WO2021121201A1 - 触摸屏初始值设置方法、触摸屏及显示装置、电子设备 - Google Patents

触摸屏初始值设置方法、触摸屏及显示装置、电子设备 Download PDF

Info

Publication number
WO2021121201A1
WO2021121201A1 PCT/CN2020/136372 CN2020136372W WO2021121201A1 WO 2021121201 A1 WO2021121201 A1 WO 2021121201A1 CN 2020136372 W CN2020136372 W CN 2020136372W WO 2021121201 A1 WO2021121201 A1 WO 2021121201A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
block
touch screen
blocks
electrode layer
Prior art date
Application number
PCT/CN2020/136372
Other languages
English (en)
French (fr)
Inventor
申丹丹
Original Assignee
集创北方(深圳)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 集创北方(深圳)科技有限公司 filed Critical 集创北方(深圳)科技有限公司
Priority to JP2022538431A priority Critical patent/JP2023507835A/ja
Priority to US17/787,585 priority patent/US20220413655A1/en
Priority to KR1020227024945A priority patent/KR20220137633A/ko
Publication of WO2021121201A1 publication Critical patent/WO2021121201A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the present invention relates to the field of touch technology, in particular to a method for setting initial values of a touch screen, a touch screen, a display device, and electronic equipment.
  • touch devices are widely used in various electronic terminals.
  • the current touch screens used on display devices or electronic devices are no longer just regular square screens.
  • the purpose of the present invention is to provide a method for setting the initial value of a touch screen, a touch screen, a display device, and an electronic device, so as to improve the consistency of the initial capacitance values of the sensing electrodes in the touch screen.
  • a touch screen including a driving electrode layer, including a plurality of driving electrodes; and a sensing electrode layer, the sensing electrode layer is divided into a plurality of first sub-blocks and at least one basic block, so as to
  • the basic block is a reference to divide each of the first sub-blocks into a plurality of second sub-blocks, the basic block and the plurality of second sub-blocks serve as sensing electrodes, and the second The area of the sub-block is basically the same as the area of the basic block.
  • the first sub-block is divided into a plurality of second sub-blocks based on the area of the first sub-block and the area of the basic block.
  • the second sub-blocks located in the same first sub-block have the same area.
  • the shape of the base block is the same as the shape of the sensing electrode layer.
  • the geometric center of the basic block coincides with the geometric center of the sensing electrode layer.
  • At least part of the first sub-block is ring-shaped.
  • the edge shape of at least part of the first sub-block is the same as the shape of the sensing electrode layer.
  • the shape of the sensing electrode layer is square, polygonal or circular.
  • the characteristic size of the basic block is 2 mm to 8 mm.
  • a display device including the above-mentioned touch screen.
  • the sensing electrodes of the touch screen are multiplexed as display electrodes.
  • the display device includes, but is not limited to, an LED display device, a liquid crystal display device, a micro LED display device, and an OLED display device.
  • an electronic device including the above-mentioned touch screen.
  • the electronic device includes, but is not limited to, a mobile phone, a computer, a tablet computer, or a wearable electronic device.
  • a method for setting an initial value of a touch screen including: dividing a sensing electrode layer into a plurality of first sub-blocks and at least one basic block; and using the basic block as a reference
  • the first sub-block is divided into a plurality of second sub-blocks, the basic block and the plurality of second sub-blocks are used as sensing electrodes, and the area of the second sub-block is the same as that of the basic
  • the area of the blocks is basically the same.
  • the shape of the base block is the same as the shape of the sensing electrode layer.
  • the step of dividing the first sub-block into a plurality of second sub-blocks includes: obtaining the first sub-areas based on the area of the first sub-block and the area of the basic block A block includes the number of second sub-blocks; and based on the number of the first sub-block including the second sub-block, the first sub-block is divided into a plurality of first sub-blocks with reference to the center of the basic block Two sub-blocks.
  • the geometric center of the basic block coincides with the geometric center of the sensing electrode layer.
  • At least part of the first sub-block is ring-shaped.
  • a basic block is used as a sensing electrode for reference to obtain a plurality of second sub-blocks as the sensing electrode.
  • the area of the second sub-block is The area is basically the same as that of the basic block, so that the initial capacitance value of the second sub-block is basically the same as the initial capacitance value of the basic block, which improves the consistency of the initial capacitance value between the sensing electrodes in the touch screen without using software Algorithm compensation saves costs and resources.
  • the shape of the base block and the shape of the sensing electrode layer are the same.
  • the geometric center of the basic block coincides with the geometric center of the sensing electrode layer.
