WO2021120822A1 - 一种无升温期连续进料全混合式的生物干化设备及方法 - Google Patents

一种无升温期连续进料全混合式的生物干化设备及方法 Download PDF

Info

Publication number
WO2021120822A1
WO2021120822A1 PCT/CN2020/122171 CN2020122171W WO2021120822A1 WO 2021120822 A1 WO2021120822 A1 WO 2021120822A1 CN 2020122171 W CN2020122171 W CN 2020122171W WO 2021120822 A1 WO2021120822 A1 WO 2021120822A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
biological drying
cylindrical tube
heating period
box
Prior art date
Application number
PCT/CN2020/122171
Other languages
English (en)
French (fr)
Inventor
吴伟祥
严祥瑞
尹筱思
毕峰
王昊书
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021120822A1 publication Critical patent/WO2021120822A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F9/00Fertilisers from household or town refuse
    • C05F9/02Apparatus for the manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F9/00Fertilisers from household or town refuse
    • C05F9/04Biological compost
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/25Mixing waste with other ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Definitions

  • the invention relates to a fully-mixed biological drying equipment and method with continuous feeding without heating period, a device used to realize water reduction and biological stability of perishable garbage in urban and rural areas, and belongs to the field of perishable garbage treatment
  • Biological drying technology as a kind of drying treatment technology that uses the biological heat energy generated by the degradation of organic matter in the process of microbial high temperature aerobic fermentation, promotes the evaporation of water through process control means, so as to achieve rapid removal of water and increase of low calorific value. It does not require external heating, and is a very economical, energy-saving, and environmentally friendly drying technology, which has attracted great attention both inside and outside the industry. It has been determined that the moisture content of perishable garbage can be reduced from 70% to 45% after biological drying treatment, the weight loss rate can reach 45%, and the low calorific value can be increased from 800kcal/kg to 2000-2400kcal/kg, reaching the heat of incineration into the furnace. Value requirements.
  • biological drying technology has obvious advantages: 1. Wide applicability, biological drying does not require high purity of waste, even mixed waste can be treated with biological drying technology; 2. .Strong economy, the thermal energy source of biological drying technology is low-energy biomass heat, and by reducing the amount of water-based waste, the cost of waste transportation is reduced, and the leakage of leachate during transportation is reduced; 3. Connect to the waste classification and reduction complex, and improve the capacity of urban domestic waste treatment through reduction at the source.
  • the traditional biological drying method is mainly batch processing. During the processing, it is necessary to wait for the temperature of the material and the growth of microorganisms, which makes it difficult to shorten the residence time.
  • the biological drying process still faces the problems of stirring entanglement and aeration blockage, which not only affects the efficiency of biological drying, but also greatly increases the cost of biological drying.
  • the present invention provides a biological drying equipment and method with continuous feeding and full mixing without heating period.
  • the present invention provides a fully-mixed biological drying equipment with continuous feeding without heating period, which is characterized in that it is composed of a box, a stirring screw and an aeration nozzle;
  • a reaction chamber for biological drying is provided in the box body, and the lower part of the cross section of the reaction chamber is semicircular;
  • the stirring spiral is installed inside the box, and the stirring spiral includes a support shaft, a spiral blade, a blade support plate, and a scraper; the support shaft is arranged along the axial direction in the reaction chamber, and both ends are fixed on the box; two blade support plates They are respectively fixed to the two ends of the support shaft.
  • a number of spiral blades that rotate synchronously with the support shaft are fixed between the two blade support plates; each spiral blade is coaxially wound on the outside of the support shaft in a spiral form, and its outer arc is There is a scraper on the upper edge, and the scraper faces the side of the rotation direction of the spiral blade; when the spiral blade rotates to the lower part of the reaction chamber, its outer arc and the scraper are close to the semicircular inner wall of the reaction chamber but do not touch. Used to drive the material in the lower part of the reaction chamber to flip upwards;
  • aeration nozzles which are distributedly installed at the bottom of the reaction chamber of the box body for aeration of the reaction chamber.
