre 0,005 et 2 et de préférence entre 0,01 et 1.
Dans la formule (I) donnée ci-dessus pour définir la composition chimique dudit solide cristallisé IZM-2 sous sa forme brute de synthèse, la valeur de a est comprise entre 0 et 0,5, très préférentiellement comprise entre 0 et 0,05 et de manière encore plus préférée comprise entre 0,0016 et 0,02. De manière préférée, b est compris entre 0 et 1, de manière très préférée b est compris entre 0 et 0,5 et de manière encore plus préférée b est compris entre 0,005 et 0,5. La valeur de c est comprise entre 0,005 et 2, avantageusement entre 0,01 et 0,5. La valeur prise par d est comprise entre 0,005 et 2, de préférence comprise entre 0,01 et 1.
Sous sa forme brute de synthèse, c'est-à-dire directement issu de la synthèse et préalablement à toute étape de calcination(s) bien connue de l'Homme du métier, ledit solide IZM-2 comporte avantageusement au moins l'espèce organique R ayant deux atomes d'azote quaternaires telle que celle décrite ci-après ou encore ses produits de décomposition ou encore ses précurseurs. Selon un mode préféré de l'invention, dans la formule (I) donnée ci-dessus, l'élément R est le 1,6-bis(méthylpiperidinium)hexane dont la formule développée est donnée ci-dessous. Ladite espèce organique R, qui joue le rôle de structurant, peut être éliminée par les voies classiques connues de l'état de la technique comme des traitements thermiques et/ou chimiques.
Un procédé de préparation de la zéolithe IZM-2 est enseigné dans le brevet FR 2 918 050 B.
De manière avantageuse, dans le cas ou X est le silicium et Y est l’aluminium, on fait réagir un mélange aqueux comportant au moins une source d'au moins un oxyde SiO2, éventuellement au moins une source d’au moins un oxyde Al2O3, éventuellement au moins une source d'au moins un métal alcalin et/ou alcalino-terreux de valence n, et de préférence au moins une espèce organique R comportant deux atomes d'azote quaternaires, le mélange présentant préférentiellement la composition molaire suivante :
SiO2/Al2O3: au moins 2, de préférence au moins 20, de manière plus préférée de 60 à 600,
H2O/SiO2: 1 à 100, de préférence de 10 à 70,
R/SiO2: 0,02 à 2, de préférence de 0,05 à 0,5,
M2/nO/SiO2: 0 à 1, de préférence de 0,005 et 0,5,
où M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de préférence M est le sodium. Avantageusement, l'élément R est le 1,6-bis(méthylpiperidinium)hexane.
Le rapport molaire Si/Al de la zéolithe IZM-2 peut être aussi ajusté à la valeur désirée par des méthodes de post traitement de la zéolithe IZM-2 obtenue après synthèse. De telles méthodes sont connues de l’homme du métier, et permettent d’effectuer de la désalumination ou de la désilication de la zéolithe. De manière préférée le rapport molaire Si/Al de la zéolithe IZM-2 entrant dans la composition du catalyseur selon l’invention est ajusté par un choix approprié des conditions de synthèse de ladite zéolithe.
Parmi les zéolithes IZM-2 on préfère habituellement employer des zéolithes IZM-2 dont le rapport atomique global, silicium/aluminium (Si/Al), est supérieur à environ 3 et de manière plus préférée des zéolithes IZM-2 dont le rapport Si/Al est compris entre 5 et 200 et de manière encore plus préféré entre 10 et 150.
Aussi, selon un mode de réalisation préféré du procédé de préparation dudit solide cristallisé IZM-2, on fait réagir un mélange aqueux comportant un oxyde de silicium, éventuellement de l'alumine, du dibromure de 1,6-bis(méthylpiperidinium)hexane et de l'hydroxyde de sodium. Selon un autre mode de réalisation préféré du procédé selon l'invention, on fait réagir un mélange aqueux comportant un oxyde de silicium, éventuellement de l'alumine et du dihydroxyde de 1,6-bis(méthylpiperidinium)hexane.
Le procédé de préparation dudit solide cristallisé IZM-2 consiste avantageusement à préparer un mélange réactionnel aqueux appelé gel et renfermant au moins une source d'au moins un oxyde XO2, éventuellement au moins une source d’au moins un oxyde Y2O3, au moins une espèce organique R, éventuellement au moins une source d'au moins un métal alcalin et/ou alcalino-terreux de valence n. Les quantités desdits réactifs sont avantageusement ajustées de manière à conférer à ce gel une composition permettant sa cristallisation en solide cristallisé IZM-2 sous sa forme brute de synthèse de formule générale (I) XO2 : aY2O3 : bM2/nO : cR : dH2O, où a, b, c et d répondent aux critères définis plus haut lorsque c et d sont supérieurs à 0. Puis le gel est soumis à un traitement hydrothermal jusqu'à ce que ledit solide cristallisé IZM-2 se forme. Le gel est avantageusement mis sous conditions hydrothermales sous une pression de réaction autogène, éventuellement en ajoutant du gaz, par exemple de l'azote, à une température comprise entre 120°C et 200°C, de préférence entre 140°C et 180°C, et de manière encore plus préférée entre 160 et 175°C jusqu'à la formation des cristaux de solide IZM-2 sous sa forme brute de synthèse. La durée nécessaire pour obtenir la cristallisation varie généralement entre 1 heure et plusieurs mois en fonction de la composition des réactifs dans le gel, de l'agitation et de la température de réaction. De préférence la durée de cristallisation varie entre 2 heures et 21 jours. La mise en réaction s'effectue généralement sous agitation ou en absence d'agitation, de préférence en présence d'agitation.
Il peut être avantageux d'additionner des germes au mélange réactionnel afin de réduire le temps nécessaire à la formation des cristaux et/ou la durée totale de cristallisation. Il peut également être avantageux d'utiliser des germes afin de favoriser la formation dudit solide cristallisé IZM-2 au détriment d'impuretés. De tels germes comprennent avantageusement des solides cristallisés, notamment des cristaux de solide IZM-2. Les germes cristallins sont généralement ajoutés dans une proportion comprise entre 0,01 et 10% de la masse de l’oxyde XO2 utilisée dans le mélange réactionnel.
A l'issue de l'étape de traitement hydrothermal conduisant à la cristallisation dudit solide IZM-2, la phase solide est avantageusement filtrée, lavée, séchée puis calcinée. L'étape de calcination s'effectue avantageusement par une ou plusieurs étapes de chauffage réalisée à une température comprise entre 100 et 1000°C, de préférence comprise entre 400 et 650°C, pour une durée comprise entre quelques heures et plusieurs jours, de préférence comprise entre 3 heures et 48 heures. De manière préférée, la calcination s'effectue en deux étapes de chauffage consécutives.
A l'issue de ladite étape de calcination, ledit solide IZM-2 obtenu est avantageusement celui présentant le diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le tableau 1. Il est dépourvu d'eau ainsi que de l'espèce organique R présentes dans le solide IZM-2 sous sa forme brute de synthèse. Après ladite étape de calcination, la zéolithe IZM-2 peut contenir typiquement de 2000 à 8000 ppm en élément alcalin et/ou alcalino terreux et de préférence de sodium.
Après calcination, afin de diminuer la teneur en alcalin et/ou alcalino-terreux et de préférence en sodium, dans ladite zéolithe, le solide IZM-2 entrant dans la composition du support du catalyseur selon l'invention est avantageusement lavé par au moins un traitement par une solution d’au moins un sel d’ammonium de manière à obtenir la forme ammonium du solide IZM-2. Le rapport atomique M/Y est généralement avantageusement inférieur à 0,1 et de préférence inférieur à 0,05 et de manière encore plus préférée inférieur à 0,01. Cette étape de lavage peut être effectuée à toute étape de la préparation du support du catalyseur ou du catalyseur, c'est-à-dire après l'étape de préparation du solide IZM-2, après l'étape de mise en forme du solide IZM-2, ou encore après l'étape d'introduction du métal hydro-déshydrogénant. De préférence l'étape de lavage est effectuée avant l'étape de mise en forme du solide IZM-2. L’étape de lavage est de préférence effectuée en immergeant sous agitation le solide dans une solution aqueuse d’au moins un sel d’ammonium. Le sel d’ammonium peut être choisi parmi le nitrate d’ammonium NH4NO3, le chlorure d’ammonium NH4Cl, l’hydroxyde d’ammonium NH4OH, le bicarbonate d’ammonium NH4HCO3, l’acétate d’ammonium NH4H3C2O2 ou encore le sulfate d’ammonium (NH4)2SO4. La durée d’immersion du solide dans la solution peut varier typiquement de 15 minutes à plusieurs heures. La concentration en sel(s) d’ammonium(s) dans la solution est typiquement comprise entre 0,1 mol par litre et 10 moles par litre. Le lavage s’effectue de préférence à une température comprise entre l’ambiante et 100 °C. Le rapport entre le volume de solution engagée (en ml) et la masse de zéolithe engagée (en gramme) est de préférence compris entre 1 et 100. Pour diminuer la teneur en alcalin et/ou alcalinoterreux et de préférence en sodium au niveau désiré il peut s’avérer nécessaire de répéter l’étape de lavage plusieurs fois. A l’issue du dernier lavage le solide est filtré, lavé à l’eau déionisée puis séché. La zéolithe IZM-2 est enfin calcinée afin de l’obtenir sous sa forme protonique. Les conditions de calcination sont typiquement les mêmes que celles employées pour calciner le solide à l’issue de l’étape de traitement hydrothermal.
Après lavage, la zéolithe peut contenir typiquement moins de 200 ppm et de préférence plus de 20 ppm voire plus de 30 ppm d’élément alcalin et/ou alcalino terreux et de préférence de sodium.
Matrice
Conformément à l’invention, le catalyseur comprend au moins une matrice. Ladite matrice peut avantageusement être amorphe ou cristallisée.