  • the first sub-block sequentially surrounds the basic block, and the shape of the first sub-block is a concentric ring. The above-mentioned arrangement method between the first sub-block area and the basic block area in the sensing electrode layer makes the method of dividing the sensing electrode layer easier.
  • Fig. 1 shows a schematic diagram of a sensing electrode layer of a touch screen provided according to the prior art
  • FIG. 2 shows a schematic diagram of a sensing electrode layer of a touch screen according to an embodiment of the present invention
  • FIG. 3 shows a flowchart of a method for dividing a touch screen sensing electrode layer according to an embodiment of the present invention
  • FIGS 4a-4b show schematic diagrams of the split touch screen sensing electrode layer provided in various steps according to an embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a sensing electrode layer of a touch screen provided according to the prior art.
  • the sensing electrode layer 100 of the touch screen is circular as an example.
  • the sensing electrode layer 100 includes a plurality of sensing electrodes, wherein the percentage marked in each sensing electrode in the figure is the ratio of the area of each sensing electrode to the reference area, where the reference area is, for example, the ideal value of each sensing electrode in the sensing electrode layer 100 area.
  • the area of the sensing electrode is proportional to its initial capacitance value.
  • the sensing electrode layer 100 of the touch screen includes a plurality of square sensing electrodes 110 located in the middle area of the sensing electrode layer obtained by uniform division and a plurality of irregular sensing electrodes 120 located in the peripheral area of the sensing electrode layer obtained by special-shaped division.
  • the area of the plurality of sensing electrodes 110 in the 4*4 array in the middle area of the sensing electrode layer 100 is all 111.11% of the reference area, that is, the distribution is uniform.
  • the areas of the multiple square sensing electrodes 110 on the periphery of the 4*4 array in the middle area are all reference areas, but are different from the area of the sensing electrodes in the 4*4 array in the middle area.
  • the initial capacitance difference between the two uses software make up.
  • the different-shaped sensing electrodes 120 located in the peripheral area of the sensing electrode layer 100 have area differences, and there are also area differences between the sensing electrodes located in the middle area of the sensing electrode layer 100, and the sensing electrodes in the sensing electrode layer 100 are different from each other.
  • the consistency of the initial capacitance value is poor and needs to be compensated by software algorithms.
  • FIG. 2 shows a schematic diagram of a sensing electrode layer of a touch screen according to an embodiment of the present invention.
  • the shape of the sensing electrode layer of the touch screen can be square, polygonal or circular.
  • the Incell (in-cell) touch screen is widely used because of its thin module thickness and low production cost.
  • the Incell touch screen uses the principle of self-capacitance or mutual capacitance to detect the position of a finger touch.
  • the Incell touch screen is equipped with multiple independent capacitance arrays on the same layer, so as to realize multi-point touch of the touch device.
  • the touch screen in this embodiment is described with an incell structure touch screen as an example, but the touch screen provided by the present invention is not limited to this, for example, it may also be other single-layer structure touch screens.
  • the sensing electrode layer 200 of the touch screen is circular as an example.
  • the sensing electrode layer 200 is divided into a plurality of first sub-block areas and at least one basic block area, specifically, includes the first sub-blocks 220, 230, 240 and the basic block 210.
  • the first sub-block 220 includes a plurality of second sub-blocks 221
  • the first sub-block 230 includes a plurality of second sub-blocks 231
  • the first sub-block 240 includes a plurality of second sub-blocks 241 .
  • the area ratio of the second sub-blocks 221, 231, 241 to the basic block 210 is 99.5%-100.5%.
  • the number of the second sub-blocks 221 is related to the area of the first sub-block 220 and the area of the basic block 210
  • the number of the second sub-blocks 231 is related to the area of the first sub-block 230 and the basic block.
  • the area of 210 is related
  • the number of the aforementioned second sub-blocks 241 is related to the area of the first sub-block 240 and the area of the basic block 210.
  • a plurality of second sub-blocks located in the same first sub-block have the same area.
  • the base block 210 is used as a reference sensing electrode to obtain a plurality of second sub-blocks with the same area as the base block 210 or with a very small difference as sensing electrodes, so as to make the initial capacitance value between the sensing electrodes in the sensing electrode layer 200 Improved consistency.
  • the shape of the base block 210 and the shape of the sensing electrode layer 200 are the same.
