WO2020001116A1 - 一种触控面板、电子设备和信息处理方法 - Google Patents

一种触控面板、电子设备和信息处理方法 Download PDF

Info

Publication number
WO2020001116A1
WO2020001116A1 PCT/CN2019/081077 CN2019081077W WO2020001116A1 WO 2020001116 A1 WO2020001116 A1 WO 2020001116A1 CN 2019081077 W CN2019081077 W CN 2019081077W WO 2020001116 A1 WO2020001116 A1 WO 2020001116A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
touch
touch panel
capacitance
axis
Prior art date
Application number
PCT/CN2019/081077
Other languages
English (en)
French (fr)
Inventor
侯立杰
张利达
高晨明
王鑫
Original Assignee
北京集创北方科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京集创北方科技股份有限公司 filed Critical 北京集创北方科技股份有限公司
Priority to KR1020207019613A priority Critical patent/KR102406530B1/ko
Priority to US16/961,240 priority patent/US11429241B2/en
Publication of WO2020001116A1 publication Critical patent/WO2020001116A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present disclosure relates to the field of touch devices, and in particular, to a touch panel, an electronic device, and an information processing method.
  • touch panels With the continuous development of touch technology, the application of touch devices has become more and more popular, and the traditional touch panels are almost rectangular, and the corresponding touch electrode patterns are also rectangular or square. With the emergence of the Internet of Things and wearable devices, the application and demand of special-shaped screens are booming, so touch panels of various shapes, such as circular or oval shapes, are gradually produced.
  • the present disclosure proposes a touch panel, an electronic device, and an information processing method capable of simple structure and better applicability.
  • a touch panel including: a substrate, and an electrode layer formed in or on the substrate, the shape of the electrode layer being the same as that of the touch panel. Shape correspondence
  • the electrode layer includes a plurality of electrodes configured in a hexagonal shape, and each electrode is connected to form the electrode layer.
  • the electrode layer includes a first electrode, and a second electrode which is sequentially extended and arranged in sequence with the first electrode as a center.
  • the touch panel further includes:
  • a detection module which is connected to each electrode of the electrode layer and is configured to detect a capacitance value of each electrode
  • the data processing module is configured to determine touch information of the touch panel based on a capacitance value of each electrode detected by the detection module.
  • the data processing module is further configured to determine the capacitance change amount of each electrode when the sum of a capacitance change amount of each electrode exceeds a first threshold value, or when the capacitance change amount of at least one of the electrodes exceeds a second threshold value.
  • the touch panel is touched.
  • the data processing module is further configured to determine a touch selection area based on an electrode whose capacitance change exceeds a second threshold, and determine the capacitance change amount and weight of each electrode in the touch selection area. Touch position.
  • the data processing module is further configured to determine, among the electrodes whose capacitance changes exceed a second threshold, the electrode with the largest capacitance change is a third electrode, and extend outward with the third electrode as a center.
  • a preset range is formed, and the preset range is determined as the touch selection area.
  • the data processing module is further configured to:
  • the position coordinates of the touch point are determined based on the ratio corresponding to each coordinate axis.
  • the first electrode and the second electrode are the same regular hexagon.
  • the substrate is configured as a circle or an oval.
  • an electronic device including the touch panel according to any one of the above.
  • an information processing method for determining touch information of a touch panel, and includes:
  • each electrode on an electrode layer of the touch panel wherein a shape of the electrode layer corresponds to a shape of the touch panel; and each electrode on the electrode layer is configured in a hexagonal shape, and Each electrode is connected to form the electrode layer;
  • the touch information of the touch panel is determined based on the obtained capacitance values of the electrodes.
  • determining the touch information of the touch panel based on the obtained capacitance values of the electrodes includes:
  • determining the touch information of the touch panel based on the obtained capacitance values of the electrodes includes:
  • the touch selection area is determined based on the electrode whose capacitance change amount exceeds the second threshold, and the touch position is determined based on the capacitance change amount and weight of each electrode in the touch selection area.
  • the determining the touch selection area based on the electrode whose capacitance variation exceeds a second threshold includes:
  • the electrode with the largest capacitance change is the third electrode
  • a preset range is formed by using the third electrode as a center, and the preset range is determined as the touch selection area.
  • the determining a touch position based on a capacitance change amount and a weight of each electrode in the touch selection area includes:
  • the position coordinates of the touch point are determined based on the ratio corresponding to each coordinate axis.
  • the electrode layer in the touch panel may be formed of hexagonal electrodes. Compared to square electrodes, it is more suitable for circular or elliptical touch panels. At the same time, the combination of hexagonal structures is diverse. The electrode layer is also suitable for square or other shapes of touch panels, which has better applicability. In addition, by using hexagonal electrodes, the number of electrodes can be reduced, which can reduce the circuit for processing electrodes. Therefore, the cost can be reduced, and the corresponding circuit design and power consumption can be reduced. In addition, the hexagonal electrode arrangement can improve the sensitivity of touch detection.
  • FIG. 1 is a schematic structural diagram of a touch panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a touch panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an electrode layer according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a touch panel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a three-axis coordinate system of a touch panel according to an embodiment of the present disclosure
  • FIG. 6 shows a flowchart of an information processing method in an embodiment of the present disclosure
  • FIG. 7 shows a flowchart of a method for determining touch information according to an embodiment of the present disclosure.
  • exemplary means “serving as an example, embodiment, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as superior or better than other embodiments.
  • FIG. 1 and FIG. 2 respectively show a structural schematic diagram of a touch panel according to an embodiment of the present disclosure
  • FIG. 3 shows a structural schematic diagram of an electrode layer of the touch panel according to an embodiment of the present disclosure.
  • the touch panel in the embodiment of the present disclosure may include a substrate 1 and an electrode layer 2 formed in the substrate 1 (as shown in FIG. 2) or formed on the substrate 1 (as shown in FIG. 1).
  • the substrate 1 can be used as a panel for performing touch operations.
  • the substrate 1 when the touch panel is used as a touch screen of an electronic device capable of displaying touch, such as a mobile phone, the substrate 1 can be a transparent glass substrate.
  • the substrate 1 may be an opaque operation substrate, or a light-shielding material may be applied to the substrate 1 to make it opaque, which is not limited in the embodiments of the present disclosure.
  • the shape of the electrode layer 2 in the embodiment of the present disclosure may correspond to the shape of the touch panel, and the shape of the electrode layer 2 may also correspond to the shape of the substrate 1.
  • the electrode layer 2 may be configured as a corresponding circle or ellipse.
  • the electrode layer 2 may also be configured as Corresponding to the square shape, or when the touch panel or the substrate 1 has other shapes, the electrode layer 2 can also be configured to correspond to it, thereby realizing the touch function of the corresponding area of the touch panel.
  • the touch panel may further include a detection module 3 and a data processing module 4 connected to the electrode layer.
  • the touch panel controlling the screen may further include devices such as a polarizing plate, a liquid crystal layer, and a TFT (thin-film transistor) substrate to implement functions such as display and touch of the touch panel, which are not repeated here, and those skilled in the art may The corresponding configuration needs to be performed.
  • a conductive film may be coated on one surface or inside of the substrate 1 in the embodiment of the present disclosure, and an electrode pattern of the electrode layer 2 may be formed on the conductive film.
  • the electrode layer 2 in the embodiment of the present disclosure may include a plurality of hexagonal electrodes, and each electrode is connected to form the electrode layer 2. That is, the electrode layer 2 in the embodiment of the present disclosure may be composed of a plurality of hexagonal electrodes connected to each other. As shown in FIG. 3, each electrode may be a regular hexagon with the same side length.
  • the electrode layer 2 may include a first electrode 21 and a plurality of second electrodes 22 extending in sequence and being connected to the first electrode 21 as a center. That is, every two adjacent electrodes have a common edge.
  • the electrode located at the center of the electrode layer 2 may be referred to as a first electrode 21, and multiple turns of the second electrode 22 may be provided outward with the first electrode 21 as a center, and each turn of the second electrode 22 may be opposite to the first electrode
  • the electrodes of adjacent circles are connected.
  • six second electrodes 22 may be provided on the first circle, and each second electrode 22 and a hexagon forming the first electrode 21 have A common edge, and so on, can be provided with 12 hexagons on the second circle.
  • each second electrode 22 on the second circle can be respectively adjacent to a second electrode on the first circle. 21 is connected.
  • the number of turns of the second electrode 22 is r
  • the number of regular hexagon electrodes on the electrode layer 2 is h
  • the side lengths of the hexagons forming the electrodes may be different.
  • the side length of the hexagon corresponding to the first electrode is n times the side length of the hexagon corresponding to each second electrode, and n is an integer greater than 1.
  • the length of the side of the first electrode may be 2r
  • the length of the side of the second electrode extending outwardly with the first electrode 21 as the center may be r.
  • one side of each first electrode 21 may be respectively Two second electrodes 22 are connected, and so on, and multiple second electrodes 22 are formed respectively.
  • the side lengths of the hexagons corresponding to the electrodes in the embodiments of the present disclosure may be different, as long as the hexagonal electrodes can be connected to each other to form the electrode layer 2 corresponding to the touch panel, That is, it can serve as an embodiment of the present disclosure.
  • the electrode layer formed by the hexagon-shaped electrode provided in the embodiment of the present disclosure can be formed into a shape closer to a circle, it can be more suitable for the special-shaped touch such as a circle, an ellipse, and the like that are presently compared to a square electrode.
  • the hexagonal electrodes can also be combined into a square shape, it is also suitable for a square touch panel, which has better applicability.
  • the touch area for effective touch operation is almost circular, and the electrode layer formed by the hexagonal electrode is closer to a circle, so that effective touch can be achieved.
  • the area fit is more perfect; in addition, for the same size touch panel, if the same area of square and regular hexagon electrodes are used, the number of square electrodes is much greater than the number of regular hexagons. Therefore, The hexagonal electrode design can save the number of electrodes, and also reduce the area of related circuits such as sampling, conversion, and storage of the touch chip.
  • the same kind of charge will show a "non-uniform" distribution on the flat capacitor with a limited boundary, which can be specifically solved using the conformal transformation method. It can be simply summarized as: The charge at the sharp corner is higher than the charge at the center, and the charge at the sharp corner is higher than the edge, which is also in line with the principle of tip discharge. This fringe field effect should be avoided as much as possible in practical applications. For regular hexagons and squares with the same area, regular hexagons are closer to circles than squares, and the points above them are more “evenly” closer to the center of the circle, and sharp corners are also avoided.
  • the capacitance of the electrode covered on the passing path is more uniformly affected, and the accuracy of the calculation position is more consistent.
  • the influence of the touch operation on the change in electrode capacitance is proportional to the projected area of the contact area in the electrode pattern.
  • the ratio of the signal magnitude is about 6.51: 4.91, that is, the hexagonal electrodes are less affected by touch, and can more sensitively respond to touch operations.
  • FIG. 4 shows a schematic structural diagram of a touch panel according to an embodiment of the present disclosure.
  • the touch panel according to the embodiment of the present disclosure may further include a detection module 3 and a data processing module 4.
  • the detection module 3 may be connected to each electrode in the electrode layer 2 and used to detect the capacitance value of each electrode.
  • the data processing module 4 may be connected to the detection module 1 and may determine touch information of the touch panel based on the capacitance values of the electrodes detected by the detection module 1. That is, the detection module 1 can be used to detect the capacitance value in the electrode layer 2. Since the touch operation will cause the capacitance value of the electrode to change when the touch operation is performed, the detection module 3 can detect the capacitance value of the electrode in real time. And determine the capacitance change amount of each capacitor, and the capacitance change amount can be transmitted to the data processing module 4, so that the data processing module 4 determines whether there is further information such as a touch operation and the position of the touch operation.
  • the detection module 3 in the embodiment of the present disclosure may include a capacitance sensor, and each electrode may be connected to the capacitance sensor, or each electrode may be connected to a capacitance sensor, respectively.
  • the data processing module may be connected to the capacitance sensor to receive a corresponding capacitance value.
  • the data processing module 4 may determine whether there is a touch operation based on the amount of change in capacitance. For example, the data processing module 4 may determine whether there is a touch operation based on the amount of change in capacitance of all the electrodes of the electrode layer 2 or may also The amount of capacitance change of the electrode where the capacitance change occurs to determine whether there is a touch operation.
  • the data processing module 2 can obtain the capacitance values of all the electrodes from the detection module 2 and the capacitance change values of all the electrodes. When it is determined that the sum of the capacitance change amounts of the electrodes where the capacitance value changes exceeds the first threshold, it can be determined The touch panel is touched.
  • the data processing module 4 may also determine that the touch panel is touched when it is determined that the capacitance change amount of the at least one electrode exceeds the second threshold. If the data processing module 2 determines that the sum of the capacitance change amounts of the electrodes whose capacitance values change does not exceed the first threshold, and that the capacitance change amounts of all the electrodes whose capacitance changes do not exceed the second threshold value, it may be determined that the touch panel is not A touch operation is performed, and no response is required at this time.
  • the first threshold and the second threshold may be the same or different, and those skilled in the art may set the threshold according to different requirements.