De préférence, ladite matrice est avantageusement choisie dans le groupe formé par l'alumine, la silice, la silice-alumine, les argiles, l’oxyde de titane, l’oxyde de bore et la zircone, pris seuls ou en mélange ou bien on peut choisir également les aluminates. De préférence, l’alumine est utilisée comme matrice. De manière préférée, ladite matrice contient de l'alumine sous toutes ses formes connues de l'homme du métier, telles que par exemple les alumines de type alpha, gamma, êta, delta. Lesdites alumines diffèrent par leur surface spécifique et leur volume poreux. La teneur en alcalin et/ou alcalino terreux de la matrice est variable et dépend du mode d’obtention de ladite matrice comme cela est bien connu pour l’alumine par exemple (Handbook of Porous Solids, 2008, Wiley-VCH chapitre 4.7.2.).
Le support du catalyseur utilisé dans l’invention comprend et est de préférence constitué de ladite matrice et de ladite zéolithe IZM-2.
La teneur en élément alcalin et/ou alcalino terreux de la matrice peut avantageusement être ajustée par toute méthode connue de l’homme de l’art pour obtenir un catalyseur conforme à l’invention. La matrice ou le précurseur de la matrice pourra ainsi être lavé par mise au contact d’une solution aqueuse dont le pH est inférieur ou égal au point de charge nulle de ladite matrice, comme cela est illustré pour une matrice alumine dans Catalysis Supports and Supported Catalysts, Butterworth Publishers (1987). A titre illustratif, de la boehmite peut être lavée par mise au contact dudit solide avec une solution aqueuse de nitrate d’ammonium. La durée d’immersion du solide dans la solution peut varier typiquement de 15 minutes à plusieurs heures. La concentration en sel(s) d’ammonium(s) dans la solution est typiquement comprise entre 0,1 mol par litre et 10 moles par litre. Le lavage s’effectue de préférence à une température comprise entre l’ambiante et 100 °C. Le rapport entre le volume de solution engagée (en ml) et la masse de la boehmite engagée (en gramme) est de préférence compris entre 1 et 100. Pour diminuer la teneur en alcalin et/ou alcalinoterreux au niveau désiré il peut s’avérer nécessaire de répéter l’étape de lavage plusieurs fois. A l’issue du dernier lavage le solide est filtré, lavé à l’eau déionisée puis séché et calciné.
Lorsqu’elle contient des éléments alcalins et/ou alcalino terreux, la matrice peut contenir typiquement moins de 200 ppm et de préférence plus de 20 ppm, voire plus de 30 ppm, d’élément alcalin et/ou alcalino terreux et de préférence de sodium.
Phase métallique
Conformément à l’invention, le catalyseur comprend au moins un métal du groupe VIII de préférence choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium et le platine, de préférence choisi parmi les métaux nobles du groupe VIII, de manière très préférée choisi parmi le palladium et le platine et de manière encore plus préférée on choisit le platine.
De préférence, ledit catalyseur comprend une teneur en métal du groupe VIII comprise entre 0,01 et 5% poids par rapport à la masse totale dudit catalyseur et de préférence comprise entre 0,1 et 4 % poids.
Dans le cas où ledit catalyseur comprend au moins un métal noble du groupe VIII, la teneur en métal noble dudit catalyseur est avantageusement comprise entre 0,01 et 5% en poids de manière préférée entre 0,1 et 4% en poids et de manière très préférée entre 0,1 et 2% en poids par rapport à la masse totale dudit catalyseur.
Le catalyseur de l'invention peut également avantageusement contenir au moins un métal choisi parmi les métaux des groupes IIIA, IVA et VIIB choisis parmi le gallium, l'indium, l'étain et le rhénium. Dans ce cas, la teneur en métal choisi parmi les métaux des groupes IIIA, IVA et VIIB est de préférence comprise entre 0,01 et 2%, de préférence entre 0,05 et 1% poids par rapport à la masse totale dudit catalyseur.
La dispersion du(es) métal(ux) du groupe VIII, déterminée par chimisorption, par exemple par titration H2/O2 ou par chimisorption du monoxyde de carbone, est comprise entre 10% et 100%, de préférence entre 20% et 100% et de manière encore plus préférée entre 30% et 100%. Le coefficient de répartition macroscopique du(es) métal(ux) du groupe VIII, obtenu à partir de son (leur) profil déterminé par microsonde de Castaing, défini comme le rapport des concentrations du(es) métal(ux) du groupe VIII au cœur du grain par rapport au bord de ce même grain, est compris entre 0,7 et 1,3, de préférence entre 0,8 et 1,2. La valeur de ce rapport, voisine de 1, témoigne de l'homogénéité de la répartition du(es) métal(ux) du groupe VIII dans le catalyseur.
Préparation du catalyseur
Le catalyseur selon l'invention peut avantageusement être préparé selon toutes les méthodes bien connues de l'homme du métier.
Mise en forme
Avantageusement, les différents constituants du support ou du catalyseur peuvent être mis en forme par étape de malaxage pour former une pâte puis extrusion de la pâte obtenue, ou alors par mélange de poudres puis pastillage, ou alors par tout autre procédé connu d’agglomération d’une poudre contenant de l’alumine. Les supports ainsi obtenus peuvent se présenter sous différentes formes et dimensions. De manière préférée la mise en forme est effectuée par malaxage et extrusion.
Lors de la mise en forme du support par malaxage puis extrusion, ladite zéolithe IZM-2 peut être introduite au cours de la mise en solution ou en suspension des composés d'alumine ou précurseurs d’alumine tels que la boéhmite par exemple. Ladite zéolithe IZM-2 peut être, sans que cela soit limitatif, par exemple sous forme de poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération. Ainsi, par exemple, ladite zéolithe peut avantageusement être mise en suspension acidulée ou non à une concentration ajustée à la teneur finale en IZM-2 visée dans le catalyseur selon l’invention. Cette suspension appelée couramment une barbotine est alors mélangée avec les composés d'alumine ou précurseurs d’alumine.
Par ailleurs, l’utilisation d’additifs peut avantageusement être mise en œuvre pour faciliter la mise en forme et/ou améliorer les propriétés mécaniques finales des supports comme cela est bien connu par l’homme du métier. A titre d’exemple d’additifs, on peut citer notamment la cellulose, la carboxyméthyl-cellulose, la carboxy-éthyl-cellulose, du tall-oil (huile de tall), les gommes xanthaniques, des agents tensio-actifs, des agents floculants comme les polyacrylamides, le noir de carbone, les amidons, l’acide stéarique, l’alcool polyacrylique, l’alcool polyvinylique, des biopolymères, le glucose, les polyéthylènes glycols, etc.
On peut avantageusement ajouter ou retirer de l'eau pour ajuster la viscosité de la pâte à extruder. Cette étape peut avantageusement être réalisée à tout stade de l'étape de malaxage.
Pour ajuster la teneur en matière solide de la pâte à extruder afin de la rendre extrudable, on peut également ajouter un composé majoritairement solide et de préférence un oxyde ou un hydrate. On utilise de manière préférée un hydrate et de manière encore plus préférée un hydrate d'aluminium. La perte au feu de cet hydrate est avantageusement supérieure à 15%.
L'extrusion de la pâte issue de l'étape de malaxage peut avantageusement être réalisée par n'importe quel outil conventionnel, disponible commercialement. La pâte issue du malaxage est avantageusement extrudée à travers une filière, par exemple à l'aide d'un piston ou d'une mono-vis ou double vis d'extrusion. L'extrusion peut avantageusement être réalisée par toute méthode connue de l'homme de métier.
Les supports du catalyseur selon l’invention sont en général sous la forme d'extrudés cylindriques ou polylobés tels que bilobés, trilobés, polylobés de forme droite ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudres concassées, de tablettes, d'anneaux, de billes et/ou de roues. De préférence, les supports du catalyseur selon l’invention ont la forme de sphères ou d'extrudés. Avantageusement le support se présente sous forme d’extrudés d’un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes peuvent être cylindriques (qui peuvent être creuses ou non) et/ou cylindriques torsadés et/ou multilobées (2, 3, 4 ou 5 lobes par exemple) et/ou anneaux. La forme multilobée est avantageusement utilisée de manière préférée.
Séchage
Le support ainsi obtenu peut ensuite être soumis à une étape de séchage. Ladite étape de séchage est avantageusement effectuée par toute technique connue de l’homme du métier.
De préférence, le séchage est effectué sous flux d'air. Ledit séchage peut également être effectué sous flux de tout gaz oxydant, réducteur ou inerte. De préférence, le séchage est avantageusement effectué à une température comprise entre 50 et 180°C, de manière préférée entre 60 et 150°C et de manière très préférée entre 80 et 130°C.
Calcination
Ledit support, éventuellement séché, subit ensuite de préférence une étape de calcination.
Ladite étape de calcination est avantageusement réalisée en présence d'oxygène moléculaire, par exemple en effectuant un balayage d'air, à une température avantageusement supérieure à 200°C et inférieure ou égale à 1100°C. Ladite étape de calcination peut avantageusement être effectuée en lit traversé, en lit léché ou en atmosphère statique. Par exemple, le four utilisé peut être un four rotatif tournant ou être un four vertical à couches traversées radiales. De préférence, ladite étape de calcination est effectuée entre plus d'une heure à 200°C à moins d'une heure à 1100°C. La calcination peut avantageusement être opérée en présence de vapeur d'eau et/ou en présence d’une vapeur acide ou basique. Par exemple, la calcination peut être réalisée sous pression partielle d’ammoniaque.
Traitements post-calcination
Des traitements post-calcination peuvent éventuellement être effectués, de manière à améliorer les propriétés du support, notamment les propriétés texturales.
Ainsi, le support du catalyseur selon la présente invention peut être soumis à un traitement hydrothermal en atmosphère confinée. On entend par traitement hydrothermal en atmosphère confinée un traitement par passage à l'autoclave en présence d'eau à une température supérieure à la température ambiante, de préférence supérieure à 25°C, de préférence supérieure à 30°C.