  • the geometric center of the basic block 210 coincides with the geometric center of the sensing electrode layer 200.
  • the first sub-blocks 220, 230, and 240 surround the basic block 210 in turn.
  • the first sub-blocks 220, 230, and 240 are concentric circles in shape.
  • the above arrangement method between the first sub-block area and the base block area in the sensing electrode layer 200 makes the method of dividing the sensing electrode layer 200 simpler, and the initial capacitance value of the sensing electrode between the sensing electrode layers 200 The consistency is higher.
  • the consistency of the initial capacitance values of the sensing electrodes between the sensing electrode layers 200 is related to the area ratio between the sensing electrodes, and the accuracy of the area ratio is related to the area of each first sub-block and the area of the basic block.
  • the characteristic size of the sensing electrode is set according to the contact size of the human body using the electronic device's finger, that is, the characteristic size of the basic block 210 is set to 2 mm to 8 mm.
  • FIG. 3 shows a flowchart of a method for dividing a touch screen sensing electrode layer according to an embodiment of the present invention
  • FIGS. 4a-4b show the steps of dividing a touch screen sensing electrode layer according to an embodiment of the present invention.
  • This application also provides a method for setting the initial value of the touch screen, because in this application, the area of the sensing electrode is related to the initial capacitance value of the sensing electrode as the main consideration. Therefore, the method mainly involves dividing the sensing electrode layer of the touch screen. The following takes a circular shape of the sensing electrode layer as an example for specific description.
  • the method of dividing the sensing electrode layer of a touch screen includes the following steps:
  • Step S01 Divide the sensing electrode layer into a plurality of first sub-blocks and at least one basic block.
  • the sensing electrode layer 200 is divided into first sub-blocks 220, 230, 240 and a basic block 210.
  • the basic block 210 serves as a reference sensing electrode.
  • the shape of the base block 210 and the shape of the sensing electrode layer 200 are both circular, and the geometric center of the base block 210 coincides with the geometric center of the sensing electrode layer 200.
  • the first sub-blocks 220, 230, and 240 surround the basic block 210 in turn.
  • the first sub-blocks 220, 230, and 240 are in the shape of concentric circles, and the four circles obtained above are from The outward radius of the circle is a, b, c, d.
  • the shape of the sensing electrode layer 200 may be a polygon, a square, etc.
  • the shape of the corresponding basic block 210 may be a polygon, a square, etc.
  • the first sub-block is set once around the basic block, and its shape It is a concentric ring shape, and the edge shape of the ring shape is the same as the shape of the sensing electrode layer 200.
  • Step S02 Divide the first sub-block into a plurality of second sub-blocks.
  • the number of the first sub-block containing the second sub-block is obtained based on the area of each first sub-block and the area of the basic block 210, and then the second sub-block is obtained based on the first sub-block containing the second sub-block
  • the number of blocks takes the center of the basic block 210 as a reference and divides the first sub-block into a plurality of second sub-blocks.
  • the basic block 210 and the second sub-block are used as sensing electrodes, and the ratio of the area of the second sub-block to the area of the basic block 210 is 99.5%-100.5%, so that the initial capacitance value of the second sub-block is the same as the basic The ratio of the initial capacitance value of the block 210 is 99.5%-100.5%.
  • first sub-block 210 is sequentially divided into a plurality of second sub-blocks 221, and the first sub-blocks 220, 230, and 240 are divided into a plurality of corresponding second sub-blocks.
  • the sensing electrode layer 200 as shown in FIG. 2 is obtained.
  • n, and q are the actual number of the second sub-blocks to be divided as sensing electrodes, they need to be integers.
  • the relationship between the radius of each first sub-block, the basic block and the divisible number of the second sub-block can be obtained, that is,
  • the radius of the basic block 210 as a sensing electrode is set according to the contact size of the human body using the electronic device's finger, for example, the radius a of the basic block 210 is 5 mm.
  • the first sub-block of the ring with m, n, q too small has only a few recognition areas, and its sensing accuracy is poor.
  • the present application also provides a display device, including the touch screen provided above, in which the sensing electrodes of the touch screen can be multiplexed as display electrodes.
  • Display devices include, but are not limited to, LED display devices, liquid crystal display devices, micro LED display devices, and OLED display devices.
  • the application also includes an electronic device including the touch screen provided above.
  • the electronic equipment includes, but is not limited to, mobile phones, computers, tablets, and wearable electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