  • the box body is composed of a U-shaped groove, a U-shaped plate, a support frame, a box top and an insulation layer;
  • Both sides of the U-shaped groove are closed by a U-shaped plate, and the top is closed by the top of the box to form a reaction chamber for biological drying of materials;
  • the lower part of the reaction chamber is a semi-cylindrical body, the upper part is a rectangular parallelepiped, and the lower part of the U-shaped groove is uniform
  • a number of threaded holes are provided, and the bottom is provided with a discharge port that can be opened and closed;
  • each U-shaped plate is provided with a round hole for axially fixing the support shaft, and the support shaft is arranged along the semi-cylinder axis of the lower part of the reaction chamber;
  • the top of the box is provided with a feed inlet and a suction outlet;
  • the support frame is used to support the U-shaped groove suspended in the air; the thermal insulation layer is wrapped on the outer wall of the reaction chamber.
  • the aeration nozzle includes a cylindrical pipe, a hook-type air passage vent pipe, and a base;
  • the cylindrical tube is installed at the lower part of the reaction chamber, and both ends of the cylindrical tube are open, and the top air outlet extends into the reaction chamber but the bottom is outside the box;
  • the base is sealed and fixed at the bottom opening of the cylindrical tube
  • the hook-shaped air path vent pipe elbow section is located outside the cylindrical tube and is used to connect the peripheral aeration pipeline, and the straight pipe section passes through the circular hole opened in the center of the base in a sealed form and extends into the cylindrical tube;
  • the top of the straight pipe section is closed, the side wall is opened with air holes, and the distance between the side wall and the inner wall of the cylindrical pipe is kept as a gas path.
  • the spiral inner diameter of the spiral blade is larger than the outer diameter of the support shaft, and the spiral outer diameter is slightly smaller than the semicircular diameter of the lower part of the reaction chamber.
  • the scraper is welded along the outer cutting surface of the spiral blade, and the surface of the scraper is parallel to the outer cutting surface of the spiral blade.
  • spiral blades which are fixed to the circumferential direction of the support shaft at equal angles.
  • the aeration nozzle includes a cylindrical pipe, a hook-type air passage vent pipe, and a base;
  • the cylindrical tube is installed at the lower part of the reaction chamber, and both ends of the cylindrical tube are open, and the top air outlet extends into the reaction chamber but the bottom is outside the box;
  • the base is sealed and fixed at the bottom opening of the cylindrical tube
  • the hook-shaped air path vent pipe elbow section is located outside the cylindrical tube and is used to connect the peripheral aeration pipeline, and the straight pipe section passes through the circular hole opened in the center of the base in a sealed form and extends into the cylindrical tube;
  • the top of the straight pipe section is closed, the side wall is opened with air holes, and the distance between the side wall and the inner wall of the cylindrical pipe is kept as a gas path.
  • the aeration nozzles are all made of metal material, and the top end of the hook-shaped air passage vent pipe is sealed by welding a hemispherical metal cap of equal diameter.
  • both the top outer wall surface and the bottom inner wall surface of the cylindrical tube are provided with threads; the cylindrical tube is assembled and connected with the threaded hole at the bottom of the box through the top external thread; the base is a circular metal plate, The outer side wall is tapped with threads, and is assembled and connected with the inner thread at the bottom of the cylindrical tube.
  • the present invention provides a biological drying method using the biological drying equipment according to any one of the above solutions, the method comprising: a biological drying process startup method and a biological drying process operating method;
  • the method for initiating biological drying includes:
  • the operating method of the biological drying process includes:
  • the invention adopts a U-shaped reaction chamber as a biological drying reaction chamber, and a stirring screw and aeration nozzle are installed inside for turning, stirring, and aeration and aeration.
  • the stirring spiral adopts spiral blades to avoid plastic entanglement and stirring dead corners; the aeration nozzle is anti-clogging design.
  • the operation method of the present invention includes a start-up method and an operation method. The principle can be compared to the aerobic activated sludge method.
  • Fig. 1 is an overall structure diagram of an embodiment of a fully-mixed continuous feed biological drying equipment without temperature rise period provided by the present invention
  • Fig. 2 is an overall structure diagram of an embodiment of a fully mixed biological drying equipment with continuous feeding and no heating period provided by the present invention (one side U-shaped plate is hidden);
  • FIG. 3 is an overall front cross-sectional view of an embodiment of a fully mixed type biological drying equipment with continuous feeding without heating period provided by the present invention
  • FIG. 4 is an overall side cross-sectional view of an embodiment of a fully-mixed biological drying equipment with continuous feeding and no heating period provided by the present invention
  • FIG. 5 is an overall top cross-sectional view of an embodiment of a biological drying equipment with continuous feeding and full mixing without heating period provided by the present invention
  • Fig. 6 is a box structure diagram of an embodiment of a fully-mixed biological drying equipment with continuous feeding without heating period provided by the present invention
  • FIG. 7 is a front sectional view of a box body of an embodiment of a fully-mixed biological drying equipment with continuous feeding and no heating period provided by the present invention.