Au cours de ce traitement hydrothermal, on peut avantageusement imprégner le support, préalablement à son passage à l'autoclave (l'autoclavage étant fait soit en phase vapeur, soit en phase liquide, cette phase vapeur ou liquide de l'autoclave pouvant être acide ou non). Cette imprégnation, préalable à l'autoclavage, peut avantageusement être acide ou non. Cette imprégnation, préalable à l'autoclavage peut avantageusement être effectuée à sec ou par immersion du support dans une solution aqueuse acide. Par imprégnation à sec, on entend mise en contact du support avec un volume de solution inférieur ou égal au volume poreux total du support. De préférence, l'imprégnation est réalisée à sec. L'autoclave est de préférence un autoclave à panier rotatif tel que celui défini dans la demande brevet EP 0 387 109 A. La température pendant l'autoclavage peut être comprise entre 100 et 250°C pendant une période de temps comprise entre 30 minutes et 3 heures.
Le mélange de la matrice et de la zéolithe IZM-2 mis en forme constitue le support du catalyseur. La teneur en alcalin et/ou alcalino terreux du support pourra également être ajustée par toute méthode connue de l’homme du métier pour obtenir un catalyseur conforme à l’invention.
De préférence, des traitements de lavage peuvent aussi être effectués afin de diminuer la teneur en alcalin et/ou alcalino-terreux du support. Les conditions opératoires du lavage sont typiquement les mêmes que celles décrites pour le lavage de la zéolithe. Le support est alors à nouveau calciné après lavage, de préférence dans les mêmes conditions que celles décrites pour le lavage de la zéolithe.
Dépôt de la phase métallique
Pour le dépôt du métal du groupe VIII de la classification périodique des éléments, toutes les techniques de dépôt connues de l'homme du métier et tous les précurseurs de tels métaux peuvent convenir. On peut utiliser des techniques de dépôt par imprégnation à sec ou en excès d’une solution contenant les précurseurs des métaux, en présence de compétiteurs ou non. L’introduction du métal peut s’effectuer à toute étape de la préparation du catalyseur: sur la zéolithe IZM-2 et/ou sur la matrice, notamment avant l’étape de mise en forme, pendant l’étape de mise en forme, ou après l’étape de mise en forme, sur le support du catalyseur. De manière préférée le dépôt du métal s’effectue après l’étape de mise en forme.
Le contrôle de certains paramètres mis en œuvre lors du dépôt, en particulier la nature du précurseur du (des) métal(ux) du groupe VIII utilisé(s), permet d'orienter le dépôt du(es)dit(s) métal(ux) majoritairement sur la matrice ou sur la zéolithe.
Ainsi, pour introduire le(s) métal(ux) du groupe VIII, préférentiellement le platine et/ou le palladium, majoritairement sur la matrice, on peut mettre en œuvre un échange anionique avec de l’acide hexachloroplatinique et/ou de l’acide hexachloropalladique, en présence d’un agent compétiteur, par exemple de l’acide chlorhydrique, le dépôt étant en général suivi d'une calcination, par exemple à une température comprise entre 350 et 550°C et pendant une durée comprise entre 1 et 4 heures. Avec de tels précurseurs, le(s) métal(ux) du groupe VIII est(sont) déposé(s) majoritairement sur la matrice et le(s)dit(s) métal(ux) présente(nt) une bonne dispersion et une bonne répartition macroscopique à travers le grain de catalyseur.
On peut aussi envisager de déposer le(s) métal(ux) du groupe VIII, préférentiellement le platine et/ou le palladium, par échange cationique de manière à ce que le(s)dit(s) métal(ux) soi(en)t déposé(s) majoritairement sur la zéolithe. Ainsi, dans le cas du platine, le précurseur peut être par exemple choisi parmi :
- les composés ammoniaqués tels que les sels de platine (II) tétramines de formule Pt(NH3)4X2, les sels de platine (IV) hexamines de formule Pt(NH3)6X4 ; les sels de platine (IV) halogénopentamines de formule (PtX(NH3)5)X3 ; les sels de platine N-tétrahalogénodiamines de formule PtX4(NH3)2 ; et
- les composés halogénés de formule H(Pt(acac)2X);
X étant un halogène choisi dans le groupe formé par le chlore, le fluor, le brome et l'iode, X étant de préférence le chlore, et "acac" représentant le groupe acétylacétonate (de formule brute C5H7O2), dérivé de l'acétylacétone. Avec de tels précurseurs, le(s) métal(ux) du groupe VIII est(sont) déposé(s) majoritairement sur la zéolithe et le(s)dit(s) métal(ux) présente(nt) une bonne dispersion et une bonne répartition macroscopique à travers le grain de catalyseur.
La solution d’imprégnation peut avantageusement également comprendre au moins un sel d’ammonium choisi parmi le nitrate d’ammonium NH4NO3, le chlorure d’ammonium NH4Cl, l’hydroxyde d’ammonium NH4OH, le bicarbonate d’ammonium NH4HCO3, l’acétate d’ammonium NH4H3C2O2 seul ou en mélange, le rapport molaire entre le sel d’ammonium et le métal noble du précurseur étant compris entre 0,1 et 400.
Dans le cas où le catalyseur de l'invention contient également au moins un métal choisi parmi les métaux des groupes IIIA, IVA et VIIB, toutes les techniques de dépôt d'un tel métal connues de l'homme du métier et tous les précurseurs de tels métaux peuvent convenir.
On peut ajouter le(s) métal(ux) du groupe VIII et celui(ceux) des groupes IIIA, IVA et VIIB, soit séparément soit simultanément dans au moins une étape unitaire. Lorsqu’au moins un métal des groupes IIIA, IVA et VIIB est ajouté séparément, il est préférable qu’il soit ajouté après le métal du groupe VIII.
Le métal additionnel choisi parmi les métaux des groupes IIIA, IVA et VIIB peut être introduit par l'intermédiaire de composés tels que par exemple les chlorures, les bromures et les nitrates des métaux des groupes IIIA, IVA et VIIB. Par exemple dans le cas de l’indium, on utilise avantageusement le nitrate ou le chlorure et dans le cas du rhénium, on utilise avantageusement l'acide perrhénique. Le métal additionnel choisi parmi les métaux des groupes IIIA, IVA et VIIB peut également être introduit sous la forme d'au moins un composé organique choisi dans le groupe constitué par les complexes dudit métal, en particulier les complexes polycétoniques du métal et les hydrocarbylmétaux tels que les alkyles, les cycloalkyles, les aryles, les alkylaryles et les arylalkyles de métaux. Dans ce dernier cas, l'introduction du métal est avantageusement effectuée à l'aide d'une solution du composé organométallique dudit métal dans un solvant organique. On peut également employer des composés organohalogénés du métal. Comme composés organiques de métaux, on peut citer en particulier le tétrabutylétain, dans le cas de l'étain, et le triphénylindium, dans le cas de l'indium.
Si le métal additionnel choisi parmi les métaux des groupes IIIA, IVA et VIIB est introduit avant le métal du groupe VIII, le composé du métal IIIA, IVA et/ou VIIB utilisé est généralement choisi dans le groupe constitué par l'halogénure, le nitrate, l'acétate, le tartrate, le carbonate et l'oxalate du métal. L'introduction est alors avantageusement effectuée en solution aqueuse. Mais il peut également être introduit à l’aide d’une solution d’un composé organométallique du métal par exemple le tétrabutylétain. Dans ce cas, avant de procéder à l'introduction d'au moins un métal du groupe VIII, on procédera à une calcination sous air.
De plus, des traitements intermédiaires tels que par exemple une calcination et/ou une réduction peuvent être appliqués entre les dépôts successifs des différents métaux.
Après calcination, des traitements de lavage peuvent aussi être effectués afin d’ajuster la teneur en alcalin et alcalino terreux du catalyseur. Les conditions opératoires du lavage sont typiquement les mêmes que celles décrites pour le lavage de la zéolithe. Le catalyseur est alors à nouveau calciné après lavage.
Avant son utilisation dans un procédé d’isomérisation, le catalyseur selon l’invention est de préférence réduit. Cette étape de réduction est avantageusement réalisée par un traitement sous hydrogène à une température comprise entre 150°C et 650°C et une pression totale comprise entre 0,1 et 25 MPa. Par exemple, une réduction consiste en un palier à 150°C de deux heures puis une montée en température jusqu'à 450°C à la vitesse de 1°C/min puis un palier de deux heures à 450°C; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 normaux m3 d’hydrogène par tonne catalyseur et la pression totale maintenue constante à 0,2 MPa. Toute méthode de réduction ex-situ peut avantageusement être envisagée. Une réduction préalable du catalyseur final ex situ, sous courant d'hydrogène, peut être mise en œuvre, par exemple à une température de 450°C à 600°C, pendant une durée de 0,5 à 4 heures.
Ledit catalyseur comprend également avantageusement du soufre. Dans le cas où le catalyseur de l'invention contient du soufre, celui-ci peut être introduit à n’importe quelle étape de la préparation du catalyseur: avant ou après étape de mise en forme, et/ou séchage et/ou calcination, avant et/ou après l’introduction du ou des métaux cités précédemment, ou encore par sulfuration in situ et ou ex situ avant la réaction catalytique. Dans le cas d’une sulfuration in situ, la réduction, si le catalyseur n’a pas été préalablement réduit, intervient avant la sulfuration. Dans le cas d’une sulfuration ex situ, on effectue également la réduction puis la sulfuration. La sulfuration s’effectue de préférence en présence d’hydrogène en utilisant tout agent sulfurant bien connu de l’homme de métier, tel que par exemple le sulfure de diméthyle ou le sulfure d’hydrogène.