公开了一种触摸屏初始值设置方法、触摸屏及显示装置、电子设备。触摸屏包括:驱动电极层,包括多个驱动电极;以及感应电极层,感应电极层分为多个第一子区块和至少一个基础区块,以基础区块为参考将每个第一子区块分割为多个第二子区块,基础区块和多个第二子区块作为感应电极,第二子区块的面积与基础区块的面积基本相同。本申请提升了感应电极层中的多个感应电极之间的初始电容值的一致性。

Description

触摸屏初始值设置方法、触摸屏及显示装置、电子设备
本申请要求了2019年12月18日提交的、申请号为CN201911312639.2、发明名称为“触摸屏初始值设置方法、触摸屏及显示装置、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及触控技术领域,尤其涉及一种触摸屏初始值设置方法、触摸屏及显示装置、电子设备。
背景技术
随着触控技术的发展,触控装置广泛应用于各种电子终端中。为适应需求,目前显示装置或者电子设备上采用的触摸屏不再仅仅是规则的方形屏。为实现触摸屏的多点触控,对感应电极层分割设计的难度增大。
现有技术中,常通过软件补偿因分割得到的各感应电极初始电容值不一致的情况。然而,当分割得到的各感应电极之间的初始电容差距太大时很难通过软件补偿提升感应电极初始电容值的一致性。
发明内容
鉴于上述问题,本发明的目的在于提供一种触摸屏初始值设置方法、触摸屏及显示装置、电子设备,以提升触摸屏中感应电极的初始电容值的一致性。
根据本发明的一方面,提供一种触摸屏,包括驱动电极层,包括多个驱动电极;以及感应电极层,所述感应电极层分为多个第一子区块和至少一个基础区块,以所述基础区块为参考将每个所述第一子区块分割为多个第二子区块,所述基础区块和多个所述第二子区块作为感应电极,所述第二子区块的面积与所述基础区块的面积基本相同。
优选地,基于所述第一子区块的面积与所述基础区块的面积将所述第一子区块分割为多个第二子区块。
优选地,位于同一所述第一子区块中的第二子区块的面积相同。
优选地,所述基础区块的形状和所述感应电极层的形状相同。
优选地,所述基础区块的几何中心与所述感应电极层的几何中心重合。
优选地,至少部分所述第一子区块为环形。
优选地,至少部分所述第一子区块的边缘形状与所述感应电极层的形状相同。
优选地,所述感应电极层的形状为方形、多边形或者圆形。
优选地,其特征在于,所述基础区块的特征尺寸为2mm~8mm。
根据本发明的另一方面,提供一种显示装置,包括上述所述的触摸屏。
优选地,所述触摸屏的感应电极复用为显示电极。
优选地,所述显示装置包括但不限于LED显示装置、液晶显示装置、micro LED显示装置、OLED显示装置。
根据本发明的另一方面,提供一种电子设备,包括上述所述的触控屏。
优选地,所述电子设备包括但不限于手机、计算机、平板电脑或者可穿戴电子设备。
根据本发明的另一方面,提供一种触控屏初始值设置方法,包括:将感应电极层分为多个第一子区块和至少一个基础区块;以及以所述基础区块为参考将所述第一子区块分割为多个第二子区块,所述基础区块和多个所述第二子区块作为感应电极,所述第二子区块的面积与所述基础区块的面积基本相同。
优选地,所述基础区块的形状和所述感应电极层的形状相同。
优选地,将所述第一子区块分割为多个第二子区块的步骤包括:基于所述第一子区块的面积与所述基础区块的面积获得该所述第一子区块包含第二子区块的数量;以及基于所述第一子区块包含第二子区块的数量以所述基础区块的中心为参照将所述第一子区块分割为多个第二子区块。
优选地,所述基础区块的几何中心与所述感应电极层的几何中心重合。
优选地,至少部分所述第一子区块为环形。
本发明提供的触摸屏初始值设置方法、触摸屏及显示装置、电子设备,通过采用基础区块作为参考的感应电极,以得到多个作为感应电极的第二子区块,第二子区块的面积与基础区块的面积基本相同,以使得第二子区块的初始电容值与基础区块的初始电容值基本相同,提升了触摸屏中感应电极之间的初始电容值的一致性,无需使用软件算法补偿,节约了成本和资源。
在一些优选的实施例中,基础区块的形状和感应电极层的形状相同。其基础区块的几何中心与感应电极层的几何中心重合。第一子区块依次围绕基础区块,第一子区块的形状为同心环形。感应电极层中的第一子区块区域与基础区块区域之间的上述设置方式,使得分割感应电极层的方式更简单。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更 为清楚,在附图中:
图1示出了根据现有技术提供的触控屏的感应电极层的示意图;
图2示出了根据本发明实施例提供的触控屏的感应电极层的示意图;
图3示出了根据本发明实施例提供的分割触控屏感应电极层的方法流程图;
图4a-4b示出了根据本发明实施例提供的分割触控屏感应电极层在各个步骤中的示意图。
具体实施方式
以下将参照附图更详细地描述本发明的各种实施例。在各个附图中,相同的元件采用相同或类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
图1示出了根据现有技术提供的触控屏的感应电极层的示意图。
如图1所示,触摸屏的感应电极层100以圆形为例。感应电极层100包括多个感应电极,其中图中每个感应电极中标注的百分比为每个感应电极的面积与参考面积的比值,其中参考面积例如为该感应电极层100中各个感应电极的理想面积。其中感应电极的面积与自身的初始电容值成正比。
进一步地,触摸屏的感应电极层100包括通过均匀分割得到的位于感应电极层中间区域的多个方形的感应电极110和通过异形分割得到的位于感应电极层周边区域的多个异形的感应电极120。其中,感应电极层100中间区域的4*4阵列中的多个感应电极110的面积均为参考面积的111.11%,即分布均匀。中间区域的4*4阵列外围的多个方形感应电极110的面积均为参考面积但与中间区域的4*4阵列中的感应电极的面积不同,两者之间的初始电容值的差距采用软件补偿。位于感应电极层100周边区域的异形的各感应电极120之间存在面积差异,并且与位于感应电极层100中间区域的感应电极之间也存在面积差异,进而感应电极层100中各感应电极之间的初始电容值的一致性差,需要通过软件算法补偿。
图2示出了根据本发明实施例提供的触控屏的感应电极层的示意图。
为适应需求,触摸屏的感应电极层的形状可以为方形、多边形或者圆形。其中Incell(内嵌式)触摸屏因其模组厚度薄、制作成本低被广泛应用。Incell触摸屏利用自电容或互电容的原理检测手指触摸的位置。Incell触摸屏中设置多个位于同层且相互独立的电容阵列,从而实现触控装置的多点触摸。本实施例中的触摸屏以incell结构的触摸屏为例进行说明,但本发明提供的触摸屏不限于此,例如还可以是其他单层结构的触摸屏。
如图2所示,触摸屏的感应电极层200以圆形为例。感应电极层200分为多个第一子区块区域以及至少一个基础区块区域,具体地,包括第一子区块220、230、240以及基础区块210。 第一子区块220中包括多个第二子区块221,第一子区块230中包括多个第二子区块231,第一子区块240中包括多个第二子区块241。第二子区块221、231、241分别与基础区块210的面积比值为99.5%~100.5%。其中上述第二子区块221的数量与第一子区块220的面积和基础区块210的面积相关,上述第二子区块231的数量与第一子区块230的面积和基础区块210的面积相关,上述第二子区块241的数量与第一子区块240的面积和基础区块210的面积相关。优选地,位于同一第一子区块中的多个第二子区块的面积相同。基础区块210作为参考的感应电极以得到多个面积与基础区块210相同或者差距极小的第二子区块作为感应电极,进而使得感应电极层200中的感应电极之间的初始电容值的一致性提高。
进一步地,基础区块210的形状和感应电极层200的形状相同。其基础区块210的几何中心与感应电极层200的几何中心重合。第一子区块220、230、240依次围绕基础区块210,在本实施例中,第一子区块220、230、240的形状为同心圆环形。感应电极层200中的第一子区块区域与基础区块区域之间的上述设置方式,使得分割感应电极层200的方式更简单,并且感应电极层200之间的感应电极的初始电容值的一致性更高。其中,感应电极层200之间的感应电极的初始电容值的一致性与各感应电极之间的面积比值相关,面积比值的精度与各第一子区块的面积和基础区块的面积相关。
在优选的实施例中,触控屏为指纹触摸屏时,感应电极的特征尺寸根据人体使用电子设备的手指接触尺寸设置,即,基础区块210的特征尺寸设为2mm~8mm。
图3示出了根据本发明实施例提供的分割触控屏感应电极层的方法流程图,图4a-4b示出了根据本发明实施例提供的分割触控屏感应电极层在各个步骤中的示意图。