  • the data processing module 4 may further determine a touch position of the touch operation.
  • the data processing module 4 in the embodiment of the present disclosure may determine the touch selection area based on the electrode whose capacitance change exceeds the second threshold, and determine the touch position based on the capacitance change amount and weight of each electrode in the touch selection area.
  • the data processing module 4 in the embodiment of the present disclosure may first determine a touch selection area according to an electrode whose capacitance variation exceeds a second threshold, and the touch selection area is an approximate location area of a touch operation.
  • the data processing module 4 may obtain identification information and corresponding position information of each electrode on the electrode layer 2.
  • the data processing module 4 may store the above identification information and position information, or may also To obtain the identification information and the location information in the memory.
  • the identification information of the electrodes may be sent to facilitate the data processing module 4 to determine which positions of the electrodes have undergone a capacitance change.
  • the identification information is information that uniquely determines the electrode.
  • the identification information may be information such as a unique code or a label, which is not limited in the embodiment of the present disclosure.
  • the data processing module 4 may determine the touch selection area based on the positions of all the electrodes whose capacitance changes exceed the second threshold, that is, the touch selection area is the electrode whose capacitance changes exceed the second threshold. Formed.
  • the data processing module may determine the touch selection area based on the position of the electrode with the largest capacitance change according to a preset rule. The data processing module 4 may determine, among the electrodes whose capacitance changes exceed the second threshold, that the electrode with the largest capacitance change is the third electrode, and extend outward with the third electrode as a center to form a preset range, and the preset range is Determined as the touch selection area.
  • the data processing module 4 may extend a preset number of turns outward based on the third electrode having the largest capacitance change as a center, and determine an area formed by the electrodes within the preset number of turns as a touch selection area. That is, when the touch operation is performed, the position where the electrode capacitance is the largest can be roughly determined as the position near the touch center. At this time, the electrode corresponding to the position can be used as the center to expand the electrode with a preset number of turns outward. To form a touch selection area.
  • the embodiments of the present disclosure can determine the above-mentioned preset range in various ways.
  • the information of the preset number of laps can be determined according to the parameters of the preset settings, that is, the user can set the information of the number of laps in advance, or the information of the number of laps can be stored in the data processing module 4 in advance, and touch selection is performed.
  • the data processing module 4 may also determine the preset number of turns according to the touch range of the user performing a touch operation within a preset time, that is, the data processing module 4 may record the user within the preset time.
  • the range of the touch area when the touch operation is performed, and the preset number of turns is determined based on the size of the range and the size of the electrodes.
  • the range of the touch area can be embodied by area.
  • the average range of the touch operation is determined by the average of the area of the touch range of the touch operation within a preset time. Based on the average range and the size of the electrode, that is, Information on the preset number of turns can be determined.
  • the above-mentioned touch operation in the embodiment of the present disclosure may include a single touch operation, or may also be a continuous touch operation. For continuous touch operations, it may be regarded as multiple single touch operations.
  • the data processing module 4 can expand the preset range corresponding to the preset number of turns according to the third electrode as a center, thereby determining a touch selection area. After the touch selection area is determined, the data processing module 4 can further determine the position of the touch point, for example, the touch position can be determined based on the capacitance change and weight of each electrode in the touch selection area.
  • the data processing module 4 in the embodiment of the present disclosure may obtain the position information of each electrode, where the position information may be expressed in the form of coordinates.
  • a three-axis coordinate system may be established to represent position information of each electrode.
  • FIG. 5 is a schematic structural diagram of a three-axis coordinate system of a touch panel according to an embodiment of the present disclosure.
  • the three coordinate axes of the three-axis coordinate system, the u-axis, the v-axis, and the w-axis, are respectively disposed in the same plane, and The included angle between every two circles is 120 degrees, and the center of the first electrode may be the center of the circle of the three-axis coordinate system.
  • the vertical coordinate axis corresponding to the regular hexagon is also the x-axis and the y-axis, and the u-axis and v-axis are distributed at an angle of 2 ⁇ / 3. And w axis, where the w axis is opposite to the y axis.
  • the x-axis and y-axis in the rectangular coordinate system can be coordinate converted with the u-axis, v-axis, and w-axis in the three-axis coordinate system, and because the u-axis, v-axis, and w-axis are averaged in a two-dimensional plane
  • the distributed three-axis coordinates, so the effective regular hexagon coordinate values satisfy u + v + w 0, that is, the coordinate values on the three coordinate axes add up to zero.
  • the values of the coordinates u, v, and w in the three-axis coordinate system can be converted into x and y in the rectangular coordinate system.
  • the formula from U / V / W coordinates (u, v, w) to X / Y coordinates (x, y) can be:
  • sign (p) is the polarity of p, and the result is +1 or 1. When p is 0, the result is +1. Where q is a non-negative real number.
  • the embodiments of the present disclosure can be transformed from X / Y coordinates (x, y) to U / V / W coordinates (u, v, w), and the formula is:
  • eps is a very small positive real number
  • sign (x) is the polarity of x
  • the result is +1 or 1.
  • x is 0, the result is +1.
  • x is non-negative Real number.
  • the data processing module 4 can obtain the position of each electrode in the electrode layer 2 in the above-mentioned three-axis coordinate system, for example, can determine the position information of the electrode center in the three-axis coordinate system. Further, the data processing module 4 may determine the weight of the electrode on the corresponding coordinate axis based on the projection distance of the center of each electrode in the determined touch selection area on each coordinate axis in the three-axis coordinate system; and for each Coordinate axis, calculate the sum of the product of the capacitance change of each electrode and the weight of the electrode on the coordinate axis, and calculate the ratio between the sum and the sum of the capacitances of the electrodes in the touch selection area, and can The position coordinates of the touch point are further determined based on the ratio corresponding to each coordinate axis.
  • the data processing module 4 may determine the position information of the electrodes in the touch selection area. Therefore, the weight of each electrode corresponding to each coordinate axis can be determined.
  • the first weight of each electrode to the u axis can be the first projection distance of the center of each electrode on the u axis
  • the second weight of each electrode to the v axis can be Is the second projection distance of the center of each electrode on the v axis
  • the third weight of each electrode to the w axis may be the third projection distance of the center of each electrode on the w axis.
  • the sum of the product of the weight of each electrode corresponding to the coordinate axis and the capacitance change amount of the electrode can be obtained.
  • the product of the first weight of each electrode corresponding to the u-axis and the capacitance change of the corresponding electrode is summed to obtain a first sum value
  • the second weight of each electrode corresponding to the v-axis and the capacitance change of the corresponding electrode are The product sum is added to obtain a second sum value
  • the product of the third weight of each electrode corresponding to the w-axis and the capacitance change of the corresponding electrode is added to obtain a third sum value
  • the area is selected based on the first sum value and touch
  • the first ratio between the sum of the capacitance values of the electrodes within the touch determines the u-axis coordinate value of the touch position, based on the second between the second sum value and the sum of the capacitance values of the electrodes in the
  • the ratio determines the v-axis coordinate value of the touch position, and determines the w-axis coordinate value of the touch position based on the third ratio between the third summation value and the sum of the capacitance values of the electrodes in the touch selection area, so that based on the above u
  • the axis coordinate value, the v-axis coordinate value, and the w-axis coordinate value determine the touch position. That is, the point formed by the three coordinate values can be determined as the touch position.
  • the touch position of the touch operation can be determined. Since the present disclosure implements the determination of the touch position by means of a three-axis coordinate system in a plane, it can be applied to touch panels of various shapes.
  • the direct coordinate axis method does not need to perform horizontal and vertical incomplete operations, thereby saving circuit design and reducing corresponding costs.
  • the three-axis coordinate values can be converted into rectangular coordinate values for optimization.
  • three values (u, v, and w) of the determined three-axis coordinate values of the touch position can be combined in pairs and converted into x and y values in a rectangular coordinate system to obtain three sets of x values and y value, and then determine the coordinate value of the touch position in the rectangular coordinate system based on the average of the three sets of x value and y value, so as to further improve the position accuracy.
  • the first set of x and y values may be determined based on the u and v values in the three-axis coordinate values
  • the second set of x and y values may be determined based on the u and w values in the three-axis coordinate values
  • the v and w values of the three axis coordinate values determine the third group of x and y values
  • the three groups of x values are averaged to obtain Then average the three groups of y values to get use with Get the coordinate value of the touch position in the rectangular coordinate system.
  • the above is only an example of determining the touch position based on the capacitance change amount and weight of each electrode in the touch selection area, and the present disclosure does not limit the specific method of determining the weight and determining the touch position based on the weight.
  • the electrode layer in the touch panel according to the embodiment of the present disclosure may be formed by hexagonal electrodes. Compared with square electrodes, it is more suitable for circular or oval touch panels, and also suitable for square.
  • the touch panel has better applicability; in addition, by using hexagonal electrodes, the number of electrodes can be reduced, which can reduce costs and reduce the corresponding circuit design and power consumption. In addition, using hexagons The electrode settings can improve the sensitivity of touch detection.
  • an embodiment of the present disclosure may also provide an electronic device.
  • the electronic device may include the touch panel described in the foregoing embodiment.
  • the electronic device in the embodiment of the present disclosure may include a mobile phone, a computer, a notebook computer, and the like.
  • the touch-enabled device that is, the electronic device in the embodiment of the present disclosure may include any device with a touch-enabled function, which is not illustrated here one by one.
  • the touch panel of the embodiment of the present disclosure can be set at any position of the electronic device, and those skilled in the art can make different settings according to requirements. There is no limitation on the embodiment of the present disclosure.
  • the specific configuration of the touch panel in the electronic device in the embodiment of the present disclosure is the same as the description of the above embodiment, and is not repeated here.
  • the electronic device may also have other data processing functions, and those skilled in the art may set according to different requirements, which is not limited herein.
  • FIG. 6 shows A flowchart of an information processing method in an embodiment of the present disclosure. The method may include:
  • each electrode on the electrode layer of the touch panel wherein the shape of the electrode layer corresponds to the shape of the touch panel; and each electrode on the electrode layer is configured in a hexagonal shape. And each electrode is connected to form the electrode layer;
  • S2 Determine touch information of the touch panel based on the obtained capacitance values of the electrodes.
  • the touch panel may include a detection module 3 and a data processing module 4 (as shown in FIG. 4).
  • the detection module 3 may be connected to each electrode in the electrode layer 2 and used to detect the capacitance value of each electrode.
  • the data processing module 4 may be connected to the detection module 1 and may determine touch information of the touch panel based on the capacitance values of the electrodes detected by the detection module 1. That is, the detection module 1 can be used to detect the capacitance value in the electrode layer 2. Since the touch operation will cause the capacitance value of the electrode to change when the touch operation is performed, the detection module 3 can detect the capacitance value of the electrode in real time. And determine the capacitance change amount of each capacitor, and the capacitance change amount can be transmitted to the data processing module 4, so that the data processing module 4 determines whether there is further information such as a touch operation and the position of the touch operation.
  • the data processing module 4 may determine whether there is a touch operation based on the amount of change in capacitance.
  • FIG. 7 shows a flowchart of a method for determining touch information according to an embodiment of the present disclosure. It is shown that step S2 may further include :
  • S202 It is determined that the touch panel is touched when the total amount of change in capacitance of each electrode exceeds a first threshold, or when the amount of change in capacitance of at least one of the electrodes exceeds a second threshold.
  • the data processing module 4 may determine whether there is a touch operation based on the capacitance changes of all the electrodes of the electrode layer 2, or may also determine whether there is a touch operation based on the capacitance changes of the electrodes where the capacitance changes. .
  • the data processing module 2 can obtain the capacitance values of all the electrodes from the detection module 2 and the capacitance change values of all the electrodes. When it is determined that the sum of the capacitance change amounts of the electrodes where the capacitance value changes exceeds the first threshold, it can be determined The touch panel is touched. Alternatively, the data processing module 4 may also determine that the touch panel is touched when it is determined that the capacitance change amount of the at least one electrode exceeds the second threshold.
  • the data processing module 2 determines that the sum of the capacitance change amounts of the electrodes whose capacitance values have changed does not exceed the first threshold, and that the capacitance change amounts of all the electrodes whose capacitance changes have not exceeded the second electrode, it may be determined that the touch panel is not A touch operation is performed, and no response is required at this time.
  • the first threshold and the second threshold may be the same or different, and those skilled in the art may set the threshold according to different requirements.