Les catalyseurs selon l’invention se présentent sous différentes formes et dimensions. Ils sont utilisés en général sous la forme d'extrudés cylindriques et/ou polylobés tels que bilobés, trilobés, polylobés de forme droite et/ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudres concassées, de tablettes, d'anneaux, de billes et/ou de roues. De préférence, les catalyseurs mis en œuvre dans le procédé selon l'invention ont la forme de sphères ou d'extrudés. Avantageusement le catalyseur se présente sous forme d’extrudés d’un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes peuvent être cylindriques (qui peuvent être creuses ou non) et/ou cylindriques torsadés et/ou multilobées (2, 3, 4 ou 5 lobes par exemple) et/ou anneaux. La forme multilobée est avantageusement utilisée de manière préférée. Le dépôt du métal ne change pas la forme du support.
Le procédé d’isomérisation
La présente invention a également pour objet un procédé d'isomérisation d'une coupe contenant au moins un composé aromatique à huit atomes de carbone par molécule, ledit procédé comprenant la mise en contact de ladite coupe aromatique avec au moins ledit catalyseur selon l'invention présent dans un réacteur catalytique.
Ladite coupe aromatique contenant au moins un composé aromatique ayant huit atomes de carbone par molécule comprend en particulier comme composé aromatique ayant huit atomes de carbone par molécule soit uniquement un mélange de xylènes, soit uniquement de l’éthylbenzène, soit un mélange de xylène(s) et d’éthylbenzène.
Ledit procédé d'isomérisation est mis en œuvre généralement selon les conditions opératoires suivantes :
une température de 300°C à 500°C, de préférence de 320°C à 450°C et de manière encore plus préférée de 340°C à 430°C ;
une pression partielle d’hydrogène de 0,3 à 1,5 MPa, de préférence de 0,4 et 1,2 MPa et de manière encore préférée de 0,7 à 1,2 MPa ;
une pression totale de 0,45 à 1,9 MPa, de préférence de 0,6 à 1,5 MPa ; et
une vitesse spatiale d'alimentation, exprimée en kilogramme de charge introduite par kilogramme de catalyseur et par heure, de 0,25 à 30 h-1, de préférence de 1 à 10 h-1 et de manière encore préférée de 2 à 6 h-1.
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.
Exemples
Exemple 1: synthèse de la zéolithe IZM-2.
La zéolithe IZM-2 a été synthétisée conformément à l'enseignement du brevet FR 2 918 050 B. Une suspension colloïdale de silice connue sous le terme commercial Ludox HS-40 commercialisée par Aldrich, est incorporée dans une solution composée de soude (Prolabo), de structurant dibromure de 1,6bis(méthylpiperidinium)hexane, d’hydroxyde d’aluminium (Aldrich) et d’eau déionisée. La composition molaire du mélange est la suivante : 1 SiO2; 0,0042 Al2O3; 0,1666 Na2O; 0,1666 1,6bis(méthylpiperidinium)hexane; 33,3333 H2O. Le mélange est agité vigoureusement pendant une demi-heure. Le mélange est ensuite transféré, après homogénéisation, dans un autoclave de type PARR. L’autoclave est chauffé pendant 5 jours à 170°C sous agitation en tourne broche (30 tours/min). Le produit obtenu est filtré, lavé à l’eau déionisée pour atteindre un pH neutre puis séché une nuit à 100°C en étuve. Le solide est ensuite introduit dans un four à moufle pour y être calciné afin d’éliminer le structurant. Le cycle de calcination comprend une montée en température jusqu’à 200°C, un palier à cette température de deux heures, une montée en température jusqu’à 550°C suivi d’un palier de huit heures à cette température et enfin un retour à température ambiante. Les montées en température sont effectuées avec une rampe de 2°C/min. Le solide ainsi obtenu contient une teneur en sodium mesurée par absorption atomique de 3695 ppm.
Pour diminuer la teneur en sodium, le solide ainsi obtenu est ensuite mis sous reflux durant 2 heures dans une solution aqueuse de nitrate d'ammonium (10 ml de solution par gramme de solide, concentration en nitrate d'ammonium de 3 M). Cette étape de mise sous reflux est effectuée quatre fois avec une solution fraiche de nitrate d’ammonium, puis le solide est filtré, lavé à l’eau déionisée et séché en étuve une nuit à 100°C. Enfin, pour obtenir la zéolithe sous sa forme acide (protonée H+) on réalise une étape de calcination à 550°C durant dix heures (rampe de montée en température de 2°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le solide ainsi obtenu a été analysé par Diffraction des Rayons X et identifié comme étant constitué par de la zéolithe IZM-2. Le solide ainsi obtenu contient une teneur en sodium mesurée par absorption atomique de 142 ppm.
Exemple 2: préparation d’un premier support IZM-2/alumine.
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée dans l’exemple 1 avec une premier lot de boehmite fournie par la société AXENS contenant 268 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière quadrilobes de diamètre 1,5 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés à 550°C durant deux heures (rampe de montée en température de 5°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 14% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 250 ppm.
Exemple 3 (non conforme à l’invention) : préparation d’un catalyseur d’isomérisation A.
Le catalyseur A est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé dans l’exemple 2 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(NO3)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min ;
- palier d’une heure à 150°C ;
- montée de la 150°C à 450°C à 5°C/min ;
- palier d’une heure à 450°C ;
- descente à l'ambiante.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,3% en poids, son coefficient de répartition mesuré par microsonde de Castaing de 0,96. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 245 ppm.
Les propriétés texturales du catalyseur A ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégasé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0,97. La surface spécifique du solide est calculée par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur A présente une surface spécifique de 294 m²/g, un volume poreux total de 0,74 ml/g et un diamètre médian de 12 nm.
Exemple 4: préparation d’un second support IZM-2/alumine.
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée dans l’exemple 1 avec une second lot de boehmite fournie par la société AXENS. Ce second lot de boehmite se distingue du premier lot par sa teneur en sodium plus faible. Le second lot de boehmite contenant 63 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière quadrilobes de diamètre 1,5 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés à 550°C durant deux heures (rampe de montée en température de 5°C/min) en lit traversé sous air sec (2 normaux litres par heure et par gramme de solide). Le second support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 14% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 74 ppm.
Exemple 5 (conforme à l’invention) : préparation d’un catalyseur d’isomérisation B.
Le catalyseur B est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé dans l’exemple 3 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(NO3)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min ;
- palier d’une heure à 150°C ;
- montée de la 150°C à 450°C à 5°C/min ;
- palier d’une heure à 450°C ;
- descente à l'ambiante.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,3% en poids, son coefficient de répartition mesuré par microsonde de Castaing de 1,03. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 69 ppm.
Les propriétés texturales du catalyseur B ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0,97. La surface spécifique du solide est calculée par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur B présente une surface spécifique de 298 m²/g, un volume poreux total de 0,76 ml/g et un diamètre médian de 13 nm.
Exemple 6: préparation d’un troisième support IZM-2/alumine.
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée dans l’exemple 1 avec un troisième lot de boehmite fournie par la société AXENS contenant 130 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière quadrilobes de diamètre 1,5 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide),
- palier d'une heure à 150°C sous air sec (1 normal litre par heure et par gramme de solide),
- montée de 150 à 550°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide) jusqu’à 480°C puis sous mélange air et eau (30% en volume d’eau) à partir de 480°C,
- palier de deux heures à 550°C sous mélange air et eau (1 normal litre par heure et par gramme de solide),
- descente à 480°C sous mélange air et eau (1 normal litre par heure et par gramme de solide),
- descente de 480°C à l’ambiante sous air sec (1 normal litre par heure et par gramme de solide).
Le support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 13% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 132 ppm.
Exemple 7 (conforme à l’invention) : préparation d’un catalyseur d’isomérisation C.
Le catalyseur C est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé dans l’exemple 6 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(NO3)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min,
- palier d’une heure à 150°C,
- montée de la 150°C à 450°C à 5°C/min,
- palier d’une heure à 450°C,
- descente à l'ambiante.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,26% en poids, son coefficient de répartition mesuré par microsonde de Castaing de 1,1. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 130 ppm.
Les propriétés texturales du catalyseur C ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0,97. La surface spécifique du solide est calculée par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur C présente une surface spécifique de 268 m²/g, un volume poreux total de 0,73 ml/g et un diamètre médian de 14,5 nm.
Exemple 8: préparation d’un quatrième support IZM-2/alumine.
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée dans l’exemple 1 avec un quatrième lot de boehmite fournie par la société AXENS contenant 297 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière quadrilobes de diamètre 1,5 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide),