本申请还提供一种触控屏初始值设置方法,因在本申请中,以感应电极的面积与感应电极的初始电容值相关为主要考虑因素。因此该方法主要涉及分割触控屏的感应电极层。以下以感应电极层为圆形为例进行具体说明。
如图3所示,分割触控屏感应电极层的方法包括如下步骤:
步骤S01:将感应电极层分为多个第一子区块和至少一个基础区块。参见图4a,将感应电极层200分为第一子区块220、230、240以及基础区块210。基础区块210作为参考的感应电极。
进一步地,基础区块210的形状与感应电极层200的形状形同皆为圆形,其基础区块210的几何中心与感应电极层200的几何中心重合。第一子区块220、230、240依次围绕基础区块210,在本实施例中,第一子区块220、230、240的形状为同心圆环形,其中上述得到的4个圆形从圆心朝外半径依次为a、b、c、d。
在替代的实施例中,感应电极层200的形状可以是多边形、方形等,对应的基础区块210的形状可以是多边形、方形等,而第一子区块围绕基础区块一次设置,其形状为同心环形,该 环形的边缘形状与感应电极层200的形状相同。
步骤S02:将所述第一子区块分割为多个第二子区块。参见图4b,基于每个第一子区块的面积与基础区块210的面积获得该第一子区块包含第二子区块的数量,进而基于该第一子区块包含第二子区块的数量以基础区块210的中心为参照将该第一子区块分割为多个第二子区块。基础区块210和第二子区块作为感应电极,第二子区块的面积与基础区块210的面积的比值为99.5%~100.5%,以使得第二子区块的初始电容值与基础区块210的初始电容值的比值为99.5%~100.5%。
进一步地,依次将第一子区块210分割为多个第二子区块221,以及将第一子区块220、230、240分割为多个对应的第二子区块。进而得到如图2所示的感应电极层200。
具体地,以下是其中一种分割感应电极层的实施方法。其中,基础区块210的面积为S1=πa 2,第一子区块220的面积为S2=πb 2-πa 2,第一子区块230的面积为S3=πc 2-πb 2,第一子区块240的面积为S4=πd 2-πc 2。其中将第一子区块220平均分割为m份,使得S2/m=S1,将第一子区块230平均分割为n份,使得S3/n=S1,将第一子区块240平均分割为q份,使得S4/q=S1。由于m,n,q均为实际要分割的作为感应电极的第二子区块的数量,所以需要取值为整数。综上,可以得到各第一子区块、基础区块的半径与第二子区块可分割的数量之间的关系,即,
Figure PCTCN2020136372-appb-000001
Figure PCTCN2020136372-appb-000002
优选地,作为一个感应电极的基础区块210的半径根据人体使用电子设备的手指接触尺寸设置,例如,基础区块210的半径a为5mm。内圆不作分割,基础区块210的面积为S1=78.5398mm 2。并且m,n,q太小时环形的第一个子区块中仅有很少的识别区域,其感应精度差。
本实施例中,以令m=8,即第一子区块220中分割得到8个第二子区块221作为感应电极,得到b=15mm,进而第一子区块220的面积为S2=78.5398mm 2。令n=10,即第一子区块230中分割得到10个第二子区块231作为感应电极,可得到c≈21.8mm,进而第一子区块230的面积为S3=78.6253mm 2。令q=16,即第一子区块240中分割得到16个第二子区块241作为感应电极,可得d≈29.6mm;进而第一子区块240的面积为S4=78.7205mm 2。本实施例中,S1=S2面积为100%时,S3面积为100.1%,S4面积为100.2%,即,本实施例中感应电极的面积之间的比值趋向于100%,进而感应电极层200中个感应电极的初始电容值的一致性高,无需软件算法进行补偿,节约了成本和资源。在替代的实施例中,m,n,q的取值也可以根据实际需求进行调整,来实现需求的精度。
本申请还提供一种显示装置,包括上述提供的触摸屏,在该显示装置中触摸屏的感应电极可以复用为显示电极。显示装置包括但不限于LED显示装置、液晶显示装置、micro LED显示装置、OLED显示装置。
本申请还包括一种电子设备,包括上述提供的触摸屏。该电子设备包括但不限于手机、计算机、平板电脑、可穿戴电子设备。
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (20)

