WO2021121224A1 - 基于岩石矿物分析的tbm隧道断层破碎带预报系统及方法 - Google Patents

基于岩石矿物分析的tbm隧道断层破碎带预报系统及方法 Download PDF

Info

Publication number
WO2021121224A1
WO2021121224A1 PCT/CN2020/136502 CN2020136502W WO2021121224A1 WO 2021121224 A1 WO2021121224 A1 WO 2021121224A1 CN 2020136502 W CN2020136502 W CN 2020136502W WO 2021121224 A1 WO2021121224 A1 WO 2021121224A1
Authority
WO
WIPO (PCT)
Prior art keywords
rock
tunnel
tbm
mineral
mechanical arm
Prior art date
Application number
PCT/CN2020/136502
Other languages
English (en)
French (fr)
Inventor
许振浩
余腾飞
谢辉辉
邵瑞琦
许建斌
刘福民
林鹏
潘东东
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to AU2020409772A priority Critical patent/AU2020409772B2/en
Publication of WO2021121224A1 publication Critical patent/WO2021121224A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/02Prospecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present disclosure belongs to the field of tunnel TBM-mounted fault fracture zone prediction, and in particular relates to a TBM tunnel fault fracture zone prediction system and method based on rock mineral analysis.
  • TBM tunnel When the construction of TBM tunnel encounters fault fracture zone, it is very likely to induce serious geological disasters such as machine jam, water inrush and collapse under construction disturbance. Therefore, during the construction of the TBM tunnel, it is necessary to accurately predict the occurrence of fault fracture zones.
  • the existing advanced geological prediction methods for TBM tunnels are mainly geophysical detection methods, such as seismic wave method, induced polarization method, etc.
  • the above methods can predict the location and scale of the fault fracture zone more accurately, but the prediction of the fault fracture zone type is not yet possible. Satisfy.
  • the present disclosure proposes a TBM tunnel fault fracture zone prediction system and method based on rock mineral analysis.
  • the present disclosure can obtain the rock mineral composition and content near the tunnel face in time, and use the change of mineral composition and content to correct Forecast the fault fracture zone such as the fault in front of the tunnel.
  • the present disclosure adopts the following technical solutions:
  • a TBM tunnel fault fracture zone prediction system based on rock and mineral analysis including a mechanical arm device and a data analysis module mounted on the TBM, including:
  • the mechanical arm device includes a mechanical arm main body capable of horizontal expansion and contraction, vertical lifting, and a certain degree of freedom of pitch angle.
  • the front end of the mechanical arm main body is axially provided with a laser Raman spectrometer detector, and the laser Raman spectrometer detects
  • a laser ranging module is distributed around the circumference of the device to detect the distance between the laser Raman spectrometer detector and the surrounding rock to ensure that the detector is always in vertical contact with the surrounding rock;
  • a rock image acquisition device is provided on the front end of the main body of the robotic arm ;
  • the data analysis module is configured to receive the detection results of the rock image acquisition device, the laser ranging module and the laser Raman spectrometer detector, and obtain the surrounding rock image, mineral composition and content according to the data of multiple measurement points.
  • the main body of the manipulator includes at least two sleeved manipulator arms to form a horizontal telescopic mechanism.
  • the lower end of the main body of the manipulator is provided with a vertical lifting mechanism that can drive the manipulator to move up and down.
  • the relative angle of the vertical lifting mechanism is adjustable. It can ensure that the main body of the robotic arm can swing up and down at a certain angle, thereby ensuring that the laser Raman spectrometer detector and the surrounding rock of the tunnel can be in close contact.