- palier d'une heure à 150°C sous air sec (1 normal litre par heure et par gramme de solide),
- montée de 150 à 550°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide) jusqu’à 480°C puis sous mélange air et eau (30% en volume d’eau) à partir de 480°C,
- palier de deux heures à 550°C sous mélange air et eau (1 normal litre par heure et par gramme de solide),
- descente à 480°C sous mélange air et eau (1 normal litre par heure et par gramme de solide),
- descente de 480°C à l’ambiante sous air sec (1 normal litre par heure et par gramme de solide).
Le support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 13% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 276 ppm.
Exemple 9 (non conforme à l’invention) : préparation d’un catalyseur d’isomérisation D.
Le catalyseur D est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé dans l’exemple 8 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(NO3)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min,
- palier d’une heure à 150°C,
- montée de la 150°C à 450°C à 5°C/min,
- palier d’une heure à 450°C,
- descente à l'ambiante.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,26% en poids, son coefficient de répartition mesuré par microsonde de Castaing de 1,0. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 278 ppm.
Les propriétés texturales du catalyseur D ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0,97. La surface spécifique du solide est calculée par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur D présente une surface spécifique de 276 m²/g, un volume poreux total de 0,69 ml/g et un diamètre médian de 13 nm.
Exemple 10: préparation d’un quatrième support IZM-2/alumine.
Le support IZM-2/alumine est obtenu par malaxage et extrusion de la zéolithe IZM-2 préparée dans l’exemple 1 avec un quatrième lot de boehmite fournie par la société AXENS contenant 84 ppm poids de sodium. La pâte malaxée est extrudée au travers d'une filière quadrilobes de diamètre 1,5 mm. Après séchage en étuve une nuit à 110°C, les extrudés sont calcinés dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide),
- palier d'une heure à 150°C sous air sec (1 normal litre par heure et par gramme de solide),
- montée de 150 à 550°C à 5°C/min sous air sec (1 normal litre par heure et par gramme de solide) jusqu’à 480°C puis sous mélange air et eau (30% en volume d’eau) à partir de 480°C,
- palier de deux heures à 550°C sous mélange air et eau (1 normal litre par heure et par gramme de solide),
- descente à 480°C sous mélange air et eau (1 normal litre par heure et par gramme de solide)
- descente de 480°C à l’ambiante sous air sec (1 normal litre par heure et par gramme de solide).
Le support ne subit pas d’étape de lavage. La teneur pondérale de la zéolithe IZM-2 dans le support après calcination est de 13% poids. La teneur en sodium dans le support mesurée par absorption atomique est de 91 ppm.
Exemple 11 (conforme à l’invention) : préparation d’un catalyseur d’isomérisation E.
Le catalyseur E est un catalyseur comprenant une zéolithe IZM-2, du platine, et une matrice alumine. Ce catalyseur est préparé par imprégnation à sec du support IZM-2/alumine préparé dans l’exemple 10 par une solution aqueuse contenant du nitrate de platine tétramine Pt(NH3)4(NO3)2. On utilise typiquement 20 grammes de support que l’on imprègne à sec en drageoir. Après imprégnation le solide est laissé à maturer durant au moins cinq heures en air laboratoire puis mis à sécher une nuit en étuve à 110°C et on effectue finalement une étape de calcination sous débit d’air sec (1 normal litre par heure et par gramme de solide) dans un four tubulaire dans les conditions suivantes :
- montée de la température à l'ambiante à 150°C à 5°C/min,
- palier d’une heure à 150°C,
- montée de la 150°C à 450°C à 5°C/min,
- palier d’une heure à 450°C,
- descente à l'ambiante.
La teneur en Pt mesurée par FX sur le catalyseur calciné est de 0,27% en poids, son coefficient de répartition mesuré par microsonde de Castaing de 0,96. Le catalyseur obtenu ne subit pas d’étape de lavage avec une solution de nitrate d’ammonium. La teneur en sodium dans le catalyseur mesurée par absorption atomique est de 89 ppm.
Les propriétés texturales du catalyseur E ont été caractérisées par porosimétrie à l’azote à 196°C sur un appareil Micromeritics ASAP 2010. Avant adsorption d’azote, le solide est dégazé sous vide à 90°C pendant une heure puis à 350°C pendant quatre heures. Le volume poreux total correspond au volume d’azote adsorbé à une pression relative de 0,97. La surface spécifique du solide est calculée par la méthode BET et le diamètre poreux médian calculé selon le modèle d’adsorption BJH correspond au diamètre pour lequel la moitié du volume d’azote est adsorbé. Le catalyseur D présente une surface spécifique de 272 m²/g, un volume poreux total de 0,67 ml/g et un diamètre médian de 12 nm.
Exemple 12 : évaluation des propriétés catalytiques des catalyseurs A, B, C, D et E en isomérisation d’une coupe C8 aromatiques.
Les catalyseurs ont été testés en isomérisation d’une coupe C8 aromatiques composée par de l’éthylbenzène (19% poids), de l’ortho-xylène (16% poids), du méta-xylène (58% poids) et de l’éthylcyclohexane (7% poids). Les tests ont été effectués dans une micro-unité mettant en œuvre un réacteur lit fixe et travaillant en courant descendant sans recyclage. L’analyse des effluents hydrocarbonés est effectuée en ligne par chromatographie en phase gazeuse. Avant chargement dans l'unité, le catalyseur est préalablement séché au moins une nuit en étuve à 110°C. Une fois chargé dans l’unité, le catalyseur subit une première étape de séchage sous azote dans les conditions suivantes :
- débit d’azote: 5 normaux litres par heure et par gramme de catalyseur,
- pression totale: 1,3 MPa,
- rampe de montée en température de l’ambiante à 150°C: 10°C/min,
- palier à 150°C de 30 minutes.
Après séchage l’azote est remplacé par l’hydrogène et une étape de réduction sous débit d'hydrogène pur est effectuée ensuite dans les conditions suivantes:
- débit d'hydrogène: 4 normaux litres par heure et par gramme de catalyseur,
- pression totale: 1,3 MPa,
- rampe de montée en température de 150 à 480°C: 5°C/min,
- palier à 480°C de 2 heures.
La température est alors descendue à 425°C puis le catalyseur est stabilisé durant 24 heures sous flux d’hydrogène et d’hydrocarbures (mélange d’éthylbenzène à 20% poids et d’ortho-xylène à 80% poids), dans les conditions opératoires suivantes :
- vitesse spatiale d'alimentation de 5 grammes d’hydrocarbures par heure et par gramme de catalyseur,
- rapport molaire hydrogène sur hydrocarbures de 4,
- pression totale de 1,3 MPa.
Après étape de stabilisation, La température est ensuite descendue à 385°C, et le catalyseur est mis en contact de la coupe C8 aromatiques mentionnée plus haut dans les conditions suivantes :
- vitesse spatiale d'alimentation de 3,5 grammes de la coupe C8 aromatiques par heure et par gramme de catalyseur,
- rapport molaire hydrogène sur hydrocarbures de 4,
- pression totale de 0,86 MPa.
Le catalyseur est maintenu durant 7 heures dans ces conditions opératoires puis les performances catalytiques sont évaluées selon les différentes conditions opératoires qui sont récapitulées dans le Tableau 2 ci-dessous. La variation de la vitesse spatiale d’alimentation permet de faire varier les niveaux de conversion en éthylbenzène et d’isomérisation des xylènes et donc la production de para-xylène. A chaque condition opératoire deux analyses par chromatographie sont effectuées afin de mesurer les performances des catalyseurs.
conditions 1 2 3 4 5
Durée à chaque condition (h) 2,8 2,1 2,1 2,1 2,1
Température (°C) 385 385 385 385 385
Vitesse spatiale d’alimentation (h-1) 3,5 4,5 6,0 9,0 12,0
H2/hydrocarbures
(mole/mole)
4 4 4 4 4
Pression totale (MPa) 0,86 0,86 0,86 0,86 0,86
Le rendement en para-xylène (PX) dans l’effluent hydrocarboné obtenu à la vitesse spatiale d’alimentation de 12 h-1 permet d’évaluer l’activité des catalyseurs pour la production de para-xylène :
PX = % poids de para-xylène dans l’effluent hydrocarboné,
où PX est le rendement en para-xylène en % poids.
L’évolution du rendement en pertes nettes (PN) en fonction du rendement en para-xylène permet quant à lui d’évaluer la sélectivité du catalyseur. Sont considérées comme pertes nettes toutes les molécules hydrocarbonées autres que les molécules cycliques à huit atomes de carbone :
PN = 100-PX-EB-OX-MX-N8
avec :
PN : rendement en pertes nettes dans l’effluent hydrocarboné, en % poids,
PX : % poids de para-xylène dans l’effluent hydrocarboné,
EB : % poids d’éthylbenzène dans l’effluent hydrocarboné,
OX : % poids d’ortho-xylène dans l’effluent hydrocarboné,
MX : % poids de méta-xylène dans l’effluent hydrocarboné,
N8 : % poids des naphtènes à huit atomes de carbone dans l’effluent hydrocarboné.
Le Tableau 3 reporte ainsi le rendement en para-xylène des catalyseurs A, B, C, D et E à une vitesse spatiale de 20 h-1 ainsi que les pertes nettes estimées pour un rendement en para-xylène de 18% pour les catalyseurs. Les pertes nettes (PN) à 18% de rendement en para-xylène sont estimées par interpolation ou extrapolation linéaire des données expérimentales de l’évolution du rendement en pertes nettes en fonction du rendement en para-xylène. On observe que les 5 catalyseurs présentent des pertes nettes, et donc des sélectivités, identiques pour un rendement en para-xylène de 18%. En revanche ils se distinguent par leur activité : les catalyseurs selon l’invention B, C et E à teneur réduite en sodium présentent une activité plus élevée que les catalyseurs A et D non conformes.
Catalyseur A (comparatif) B C
D
(comparatif)
E
Teneur en Na (ppm) 245 71 130 278 89
Rendement en para-xylène à vitesse spatiale de 20 h-1 14,1 16,4 16,7 16,1 16,9
Rendement en pertes nettes à un rendement en para-xylène de 18% 2,5 2,6 2,6 2,6 2,7