  • the data processing module 4 may further determine a touch position of the touch operation.
  • determining touch information of the touch panel based on the obtained capacitance values of the electrodes includes:
  • the touch selection area is determined based on the electrode whose capacitance change amount exceeds the second threshold, and the touch position is determined based on the capacitance change amount and weight of each electrode in the touch selection area.
  • the data processing module 4 in the embodiment of the present disclosure may determine the touch selection area based on the electrode whose capacitance change exceeds the second threshold, and determine the touch position based on the capacitance change amount and weight of each electrode in the touch selection area.
  • the data processing module 4 in the embodiment of the present disclosure may first determine a touch selection area according to an electrode whose capacitance variation exceeds a second threshold, and the touch selection area is an approximate location area of a touch operation.
  • the data processing module 4 may obtain identification information and corresponding position information of each electrode on the electrode layer 2.
  • the data processing module 4 may store the above identification information and position information, or may also To obtain the identification information and the location information in the memory.
  • the identification information of the electrodes may be sent to facilitate the data processing module 4 to determine which positions of the electrodes have undergone a capacitance change.
  • the identification information is information that uniquely determines the electrode.
  • the identification information may be information such as a unique code or a label, which is not limited in the embodiment of the present disclosure.
  • determining the touch selection area based on the electrode whose capacitance variation exceeds the second threshold may further include:
  • the electrode with the largest capacitance change is the third electrode
  • a preset range is formed by using the third electrode as a center, and the preset range is determined as the touch selection area.
  • the data processing module may also determine the touch selection area based on the preset rule based on the position of the electrode with the largest capacitance change.
  • the data processing module 4 may determine, among the electrodes whose capacitance changes exceed the second threshold, that the electrode with the largest capacitance change is the third electrode, and extend outward with the third electrode as a center to form a preset range, and the preset range is Determined as the touch selection area.
  • the data processing module 4 may extend a preset number of turns outward based on the third electrode having the largest capacitance change as a center, and determine an area formed by the electrodes within the preset number of turns as a touch selection area.
  • the position where the electrode capacitance is the largest can be roughly determined as the position near the touch center.
  • the electrode corresponding to the position can be used as the center to expand the electrode with a preset number of turns outward. To form a touch selection area.
  • the embodiments of the present disclosure can determine the above-mentioned preset range in various ways.
  • the information of the preset number of laps can be determined according to the parameters of the preset setting, that is, the user can set the information of the number of laps in advance, or the information of the number of laps can be stored in the data processing module 4 in advance, and touch selection When determining the area, you can directly perform operations based on the set information.
  • the data processing module 4 may also determine the preset number of turns according to the touch range of the user performing a touch operation within a preset time, that is, the data processing module 4 may record the user within the preset time.
  • the range of the touch area when the touch operation is performed, and the preset number of turns is determined based on the size of the range and the size of the electrodes.
  • the range of the touch area can be embodied by area.
  • the average range of the touch operation is determined by the average value of the area of the touch range of the touch operation within a preset time. Based on the average range and the size of the electrode, that is, Information on the preset number of turns can be determined.
  • the above-mentioned touch operation in the embodiment of the present disclosure may include a single touch operation, or may also be a continuous touch operation. For continuous touch operations, it may be regarded as multiple single touch operations.
  • the data processing module 4 can expand the preset range corresponding to the preset number of turns according to the third electrode as a center, thereby determining a touch selection area. After the touch selection area is determined, the data processing module 4 can further determine the position of the touch point, for example, the touch position can be determined based on the capacitance change and weight of each electrode in the touch selection area.
  • the determining a touch position based on a capacitance change amount and a weight of each electrode in the touch selection area may include:
  • the position coordinates of the touch point are determined based on the ratio corresponding to each coordinate axis.
  • the data processing module 4 in the embodiment of the present disclosure may obtain the position information of each electrode, where the position information may be expressed in the form of coordinates.
  • a three-axis coordinate system may be established to represent position information of each electrode.
  • FIG. 5 is a schematic structural diagram of a three-axis coordinate system of a touch panel according to an embodiment of the present disclosure.
  • the three coordinate axes of the three-axis coordinate system, the u-axis, the v-axis, and the w-axis, are respectively disposed in the same plane, and The included angle between every two circles is 120 degrees, and the center of the first electrode may be the center of the circle of the three-axis coordinate system.
  • the vertical coordinate axis corresponding to the regular hexagon is also the x-axis and the y-axis, and the u-axis and v-axis are distributed at an angle of 2 ⁇ / 3. And w axis, where the w axis is opposite to the y axis.
  • the x-axis and y-axis in the rectangular coordinate system can be coordinate converted with the u-axis, v-axis, and w-axis in the three-axis coordinate system, and because the u-axis, v-axis, and w-axis are averaged in a two-dimensional plane
  • the distributed three-axis coordinates, so the effective regular hexagon coordinate values satisfy u + v + w 0, that is, the coordinate values on the three coordinate axes add up to zero.
  • the data processing module 4 can obtain the position of each electrode in the electrode layer 2 in the above-mentioned three-axis coordinate system, for example, can determine the position information of the electrode center in the three-axis coordinate system. Further, the data processing module 4 may determine the weight of the electrode on the corresponding coordinate axis based on the projection distance of the center of each electrode in the determined touch selection area on each coordinate axis in the three-axis coordinate system; and for each Coordinate axis, calculate the sum of the product of the capacitance change of each electrode and the weight of the electrode on the coordinate axis, and calculate the ratio between the sum and the sum of the capacitances of the electrodes in the touch selection area, and can The position coordinates of the touch point are further determined based on the ratio corresponding to each coordinate axis.
  • the data processing module 4 may determine the position information of the electrodes in the touch selection area. Therefore, the weight of each electrode corresponding to each coordinate axis can be determined.
  • the first weight of each electrode to the u axis can be the first projection distance of the center of each electrode on the u axis
  • the second weight of each electrode to the v axis can be Is the second projection distance of the center of each electrode on the v axis
  • the third weight of each electrode to the w axis may be the third projection distance of the center of each electrode on the w axis.
  • the sum of the product of the weight of each electrode corresponding to the coordinate axis and the capacitance change amount of the electrode can be obtained.
  • the product of the first weight of each electrode corresponding to the u-axis and the capacitance change of the corresponding electrode is summed to obtain a first sum value
  • the second weight of each electrode corresponding to the v-axis and the capacitance change of the corresponding electrode are The product sum is added to obtain a second sum value
  • the product of the third weight of each electrode corresponding to the w-axis and the capacitance change of the corresponding electrode is added to obtain a third sum value
  • the area is selected based on the first sum value and the touch.
  • the first ratio between the sum of the capacitance values of the electrodes within the touch determines the u-axis coordinate value of the touch position, based on the second between the second sum value and the sum of the capacitance values of the electrodes in the touch selection area.
  • the ratio determines the v-axis coordinate value of the touch position, and determines the w-axis coordinate value of the touch position based on the third ratio between the third summation value and the sum of the capacitance values of the electrodes in the touch selection area, so that based on the above u
  • the axis coordinate value, the v-axis coordinate value, and the w-axis coordinate value determine the touch position. That is, the point formed by the three coordinate values can be determined as the touch position.
  • the touch position of the touch operation can be determined. Since the present disclosure implements the determination of the touch position by means of a three-axis coordinate system in a plane, it can be applied to touch panels of various shapes.
  • the direct coordinate axis method does not need to perform horizontal and vertical incomplete operations, thereby saving circuit design and reducing corresponding costs.
  • the three-axis coordinate values can be converted into rectangular coordinate values for optimization.
  • three values (u, v, and w) of the determined three-axis coordinate values of the touch position can be combined in pairs and converted into x and y values in a rectangular coordinate system to obtain three sets of x values and y value, and then determine the coordinate value of the touch position in the rectangular coordinate system based on the average of the three sets of x value and y value, so as to further improve the position accuracy.
  • the first set of x and y values may be determined based on the u and v values in the three-axis coordinate values
  • the second set of x and y values may be determined based on the u and w values in the three-axis coordinate values
  • the v and w values of the three axis coordinate values determine the third group of x and y values
  • the three groups of x values are averaged to obtain Then average the three groups of y values to get use with Get the coordinate value of the touch position in the rectangular coordinate system.
  • the electrode layer in the touch panel according to the embodiment of the present disclosure may be formed by hexagonal electrodes. Compared with square electrodes, it is more suitable for circular or oval touch panels, and also suitable for square.
  • the touch panel has better applicability; in addition, by using hexagonal electrodes, the number of electrodes can be reduced, which can reduce costs and reduce the corresponding circuit design and power consumption. In addition, using hexagons The electrode settings can improve the sensitivity of touch detection.
  • the present disclosure may be a system, method, and / or computer program product.
  • the computer program product may include a computer-readable storage medium having computer-readable program instructions for causing a processor to implement various aspects of the present disclosure.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electric storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Non-exhaustive list of computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disc read only memory (CD-ROM), digital versatile disc (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon A protruding structure in the hole card or groove, and any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disc read only memory
  • DVD digital versatile disc
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon A protruding structure in the hole card or groove, and any suitable combination of the above.
  • Computer-readable storage media used herein are not to be interpreted as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, light pulses through fiber optic cables), or via electrical wires Electrical signal transmitted.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing / processing devices, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and / or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and / or edge servers.
  • the network adapter card or network interface in each computing / processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing / processing device .
  • Computer program instructions for performing the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or in one or more programming languages.
  • the programming languages include object-oriented programming languages—such as Smalltalk, C ++, and the like—and conventional procedural programming languages—such as "C” or similar programming languages.
  • Computer-readable program instructions may be executed entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer, partly on a remote computer, or entirely on a remote computer or server carried out.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through the Internet using an Internet service provider) connection).
  • electronic circuits such as programmable logic circuits, field-programmable gate arrays (FPGAs), or programmable logic arrays (PLAs) are personalized by using state information of computer-readable program instructions.
  • the electronic circuits may Computer-readable program instructions are executed to implement various aspects of the present disclosure.
  • These computer-readable program instructions can be provided to a processor of a general-purpose computer, special-purpose computer, or other programmable data processing device, thereby producing a machine such that, when executed by a processor of a computer or other programmable data processing device , Means for implementing the functions / actions specified in one or more blocks in the flowcharts and / or block diagrams.
  • These computer-readable program instructions may also be stored in a computer-readable storage medium, and these instructions cause a computer, a programmable data processing apparatus, and / or other devices to work in a specific manner.
  • a computer-readable medium storing instructions includes: An article of manufacture that includes instructions to implement various aspects of the functions / acts specified in one or more blocks in the flowcharts and / or block diagrams.
  • Computer-readable program instructions can also be loaded onto a computer, other programmable data processing device, or other device, so that a series of operating steps can be performed on the computer, other programmable data processing device, or other device to produce a computer-implemented process , So that the instructions executed on the computer, other programmable data processing apparatus, or other equipment can implement the functions / actions specified in one or more blocks in the flowchart and / or block diagram.
  • each block in the flowchart or block diagram may represent a module, a program segment, or a part of an instruction that contains one or more components for implementing a specified logical function.
  • Executable instructions may also occur in a different order than those marked in the drawings. For example, two consecutive blocks may actually be executed substantially in parallel, and they may sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagrams and / or flowcharts, and combinations of blocks in the block diagrams and / or flowcharts can be implemented in a dedicated hardware-based system that performs the specified function or action. , Or it can be implemented with a combination of dedicated hardware and computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开提供了一种触控面板、电子设备和信息处理方法,其中,所述触控面板包括:基板,以及形成在所述基板内或者所述基板上的电极层,所述电极层的形状与所述触控面板的形状对应;并且,所述电极层包括多个构造为六边形形状的电极,各电极相连接形成所述电极层。本公开实施例具有结构简单且适用性更好的特点。