  • a pressure sensor is arranged at the front end of the laser Raman spectrometer detector to test the pressure between the surrounding rock of the tunnel and the laser Raman spectrometer detector to prevent the detector from being damaged due to excessive contact pressure.
  • the rock image acquisition device is a miniature camera and is equipped with a flashlight function.
  • a rotatable base is provided on the upper side of the front end of the main body of the mechanical arm, and a rock image acquisition device is provided on the rotatable base to realize omnidirectional image acquisition of the dome and surrounding rocks.
  • the data analysis module is remotely and wirelessly connected to the main control unit of the TBM main control room.
  • the main body of the robotic arm is a multi-degree-of-freedom robotic arm.
  • each measuring point there are at least 5 measuring points, and then the average value of each measuring point is calculated as the mineral content value of the test part.
  • test interval of the area with no change in lithology is not more than 10m.
  • the present disclosure can conveniently, quickly and timely measure the mineral composition and content of the surrounding rock in the TBM tunnel, avoiding the inconvenient testing of traditional rock testing methods due to the inconvenience of testing in the laboratory, and saving manpower, material resources and financial resources;
  • the present disclosure can test the mineral composition and content of the surrounding rock of the tunnel for a long period of time, give the law of its change with the mileage of the tunnel face, and make advance geological forecasts in time, which can be carried out without TBM shutdown.
  • Figure 1 is a schematic diagram of the overall structure of this embodiment
  • FIG. 2 is a schematic diagram of the front end structure of the detector of this embodiment
  • FIG. 3 is a simplified flowchart of the operation steps of this embodiment
  • Figure 4 is a schematic diagram of the mineral analysis and test locations in the lithology unchanged area in this embodiment
  • Fig. 5 is a schematic diagram of the mineral analysis test location of the lithological contact zone in this embodiment.
  • azimuth or positional relationship is based on the azimuth or positional relationship shown in the drawings, and is only a relationship term determined to facilitate the description of the structural relationship of each component or element in the present disclosure. It does not specifically refer to any component or element in the present disclosure, and cannot be understood as a reference to the present disclosure. Disclosure restrictions.
  • a TBM-mounted fault fracture zone prediction system based on rock and mineral analysis in a tunnel includes a mechanical arm device, a rock and mineral analysis device, a rock image acquisition device, a laser distance measuring device, and a data control analysis device.
  • the robotic arm device 1 is composed of a horizontal telescopic module 2, an up-and-down swing module 3, and a vertical lifting module 4.
  • the horizontal telescopic module 2 and the vertical lifting module 4 are composed of telescopic rods for horizontal telescopic and vertical lifting of the robotic arm device;
  • the up-and-down swing module 3 is located between the horizontal telescopic module 2 and the vertical lifting module 4, and is composed of a triangular hinged structure, which is used for the main body of the robotic arm to swing up and down at a certain angle, so as to ensure that the laser Raman spectrometer detector 7 and the surrounding rock of the tunnel can be close contact;
  • the rock image acquisition device 5 is mounted above the horizontal telescopic module 2 of the mechanical arm, and is used to acquire the surrounding rock image in the tunnel.
  • the existing miniature camera can be used, and the test results are transmitted to the data processing and analysis device 11;