  1. 一种触摸屏,其特征在于,包括:
    驱动电极层,包括多个驱动电极;以及
    感应电极层,所述感应电极层分为多个第一子区块和至少一个基础区块,以所述基础区块为参考将每个所述第一子区块分割为多个第二子区块,所述基础区块和多个所述第二子区块作为感应电极,所述第二子区块的面积与所述基础区块的面积基本相同。
  2. 根据权利要求1所述的触摸屏,其特征在于,基于所述第一子区块的面积与所述基础区块的面积将所述第一子区块分割为多个第二子区块。
  3. 根据权利要求2所述的触摸屏,其特征在于,位于同一所述第一子区块中的第二子区块的面积相同。
  4. 根据权利要求1所述的触摸屏,其特征在于,所述基础区块的形状和所述感应电极层的形状相同。
  5. 根据权利要求4所述的触摸屏,其特征在于,所述基础区块的几何中心与所述感应电极层的几何中心重合。
  6. 根据权利要求4所述的触摸屏,其特征在于,至少部分所述第一子区块为环形。
  7. 根据权利要求6所述的触摸屏,其特征在于,至少部分所述第一子区块的边缘形状与所述感应电极层的形状相同。
  8. 根据权利要求1所述的触摸屏,其特征在于,所述感应电极层的形状为方形、多边形或者圆形。
  9. 根据权利要求8所述的触摸屏初始值设置方法,其特征在于,所述基础区块的特征尺寸为2mm~8mm。
  10. 一种显示装置,其特征在于,包括:
    权利要求1-9任一项所述的触摸屏。
  11. 根据权利要求10所述的显示装置,其特征在于,所述触摸屏的感应电极复用为显示电极。
  12. 根据权利要求10所述的显示装置,其特征在于,所述显示装置包括但不限于LED显示装置、液晶显示装置、micro LED显示装置、OLED显示装置。
  13. 一种电子设备,其特征在于,包括:
    权利要求1-9任一项所述的触控屏。
  14. 根据权利要求13所述的电子设备,其特征在于,所述电子设备包括但不限于手机、计算机、平板电脑、可穿戴电子设备。
  15. 一种触控屏初始值设置方法,其特征在于,包括:
    将感应电极层分为多个第一子区块和至少一个基础区块;以及
    以所述基础区块为参考将所述第一子区块分割为多个第二子区块,所述基础区块和多个所述第二子区块作为感应电极,所述第二子区块的面积与所述基础区块的面积基本相同。
  16. 根据权利要求15所述的触控屏初始值设置方法,其特征在于,所述基础区块的形状和所述感应电极层的形状相同。
  17. 根据权利要求15所述的触控屏初始值设置方法,其特征在于,将所述第一子区块分割为多个第二子区块的步骤包括:
    基于所述第一子区块的面积与所述基础区块的面积获得该所述第一子区块包含第二子区块的数量;以及
    基于所述第一子区块包含第二子区块的数量以所述基础区块的中心为参照将所述第一子区块分割为多个第二子区块。
  18. 根据权利要求15所述的触控屏初始值设置方法,其特征在于,所述基础区块的几何中心与所述感应电极层的几何中心重合。
  19. 根据权利要求18所述的触摸屏初始值设置方法,其特征在于,至少部分所述第一子区块为环形。
  20. 根据权利要求19所述的触摸屏初始值设置方法,其特征在于,至少部分所述第一子区块的边缘形状与所述感应电极层的形状相同。
PCT/CN2020/136372 2019-12-18 2020-12-15 触摸屏初始值设置方法、触摸屏及显示装置、电子设备 WO2021121201A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022538431A JP2023507835A (ja) 2019-12-18 2020-12-15 タッチスクリーンの初期値設定方法、タッチスクリーン及び表示装置、電子デバイス
US17/787,585 US20220413655A1 (en) 2019-12-18 2020-12-15 Touch screen, initial value setting method therefor, display device and electronic device
KR1020227024945A KR20220137633A (ko) 2019-12-18 2020-12-15 터치 스크린 초기값 설정 방법, 터치 스크린 및 디스플레이 장치, 전자장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911312639.2 2019-12-18
CN201911312639.2A CN111124178B (zh) 2019-12-18 2019-12-18 触摸屏初始值设置方法、触摸屏及显示装置、电子设备