Description

一种触控面板、电子设备和信息处理方法
本申请要求了2018年6月26日提交的、申请号为201810671485.5、发明名称为“一种触控面板、电子设备和信息处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及触控装置领域,特别涉及一种触控面板、电子设备和信息处理方法。
背景技术
随着触控技术的不断发展,目前触摸设备的应用变得越来越普及,而传统的触摸面板几乎都是矩形的,对应的触摸电极图案也是矩形或者正方形。随着物联网、穿戴设备的出现,异形屏的应用和需求旺盛,因此逐渐产生多种形状的触控面板,如圆形或者椭圆形。
而采用方形的触摸电极很难适应上述圆形或者其他形状的触摸面板,因此,现有的方形形状的触摸电极并不能适用于多样化的触控板。
发明内容
有鉴于此,本公开提出了一种能够结构简单且适用性更好的触控面板、电子设备和信息处理方法。
根据本公开的第一方面,提供了一种触控面板,其包括:基板,以及形成在所述基板内或者所述基板上的电极层,所述电极层的形状与所述触控面板的形状对应;
并且,所述电极层包括多个构造为六边形形状的电极,各电极相连接形成所述电极层。
在本公开的实施例中,所述电极层包括第一电极,以及以所述第一电极为中心依次延伸相接设置的第二电极。
在本公开的实施例中,所述触控面板还包括:
检测模块,其与所述电极层的各电极连接,并用于检测各电极的电容值;
数据处理模块,其配置为基于所述检测模块所检测的各电极的电容值,确定所述触控面板的触控信息。
在本公开的实施例中,所述数据处理模块进一步配置为在各电极的电容变化量总和超过第一阈值时,或者至少一个所述电极的电容变化量超过第二阈值时,确定为所述触控面板被触控。
在本公开的实施例中,所述数据处理模块进一步配置为基于电容变化量超过第二阈值的电极,确定触控选择区域,并基于触控选择区域内的各电极的电容变化量和权重确定触控位置。
在本公开的实施例中,所述数据处理模块进一步配置为在电容变化量超过第二阈值的电极中,确定电容变化量最大的电极为第三电极,以该第三电极为中心向外延伸形成预设范围,该预设范围即被确定为所述触控选择区域。
在本公开的实施例中,所述数据处理模块进一步配置为:
建立三轴坐标系,基于所述触控选择区域内的各电极的中心在三轴坐标系内的各坐标轴上的投影距离确定该电极在对应坐标轴上的权重;
对于每个坐标轴,计算各电极的电容变化量与该电极在该坐标轴上的权重的乘积之和,并计算该和与该触控选择区域内的各电极的电容之和之间的比值,
基于对应于各坐标轴的所述比值确定触控点的位置坐标。
在本公开的实施例中,所述第一电极和第二电极为相同的正六边形。
在本公开的实施例中,基板构造为圆形或椭圆形。
根据本公开的第二方面,还提供了一种电子设备,其包括如上任意一项所述的触控面板。
根据本公开的第二方面,提供了一种信息处理方法,其用于确定触控面板的触控信息,并包括:
获取触控面板的电极层上的各电极的电容值,其中所述电极层的形状与所述触控面板的形状对应;并且,所述电极层上的各电极构造为六边形形状,且各电极相连接形成所述电极层;
基于获取的各电极的电容值,确定所述触控面板的触控信息。
在本公开的实施例中,所述基于获取的各电极的电容值,确定所述触控面板的触控信息包括:
确定各电极的电容变化量;
在各电极的电容变化量总和超过第一阈值时,或者至少一个所述电极的电容变化量超过第二阈值时,确定为所述触控面板被触控。
在本公开的实施例中,所述基于获取的各电极的电容值,确定所述触控面板的触控信息包括:
确定各电极的电容变化量;
基于电容变化量超过第二阈值的电极,确定触控选择区域,并基于触控选择区域内的各电极的电容变化量和权重确定触控位置。
在本公开的实施例中,所述基于电容变化量超过第二阈值的电极,确定触控选择区域包括:
在电容变化量超过第二阈值的电极中,确定电容变化量最大的电极为第三电极;
以该第三电极为中心向外延伸形成预设范围,该预设范围即被确定为所述触控选择区域。
在本公开的实施例中,所述基于触控选择区域内的各电极的电容变化量和权重确定触控位置包括:
建立三轴坐标系;
获取所述触控选择区域内的各电极的中心在三轴坐标系内的各坐标轴上的投影距离确定为该电极在对应坐标轴上的权重;
对于每个坐标轴,计算各对应坐标轴的所述权重与电极的电容变化量的乘积之和,与该触控选择区域内的各电极的电容之和之间的比值;
基于对应于各坐标轴的所述比值确定触控点的位置坐标。
本公开实施例中,触控面板中的电极层可以由六边形形状的电极形成,相对于方形电极其更适用于圆形或者椭圆形的触控面板,同时由于六边形结构的组合多样性,其组成的电极层也适用于方形或者其他形状的触控面板,具有更好的适用性;另外,通过采用六边形形状的电极可以减少电极的设置数量,从而可以减少处理电极的电路,进而可以降低成本,同时减少对应的电路设计和功耗;另外,采用六边形的电极设置,可以提高触控检测的灵敏度。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出根据本公开实施例的触控面板的结构示意图;
图2示出根据本公开实施例的触控面板的结构示意图;
图3示出根据本公开实施例的电极层的结构示意图;
图4示出根据本公开实施例的触控面板的原理结构示意图;
图5示出根据本公开实施例的触控面板的三轴坐标系的结构示意图;
图6示出本公开实施例中的信息处理方法的流程图;
图7示出根据本公开实施例的确定触控信息的方法流程图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
图1和图2分别示出了根据本公开实施例的触控面板的结构示意图,图3示出根据本公开实施例的触控面板的电极层的结构示意图。
其中,本公开实施例中的触控面板可以包括基板1,以及形成在基板1内(如图2所示)或者形成在基板1上(如图1所示)的电极层2。其中基板1可以作为用于执行触控操作的面板,如在触控面板作为手机等能够进行显示触控的电子设备的触控屏时,基板1可以为透明的玻璃基板,在触控面板为笔记本电脑的触摸板时,基板1可以不透明的操作基板,或者也可以通过在基板1上涂覆遮 光材料使其为不透光的状态,本公开实施例对此不进行限制。
另外,本公开实施例中的电极层2的形状可以与触控面板的形状相对应,以及电极层2的形状也可以与基板1的形状相对应。例如,触控面板或者基板1为圆形或椭圆形时,则电极层2可以构造成与其对应的圆形或者椭圆形,在触控面板或者基板1为方形时,电极层2也可以构造成与其对应的方形,或者在触控面板或者基板1为其他形状时,电极层2同样也可以构造成与其对应的形成,从而实现触控面板对应区域的触控功能。
在此需要说明的是,本公开实施例的触控面板除了包括上述基板1以及电极层2之外,还可以包括与该电极层连接的检测模块3和数据处理模块4,同时在构造为触控屏的触摸面板时还可以包括:偏光板、液晶层、TFT(薄膜晶体管)基板等器件,以实现触摸面板的显示和触控等功能,在此不再赘述,本领域技术人员可以根据不同的需求执行对应的配置。
本公开实施例中的基板1的一个表面或者内部可以涂覆导电薄膜,并可以在该导电薄膜上形成电极层2的电极图案。并且本公开实施例的电极层2可以包括多个六边形形状的电极,各电极相连接形成所述电极层2。也就是说,本公开实施例中的电极层2可以由多个相互连接的六边形形状的电极构成,其中,如图3所示,各电极可以为相同边长的正六边形。其中电极层2可以包括第一电极21以及该第一电极21为中心依次延伸相接设置的多个第二电极22。也即,每两个相邻的电极都具有一个公共边。
本公开实施例可以将位于电极层2的中心的电极称为第一电极21,并以第一电极21为中心向外延伸设置多圈第二电极22,且每圈第二电极22都与其相邻圈的电极的相连接。其中,以与第一电极21相邻的一圈为第一圈,则第一圈上可以设置有6个第二电极22,每个第二电极22与形成第一电极21的六边形具有一条公共边,以此类推,在第二圈上可以设置有12个六边形,同理,该第二圈上的每个第二电极22可以分别与第一圈上相邻的第二电极21相接。在本公开实施例中,如果假设第二电极22的圈数是r,电极层2上的正六边形的电极的个数是h,r和h的关系为:h=3r 2+3r+1。
或者,在本公开的另一些实施例中,形成电极的六边形的边长可以不同。其中第一电极所对应的六边形的边长为各第二电极所对应的六边形的边长的n倍,n为大于1的整数。例如第一电极的边长可以为2r,而以第一电极21为中心向外延伸相接设置的第二电极的边长可以为r,此时,每个 第一电极21的一个边可以分别连接2个第二电极22,以此类推,再分别形成多圈第二电极22。也就是说,本公开实施例中的各电极所对应的六边形的边长可以不同,只要能够实现通过多个六边形形状的电极相互连接以构成对应于触控面板的电极层2,即可以作为本公开的实施例。
由于本公开实施例所提供的通过六边形形状的电极所形成的电极层可以形成更接近圆形的形状,其相对于方形电极可以更适用于目前出现的圆形、椭圆形等异形触控面板,同时由于六边形形状的电极也可以组合构造成方形形状,因此也适用于方形触控面板,具有更好的适用性。另外,由于无论何种形状的触控面板,其有效的触控操作的触控区域几乎都是圆形的,通过六边形电极构成的电极层也更加接近圆形,从而可以对有效触控区域的拟合更加完美;另外,对于同样大小的触控面板,如果利用同样面积的方形和正六边形的电极,需要的方形电极的数量要远大于所需要的正六边形的数量,因此,通过六边形形状的电极设计可以节约电极的数量,同时还可以减少触控芯片的采样、转换、存储等相关电路面积。
另外,电极层2在加电后,同种电荷在这个边界有限的的平板电容上会呈现出“非均匀”分布,具体可以利用保角变换的方法来求解,可以简单的总结为:边缘和尖角处的电荷量高于中心的电荷量,尖角的电荷量高于边缘,这也符合尖端放电的原理。这种边缘场的效应在实际应用中应当尽量避免。而面积相同的正六边形和方形,正六边形比方形更接近圆形,其上面各点更“均匀”的靠近圆心,而且也更避免了尖角。而且,在执行触控操作时,触控操作对应的触控区域在移动过程中,对经过路径上所覆盖的电极的电容影响更均匀,进而计算位置的精准性更一致。另外,本公开实施例中,触控操作对电极电容变化的影响正比于接触面积在电极图案内的投影面积。在方形电极和正六边形电极上的投影有以上几种可能,当触控点落到相邻的4个方形顶点的交界点时,同时作用于这4个方形电极,在单个电极上的影响力最弱,也是有效信号最容易被噪声干扰的情况。如果采用正六边形电极,对电极影响力最弱的情况,发生在触控点落在三个相邻正六边形的顶点交界点上,但是此时对单个电极的影响力也比方形的情况要好些,在这两种情况时,信号量大小的比值约为6.51:4.91,也即正六边形的电极受到触控的影响更小,能够更灵敏的反应触控操作。
另外,图4示出根据本公开实施例的触控面板的原理结构示意图,其中,本公开实施例的触控 面板还可以包括检测模块3和数据处理模块4。