  • FIG. 8 is a side sectional view of the cabinet of an embodiment of a fully mixed type biological drying equipment with continuous feeding and no heating period provided by the present invention.
  • FIG. 9 is a top sectional view of the box body of an embodiment of a fully-mixed biological drying equipment with continuous feeding and no heating period provided by the present invention.
  • FIG. 10 is a structural diagram of an agitating screw of an embodiment of a fully mixed type biological drying equipment with continuous feed without heating period provided by the present invention.
  • FIG. 11 is a cross-sectional view of an aeration nozzle of an embodiment of a biological drying equipment with continuous feeding and full mixing without heating period provided by the present invention
  • Figure 12 shows the temperature change in a specific embodiment of the present invention
  • Figure 13 is a view of the change of water content in a specific embodiment of the present invention.
  • the equipment structure includes three parts: the box body 1, the stirring screw 2, and the aeration nozzle 3.
  • the specific structure U Groove 1.1, U-shaped plate 1.2, support frame 1.3, box top 1.4, insulation layer 1.5, threaded hole 1.6, feed port 1.7, exhaust port 1.8, discharge port 1.9, round hole 1.10, support shaft 2.1, spiral blade 2.2 , Blade support plate 2.3, scraper 2.4, cylindrical pipe 3.1, hook type air passage 3.2, base 3.3, hemispherical metal cap 3.4.
  • the specific structure is described in detail below:
  • a fully-mixed biological drying equipment with continuous feeding without heating period is composed of a box body 1, a stirring screw 2 and an aeration nozzle 3.
  • the biological drying reaction chamber takes the box body 1 as the carrying unit. And through the stirring screw 2 and the aeration nozzle 3 for biological drying assistance.
  • the specific structure of the box body 1 is shown in Figures 6-9, which is composed of a U-shaped groove 1.1, a U-shaped plate 1.2, a support frame 1.3, a box top 1.4 and an insulation layer 1.5.
  • the U-shaped groove 1.1 is a U-shaped tank body with a longitudinal cross-section. Both sides of the U-shaped groove 1.1 are closed by a U-shaped plate 1.2, and the top is closed by the top of the box 1.4 to form a reaction chamber for the biological drying of materials. . Therefore, the entire reaction chamber can be regarded as composed of two parts, the lower part is a semi-cylindrical body, and the upper part is a rectangular parallelepiped.
  • the U-shaped material reaction chamber composed of U-shaped groove, U-shaped plate and top of the box is used to avoid the dead angle caused by the stirring screw in the material reaction chamber when stirring.
  • the bottom surface of the semi-cylindrical body at the lower part of the U-shaped groove 1.1 is evenly provided with a number of threaded holes 1.6.
  • the function of the threaded holes 1.6 is to install the aeration nozzle 3.
  • the bottom of the semi-cylindrical body is provided with a discharging port 1.9, which is hinged on the shell, so that the opening and closing of the discharging port 1.9 can be controlled. It is closed in the working state and opens and closes when discharging.
  • the top 1.4 of the box is equipped with a feed inlet 1.7 and a suction outlet 1.8, which are used for feeding and pumping air to increase humidity.
  • Each U-shaped plate 1.2 is provided with a circular hole 1.10, and a bearing is embedded in the circular hole 1.10, which is used to axially fix the support shaft 2.1 of the stirring screw 2.
  • the shape of the U-shaped plate 1.2 is consistent with the longitudinal section of the U-shaped groove 1.1, and the lower part is also a semicircle, and the circular hole 1.10 is opened at the center of the semicircle. Therefore, the support shaft 2.1 is arranged along the axis of the semi-cylinder in the lower part of the reaction chamber.
  • the entire box body 1 is supported on the ground by the support frame 1.3, keeping the U-shaped groove 1.1 suspended in the air.
  • thermal insulation layer 1.5 adheres to the outer wall of the U-shaped groove, which plays a role of thermal insulation.