  • the miniature camera is equipped with a flashlight function, The flash is in working state when collecting images of surrounding rocks;
  • the base of the miniature camera is a rotating device 6, which is used for the miniature camera to collect all-round images of the vault and surrounding rocks;
  • the laser Raman spectrometer detector 7 of the rock and mineral analysis device is located in front of the horizontal telescopic module 2 of the robotic arm, and the main body 8 is located below the horizontal telescopic module 2 of the robotic arm;
  • the front end of the laser Raman spectrometer detector 7 is equipped with a miniature pressure sensor 9 to test the pressure between the tunnel surrounding rock and the laser Raman spectrometer detector 7 to prevent the detector from being damaged due to excessive contact pressure. ;
  • the laser ranging device 10 is distributed around the laser Raman spectrometer detector 7 to detect the distance between the Raman spectrometer detector 7 and the surrounding rock to ensure that the detector is always in vertical contact with the surrounding rock;
  • the data control analysis device 11 receives rock and mineral analysis and surrounding rock image acquisition data, and is used to control the work of various devices such as the mechanical arm 1, the rock image acquisition device 5, the laser distance measuring device 10, and the rock and mineral analysis device 8;
  • the fault fracture zone prediction method based on the above-mentioned mineral analysis system includes the following steps:
  • the rock image acquisition device 5 performs image acquisition on the tunnel surrounding rock behind the TBM shield to determine the mineral composition test location;
  • the robotic arm vertical lifting module 4 and the horizontal telescopic module 2 are moved to the corresponding positions, and the laser Raman spectrometer detector 7 performs mineral composition and content testing on the surrounding rock of the tunnel. As shown in Fig. 4, preferably, there are at least 5 measuring points. Respectively Op1, Op2, Op3, Op4, Op5, and then calculate the average value of 5 measuring points as the mineral content value of the test site;
  • TBM continues to dig forward, repeat the above test steps for the next test site to test the rock mineral composition and content.
  • the test interval of the unchanging lithology area should not exceed 5m, as shown in Figure 5.
  • the sexual contact zone is divided into three mineral test areas A, B, C for testing according to the rock images collected by the rock image acquisition device.
  • the measuring points in area A are A1 ⁇ A5, and the measuring points in area B are B1 ⁇ B5, C.
  • the measuring points of the area are C1 ⁇ C5, and the average value of 5 measuring points in each area is calculated as the mineral content value of the test part;
  • the data control analysis device 11 obtains the law of the surrounding rock image, mineral composition and content change with the length of the tunnel face, and finally predicts the fault fracture zone in front of the tunnel face according to the above-mentioned change law of the surrounding rock image, mineral composition and content.
  • the method for predicting the fault fracture zone in front of the tunnel face according to the change law of the surrounding rock image, mineral composition and content is as follows:
  • the content of chlorite, sericite, kaolinite, montmorillonite and other minerals in the surrounding rock of the tunnel will increase, and filling Quaternary sediments appear in the fissures of the surrounding rock, there may be a tensile fracture in front of the tunnel band.
  • the content of flaky, needle-like and fibrous minerals such as illite, saponite, muscovite, chlorite, epidote, serpentine, and montmorillonite in the surrounding rock of the tunnel will increase.
  • the degree of fragmentation gradually increases to muddy there may be a compressive fracture zone in front of the tunnel.