Publications (1)

Publication Number Publication Date
WO2021121201A1 true WO2021121201A1 (zh) 2021-06-24

Family

ID=70498322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136372 WO2021121201A1 (zh) 2019-12-18 2020-12-15 触摸屏初始值设置方法、触摸屏及显示装置、电子设备

Country Status (5)

Country Link
US (1) US20220413655A1 (zh)
JP (1) JP2023507835A (zh)
KR (1) KR20220137633A (zh)
CN (1) CN111124178B (zh)
WO (1) WO2021121201A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111124178B (zh) * 2019-12-18 2023-04-07 集创北方(深圳)科技有限公司 触摸屏初始值设置方法、触摸屏及显示装置、电子设备
CN113885740A (zh) * 2021-10-11 2022-01-04 深圳市德明利技术股份有限公司 一种圆形触摸装置及手表

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026904B2 (en) * 2007-01-03 2011-09-27 Apple Inc. Periodic sensor panel baseline adjustment
CN103309490A (zh) * 2012-03-16 2013-09-18 联想(北京)有限公司 一种触摸输入设备定位调节方法、装置和触摸输入设备
CN105242814A (zh) * 2015-09-14 2016-01-13 友达光电(苏州)有限公司 电容式触控结构及其触控显示装置
CN206236055U (zh) * 2016-12-07 2017-06-09 北京集创北方科技股份有限公司 触摸感应装置及其触控设备
CN111124178A (zh) * 2019-12-18 2020-05-08 集创北方(深圳)科技有限公司 触摸屏初始值设置方法、触摸屏及显示装置、电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8144129B2 (en) * 2007-01-05 2012-03-27 Apple Inc. Flexible touch sensing circuits
CN102819366A (zh) * 2011-06-09 2012-12-12 天津富纳源创科技有限公司 触摸屏面板及触摸屏
CN103399677A (zh) * 2013-07-12 2013-11-20 浙江新涛电子科技有限公司 一种电容式触摸感应装置
CN104820532B (zh) * 2015-05-08 2018-09-25 厦门天马微电子有限公司 一种触控装置、触控装置的驱动方法和液晶显示面板
KR101908463B1 (ko) * 2017-02-16 2018-10-17 주식회사 하이딥 터치 입력 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026904B2 (en) * 2007-01-03 2011-09-27 Apple Inc. Periodic sensor panel baseline adjustment
CN103309490A (zh) * 2012-03-16 2013-09-18 联想(北京)有限公司 一种触摸输入设备定位调节方法、装置和触摸输入设备
CN105242814A (zh) * 2015-09-14 2016-01-13 友达光电(苏州)有限公司 电容式触控结构及其触控显示装置
CN206236055U (zh) * 2016-12-07 2017-06-09 北京集创北方科技股份有限公司 触摸感应装置及其触控设备
CN111124178A (zh) * 2019-12-18 2020-05-08 集创北方(深圳)科技有限公司 触摸屏初始值设置方法、触摸屏及显示装置、电子设备

Also Published As

Publication number Publication date
KR20220137633A (ko) 2022-10-12
CN111124178B (zh) 2023-04-07
JP2023507835A (ja) 2023-02-27
CN111124178A (zh) 2020-05-08
US20220413655A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2021121201A1 (zh) 触摸屏初始值设置方法、触摸屏及显示装置、电子设备
US8319747B2 (en) Single layer touch panel with segmented drive and sense electrodes
JP6488427B2 (ja) アクティブスタイラスリング電極
EP3343334B1 (en) Touch control electrode structure, touch control panel and display apparatus
US9703415B2 (en) Touch panel, touch positioning method thereof and display device
CN107209614B (zh) 传感器、输入装置、键盘以及电子装置
WO2015180322A1 (zh) 内嵌式触摸屏以及显示装置
WO2019000531A1 (zh) 触控显示面板及触控显示装置
WO2019041985A1 (zh) 金属网格、触控显示装置以及改善触控显示装置摩尔纹的方法
CN107656651B (zh) 显示面板以及显示装置
US10234973B2 (en) Touch panel, display device and driving method thereof
US10949042B2 (en) Substrate, display apparatus and control method of the substrate
WO2019029376A1 (zh) 触控面板、其制作方法、触摸屏及显示装置
US10459589B2 (en) Touch substrate comprising radiused touch electrode boundaries mask plate, and method for fabricating the same
WO2020001116A1 (zh) 一种触控面板、电子设备和信息处理方法
WO2019090585A1 (en) Touch substrate and touch control display apparatus
WO2018000479A1 (zh) 阵列基板及触控显示屏
CN206236055U (zh) 触摸感应装置及其触控设备
US20200089373A1 (en) Touch component, touch apparatus, and touch-control method
US9977548B2 (en) Touch panel and touch electrode structure thereof
US20210157430A1 (en) Touch display panel and touch display device
US11983370B2 (en) Spherical or highly curved touch-sensitive surfaces
WO2020034287A1 (zh) 显示装置
TW201028757A (en) Touch panel device
WO2017113908A1 (zh) 一种压力传感装置及具有该压力传感装置的终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903129

Country of ref document: EP

Kind code of ref document: A1