WO2020228574A1 - 一种隧道地质条件协同预测方法 - Google Patents

一种隧道地质条件协同预测方法 Download PDF

Info

Publication number
WO2020228574A1
WO2020228574A1 PCT/CN2020/088875 CN2020088875W WO2020228574A1 WO 2020228574 A1 WO2020228574 A1 WO 2020228574A1 CN 2020088875 W CN2020088875 W CN 2020088875W WO 2020228574 A1 WO2020228574 A1 WO 2020228574A1
Authority
WO
WIPO (PCT)
Prior art keywords
geological
tunnel
prediction
information
environment
Prior art date
Application number
PCT/CN2020/088875
Other languages
English (en)
French (fr)
Inventor
袁长丰
陈秋汝
李亮
于广明
胡俊
赵建锋
Original Assignee
青岛理工大学
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学, 海南大学 filed Critical 青岛理工大学
Publication of WO2020228574A1 publication Critical patent/WO2020228574A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Definitions

  • the invention belongs to the technical field of geotechnical engineering, and relates to the "cooperative" prediction of tunnel geological conditions, so as to realize the comprehensive geological environment coordinated prediction before and after the impact of underground excavation.
  • the purpose of the present invention is to provide a method for collaborative prediction of tunnel geological conditions.
  • the beneficial effect of the present invention is that the prediction method is accurate.
  • the technical scheme adopted by the present invention includes the establishment of a mathematical model of the geological environment, the establishment of a geomechanical model, the cooperative prediction of the geological environment, the establishment of a comprehensive cooperative prediction model of the geological environment before and after the tunnel excavation is disturbed.
  • the establishment of the mathematical model of the geological environment is to establish the mathematical model of the geological environment, including the established geological information cloud micro-platform; information on the geological structure, stratum change, rock properties, floating soil properties, water-bearing properties, and spatial variation laws; geology Macroscopic information of environmental variables.
  • a geomechanical model is to establish a geomechanical model including geological structural characteristics and rock and soil mechanical properties.
  • the geological structural characteristics include the use of fractal theory to study the relationship between the microscopic characteristics of various variables of the geological environment and the macroscopic laws of the corresponding variables.
  • Mechanical properties include mechanical properties and strength characteristics of rock and soil.
  • the collaborative prediction of geological environment is to analyze the fractal distribution properties of geological environmental variables such as geological structure network and rock mass fracture network, use the multi-fractal interpolation theory of geological environment, establish mathematical models, write computer programs, and analyze the geological structure network and rock mass fracture
  • the network geological environment variables are fractal predictions, and the engineering geological exploration information, underground excavation revealing information and advanced geological forecast information are coordinated to conduct comparative analysis, verify and perfect, and realize the coordinated prediction of the geological environment.
  • the establishment of a comprehensive geological environment synergistic prediction model before tunnel excavation and after tunnel excavation is disturbed is to establish a prediction model including additional stress change characteristics and deformation field evolution law information of the geological body involved in tunnel construction under loading and unloading; underground opening
  • the duration of excavation-induced rock and soil deformation is divided into the initial period, active period, decline period and stable period; information on the spatial distribution characteristics of geological environmental variables and the law of fractal reconstruction.
  • the method of the present invention is as follows:
  • Site survey collect information about the geological environment of urban tunnels, such as Beijing, Shanghai, Hangzhou, Dalian, Xiamen, Qingdao and other places (especially, the research team has cooperated with some survey units, design units, and construction
  • the unit and the shield machine production unit have established a very good long-term cooperative relationship), through on-site investigation, survey and monitoring, understand and analyze the distribution characteristics of the urban tunnel geological environment information field and the characteristics of the ground damage induced by underground excavation, and refine key scientific issues;
  • Modeling reasoning Applying modeling reasoning to the research work of this project, that is, gradually revealing the distribution law of the initial information field of the geological environment, the principle of damage evolution of the formation environment, and the dependence on the damage to the engineering structure through the modeling process And mechanical response.
  • TBM construction projects of Chongqing Metro Line 6 and Qingdao Metro Line 2 are used as test sites, and the results are used for detection (TRT6000 wireless seismic wave three-dimensional imaging geological advanced prediction system Wireless, TRT- 6000, Seismic, 3DImagingSystem, Seeker SPR ground penetrating radar of US Radar company, etc.), prediction, early warning, simulation and analysis, and comparison with observation data to verify and improve the research results.