其中,检测模块3可以与电极层2内的各电极连接,并用于检测各电极的电容值。数据处理模块4可以与检测模块1连接,并可以基于检测模块1所检测的各电极的电容值,确定触控面板的触控信息。即,检测模块1可以用于检测电极层2内的电容值大小,由于具有触控操作时,触控操作会造成电极的电容值的变化,通过检测模块3可以实时的检测到电极的电容值,并确定各电容的电容变化量,并可以将该电容变化量传送给数据处理模块4,使得数据处理模块4确定进一步确定是否存在触控操作,以及触控操作的位置等信息。例如,本公开实施例中的检测模块3可以包括电容传感器,每个电极都可以分别与电容传感器连接,或者每个电极都可以分别连接一个电容传感器。数据处理模块可以与上述电容传感器连接,以接收对应的电容值。
首先,数据处理模块4可以基于电容的变化量来确定是否存在触控操作,例如,数据处理模块4可以基于电极层2的全部电极的电容变化量来确定是否存在触控操作,或者也可以根据发生电容变化的电极的电容变化量来确定是否存在触控操作。其中,数据处理模块2可以从检测模块2获取全部电极的电容值,获取全部电极的电容变化量值,在确定发生电容值变化的各电极的电容变化量的总和超过第一阈值时,可以确定触控面板被执行了触控操作。或者,数据处理模块4也可以在确定至少一个电极的电容变化量超过第二阈值时,确定为触控面板被触控。如果数据处理模块2确定发生电容值变化的各电极的电容变化量的总和未超过第一阈值,同时全部发生电容变化的电极的电容变化量都未超过第二阈值,则可以确定触控面板未被执行触控操作,此时可以不做出响应。其中,第一阈值和第二阈值可以相同也可以不同,本领域技术人员可以根据不同的需求进行设定。
如果确定了触控面板被触控,则数据处理模块4可以进一步确定触控操作的触控位置。本公开实施例中的数据处理模块4可以基于电容变化量超过第二阈值的电极,确定触控选择区域,并基于触控选择区域内的各电极的电容变化量和权重确定触控位置。
如上所述,本公开实施例中的数据处理模块4可以首先根据电容变化量超过第二阈值的电极来确定触控选择区域,该触控选择区域即为触控操作的大概位置区域。本公开实施例中,数据处理模块4可以获取电极层2上的各电极的标识信息和对应的位置信息,例如,数据处理模块4可以存储 有上述标识信息和位置信息,或者,也可以从设置的存储器中获取该标识信息和位置信息。检测模块3在向数据处理模块4发送各电极的电容值或者电容变化量值时,可以发送电极的标识信息,以方便数据处理模块4确定哪些位置的电极发生了电容变化。其中标识信息是唯一确定电极的信息,如可以为唯一编码,或者标号等信息,本公开实施例对此不进行限制。
在确定触控选择区域时,数据处理模块4可以基于电容变化量超过第二阈值的所有电极的位置确定触控选择区域,即该触控选择区域是由所有电容量变化超过第二阈值的电极所形成的。或者,在本公开的另一实施例中,数据处理模块也可以根据预设规则,基于电容变化量最大的电极的位置确定触控选择区域。数据处理模块4可以在电容变化量超过第二阈值的电极中,确定电容变化量最大的电极为第三电极,以该第三电极为中心向外延伸形成预设范围,该预设范围即被确定为所述触控选择区域。例如,数据处理模块4可以根据电容变化量最大的第三电极为中心,向外延伸预设圈数,将该预设圈数内的电极所形成的区域确定为触控选择区域。即,在执行触控操作时,电极电容量最大的位置,可以被大致确定为触控中心附近的位置,此时可以以该位置所对应的电极为中心,向外扩展预设圈数的电极,从而形成触控选择区域。
本公开实施例可以通过多种方式确定上述预设范围。例如,可以根据预设设置的参数确定预设圈数的信息,即用户可以预先设定该圈数信息,或者也可以是数据处理模块4内预先存储了该圈数信息,在执行触控选择区域的确定时,可以直接通过该设定的信息执行操作。
在本公开的另一些实施例中,数据处理模块4也可以根据预设时间内用户执行触控操作的触控范围来确定上述预设圈数,即数据处理模块4可以记录预设时间内用户执行触控操作时的触控区域的范围,并基于该范围大小以及电极的大小来确定上述预设圈数。例如,上述触控区域的范围可以通过面积的方式体现,通过预设时间内触控操作的触控范围的面积的平均值来确定触控操作的平均范围,基于该平均范围与电极的大小即可以确定预设圈数的信息。本公开实施例中的上述触控操作可以包括单点触控操作,或者也可以为连续的触控操作,对于连续的触控操作其可以视为多个单点触控操作。
在确定了上述预设圈数之后,数据处理模块4在可以按照第三电极为中心,向外扩展该预设圈数所对应的预设范围,从而确定触控选择区域。在确定了触控选择区域后,数据处理模块4则可以 进一步确定触控点的位置,如可以基于触控选择区域内的各电极的电容变化量和权重确定触控位置。
其中,如上所述,本公开实施例中的数据处理模块4可以获取各电极的位置信息,其中位置信息可以按照坐标的形式表示。本公开实施例中可以建立三轴坐标系来表示各电极的位置信息。
图5示出根据本公开实施例的触控面板的三轴坐标系的结构示意图,其中,三轴坐标系的三个坐标轴u轴、v轴和w轴分别设置在同一个平面内,且每两个周之间的夹角为120度,上述第一电极的中心可以为该三轴坐标系的圆心。为了方便的表述,可以定义方形的垂直坐标轴分别是x轴和y轴,对应正六边形的垂直坐标轴也是x轴和y轴,并且每隔2π/3的角度就分布u轴、v轴和w轴,其中w轴与y轴方向相反。其中直角坐标系中的x轴和y轴可以与三轴坐标系中的u轴、v轴和w轴之间进行坐标转换,而且由于u轴、v轴和w轴是在二维平面内平均分布的三轴坐标,所以有效的正六边形的坐标值都满足u+v+w=0,即三个坐标轴上的坐标值加和为零。
另外,本公开实施例中可以将三轴坐标系中的坐标u、v和w值转换成直角坐标系中的x和y。由U/V/W坐标(u,v,w)转成X/Y坐标(x,y)的公式可以为:
Figure PCTCN2019081077-appb-000001
其中,sign(p)为p的极性,取值结果为+1或者1,当p为0时,取结果为+1.其中q的取值为非负的实数。
同时本公开实施例可以由X/Y坐标(x,y)转成U/V/W坐标(u,v,w),公式为:
Figure PCTCN2019081077-appb-000002
其中,eps为一极小的正实数,sign(x)为x的极性,取值结果为+1或者1,当x为0时,取结果为+1.其中x的取值为非负的实数。
数据处理模块4可以分别获取电极层2中的各电极在上述三轴坐标系中的位置,例如可以确定电极中心在三轴坐标系中的位置信息。进一步地,数据处理模块4可以基于确定的触控选择区域内的各电极的中心在三轴坐标系内的各坐标轴上的投影距离确定该电极在对应坐标轴上的权重;以及对于每个坐标轴,计算各电极的电容变化量与该电极在该坐标轴上的权重的乘积之和,并计算该和与该触控选择区域内的各电极的电容之和之间的比值,并可以进一步基于对应于各坐标轴的所述比值确定触控点的位置坐标。
例如,本公开实施例中,数据处理模块4在确定了触控选择区域后,可以确定该触控选择区域内的电极的位置信息。从而可以确定每个电极对应于各坐标轴的权重,例如各电极对于u轴的第一权重可以为各电极的中心在u轴上的第一投影距离,各电极对于v轴的第二权重可以为各电极的中心在v轴上的第二投影距离,各电极对于w轴的第三权重可以为各电极的中心在w轴上的第三投影距离。在获得了触控选择区域内的各电极相对于各坐标轴的三个权重值之后,可以分别获得各电极对应于坐标轴的权重与电极的电容变化量的乘积之和。例如,将各电极对应于u轴的第一权重与对应电极的电容变化量的乘积加和获得第一加和值,将各电极对应于v轴的第二权重与对应电极的电容变化量的乘积加和获得第二加和值,以及将各电极对应于w轴的第三权重与对应电极的电容变化量的乘积加和获得第三加和值,最后基于第一加和值与触控选择区域内的各电极的电容值之和之间的第一比值确定触控位置的u轴坐标值,基于第二加和值与触控选择区域内的各电极的电容值之和之间的第二比值确定触控位置的v轴坐标值,以及基于第三加和值与触控选择区域内的各电极的电容值之和之间的第三比值确定触控位置的w轴坐标值,从而基于上述u轴坐标值、v轴坐标值和w轴坐标值确定触控位置。即,由上述三个坐标值形成的点即可以被确定为触控位置。
通过上述配置即可以确定触控操作的触控位置,由于本公开实施了通过平面内的三轴坐标系的方式确定触控位置,其可以适用于各种形状的触控面板,相对于传统的直接坐标轴的方式,且不需要执行横向和纵向的不全操作,从而节省了电路设计,降低了对应的成本。
进一步地,由于实际使用中,常常会引入噪声而使得触控位置中的u、v、w坐标值加和并不满足u+v+w=0的条件,因此,本公开实施例中为了进一步提高触控位置的精确度,可以将三轴坐标值转换成直角坐标值进行优化。其中,可以将确定的触控位置的三轴坐标值中的三个值 (u、v和w)分别两两组合,转换成直角坐标系中的x值和y值,得到三组x值和y值,再基于该三组x值和y值的均值确定直角坐标系下的触控位置的坐标值,从而可以进一步提高位置精度。例如,可以分别基于三轴坐标值中的u值和v值确定第一组x值和y值,基于三轴坐标值中的u值和w值确定第二组x值和y值,以及基于三轴坐标值中的v值和w值确定第三组x值和y值,再将三组x值取均值得到
Figure PCTCN2019081077-appb-000003
再将三组y值取均值得到
Figure PCTCN2019081077-appb-000004
利用
Figure PCTCN2019081077-appb-000005
Figure PCTCN2019081077-appb-000006
得到直角坐标系下的触控位置的坐标值。
以上仅为基于触控选择区域内的各电极的电容变化量和权重确定触控位置的一个示例,本公开对确定权重以及基于权重确定触控位置的具体方式不做限制。
综上所述,本公开实施例的触控面板中的电极层可以由六边形形状的电极形成,相对于方形电极其更适用于圆形或者椭圆形的触控面板,同时也适用于方形的触控面板,具有更好的适用性;另外,通过采用六边形形状的电极可以减少电极的设置数量,从而可以降低成本,同时减少对应的电路设计和功耗;另外,采用六边形的电极设置,可以提高触控检测的灵敏度。
另外,本公开实施例还可以提供一种电子设备,该电子设备可以包括如上述实施例所述的触控面板,其中,本公开实施例中的电子设备可以包括手机、计算机、笔记本电脑等具有触控功能的设备,即本公开实施例中的电子设备可以包括任意的具有触控功能的设备,在此不一一举例说明。
另外,本公开实施例的触控面板可以设置在电子设备的任意位置上,本领域技术人员可以根据需求进行不同的设定,对此,本公开实施例不做限制。
另外,本公开实施例中的电子设备中的触控面板的具体配置与上述实施例的说明相同,在此不再赘述。电子设备也可以具备其他数据处理功能,本领域技术人员可以根据不同的需求进行设置,在此不做限定。
进一步地,本公开实施例还提供了一种信息处理方法,该方法可以应用在上述实施例的触控面板或者电子设备中,以用于确定触控面板的触控信息,图6示出了本公开实施例中的信息处理方法的流程图。其中该方法可以包括:
S1:获取触控面板的电极层上的各电极的电容值,其中所述电极层的形状与所述触控面板的形状对应;并且,所述电极层上的各电极构造为六边形形状,且各电极相连接形成所述电极层;
S2:基于获取的各电极的电容值,确定所述触控面板的触控信息。
本公开实施例的触控面板可以包括检测模块3和数据处理模块4(如图4所示)。其中,检测模块3可以与电极层2内的各电极连接,并用于检测各电极的电容值。数据处理模块4可以与检测模块1连接,并可以基于检测模块1所检测的各电极的电容值,确定触控面板的触控信息。即,检测模块1可以用于检测电极层2内的电容值大小,由于具有触控操作时,触控操作会造成电极的电容值的变化,通过检测模块3可以实时的检测到电极的电容值,并确定各电容的电容变化量,并可以将该电容变化量传送给数据处理模块4,使得数据处理模块4确定进一步确定是否存在触控操作,以及触控操作的位置等信息。
首先,数据处理模块4可以基于电容的变化量来确定是否存在触控操作,图7示出了根据本公开实施例的确定触控信息的方法流程图,其中,示出了步骤S2可以进一步包括:
S201:确定各电极的电容变化量;
S202:在各电极的电容变化量总和超过第一阈值时,或者至少一个所述电极的电容变化量超过第二阈值时,确定为所述触控面板被触控。
本公开实施例中,数据处理模块4可以基于电极层2的全部电极的电容变化量来确定是否存在触控操作,或者也可以根据发生电容变化的电极的电容变化量来确定是否存在触控操作。其中,数据处理模块2可以从检测模块2获取全部电极的电容值,获取全部电极的电容变化量值,在确定发生电容值变化的各电极的电容变化量的总和超过第一阈值时,可以确定触控面板被执行了触控操作。或者,数据处理模块4也可以在确定至少一个电极的电容变化量超过第二阈值时,确定为触控面板被触控。如果数据处理模块2确定发生电容值变化的各电极的电容变化量的总和未超过第一阈值,同时全部发生电容变化的电极的电容变化量都未超过第二电极,则可以确定触控面板未被执行触控操作,此时可以不做出响应。其中,第一阈值和第二阈值可以相同也可以不同,本领域技术人员可以根据不同的需求进行设定。
如果确定了触控面板被触控,则数据处理模块4可以进一步确定触控操作的触控位置。其中本公开实施例中基于获取的各电极的电容值,确定所述触控面板的触控信息包括:
确定各电极的电容变化量;
基于电容变化量超过第二阈值的电极,确定触控选择区域,并基于触控选择区域内的各电极的电容变化量和权重确定触控位置。
本公开实施例中的数据处理模块4可以基于电容变化量超过第二阈值的电极,确定触控选择区域,并基于触控选择区域内的各电极的电容变化量和权重确定触控位置。
如上所述,本公开实施例中的数据处理模块4可以首先根据电容变化量超过第二阈值的电极来确定触控选择区域,该触控选择区域即为触控操作的大概位置区域。本公开实施例中,数据处理模块4可以获取电极层2上的各电极的标识信息和对应的位置信息,例如,数据处理模块4可以存储有上述标识信息和位置信息,或者,也可以从设置的存储器中获取该标识信息和位置信息。检测模块3在向数据处理模块4发送各电极的电容值或者电容变化量值时,可以发送电极的标识信息,以方便数据处理模块4确定哪些位置的电极发生了电容变化。其中标识信息是唯一确定电极的信息,如可以为唯一编码,或者标号等信息,本公开实施例对此不进行限制。
另外,本公开实施例中,基于电容变化量超过第二阈值的电极,确定触控选择区域还可以包括:
在电容变化量超过第二阈值的电极中,确定电容变化量最大的电极为第三电极;
以该第三电极为中心向外延伸形成预设范围,该预设范围即被确定为所述触控选择区域。
数据处理模块也可以根据预设规则,基于电容变化量最大的电极的位置确定触控选择区域。数据处理模块4可以在电容变化量超过第二阈值的电极中,确定电容变化量最大的电极为第三电极,以该第三电极为中心向外延伸形成预设范围,该预设范围即被确定为所述触控选择区域。例如,数据处理模块4可以根据电容变化量最大的第三电极为中心,向外延伸预设圈数,将该预设圈数内的电极所形成的区域确定为触控选择区域。即,在执行触控操作时,电极电容量最大的位置,可以被大致确定为触控中心附近的位置,此时可以以该位置所对应的电极为中心,向外扩展预设圈数的电极,从而形成触控选择区域。
本公开实施例可以通过多种方式确定上述预设范围。例如,可以根据预设设置的参数确定预设圈数的信息,即用户可以预先设定该圈数信息,或者也可以是数据处理模块4内预先存储了该圈数信息,在执行触控选择区域的确定时,可以直接通过该设定的信息执行操作。
在本公开的另一些实施例中,数据处理模块4也可以根据预设时间内用户执行触控操作的触控范围来确定上述预设圈数,即数据处理模块4可以记录预设时间内用户执行触控操作时的触控区域的范围,并基于该范围大小以及电极的大小来确定上述预设圈数。例如,上述触控区域的范围可以通过面积的方式体现,通过预设时间内触控操作的触控范围的面积的平均值来确定触控操作的平均范围,基于该平均范围与电极的大小即可以确定预设圈数的信息。本公开实施例中的上述触控操作可以包括单点触控操作,或者也可以为连续的触控操作,对于连续的触控操作其可以视为多个单点触控操作。
在确定了上述预设圈数之后,数据处理模块4在可以按照第三电极为中心,向外扩展该预设圈数所对应的预设范围,从而确定触控选择区域。在确定了触控选择区域后,数据处理模块4则可以进一步确定触控点的位置,如可以基于触控选择区域内的各电极的电容变化量和权重确定触控位置。
本公开实施例中,所述基于触控选择区域内的各电极的电容变化量和权重确定触控位置可以包括:
建立三轴坐标系;
获取所述触控选择区域内的各电极的中心在三轴坐标系内的各坐标轴上的投影距离确定为该电极在对应坐标轴上的权重;
对于每个坐标轴,计算并基于各对应坐标轴的所述权重与电极的电容变化量的乘积之和,与该触控选择区域内的各电极的电容之和之间的比值;
基于对应于各坐标轴的所述比值确定触控点的位置坐标。
其中,如上所述,本公开实施例中的数据处理模块4可以获取各电极的位置信息,其中位置信息可以按照坐标的形式表示。本公开实施例中可以建立三轴坐标系来表示各电极的位置信息。
图5示出根据本公开实施例的触控面板的三轴坐标系的结构示意图,其中,三轴坐标系的三个坐标轴u轴、v轴和w轴分别设置在同一个平面内,且每两个周之间的夹角为120度,上述第一电极的中心可以为该三轴坐标系的圆心。为了方便的表述,可以定义方形的垂直坐标轴分别是x轴和y轴,对应正六边形的垂直坐标轴也是x轴和y轴,并且每隔2π/3的角度就分布u轴、v轴 和w轴,其中w轴与y轴方向相反。其中直角坐标系中的x轴和y轴可以与三轴坐标系中的u轴、v轴和w轴之间进行坐标转换,而且由于u轴、v轴和w轴是在二维平面内平均分布的三轴坐标,所以有效的正六边形的坐标值都满足u+v+w=0,即三个坐标轴上的坐标值加和为零。
数据处理模块4可以分别获取电极层2中的各电极在上述三轴坐标系中的位置,例如可以确定电极中心在三轴坐标系中的位置信息。进一步地,数据处理模块4可以基于确定的触控选择区域内的各电极的中心在三轴坐标系内的各坐标轴上的投影距离确定该电极在对应坐标轴上的权重;以及对于每个坐标轴,计算各电极的电容变化量与该电极在该坐标轴上的权重的乘积之和,并计算该和与该触控选择区域内的各电极的电容之和之间的比值,并可以进一步基于对应于各坐标轴的所述比值确定触控点的位置坐标。
例如,本公开实施例中,数据处理模块4在确定了触控选择区域后,可以确定该触控选择区域内的电极的位置信息。从而可以确定每个电极对应于各坐标轴的权重,例如各电极对于u轴的第一权重可以为各电极的中心在u轴上的第一投影距离,各电极对于v轴的第二权重可以为各电极的中心在v轴上的第二投影距离,各电极对于w轴的第三权重可以为各电极的中心在w轴上的第三投影距离。在获得了触控选择区域内的各电极相对于各坐标轴的三个权重值之后,可以分别获得各电极对应于坐标轴的权重与电极的电容变化量的乘积之和。例如,将各电极对应于u轴的第一权重与对应电极的电容变化量的乘积加和获得第一加和值,将各电极对应于v轴的第二权重与对应电极的电容变化量的乘积加和获得第二加和值,以及将各电极对应于w轴的第三权重与对应电极的电容变化量的乘积加和获得第三加和值,最后基于第一加和值与触控选择区域内的各电极的电容值之和之间的第一比值确定触控位置的u轴坐标值,基于第二加和值与触控选择区域内的各电极的电容值之和之间的第二比值确定触控位置的v轴坐标值,以及基于第三加和值与触控选择区域内的各电极的电容值之和之间的第三比值确定触控位置的w轴坐标值,从而基于上述u轴坐标值、v轴坐标值和w轴坐标值确定触控位置。即,由上述三个坐标值形成的点即可以被确定为触控位置。
通过上述配置即可以确定触控操作的触控位置,由于本公开实施了通过平面内的三轴坐标系的方式确定触控位置,其可以适用于各种形状的触控面板,相对于传统的直接坐标轴的方式,且不需要执行横向和纵向的不全操作,从而节省了电路设计,降低了对应的成本。
进一步地,由于实际使用中,常常会引入噪声而使得触控位置中的u、v、w坐标值加和并不满足u+v+w=0的条件,因此,本公开实施例中为了进一步提高触控位置的精确度,可以将三轴坐标值转换成直角坐标值进行优化。其中,可以将确定的触控位置的三轴坐标值中的三个值(u、v和w)分别两两组合,转换成直角坐标系中的x值和y值,得到三组x值和y值,再基于该三组x值和y值的均值确定直角坐标系下的触控位置的坐标值,从而可以进一步提高位置精度。例如,可以分别基于三轴坐标值中的u值和v值确定第一组x值和y值,基于三轴坐标值中的u值和w值确定第二组x值和y值,以及基于三轴坐标值中的v值和w值确定第三组x值和y值,再将三组x值取均值得到
Figure PCTCN2019081077-appb-000007
再将三组y值取均值得到
Figure PCTCN2019081077-appb-000008
利用
Figure PCTCN2019081077-appb-000009
Figure PCTCN2019081077-appb-000010
得到直角坐标系下的触控位置的坐标值。
综上所述,本公开实施例的触控面板中的电极层可以由六边形形状的电极形成,相对于方形电极其更适用于圆形或者椭圆形的触控面板,同时也适用于方形的触控面板,具有更好的适用性;另外,通过采用六边形形状的电极可以减少电极的设置数量,从而可以降低成本,同时减少对应的电路设计和功耗;另外,采用六边形的电极设置,可以提高触控检测的灵敏度。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络 可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的 过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (15)