  • the function of the stirring screw 2 is to agitate the materials in the reaction chamber in all directions without dead ends, so its form is also specially designed for the structure of the reaction chamber.
  • the main body of the agitating screw 2 is installed inside the box 1.
  • the agitating screw 2 includes a supporting shaft 2.1, a spiral blade 2.2, a blade supporting plate 2.3 and a scraper 2.4.
  • the supporting shaft 2.1 is arranged along the axial direction in the reaction chamber, and both ends are fixed on the U-shaped plate 1.2 on the box body 1 through bearings.
  • Two blade support plates 2.3 are respectively fixed on both ends of the support shaft 2.1.
  • the supporting shaft 2.1 should adopt a stainless steel hollow tube, and the blade supporting plate 2.3 should adopt a round stainless steel plate.
  • Two blade support plates 2.3 are coaxially installed at both ends of the support shaft 2.1.
  • One end of the support shaft 2.1 extends from the box body 1, and is connected with an external drive motor to form a transmission.
  • Three spiral blades 2.2 rotating synchronously with the supporting shaft 2.1 are fixed between the two blade supporting plates 2.3, and the three spiral blades 2.2 are fixed to the circumferential direction of the supporting shaft 2.1 at equal angles. Both ends of each spiral blade 2.2 are respectively welded to two blade support plates 2.3. Each spiral blade 2.2 is coaxially wound around the outside of the support shaft 2.1 in a spiral form. The spiral blade 2.2 is in a certain twisted state, but the twisting angle should be less than 90°.
  • a scraper 2.4 is provided along the outer arc of the spiral blade 2.2. The scraper 2.4 starts from the blade support plate 2.3 on one side and extends to the blade support plate 2.3 on the other side.
  • the scraper 2.4 is only fixed on one side of the spiral blade 2.2, that is, toward the side of the rotation direction of the spiral blade 2.2.
  • the scraper 2.4 in this embodiment is welded along the circumscribed spiral surface of the spiral blade 2.2, the scraper 2.4 has a narrow width, and the plate surface is parallel to the outer tangent surface of the spiral blade.
  • a right-angled material driving area is formed between the scraper 2.4 and the spiral blade 2.2, and the scraper assists the spiral blade to scrape more materials.
  • the spiral inner diameter of the spiral blade 2.2 is larger than the outer diameter of the support shaft 2.1, and the spiral outer diameter is slightly smaller than the diameter of the semi-cylinder in the lower part of the reaction chamber.
  • the spiral blade 2.2 rotates to the lower part of the reaction chamber, its outer arc and the scraper 2.4 are close to the semicircular inner wall of the reaction chamber but do not touch, and are used to drive the material in the lower part of the reaction chamber to flip upward. Moreover, at this time, the materials in the entire reaction chamber can be completely stirred, there will be no dead corners, and full mixing and stirring can be effectively realized. In addition, the spiral blade can effectively avoid the entanglement of fibrous garbage or plastic bags.
  • aeration nozzles 3 which are installed in a distributed manner at the bottom of the reaction chamber of the tank 1 for uniform aeration of the materials in the reaction chamber and accelerate the drying process.
  • the aeration nozzles 3 in this embodiment are all made of metal materials, including a cylindrical pipe 3.1, a hook-type air vent pipe 3.2, and a base 3.3.
  • the top outer wall surface and the bottom inner wall surface of the cylindrical tube 3.1 are both provided with threads.
  • the cylindrical tube 3.1 is installed in the threaded hole 1.6 opened in the lower part of the reaction chamber of the box 1 through the top external thread, and the two ends of the cylindrical tube 3.1 are open, and the top air outlet extends into the reaction chamber, but the bottom is located outside the box 1. .
  • the air outlet at the top of the cylindrical tube 3.1 is as flush as possible with the inner wall of the reaction chamber or extends into a small distance appropriately.
  • the base 3.3 is a circular metal plate with a certain thickness, and the outer side wall is tapped with threads. When in use, it can be assembled and connected with the internal thread at the bottom of the cylindrical tube 3.1 to block the bottom opening of the cylindrical tube 3.1.
  • the threaded connection base is designed to be disassembled and cleaned to prevent material blockage.
  • the hook-type air path snorkel 3.2 is composed of a straight pipe section and an elbow section, and the internal air path is hook-shaped.