Abstract

一种隧道地质条件协同预测方法,包括地质环境数学模型的建立、地质力学模型的建立、地质环境的协同预测、隧道开挖前和隧道开挖扰动后综合地质环境协同预测模型的建立。有益效果是预测方法准确。

Description

一种隧道地质条件协同预测方法 技术领域
本发明属于岩土工程技术领域,涉及隧道地质条件“协同”预测,以实现地下开挖影响前和影响后综合地质环境协同预测。
背景技术
当前,我国已经成为世界最大的地下空间开发和隧道建设市场的国家,有8条海底隧道正处于规划兴建阶段;有33座城市规划了地铁建设,到2016年地铁线路将达93条,总长达2542千米,总投资额达10220亿元;我国也已经成为世界上最大的高速铁路网国家,其中超过50%的线路为高速铁路隧道。另外,从地理角度上看,中国约70%的面积为山地地形,东部沿海多山地区、中部丘陵地区和更复杂的西部盆地与高原地区都是工程建设的重点区域。在人口密集、地面建筑设施密布的城市开挖地下隧道,其环境负效应问题是不可避免的。因为,无论城市隧道埋深大小,均对围岩的岩土环境产生不同程度的扰动和破坏,进而引起岩层移动与变形,这种移动与变形发展到地表,引起地表沉降,甚至发生地质塌陷,造成地面建筑物的损伤、公共设施的破坏、浅部城市生命线工程的损坏。所以研究隧道地质条件“协同”预测技术很有实用价值。
目前国内外尚未见有报道关于隧道地质条件“协同”预测技术,通常是单一的采用地质环境信息或岩土体的力学性质,进行分析,造 成地质环境演化不准确,地质灾害预测不准等瓶颈。因此,有必要建立一套能够快速、科学、准确地评价隧道开挖前后地质环境演化的预测与评价系统方法,为城市隧道的设计建设提供依据。
发明内容
本发明的目的在于提供一种隧道地质条件协同预测方法,本发明的有益效果是预测方法准确。
本发明所采用的技术方案是包括地质环境数学模型的建立、地质力学模型的建立、地质环境的协同预测、隧道开挖前和隧道开挖扰动后综合地质环境协同预测模型的建立。
进一步,地质环境数学模型的建立是建立地质环境数学模型包括已建立的地质信息云微平台;地质构造、地层变化、岩石性质、浮土性质、含水性质的空间分布特征、空间变化规律的信息;地质环境变量的宏观规律信息。
进一步,地质力学模型的建立是建立地质力学模型包括地质构造特征和岩土力学性能两部分,地质构造特征包括运用分形理论,研究地质环境各个变量微观特征与相应变量宏观规律关系的信息,岩土力学性能包括岩土体的力学性态、强度特性。
进一步,地质环境的协同预测是分析地质构造网络、岩体断裂网络等地质环境变量的分形分布性质,运用地质环境多重分形插值理论,建立数学模型,编写计算机程序,对地质构造网络、岩体断裂网络地质环境变量进行分形预测,并协同工程地质勘探信息、地下开挖揭露信息及超前地质预报信息,进行比对分析、验证完善,实现地质 环境的协同预测。
进一步,隧道开挖前和隧道开挖扰动后综合地质环境协同预测模型的建立是建立的预测模型包括隧道施工涉及的地质体在加卸载下附加应力变化特征、变形场演化规律的信息;地下开挖诱发岩土体形变的的持续时间,划分其初始期、活跃期、衰退期和稳定期;地质环境变量时空间展布特征和分形重构规律的信息。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
本发明方法如下:
(1)现场勘测:搜集城市隧道地质环境相关资料,如北京、上海、杭州、大连、厦门、青岛等地(特别是,课题组通过产学研合作,已与地铁一些勘察单位、设计单位、施工单位以及盾构机生产单位建立了很好的长期合作关系),通过现场调查、勘测和监测,了解和分析城市隧道地质环境信息场分布特征以及地下开挖诱发地层损害特征,提炼关键科学问题;
(2)理论研究:根据云微平台运用地质统计学原理、分形理论和协同学研究建立地质环境的数学模型和地质力学模型,研究提出地质环境多重分形插值理论,建立既考虑地质环境初始(隧道开挖前)状态、又考虑隧道开挖扰动后演化状态的综合地质环境协同预测模型;
(3)室内试验:①借助我们自行研制的多功能大吨位地层相似材料试验模型,设计5个相似材料模拟模型,利用数字散斑技术和24小时全程摄像技术捕获地下工程开挖诱发地层灾害的发生规律,同时配 合仪器定位测量和精确素描,以便互相验证;②利用自行研制的应力-应变传感器测量岩体破坏过程中的应力和应变变化规律,以便验证地质灾害力学关系模型;③利用自行研制的声波测速技术,设置在地下开挖相似材料模拟试验机上,试验地下开挖扰动的地质体损伤演化机理,同时,在模型的损伤敏感区安设24小时全程摄像机及应力、应变及裂纹监测仪器,研究地下开挖诱发的工程结构损伤区域的分布规律并对损伤性态进行科学界定,利用实测数据修正并完善本研究的理论研究成果。
(4)建模推理:将建模推理运用到本项目的研究工作中,即通过建模过程逐步揭示地质环境初始信息场分布规律、地层环境的损伤演化原理,以及对工程结构损害的依存关系和力学响应。
(5)系统开发:对地层环境的信息分布规律以及地下开挖扰动后的损伤演化过程进行可视化模拟和分析;
(6)数值分析:在对地层环境的信息分布规律以及地下开挖扰动后的损伤过程进行可视化模拟的基础上,进一步通过数值计算分析地质信息场、力学形变场与地下结构工程、地面房屋建筑、城市基础设施、地面交通工程及地上下水体等之间的相互作用、相互影响和相互依存关系及产生的连锁灾害效应,验证本项目理论研究和实验成果的可靠性。
(7)工程验证:以重庆市地铁6号线和青岛市地铁2号线的TBM施工工程为试验场地,应用本成果进行探测(已购TRT6000无线震动波三维成像地质超前预报系统Wireless、TRT-6000、Seismic、 3DImagingSystem、美国US Radar公司Seeker SPR探地雷达等)、预测、预警、模拟和分析,并与观测数据对比,检验并完善研究成果。
以上所述仅是对本发明的较佳实施方式而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (5)