  1. 一种触控面板,其特征在于,包括:基板,以及形成在所述基板内或者所述基板上的电极层,所述电极层的形状与所述触控面板的形状对应;
    并且,所述电极层包括多个构造为六边形形状的电极,各电极相连接形成所述电极层。
  2. 根据权利要求1所述的触控面板,其特征在于,所述电极层包括第一电极,以及以所述第一电极为中心依次延伸相接设置的第二电极。
  3. 根据权利要求1所述的触控面板,其特征在于,还包括:
    检测模块,其与所述电极层的各电极连接,并用于检测各电极的电容值;
    数据处理模块,其配置为基于所述检测模块所检测的各电极的电容值,确定所述触控面板的触控信息。
  4. 根据权利要求3所述的触控面板,其特征在于,其中,所述数据处理模块进一步配置为在各电极的电容变化量总和超过第一阈值时,或者至少一个所述电极的电容变化量超过第二阈值时,确定为所述触控面板被触控。
  5. 根据权利要求3所述的触控面板,其特征在于,所述数据处理模块进一步配置为基于电容变化量超过第二阈值的电极,确定触控选择区域,并基于触控选择区域内的各电极的电容变化量和权重确定触控位置。
  6. 根据权利要求5所述的触控面板,其特征在于,所述数据处理模块进一步配置为在电容变化量超过第二阈值的电极中,确定电容变化量最大的电极为第三电极,以该第三电极为中心向外延伸形成预设范围,该预设范围即被确定为所述触控选择区域。
  7. 根据权利要求5所述的触控面板,其特征在于,所述数据处理模块进一步配置为:
    建立三轴坐标系,基于所述触控选择区域内的各电极的中心在三轴坐标系内的各坐标轴上的投影距离确定该电极在对应坐标轴上的权重;
    对于每个坐标轴,计算各电极的电容变化量与该电极在该坐标轴上的权重的乘积之和,并计算该和与该触控选择区域内的各电极的电容之和之间的比值,
    基于对应于各坐标轴的所述比值确定触控点的位置坐标。
  8. 根据权利要求2所述的触控面板,其特征在于,所述第一电极和第二电极为相同的正六边形。
  9. 根据权利要求1所述的触控面板,其特征在于,基板构造为圆形或椭圆形。
  10. 一种电子设备,其特征在于,包括权利要求1-8中任意一项所述的触控面板。
  11. 一种信息处理方法,其特征在于,其用于确定触控面板的触控信息,并包括:
    获取触控面板的电极层上的各电极的电容值,其中所述电极层的形状与所述触控面板的形状对应;并且,所述电极层上的各电极构造为六边形形状,且各电极相连接形成所述电极层;
    基于获取的各电极的电容值,确定所述触控面板的触控信息。
  12. 根据权利要求11所述的方法,其特征在于,所述基于获取的各电极的电容值,确定所述触控面板的触控信息包括:
    确定各电极的电容变化量;
    在各电极的电容变化量总和超过第一阈值时,或者至少一个所述电极的电容变化量超过第二阈值时,确定为所述触控面板被触控。
  13. 根据权利要求11所述的方法,其特征在于,所述基于获取的各电极的电容值,确定所述触控面板的触控信息包括:
    确定各电极的电容变化量;
    基于电容变化量超过第二阈值的电极,确定触控选择区域,并基于触控选择区域内的各电极的电容变化量和权重确定触控位置。
  14. 根据权利要求13所述的方法,其特征在于,所述基于电容变化量超过第二阈值的电极,确定触控选择区域包括:
    在电容变化量超过第二阈值的电极中,确定电容变化量最大的电极为第三电极;
    以该第三电极为中心向外延伸形成预设范围,该预设范围即被确定为所述触控选择区域。
  15. 根据权利要求13所述的方法,其特征在于,所述基于触控选择区域内的各电极的电容变化量和权重确定触控位置包括:
    建立三轴坐标系;
    获取所述触控选择区域内的各电极的中心在三轴坐标系内的各坐标轴上的投影距离确定为该电极在对应坐标轴上的权重;
    对于每个坐标轴,计算各对应坐标轴的所述权重与电极的电容变化量的乘积之和,与该触控选择区域内的各电极的电容之和之间的比值;
    基于对应于各坐标轴的所述比值确定触控点的位置坐标。
PCT/CN2019/081077 2018-06-26 2019-04-02 一种触控面板、电子设备和信息处理方法 WO2020001116A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207019613A KR102406530B1 (ko) 2018-06-26 2019-04-02 터치 패널, 전자 장치 및 정보 처리 방법
US16/961,240 US11429241B2 (en) 2018-06-26 2019-04-02 Touch panel, electronic device and information processing method based on hexagonal electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810671485.5 2018-06-26
CN201810671485.5A CN108710453B (zh) 2018-06-26 2018-06-26 一种触控面板、电子设备和信息处理方法