Abstract

一种基于岩石矿物分析的TBM隧道断层破碎带预报系统及方法,系统包括搭载于TBM上的机械臂装置(1)和数据分析模块(11),机械臂装置(1)包括能够水平伸缩、竖直升降以及具有一定俯仰角自由度的机械臂主体,机械臂主体的前端轴向设置有激光拉曼光谱仪探测器(7),激光拉曼光谱仪探测器(7)的圆周分布有激光测距模块(10),以探测激光拉曼光谱仪探测器(7)与围岩之间的距离,保证探测器与围岩始终垂直接触;机械臂主体的前端上设置有岩石图像采集装置(5);数据分析模块(11)被配置为接收岩石图像采集装置(5)、激光测距模块(10)和激光拉曼光谱仪探测器(7)的检测结果,根据多个测点的数据,得到围岩图像、矿物成分和含量随掌子面里程的变化规律,进而对隧道掌子面前方断层破碎带进行预报。

Description

基于岩石矿物分析的TBM隧道断层破碎带预报系统及方法 技术领域
本公开属于隧道TBM搭载式断层破碎带预报领域,具体涉及一种基于岩石矿物分析的TBM隧道断层破碎带预报系统及方法。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
TBM隧道施工在遭遇断层破碎带时,在施工扰动下极有可能诱发卡机、突涌水和塌方等严重地质灾害。因此在TBM隧道施工过程中,必须对断层破碎带赋存情况进行准确预报。
据发明人了解,不同的断层破碎带体类型其致灾机理与模式不同,如压性断层中心带承受压力巨大,岩石破裂研磨较细,多由糜棱岩和断层泥填充胶结,起阻水作用,而断层两盘裂隙密集带连通性好,导水性强,隧道施工揭露此段时,易发生涌突水灾害;而张性断层中心带空隙大,两盘的透水性相对较差,从而利于地下水富集,隧道开挖揭露断层破碎带时,地下水常携带泥沙、碎石等涌入隧道,因此对断层破碎带体的类型进行及时准确的预报显得尤为重要。
现有TBM隧道超前地质预报方法主要为地球物理探测方法,如地震波法、激发极化法等,上述方法可较为准确的预报断层破碎带的位置和规模,但对断层破碎带类型的预报尚不能满足。
发明内容
本公开为了解决上述问题,提出了一种基于岩石矿物分析的TBM隧道断层破碎带预报系统及方法,本公开能及时获取掌子面附近岩石矿物成分和含量,并利用矿物成分和含量的变化对隧道前方断层等断层破碎带进行预报。
根据一些实施例,本公开采用如下技术方案:
一种基于岩石矿物分析的TBM隧道断层破碎带预报系统,包括搭载于TBM上的机械臂装置和数据分析模块,其中:
所述机械臂装置包括能够水平伸缩、竖直升降以及具有一定俯仰角自由度的机械臂主体,所述机械臂主体的前端轴向设置有激光拉曼光谱仪探测器,所述激光拉曼光谱仪探测器的圆周分布有激光测距模块,以探测激光拉曼光谱仪探测器与围岩之间的距离,保证探测器与围岩始终垂直接触;所述机械臂主体的前端上设置有岩石图像采集装置;
所述数据分析模块被配置为接收所述岩石图像采集装置、激光测距模块和激光拉曼光谱仪探测器的检测结果,根据多个测点的数据,得到围岩图像、矿物成分和含量随掌子面里程的变化规律,进而对隧道掌子面前方断层破碎带进行预报。
作为可选择的实施方式,所述机械臂主体包括至少两节套接的机械臂,形成水平可伸缩机构,机械臂主体的下端设置有垂直升降机构,能够带动机械臂上下移动,机械臂主体和垂直升降机构的相对角度可调。能够保证机械臂主体能够呈一定角度上下摆动,从而保证激光拉曼光谱仪探测器和隧道围岩能够紧密接触。
作为可选择的实施方式,所述激光拉曼光谱仪探测器的前端安置有压力传 感器,用于测试隧道围岩和激光拉曼光谱仪探测器之间的压力,防止探测器由于接触压力过大而损坏。
作为可选择的实施方式,所述岩石图像采集装置为微型相机,且配备闪光灯功能。
作为可选择的实施方式,所述机械臂主体的前端上侧设置有可旋转底座,所述可旋转底座上设置有岩石图像采集装置,实现对拱顶和四周围岩进行全方位图像采集。
作为可选择的实施方式,所述数据分析模块与TBM主控室的主控单元远程无线连接。
作为可选择的实施方式,所述机械臂主体为多自由度机械臂。
基于上述系统的工作方法,对TBM护盾后方的隧道围岩进行图像采集,确定矿物成分测试部位,机械臂装置带动激光拉曼光谱仪移动至对应位置,对隧道围岩进行矿物成分和含量测试,根据多个测点岩石图像采集装置采集的岩石图像,确定隧道围岩矿物成分和含量随掌子面里程的变化规律,最终根据上述岩石图像、矿物成分和含量的变化规律对隧道掌子面前方断层破碎带进行预报。
作为可选择的实施方式,测点至少为5个,然后求各个测点的均值作为该测试部位的矿物含量值。
作为可选择的实施方式,岩性无变化区域测试间隔不超过10m。