  1. 一种隧道地质条件协同预测方法,其特征在于:包括地质环境数学模型的建立、地质力学模型的建立、地质环境的协同预测、隧道开挖前和隧道开挖扰动后综合地质环境协同预测模型的建立。
  2. 按照权利要求1所述一种隧道地质条件协同预测方法,其特征在于:所述地质环境数学模型的建立是建立地质环境数学模型包括已建立的地质信息云微平台;地质构造、地层变化、岩石性质、浮土性质、含水性质的空间分布特征、空间变化规律的信息;地质环境变量的宏观规律信息。
  3. 按照权利要求1所述一种隧道地质条件协同预测方法,其特征在于:所述地质力学模型的建立是建立地质力学模型包括地质构造特征和岩土力学性能两部分,地质构造特征包括运用分形理论,研究地质环境各个变量微观特征与相应变量宏观规律关系的信息,岩土力学性能包括岩土体的力学性态、强度特性。
  4. 按照权利要求1所述一种隧道地质条件协同预测方法,其特征在于:所述地质环境的协同预测是分析地质构造网络、岩体断裂网络等地质环境变量的分形分布性质,运用地质环境多重分形插值理论,建立数学模型,编写计算机程序,对地质构造网络、岩体断裂网络地质环境变量进行分形预测,并协同工程地质勘探信息、地下开挖揭露信息及超前地质预报信息,进行比对分析、验证完善,实现地质环境的协同预测。
  5. 按照权利要求1所述一种隧道地质条件协同预测方法,其特征 在于:所述隧道开挖前和隧道开挖扰动后综合地质环境协同预测模型的建立是建立的预测模型包括隧道施工涉及的地质体在加卸载下附加应力变化特征、变形场演化规律的信息;地下开挖诱发岩土体形变的的持续时间,划分其初始期、活跃期、衰退期和稳定期;地质环境变量时空间展布特征和分形重构规律的信息。
PCT/CN2020/088875 2019-05-13 2020-05-07 一种隧道地质条件协同预测方法 WO2020228574A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910415240.0 2019-05-13
CN201910415240.0A CN110188426B (zh) 2019-05-13 2019-05-13 一种隧道地质条件协同预测方法

Publications (1)

Publication Number Publication Date
WO2020228574A1 true WO2020228574A1 (zh) 2020-11-19

Family

ID=67716773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088875 WO2020228574A1 (zh) 2019-05-13 2020-05-07 一种隧道地质条件协同预测方法

Country Status (2)

Country Link
CN (1) CN110188426B (zh)
WO (1) WO2020228574A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113127951A (zh) * 2021-03-17 2021-07-16 中铁第四勘察设计院集团有限公司 一种多孔空间小净距隧道设计方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110188426B (zh) * 2019-05-13 2022-09-20 青岛理工大学 一种隧道地质条件协同预测方法
CN113591187B (zh) * 2021-07-21 2024-04-09 珠海市交通勘察设计院有限公司 基于bim实景模型的道路桥梁设计方法及其系统
CN115829121B (zh) * 2022-11-30 2023-09-19 河海大学 一种深埋隧洞稳定性预测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495434A (zh) * 2011-11-25 2012-06-13 成都畅达通地下工程科技发展有限公司 地下工程超前地质预报的方法
CN102900466A (zh) * 2011-07-25 2013-01-30 中铁二十一局集团有限公司 基于三维数字隧道平台的隧道施工安全预警方法与系统
CN102900441A (zh) * 2012-09-18 2013-01-30 铁道部经济规划研究院 基于围岩完全变形控制的中国隧道修建方法
JP2017201074A (ja) * 2016-05-02 2017-11-09 大成建設株式会社 トンネル周辺地山の評価方法およびトンネル施工方法
CN110188426A (zh) * 2019-05-13 2019-08-30 青岛理工大学 一种隧道地质条件协同预测方法
CN110210051A (zh) * 2019-04-20 2019-09-06 青岛理工大学 一种岩土工程云微信息化技术