Claims (13)

  1. Catalyseur comprenant au moins une zéolithe IZM-2, au moins une matrice et au moins un métal du groupe VIII de la classification périodique des éléments, ledit catalyseur étant caractérisé en ce que la teneur pondérale totale en éléments alcalin et/ou alcalinoterreux dans ledit catalyseur est inférieure à 200 ppm en poids par rapport à la masse totale dudit catalyseur, et supérieure à 20 ppm en poids.
  2. Catalyseur selon la revendication 1 dans lequel ledit catalyseur comprend au moins un métal du groupe VIII choisi parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium et le platine.
  3. Catalyseur selon la revendication 2 dans lequel ledit catalyseur comprend au moins un métal du groupe VIII choisi parmi le palladium et le platine et de manière préférée le platine.
  4. Catalyseur selon l’une des revendication 1 à 3 dans lequel ledit catalyseur comprend une teneur en métal du groupe VIII comprise entre 0,01 et 5% poids par rapport à la masse totale dudit catalyseur.
  5. Catalyseur selon l’une des revendication 1 à 4 dans lequel ladite matrice est choisie dans le groupe formé par l'alumine, la silice, la silice-alumine, les argiles, l’oxyde de titane, l’oxyde de bore et la zircone, pris seuls ou en mélange.
  6. Catalyseur selon l’une des revendication 1 à 5 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 150 ppm en poids par rapport à la masse totale dudit catalyseur.
  7. Catalyseur selon la revendication 6 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 100 ppm en poids par rapport à la masse totale dudit catalyseur.
  8. Catalyseur selon la revendication 7 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 90 ppm en poids par rapport à la masse totale dudit catalyseur.
  9. Catalyseur selon la revendication 8 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 80 ppm en poids par rapport à la masse totale dudit catalyseur.
  10. Catalyseur selon la revendication 9 dans lequel ledit catalyseur présente une teneur pondérale totale en éléments alcalin et/ou alcalinoterreux inférieure à 70 ppm en poids par rapport à la masse totale dudit catalyseur.
  11. Catalyseur selon l’une des revendications 1 à 10 dans lequel les éléments alcalins et/ou alcalinoterreux sont choisis parmi le lithium, le sodium, le potassium, le berylium, le magnésium, le barium, et le calcium et de préférence le sodium.
  12. Procédé d'isomérisation d'une coupe contenant au moins un composé aromatique à huit atomes de carbone par molécule, ledit procédé comprenant la mise en contact de ladite coupe aromatique avec au moins ledit catalyseur selon l’une des revendications 1 à 11 dans les conditions opératoires suivantes :
    - une température de 300°C à 500°C,
    - une pression partielle d’hydrogène de 0,3 à 1,5 MPa,
    - une pression totale de 0,45 à 1,9 MPa, et
    - une vitesse spatiale d'alimentation, exprimée en kilogramme de charge introduite par kilogramme de catalyseur et par heure, de 0,25 à 30 h-1.
  13. Procédé d'isomérisation selon la revendication 12 dans lequel ladite coupe aromatique contenant au moins un composé aromatique ayant huit atomes de carbone par molécule comprend comme composé aromatique ayant huit atomes de carbone par molécule soit uniquement un mélange de xylènes, soit uniquement de l’éthylbenzène, soit un mélange de xylène(s) et d’éthylbenzène.
FR1914592A 2019-12-17 2019-12-17 Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l’isomerisation de la coupe c8 aromatique Active FR3104458B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
FR1914592A FR3104458B1 (fr) 2019-12-17 2019-12-17 Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l’isomerisation de la coupe c8 aromatique
JP2022536727A JP2023506849A (ja) 2019-12-17 2020-12-09 低含有率のアルカリ金属を有するizm-2ゼオライトをベースとする触媒、および芳香族c8留分の異性化のためのその使用
PCT/EP2020/085218 WO2021122199A1 (fr) 2019-12-17 2020-12-09 Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l'isomerisation de la coupe c8 aromatique
EP20819769.9A EP4076739A1 (fr) 2019-12-17 2020-12-09 Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l'isomerisation de la coupe c8 aromatique
US17/783,734 US20230008326A1 (en) 2019-12-17 2020-12-09 Catalyst based on izm-2 zeolite with a low content of alkali metal, and use thereof for the isomerization of aromatic c8 cuts
CN202080087704.0A CN114929383A (zh) 2019-12-17 2020-12-09 具有低碱金属含量的izm-2沸石催化剂及其用于芳族c8馏分的异构化的用途
TW109144472A TW202130608A (zh) 2019-12-17 2020-12-16 基於具有低含量鹼金屬之izm-2沸石之催化劑及其於異構化芳香c8餾分之用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1914592 2019-12-17
FR1914592A FR3104458B1 (fr) 2019-12-17 2019-12-17 Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l’isomerisation de la coupe c8 aromatique