与现有技术相比,本公开的有益效果为:
本公开可方便、快速和及时测量TBM隧道内围岩矿物成分和含量,避免了传统岩石测试方法因在实验室开展而不方便测试的情况,节省了人力、物力和 财力;
本公开可长期对隧道围岩矿物成分和含量进行测试,给出其随掌子面里程的变化规律,并及时做出超前地质预报,不需TBM停机便可开展。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为本实施例的整体结构示意图;
图2为本实施例的探测器前端结构示意图;
图3为本实施例的操作步骤简化流程图;
图4为本实施例中岩性无变化区矿物分析测试部位示意图;
图5为本实施例中岩性接触带矿物分析测试部位示意图。
具体实施方式:
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、 “侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。
本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
如图1所示,一种TBM搭载式的隧道内基于岩石矿物分析的断层破碎带预报系统包含机械臂装置、岩石矿物分析装置、岩石图像采集装置、激光测距装置和数据控制分析装置。
其中,机械臂装置1由水平伸缩模块2、上下摆动模块3和垂直升降模块4组成,水平伸缩模块2和垂直升降模块4由可伸缩杆组成,用于机械臂装置水平伸缩和垂直升降;
上下摆动模块3位于水平伸缩模块2和垂直升降模块4之间,由三角铰接结构构成,用于机械臂主体能够呈一定角度上下摆动,从而保证激光拉曼光谱仪探测器7和隧道围岩能够紧密接触;
岩石图像采集装置5搭载于机械臂水平伸缩模块2上方,用于隧道内围岩图像的采集,使用现有的微型相机即可,测试结果传输给数据处理分析装置11;微型相机配备闪光灯功能,采集围岩图像时闪光灯处于工作状态;微型相机底座为一旋转装置6,用于微型相机对拱顶和四周围岩进行全方位图像采集;
岩石矿物分析装置激光拉曼光谱仪探测器7位于机械臂水平伸缩模块2的前方,主体8位于机械臂水平伸缩模块2的下方;
如图2所示,激光拉曼光谱仪探测器7前端安置有微型压力传感器9,用于测试隧道围岩和激光拉曼光谱仪探测器7之间的压力,防止探测器由于接触压力过大而损坏;
如图2所示,激光测距装置10分布于激光拉曼光谱仪探测器7的四周,用于探测拉曼光谱仪探测器7与围岩之间的距离,保证探测器与围岩始终垂直接触;
所述数据控制分析装置11接收岩石矿物分析和围岩图像采集数据,并用于控制机械臂1、岩石图像采集装置5、激光测距装置10、岩石矿物分析装置8等各装置的工作;
如图3所示,基于上述矿物分析系统的断层破碎带预报方法,包括以下步骤:
岩石图像采集装置5对TBM护盾后方的隧道围岩进行图像采集,确定矿物成分测试部位;
机械臂垂直升降模块4和水平伸缩模块2移动至对应位置,激光拉曼光谱仪探测器7对隧道围岩进行矿物成分和含量测试,如图4所示,优选的,测点至少为5个,分别为Op1、Op2、Op3、Op4、Op5,然后求5个测点的均值作为该测试部位的矿物含量值;
TBM继续向前掘进,对下一测试部位重复上述测试步骤进行岩石矿物成分和含量测试,优选的,如图4所示,岩性无变化区域测试间隔不超过5m,如图 5所示,岩性接触带根据岩石图像采集装置采集的岩石图像分为3个矿物测试区域A、B、C进行测试,A区域的测点分别为A1~A5,B区域的测点分别为B1~B5,C区域的测点分别为C1~C5,各区域分别求5个测点的均值作为该测试部位的矿物含量值;
数据控制分析装置11得到围岩图像、矿物成分和含量随掌子面里程的变化规律,最终根据上述围岩图像、矿物成分和含量的变化规律对隧道掌子面前方断层破碎带进行预报。
上述步骤中根据上述围岩图像、矿物成分和含量的变化规律对隧道掌子面前方断层破碎带进行预报方法为:
若趋近掌子面,隧道围岩中绿泥石、绢云母、高岭石、蒙脱石等矿物含量增加,围岩裂隙中出现填充第四纪沉积物,则隧道前方可能存在张性断裂带。
若趋近掌子面,隧道围岩中伊利石、皂石、白云母、绿泥石、绿帘石、蛇纹石、蒙脱石等片状、针状、纤维状矿物含量增加,围岩破碎程度逐渐增加至泥化,则隧道前前方可能存在压性断裂带。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上, 本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (10)