Publications (1)

Publication Number Publication Date
WO2020001116A1 true WO2020001116A1 (zh) 2020-01-02

Family

ID=63873099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081077 WO2020001116A1 (zh) 2018-06-26 2019-04-02 一种触控面板、电子设备和信息处理方法

Country Status (4)

Country Link
US (1) US11429241B2 (zh)
KR (1) KR102406530B1 (zh)
CN (1) CN108710453B (zh)
WO (1) WO2020001116A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710453B (zh) 2018-06-26 2020-09-11 北京集创北方科技股份有限公司 一种触控面板、电子设备和信息处理方法
CN111414118A (zh) * 2019-01-08 2020-07-14 敦泰电子有限公司 触控中心计算方法、触控系统及触控装置
CN109901757A (zh) * 2019-03-11 2019-06-18 京东方科技集团股份有限公司 触控面板及其控制方法和控制装置、显示装置
CN111078046B (zh) * 2019-12-05 2022-04-08 北京集创北方科技股份有限公司 检测方法、装置及电子设备
CN113238684A (zh) * 2021-06-24 2021-08-10 科世达(上海)机电有限公司 二维触摸的定位方法、装置、设备及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393502A (zh) * 2008-10-31 2009-03-25 敦泰科技有限公司 互电容式触摸屏及组合式互电容触摸屏
US20090218651A1 (en) * 2008-02-28 2009-09-03 Sunlight Photonics Inc. Composite substrates for thin film electro-optical devices
CN204631838U (zh) * 2015-02-10 2015-09-09 敦泰电子有限公司 穿戴式电子设备
CN108710453A (zh) * 2018-06-26 2018-10-26 北京集创北方科技股份有限公司 一种触控面板、电子设备和信息处理方法
CN208506728U (zh) * 2018-06-26 2019-02-15 北京集创北方科技股份有限公司 一种触控面板和电子设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459525B2 (ja) * 2010-10-15 2014-04-02 株式会社村田製作所 タッチ式入力装置およびその制御方法
DE102010053684A1 (de) * 2010-12-08 2012-06-14 Trw Automotive Electronics & Components Gmbh Verfahren zur Bestimmung einer Position einer Berührung auf einem kapazitiven Sensorfeld
KR20130099420A (ko) * 2012-02-29 2013-09-06 주식회사 팬택 정전용량 방식의 터치 스크린을 구비하는 단말기와 그의 터치 위치 검출 방법
CN102945109B (zh) * 2012-11-29 2015-10-28 锐迪科科技有限公司 互电容屏检测触摸区域的方法
CN104049815A (zh) * 2013-03-15 2014-09-17 联咏科技股份有限公司 电容式触摸屏及其驱动方法
US11093093B2 (en) * 2014-03-14 2021-08-17 Synaptics Incorporated Transcapacitive and absolute capacitive sensing profiles
CN104063108B (zh) * 2014-07-03 2017-04-05 深圳市华星光电技术有限公司 基于单层金属网格的互电容多点触控电极结构
CN104142757B (zh) * 2014-08-05 2017-02-15 深圳市华星光电技术有限公司 触摸显示屏及其触控面板
TWI534677B (zh) * 2014-10-03 2016-05-21 群創光電股份有限公司 觸控面板
CN104598090B (zh) * 2015-02-11 2017-11-07 深圳市乐特尔科技有限公司 一种触摸屏的多点触摸定位方法及触摸屏装置
CN104881179B (zh) * 2015-06-23 2017-07-28 京东方科技集团股份有限公司 一种内嵌式触摸显示屏、其驱动方法及显示装置
CN104898888B (zh) * 2015-06-23 2017-09-19 京东方科技集团股份有限公司 一种内嵌式触摸显示屏、其驱动方法及显示装置
CN105045426B (zh) 2015-08-13 2017-12-12 北京集创北方科技股份有限公司 一种触摸屏抗噪声方法及装置
CN105824476B (zh) * 2016-04-28 2018-08-07 京东方科技集团股份有限公司 一种触控结构及其驱动方法、触控屏、触控显示装置
KR102438256B1 (ko) * 2017-06-07 2022-08-30 엘지디스플레이 주식회사 터치 스크린을 갖는 유기 발광 표시 장치 및 이의 제조 방법
US10732765B2 (en) * 2017-08-18 2020-08-04 Synaptics Incorporated Method and system for alternative absolute profile determination
KR101960183B1 (ko) * 2017-09-07 2019-03-19 연세대학교 산학협력단 초박막 터치 패널 및 그 제조 방법
CN107463296B (zh) * 2017-09-21 2024-03-29 京东方科技集团股份有限公司 一种显示面板、触摸屏及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090218651A1 (en) * 2008-02-28 2009-09-03 Sunlight Photonics Inc. Composite substrates for thin film electro-optical devices
CN101393502A (zh) * 2008-10-31 2009-03-25 敦泰科技有限公司 互电容式触摸屏及组合式互电容触摸屏
CN204631838U (zh) * 2015-02-10 2015-09-09 敦泰电子有限公司 穿戴式电子设备
CN108710453A (zh) * 2018-06-26 2018-10-26 北京集创北方科技股份有限公司 一种触控面板、电子设备和信息处理方法
CN208506728U (zh) * 2018-06-26 2019-02-15 北京集创北方科技股份有限公司 一种触控面板和电子设备

Also Published As

Publication number Publication date
CN108710453A (zh) 2018-10-26
CN108710453B (zh) 2020-09-11
US11429241B2 (en) 2022-08-30
US20210165533A1 (en) 2021-06-03
KR102406530B1 (ko) 2022-06-08
KR20200096609A (ko) 2020-08-12

Similar Documents

Publication Publication Date Title
WO2020001116A1 (zh) 一种触控面板、电子设备和信息处理方法
AU2014307237B2 (en) Method and apparatus for recognizing grip state in electronic device
US10139950B2 (en) Flexible display device and driving method thereof
US9105255B2 (en) Discriminative capacitive touch panel
TWI387908B (zh) 物體位置偵測裝置與方法及應用該物體位置偵測裝置之影像顯示系統
RU2686629C2 (ru) Разводка проводящих дорожек для датчиков дисплея и лицевой панели
US10466841B2 (en) Curved touch panel and display device comprising same
KR20130120815A (ko) 터치스크린 패널 및 터치스크린 장치
US10521056B2 (en) Touch screen panel and display device
TW201508603A (zh) 基於電容式觸控裝置的感測方法
EP2490108A2 (en) Touch Screen
WO2016015384A1 (zh) 触控显示面板及显示装置
US9465489B2 (en) Randomized mesh design
US10101860B2 (en) Borderless projected capacitive multitouch sensor
WO2017012294A1 (zh) 触控模组、触摸屏、其触摸定位方法及显示装置
KR20160117719A (ko) 터치 센서 장치
WO2018098771A1 (zh) 确定方位角或姿态的方法、触控输入装置、触控屏及系统
US9958996B2 (en) Capacitive touch sensor
CN208506728U (zh) 一种触控面板和电子设备
US9354740B2 (en) Object orientation determination
Chou et al. Modeling and analysis of touch on flexible ultra-thin touch sensor panels for AMOLED displays employing finite element methods
US20160132143A1 (en) Optical touch module and touch detecting method thereof
JP2017049659A (ja) タッチセンサおよびタッチセンサ内蔵型表示装置
TWI512575B (zh) Single layer touch sensing device
US11983370B2 (en) Spherical or highly curved touch-sensitive surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207019613

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826396

Country of ref document: EP

Kind code of ref document: A1