  • the elbow section is located outside the cylindrical pipe 3.1 and is used to connect the peripheral aeration pipeline, while the straight pipe section passes through the circular hole opened in the center of the base 3.3 and extends into the cylindrical pipe 3.1, and between the straight pipe section and the base 3.3 seal.
  • the top of the straight pipe section is closed, and the side wall is provided with air holes.
  • the top of the straight pipe section is sealed by welding a hemispherical metal cap 3.4 of equal diameter.
  • the straight pipe section of the hook-type air path vent pipe 3.2 is coaxially arranged with the cylindrical pipe 3.1, and a certain distance is maintained between the side wall of the straight pipe section and the inner wall of the cylindrical pipe 3.1 as a gas path channel.
  • the air provided by the external aeration pipeline can enter the straight pipe section through the elbow section of the hook airway vent pipe 3.2, then enter the cylindrical pipe 3.1 through the air outlet on the side wall, and then be discharged from the air outlet on the top of the cylindrical pipe 3.1 Realize the aeration of the materials in the reaction chamber.
  • the air outlet opening on the side wall of the straight pipe section should have a certain height relative to the upper surface of the base 3.3 to prevent the liquid in the reaction chamber from entering the aeration pipeline.
  • the aeration nozzles should be evenly distributed at the bottom of the U-shaped groove to achieve a uniform aeration effect.
  • the present invention provides a biological drying method using the above biological drying equipment, including a biological drying process start-up method and a biological drying process operating method.
  • the former is used for the early rapid start of the device, and the latter is used for the rapid start-up of the device. Stable operation after startup.
  • the processing capacity of the equipment should be 0.1-0.5 tons/day
  • the residence time should be 5-7 days
  • the moisture content of the material should be controlled at 40%-50% to control the best equipment investment capacity ratio.
  • 0.1 ton/day treatment capacity, 7-day residence time and water content control at 45% is an example with 0.1 ton/day treatment capacity, 7-day residence time and water content control at 45%.
  • Methods of starting biological drying include:
  • the extremely high microbial biomass and microbial activity can provide a large amount of biodegradation heat for the material, and provide energy protection for the evaporation of water;
  • the material is continuously aerated and supplied with oxygen through the aeration nozzle for 24 hours, and the aeration air volume is 50-100m 3 /h, which can carry high-humidity air out of the biological drying reaction chamber while supplying oxygen. It is a direct aid to remove moisture;
  • the high humidity air in the reaction chamber is collected through the air exhaust on the top of the box body to assist in taking away the high humidity air in the biological drying reaction chamber;
  • the operating methods of the biological drying process include:
  • the material is continuously aerated and supplied with oxygen for 24 hours through the aeration nozzle, and the aeration air volume is 50-100m 3 /h;
  • a pilot experiment was carried out with this scheme (aeration air volume 70m 3 /h, stirring frequency 2min/h), and the changes in the temperature and moisture content of the materials in the reaction chamber for 24 hours under normal operation were measured.
  • the results show that the temperature of the materials in the reaction chamber is kept above 40°C, the highest temperature can reach above 60°C, and the moisture content can be reduced from 75-85% of the fresh material before feeding to below 40% of the discharged material, which is slightly better than expected effect.
  • the total normal operation time of the reactor before and during the experiment was more than two weeks, and the reactor basically realized long-term stable operation.
  • the present invention reasonably distributes microorganisms and moisture to obtain extremely high microbial biomass and microbial activity, so that the fermentation process skips the long heating period (microbial growth). Period), shorten the residence time and reduce the area occupied.