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8423337B2 (en) * 2007-08-24 2013-04-16 Exxonmobil Upstream Research Company Method for multi-scale geomechanical model analysis by computer simulation
CN102749660B (zh) * 2012-06-26 2015-01-07 中国人民解放军第二炮兵工程设计研究所 高地应力地区近水平岩层岩爆的综合预报方法
CN102900062A (zh) * 2012-10-17 2013-01-30 三峡大学 一种开挖卸荷岩体稳定性综合分析方法
CN107367772B (zh) * 2017-08-29 2019-02-12 西南石油大学 一种预测隧道前方不良地质的超前预报方法
CN109064560B (zh) * 2018-06-27 2023-05-12 青岛理工大学 一种地铁隧道施工过程中地质条件模型化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900466A (zh) * 2011-07-25 2013-01-30 中铁二十一局集团有限公司 基于三维数字隧道平台的隧道施工安全预警方法与系统
CN102495434A (zh) * 2011-11-25 2012-06-13 成都畅达通地下工程科技发展有限公司 地下工程超前地质预报的方法
CN102900441A (zh) * 2012-09-18 2013-01-30 铁道部经济规划研究院 基于围岩完全变形控制的中国隧道修建方法
JP2017201074A (ja) * 2016-05-02 2017-11-09 大成建設株式会社 トンネル周辺地山の評価方法およびトンネル施工方法
CN110210051A (zh) * 2019-04-20 2019-09-06 青岛理工大学 一种岩土工程云微信息化技术
CN110188426A (zh) * 2019-05-13 2019-08-30 青岛理工大学 一种隧道地质条件协同预测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113127951A (zh) * 2021-03-17 2021-07-16 中铁第四勘察设计院集团有限公司 一种多孔空间小净距隧道设计方法

Also Published As

Publication number Publication date
CN110188426A (zh) 2019-08-30
CN110188426B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2020228574A1 (zh) 一种隧道地质条件协同预测方法
Dai et al. Deformation forecasting and stability analysis of large-scale underground powerhouse caverns from microseismic monitoring
Zhao et al. Microseismicity monitoring and failure mechanism analysis of rock masses with weak interlayer zone in underground intersecting chambers: A case study from the Baihetan Hydropower Station, China
Xu et al. Microseismic monitoring and stability evaluation for the large scale underground caverns at the Houziyan hydropower station in Southwest China
Feng et al. Sectional velocity model for microseismic source location in tunnels
CN104345345A (zh) 一种页岩储层总有机碳toc含量预测方法
CN109029343B (zh) 一种确定未知采空区范围和老采空区残余沉降的方法
Wang et al. Development and application of a goaf-safety monitoring system using multi-sensor information fusion
CN107367772A (zh) 一种预测隧道前方不良地质的超前预报方法
Zhang et al. Cooperative monitoring and numerical investigation on the stability of the south slope of the Fushun west open-pit mine
Willenberg et al. Internal structure and deformation of an unstable crystalline rock mass above Randa (Switzerland): part II—three-dimensional deformation patterns
Liu et al. Spatial variability and time decay of rock mass mechanical parameters: A landslide study in the Dagushan open-pit mine
Ledyaev et al. An assessment of the sewer tunnel stress-strain behavior during the reconstruction of an object of cultural heritage
Qian Design of tunnel automatic monitoring system based on bim and iot
Gao et al. The development mechanism and control technology visualization of the vault cracks in the ancient underground cavern of Longyou
Xie et al. Effects of curved shield tunnelling adjacent to existing power tunnel
CN110210051A (zh) 一种岩土工程云微信息化技术
Gao et al. Determination of fractured water-conducting zone height based on microseismic monitoring: A case study in Weiqiang coalmine, Shaanxi, China
Jia et al. Stability analysis of shallow goaf based on field monitoring and numerical simulation: A case study at an Open-Pit Iron Mine, China
Zhao et al. Integrated analysis of in situ stress for tunneling underneath a municipal solid waste landfill
Osborn et al. Newberry volcano egs demonstration-phase i results
CN111898244A (zh) 一种线状工程勘察阶段岩爆风险评估方法
Islam et al. Effect of Stress Ratio K due to Varying Overburden Topography on Crack Intensity of Tunnel Liner
Krkač et al. Japanese-Croatian Project: preliminary investigations of the Kostanjek landslide
Entwisle 3D geological modelling at the British Geological Survey (BGS)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20806813

Country of ref document: EP

Kind code of ref document: A1