Publications (2)

Publication Number Publication Date
FR3104458A1 true FR3104458A1 (fr) 2021-06-18
FR3104458B1 FR3104458B1 (fr) 2022-01-07

Family

ID=70738618

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1914592A Active FR3104458B1 (fr) 2019-12-17 2019-12-17 Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l’isomerisation de la coupe c8 aromatique

Country Status (7)

Country Link
US (1) US20230008326A1 (fr)
EP (1) EP4076739A1 (fr)
JP (1) JP2023506849A (fr)
CN (1) CN114929383A (fr)
FR (1) FR3104458B1 (fr)
TW (1) TW202130608A (fr)
WO (1) WO2021122199A1 (fr)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2477903A1 (fr) 1980-03-13 1981-09-18 Inst Francais Du Petrole Nouveau catalyseur zeolithique d'isomerisation des hydrocarbures alkylaromatiques
US4467129A (en) 1982-11-24 1984-08-21 Toray Industries, Inc. Conversion of xylenes containing ethylbenzene
US4482773A (en) 1982-02-25 1984-11-13 Mobil Oil Corporation Catalyst for xylene isomerization
EP0387109A1 (fr) 1989-02-01 1990-09-12 Rhone-Poulenc Chimie Procédé de fabrication d'agglomérés d'alumine activée, agglomérés obtenus par le procédé et dispositif pour sa mise en oeuvre
EP0458378B1 (fr) 1990-05-22 1994-01-05 Shell Internationale Researchmaatschappij B.V. Composition catalytique
EP0923987A1 (fr) 1997-12-22 1999-06-23 Institut Français du Pétrole Catalyseur contenant une zéolithe EUO et son utilisation en isomérisation des composés C8 aromatiques
WO2005065380A2 (fr) 2003-12-30 2005-07-21 Uop Llc Procede et catalyseur pour l'isomerisation de c8-alkylaromatiques
US7091190B2 (en) 1996-09-17 2006-08-15 Avanir Pharmaceuticals Synergistic inhibition of viral replication by long-chain hydrocarbons and nucleoside analogs
FR2918050A1 (fr) 2007-06-29 2009-01-02 Inst Francais Du Petrole Solide cristallise izm-2 et son procede de preparation
US20090093662A1 (en) 2007-10-08 2009-04-09 Whitchurch Patrick C Aromatic isomerization catalyst
WO2010000652A1 (fr) 2008-07-04 2010-01-07 Shell Internationale Research Maatschappij B.V. Catalyseur et procédé d'isomérisation
FR2934793A1 (fr) 2008-08-08 2010-02-12 Inst Francais Du Petrole Catalyseur comprenant une zeolithe izm-2 et au moins un metal et son utilisation en transformation d'hydrocarbures
US20140296601A1 (en) 2013-03-29 2014-10-02 Uop Llc Isomerization process with mtw catalyst
FR3054454A1 (fr) 2016-07-26 2018-02-02 IFP Energies Nouvelles Catalyseur comprenant une zeolithe izm-2 ayant un rapport molaire si/al optimise pour l'isomerisation de coupes c8 aromatiques

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934794B1 (fr) * 2008-08-08 2010-10-22 Inst Francais Du Petrole Procede de production de distillats moyens par hydrocraquage de charges issues du procede fischer-trospch en presence d'un catalyseur comprenant un solide izm-2
FR2997948B1 (fr) * 2012-11-15 2014-11-28 IFP Energies Nouvelles Procede d'isomerisation d'une coupe c8 aromatique en presence d'un catalyseur a base d'une zeolithe euo et une teneur en sodium particuliere