  1. 一种基于岩石矿物分析的TBM隧道断层破碎带预报系统,其特征是:包括搭载于TBM上的机械臂装置和数据分析模块,其中:
    所述机械臂装置包括能够水平伸缩、竖直升降以及具有一定俯仰角自由度的机械臂主体,所述机械臂主体的前端轴向设置有激光拉曼光谱仪探测器,所述激光拉曼光谱仪探测器的圆周分布有激光测距模块,以探测激光拉曼光谱仪探测器与围岩之间的距离,保证探测器与围岩始终垂直接触;所述机械臂主体的前端上设置有岩石图像采集装置;
    所述数据分析模块被配置为接收所述岩石图像采集装置、激光测距模块和激光拉曼光谱仪探测器的检测结果,根据多个测点的数据,得到围岩图像、矿物成分和含量随掌子面里程的变化规律,进而对隧道掌子面前方断层破碎带进行预报。
  2. 如权利要求1所述的一种基于岩石矿物分析的TBM隧道断层破碎带预报系统,其特征是:所述机械臂主体包括至少两节套接的机械臂,形成水平可伸缩机构,机械臂主体的下端设置有垂直升降机构,能够带动机械臂上下移动,机械臂主体和垂直升降机构的相对角度可调。
  3. 如权利要求1所述的一种基于岩石矿物分析的TBM隧道断层破碎带预报系统,其特征是:所述激光拉曼光谱仪探测器的前端安置有压力传感器,用于测试隧道围岩和激光拉曼光谱仪探测器之间的压力。
  4. 如权利要求1所述的一种基于岩石矿物分析的TBM隧道断层破碎带预报系统,其特征是:所述岩石图像采集装置为微型相机,且配备闪光灯功能。
  5. 如权利要求1所述的一种基于岩石矿物分析的TBM隧道断层破碎带预 报系统,其特征是:所述机械臂主体的前端上侧设置有可旋转底座,所述可旋转底座上设置有岩石图像采集装置,实现对拱顶和四周围岩进行全方位图像采集。
  6. 如权利要求1所述的一种基于岩石矿物分析的TBM隧道断层破碎带预报系统,其特征是:所述数据分析模块与TBM主控室的主控单元远程无线连接。
  7. 如权利要求1所述的一种基于岩石矿物分析的TBM隧道断层破碎带预报系统,其特征是:所述机械臂主体为多自由度机械臂。
  8. 基于权利要求1-7中任一项所述的系统的工作方法,其特征是:对TBM护盾后方的隧道围岩进行图像采集,确定矿物成分测试部位,机械臂装置带动激光拉曼光谱仪移动至对应位置,对隧道围岩进行矿物成分和含量测试,根据多个测点岩石图像采集装置采集的岩石图像,确定隧道围岩矿物成分和含量随掌子面里程的变化规律,最终根据上述岩石图像、矿物成分和含量的变化规律对隧道掌子面前方断层破碎带进行预报。
  9. 如权利要求7所述的工作方法,其特征是:测点至少为5个,然后求各个测点的均值作为该测试部位的矿物含量值。
  10. 如权利要求7所述的工作方法,其特征是:岩性无变化区域测试间隔不超过10m。
PCT/CN2020/136502 2019-12-17 2020-12-15 基于岩石矿物分析的tbm隧道断层破碎带预报系统及方法 WO2021121224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020409772A AU2020409772B2 (en) 2019-12-17 2020-12-15 Forecasting system and method for fault fracture zone of tbm tunnel based on rock mineral analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911302948.1A CN110989024B (zh) 2019-12-17 2019-12-17 基于岩石矿物分析的tbm隧道断层破碎带预报系统及方法
CN201911302948.1 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021121224A1 true WO2021121224A1 (zh) 2021-06-24

Family

ID=70094933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136502 WO2021121224A1 (zh) 2019-12-17 2020-12-15 基于岩石矿物分析的tbm隧道断层破碎带预报系统及方法

Country Status (3)

Country Link
CN (1) CN110989024B (zh)
AU (1) AU2020409772B2 (zh)
WO (1) WO2021121224A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115346141A (zh) * 2022-10-19 2022-11-15 山东大学 天-空-地-隧-孔一体化不良地质识别方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110989024B (zh) * 2019-12-17 2021-10-08 山东大学 基于岩石矿物分析的tbm隧道断层破碎带预报系统及方法
CN111638200B (zh) * 2020-04-22 2021-11-23 山东大学 基于拉曼光谱分析的地质预报系统及方法
CN112683880B (zh) * 2020-12-28 2022-06-07 山东大学 一种基于拉曼光谱分析的矿物含量快速测定装置及方法
CN112822359B (zh) * 2020-12-30 2022-03-25 山东大学 一种基于车载式钻爆洞隧道的全景成像系统及方法
CN115015500B (zh) * 2022-05-18 2023-11-24 中铁十八局集团有限公司 用于隧道富水断层破碎带渗透的原位测定装置及其方法
CN115618222B (zh) * 2022-06-21 2023-05-05 北京交通大学 一种隧道掘进响应参数的预测方法
CN115656053A (zh) * 2022-10-19 2023-01-31 山东大学 岩石矿物含量测试方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354097A (ja) * 2003-05-27 2004-12-16 Starlabo Corp スペクトル画像化装置
KR101294241B1 (ko) * 2013-03-27 2013-08-07 (주)희송지오텍 Tbm에 장착된 전방 지질 예측을 위한 선진 수평 시추장치
CN107851176A (zh) * 2015-02-06 2018-03-27 阿克伦大学 光学成像系统及其方法
CN109375263A (zh) * 2018-12-04 2019-02-22 山东大学 一种适用于钻爆法隧道的地震超前预报装置、系统及方法
CN208737014U (zh) * 2018-08-17 2019-04-12 中铁十七局集团第二工程有限责任公司 隧道地质超前预报的孔内成像装置
CN109612943A (zh) * 2019-01-14 2019-04-12 山东大学 基于机器学习的隧洞岩石石英含量测试系统及方法
CN110031491A (zh) * 2019-04-04 2019-07-19 山东大学 车载式岩性与不良地质前兆特征识别系统及方法
CN110043267A (zh) * 2019-04-04 2019-07-23 山东大学 基于岩性与不良地质前兆特征识别的tbm搭载式超前地质预报系统及方法
CN110989024A (zh) * 2019-12-17 2020-04-10 山东大学 基于岩石矿物分析的tbm隧道断层破碎带预报系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777372B2 (en) * 2013-08-07 2017-10-03 Regents Of The University Of Minnesota Methods for manufacturing nano-gap and angstrom-gap articles
US10534107B2 (en) * 2016-05-13 2020-01-14 Gas Sensing Technology Corp. Gross mineralogy and petrology using Raman spectroscopy
CN108844941B (zh) * 2018-05-30 2021-10-12 武汉工程大学 一种基于拉曼光谱和pca-hca的不同品位磷矿的鉴别和分类方法
CN109186480B (zh) * 2018-09-19 2020-11-10 成都理工大学 基于双护盾tbm工艺的隧道围岩扫描与观测系统
CN110318765B (zh) * 2019-07-02 2020-08-21 中国科学院武汉岩土力学研究所 基于岩性识别的机械-水力联合破岩tbm实时掘进方法
CN110207787A (zh) * 2019-07-10 2019-09-06 南京城建隧桥经营管理有限责任公司 一种隧道积水深度分布式监测系统及监测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354097A (ja) * 2003-05-27 2004-12-16 Starlabo Corp スペクトル画像化装置
KR101294241B1 (ko) * 2013-03-27 2013-08-07 (주)희송지오텍 Tbm에 장착된 전방 지질 예측을 위한 선진 수평 시추장치
CN107851176A (zh) * 2015-02-06 2018-03-27 阿克伦大学 光学成像系统及其方法
CN208737014U (zh) * 2018-08-17 2019-04-12 中铁十七局集团第二工程有限责任公司 隧道地质超前预报的孔内成像装置
CN109375263A (zh) * 2018-12-04 2019-02-22 山东大学 一种适用于钻爆法隧道的地震超前预报装置、系统及方法
CN109612943A (zh) * 2019-01-14 2019-04-12 山东大学 基于机器学习的隧洞岩石石英含量测试系统及方法
CN110031491A (zh) * 2019-04-04 2019-07-19 山东大学 车载式岩性与不良地质前兆特征识别系统及方法
CN110043267A (zh) * 2019-04-04 2019-07-23 山东大学 基于岩性与不良地质前兆特征识别的tbm搭载式超前地质预报系统及方法
CN110989024A (zh) * 2019-12-17 2020-04-10 山东大学 基于岩石矿物分析的tbm隧道断层破碎带预报系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115346141A (zh) * 2022-10-19 2022-11-15 山东大学 天-空-地-隧-孔一体化不良地质识别方法及系统