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2477903A1 (fr) 1980-03-13 1981-09-18 Inst Francais Du Petrole Nouveau catalyseur zeolithique d'isomerisation des hydrocarbures alkylaromatiques
US4482773A (en) 1982-02-25 1984-11-13 Mobil Oil Corporation Catalyst for xylene isomerization
US4467129A (en) 1982-11-24 1984-08-21 Toray Industries, Inc. Conversion of xylenes containing ethylbenzene
EP0387109A1 (fr) 1989-02-01 1990-09-12 Rhone-Poulenc Chimie Procédé de fabrication d'agglomérés d'alumine activée, agglomérés obtenus par le procédé et dispositif pour sa mise en oeuvre
EP0458378B1 (fr) 1990-05-22 1994-01-05 Shell Internationale Researchmaatschappij B.V. Composition catalytique
US7091190B2 (en) 1996-09-17 2006-08-15 Avanir Pharmaceuticals Synergistic inhibition of viral replication by long-chain hydrocarbons and nucleoside analogs
EP0923987A1 (fr) 1997-12-22 1999-06-23 Institut Français du Pétrole Catalyseur contenant une zéolithe EUO et son utilisation en isomérisation des composés C8 aromatiques
WO2005065380A2 (fr) 2003-12-30 2005-07-21 Uop Llc Procede et catalyseur pour l'isomerisation de c8-alkylaromatiques
FR2918050A1 (fr) 2007-06-29 2009-01-02 Inst Francais Du Petrole Solide cristallise izm-2 et son procede de preparation
FR2918050B1 (fr) 2007-06-29 2011-05-06 Inst Francais Du Petrole Solide cristallise izm-2 et son procede de preparation
US20090093662A1 (en) 2007-10-08 2009-04-09 Whitchurch Patrick C Aromatic isomerization catalyst
WO2010000652A1 (fr) 2008-07-04 2010-01-07 Shell Internationale Research Maatschappij B.V. Catalyseur et procédé d'isomérisation
FR2934793A1 (fr) 2008-08-08 2010-02-12 Inst Francais Du Petrole Catalyseur comprenant une zeolithe izm-2 et au moins un metal et son utilisation en transformation d'hydrocarbures
US20140296601A1 (en) 2013-03-29 2014-10-02 Uop Llc Isomerization process with mtw catalyst
FR3054454A1 (fr) 2016-07-26 2018-02-02 IFP Energies Nouvelles Catalyseur comprenant une zeolithe izm-2 ayant un rapport molaire si/al optimise pour l'isomerisation de coupes c8 aromatiques

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Handbook of Porous Solids", 2008, WILEY-VCH
APPLIED CATALYSIS A : GENERAL, vol. 230, 2002, pages 253 - 262
FILIPE MARQUES MOTA ET AL: "IZM-2: A promising new zeolite for the selective hydroisomerization of long-chain n-alkanes", JOURNAL OF CATALYSIS., vol. 301, 28 February 2013 (2013-02-28), US, pages 20 - 29, XP055495311, ISSN: 0021-9517, DOI: 10.1016/j.jcat.2013.01.017 *
L.D. FERNANDES, JOURNAL OF CATALYSIS, vol. 177, 1998, pages 363 - 337
LI YUNXIANG ET AL: "Microporous pure-silica IZM-2", MICROPOROUS AND MESOPOROUS MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 237, 21 September 2016 (2016-09-21), pages 222 - 227, XP029777580, ISSN: 1387-1811, DOI: 10.1016/J.MICROMESO.2016.09.033 *
MOREAU, MICROPOROUS AND MESOPOROUS MATERIALS, vol. 51, 2002, pages 211 - 221
YUNXIANG LI ET AL: "Supplementary Information of "Microporous pure-silica IZM-2"", MICROPOROUS AND MESOPOROUS MATERIALS, 21 September 2016 (2016-09-21), pages 1 - 11, XP055723402 *

Also Published As

Publication number Publication date
JP2023506849A (ja) 2023-02-20
FR3104458B1 (fr) 2022-01-07
WO2021122199A1 (fr) 2021-06-24
TW202130608A (zh) 2021-08-16
EP4076739A1 (fr) 2022-10-26
US20230008326A1 (en) 2023-01-12
CN114929383A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
EP2313343B1 (fr) Catalyseur comprenant une zeolithe izm-2 et au moins un metal et son utilisation en transformation d&#39;hydrocarbures
EP0999183B1 (fr) Procédé de préparation d&#39;une zéolithe de type structural EUO a l&#39;aide de precurseurs du structurant et son utilisation comme catalyseur d&#39;isomerisation des AC8
EP0999182B1 (fr) Procédé de préparation d&#39;une zéolithe de type structural EUO à l&#39;aide de germes de matériaux zéolitiques et son utilisation comme catalyseur d&#39;isomérisation des aromatiques à huit atomes de carbone
EP3275538B1 (fr) Procede d&#39;isomerisation de coupes c8 aromatiques avec un catalyseur comprenant une zeolithe izm-2 ayant un rapport molaire si/al optimise pour l&#39;isomerisation de coupes c8 aromatiques
FR2915112A1 (fr) Procede d&#39;isomerisation d&#39;une coupe c8 aromatique en presence d&#39;un catalyseur a base d&#39;une zeolithe euo desaluminee.
EP3027312B1 (fr) Modification de zeolithe de type euo et son utilisation en isomerisation des composes c8 aromatiques
EP0755717B1 (fr) Catalyseurs à base de zéolithe mordénite modifié au cérium, et son utilisation en isomérisation d&#39;une coupe C8 aromatique
CA2346312C (fr) Procede de preparation d&#39;une zeolithe de types structural euo, la zeolithe obtenue et son utilisation en tant que catalyseur d&#39;isomerisation des coupes c8 aromatiques
FR2909906A1 (fr) Procede d&#39;isomerisation des composes c8 aromatiques en presence d&#39;un catalyseur comprenant une zeolithe euo modifiee
EP1151963B1 (fr) Zeolithe de type structural EUO de faible rapport SI/AL et son utilisation en tant que catalyseur d&#39;isomérisation des coupes C8 aromatiques
FR2974801A1 (fr) Procede d&#39;isomerisation d&#39;une coupe c8 aromatique en presence d&#39;un catalyseur specifique constitue par un composite de type zeolithe/carbure de silicium et d&#39;une fonction hydro-deshydrogenante
FR2997948A1 (fr) Procede d&#39;isomerisation d&#39;une coupe c8 aromatique en presence d&#39;un catalyseur a base d&#39;une zeolithe euo et une teneur en sodium particuliere
EP2934747B1 (fr) Catalyseur modifie de type structural mtw, sa méthode de préparation et son utilisation dans un procédé d&#39;isomérisation d&#39;une coupe c8 aromatique
EP0609112A1 (fr) Catalyseur à base de zéolithe MFI modifiée et son utilisation d&#39;une coupe C8 aromatique
FR3104458A1 (fr) Catalyseur a base de zeolithe izm-2 ayant une teneur en alcalin faible et son utilisation pour l’isomerisation de la coupe c8 aromatique
FR2920423A1 (fr) Preparation d&#39;un materiau composite poreux a base de zeolithe eu-1 et sa mise en oeuvre en isomerisation des aromatiques en c8.
EP4077595A1 (fr) Utilisation d&#39;un catalyseur a base d&#39;izm-2 ayant une faible teneur en alcalin pour l&#39;isomerisation de charges paraffiniques en distillats moyens
WO2018099832A1 (fr) Utilisation d&#39;un catalyseur a base de zeolithe izm-2 et d&#39;un catalyseur a base de zeolithe euo pour l&#39;isomerisation de coupes c8 aromatiques
FR2691914A1 (fr) Catalyseur à base de zéolithe mordénite modifiée et son utilisation en isomérisation d&#39;une coupe C8 aromatique.
FR2862299A1 (fr) Zeolithe de type structural euo contenant le structurant alkylquinuclidinium, procede de preparation et utilisation en tant que catalyseur
FR2752568A1 (fr) Zeolithe desaluminee de type structural nes, et son utilisation en dismutation et/ou transalkylation d&#39;hydrocarbures alkylaromatiques
FR2984308A1 (fr) Procede d&#39;isomerisation d&#39;une coupe c8 aromatique en presence d&#39;un catalyseur a base d&#39;une zeolithe euo et d&#39;un liant particulier
FR2787780A1 (fr) Procede de preparation d&#39;un catalyseur a base de zeolithe de structure euo, obtenue en presence de germes et son utilisation en isomerisation d&#39;une coupe c8 aromatique

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20210618

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5