Also Published As

Publication number Publication date
AU2020409772B2 (en) 2023-11-16
CN110989024B (zh) 2021-10-08
CN110989024A (zh) 2020-04-10
AU2020409772A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
WO2021121224A1 (zh) 基于岩石矿物分析的tbm隧道断层破碎带预报系统及方法
WO2020199290A1 (zh) 基于岩性与不良地质前兆特征识别的tbm搭载式超前地质预报系统及方法
CN106154350B (zh) 基于孔中摄像与单孔声波的工程综合测孔系统与方法
Li et al. ISRM suggested method for rock fractures observations using a borehole digital optical televiewer
AU2018232998A1 (en) Three-dimensional directional transient electromagnetic detection device and method for mining borehole
WO2015103721A1 (zh) 隧道掘进机搭载的综合超前地质探测系统
CN103967476B (zh) 随钻钻孔物探超前探测装置及探测方法
Bu et al. Application of the comprehensive forecast system for water-bearing structures in a karst tunnel: a case study
CN106248672B (zh) 一种基于dic技术的现场孔内岩体裂纹扩展模式识别方法及系统
CN107367231A (zh) 基于光纤光栅和三维激光扫描的煤矿工作面片帮监测系统
CN110824568B (zh) 一种搭载于盾构机刀盘-内置聚焦式电法探水系统及方法
CN107346032A (zh) 一种无线控传加速度传感器的隧道超前预报系统及方法
CN104765072A (zh) 一种用环形天线旋转进行磁共振超前探测的方法
CN106907145A (zh) 一种随钻超前预报的视电阻率测量系统及方法
WO2020228574A1 (zh) 一种隧道地质条件协同预测方法
CN206862331U (zh) 地质内部位移三维监测系统
Qin et al. Development and application of an intelligent robot for rock mass structure detection: A case study of Letuan tunnel in Shandong, China
WO2022007365A1 (zh) Tbm搭载式矿物成分检测方法、超前地质预报方法及系统
CN105571639B (zh) 一种用于岩溶地区干溶洞内部形态的内视装置及方法
CN206095356U (zh) 一种差压水位测量仪
JPH085565A (ja) トンネル構造物の空洞・亀裂等の検査方法
CN110308169A (zh) 一种tbm渣片射线背散射实时扫描成像装置及方法
CN206073978U (zh) 一种全景探测成像装置
Yuan et al. Joint Investigation and 3D Visual Evaluation of Rock Mass Quality
CN206378262U (zh) 一种自动敲击装置及空中机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020409772

Country of ref document: AU

Date of ref document: 20201215

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901663

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20901663

Country of ref document: EP

Kind code of ref document: A1