  • bacterial inoculation can be carried out in the biological desiccation initiation scheme.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

一种无升温期连续进料全混合式的生物干化设备及方法,该设备包括箱体(1)、搅拌螺旋(2)和曝气喷头(3);所述箱体(1)采用U型反应仓作为生物干化反应仓,内部安装搅拌螺旋(2)和曝气喷头(3)进行翻抛搅拌和通风曝气;搅拌螺旋(2)采用螺旋叶片(2.2)避免塑料缠绕和搅拌死角;曝气喷头进行了防堵塞设计;所述的方法包括启动方案和运行方案,通过将新鲜易腐垃圾和腐熟物料的完全混合,将微生物和水分进行合理分配,获得极高的微生物量和微生物活性,使得发酵过程跳过了漫长的升温期,缩短了停留时间并减少了占地面积,降低了投资成本和运维成本。

Description

一种无升温期连续进料全混合式的生物干化设备及方法 技术领域
本发明涉及一种无升温期连续进料全混合式的生物干化设备及方法,用来实现城乡易腐垃圾水分减量和生物稳定的装置,属于易腐垃圾处理领域
背景技术
中国东部沿海的广东、福建、浙江、上海、江苏和山东六省市属中国的经济发达地区,区域总面积不到全国总面积百分之七,人口却占中国的四分之一,而由密集的人口带来的巨额垃圾量,使得这些寸金寸土的地区“垃圾围城”的危机日益凸显。2017年中央环保督察组反馈的环保意见中,明确指出各省存在的生活垃圾处理超负荷问题,其中,山东省处理缺口甚至高达1.5万吨/日。此种形势下,以减量为目的的“垃圾分类”提上了各地政府的规划议程。然而新的问题随之出现,垃圾分类产生的易腐垃圾出路何在:一方面,堆肥发酵设施处置能力不到10%;另一方面,含水率过高导致垃圾热值降低,难以直接焚烧。
由此,最直接的两条出路分别是加快设施建设和易腐垃圾干化。第一条出路的难点在于“邻避效应”造成的选址困难,所以这个庞大的处理缺口需要通过长远的建设规划才能逐步填补。在此之前,我们需要一种过渡技术缓解未来东部沿海发达地区所面临的压力,过去15年在欧洲兴起的生物干化技术也许是一个可行的思路。以德国为例,每年生物干化处理易腐垃圾量达635万吨。
生物干化技术,作为一种利用微生物高温好氧发酵过程中有机物降解所产生的生物热能,通过过程调控手段促进水分蒸发,从而实现快速去除水分及低位热值提升的一种干燥处理技术,由于其无需外源加热,是一种非常经济、节能、环保的干燥技术,引起了行业内外的高度关注。经测定,生物干化处理后易腐垃圾含水率可从70%降低至45%,减重率可达45%,低位热值从800kcal/kg提升至2000-2400kcal/kg,达到焚烧进炉热值要求。
针对我国东部沿海地区所面临的上述问题,生物干化技术存在明显优势:1. 适用性广,生物干化对垃圾的纯度要求不高,即使是混合垃圾也可以使用生物干化技术处理;2.经济性强,生物干化技术热能来源为低能耗的生物质热,并通过减少以水分为主的垃圾量,实现垃圾运输成本的降低,并减少了运输过程中渗滤液滴漏现象;3.对接垃圾分类减量综合体,通过源头减量提升城市生活垃圾处理能力。
然而,传统的生物干化方法,以批次处理方式为主,处理过程中需等待物料升温和微生物生长,这使得停留时间难以缩短。除此之外,生物干化工艺依然面临着搅拌缠绕和曝气堵塞的问题,这些不仅影响到生物干化的效率,同时也极大提高了生物干化的成本。
发明内容
为解决上述技术问题,本发明提供了一种无升温期连续进料全混合式的生物干化设备及方法。
本发明具体采用的技术方案如下:
一方面,本发明提供了一种无升温期连续进料全混合式的生物干化设备,其特征在于,由箱体、搅拌螺旋和曝气喷头组成;
所述箱体内设置有用于生物干化的反应仓,且反应仓横截面的下部呈半圆形;
所述搅拌螺旋安装于箱体内部,搅拌螺旋包含支撑轴、螺旋叶片、叶片支撑板和刮板;支撑轴沿反应仓内的轴向布设,两端固定于箱体上;两块叶片支撑板分别固定于支撑轴的两端,两块叶片支撑板之间固定有若干片随支撑轴同步转动的螺旋叶片;每片螺旋叶片均以螺旋形式同轴绕于支撑轴外部,且其外弧线上沿程设有一条刮板,且刮板朝向螺旋叶片的旋转方向一侧;螺旋叶片在旋转至反应仓下部时,其外弧线与刮板贴近反应仓的半圆形内壁但不接触,用于带动反应仓下部的物料向上翻抛;
所述曝气喷头有多个,分布式安装于箱体反应仓的底部,用于对反应仓进行曝气。
作为优选,所述箱体由U型槽、U型板、支撑架、箱顶和保温层组成;
所述U型槽两侧分别由一块U型板进行封闭,顶部由箱顶进行封闭,构成供物料生物干化的反应仓;反应仓下部呈半圆柱体,上部呈长方体,U型槽下部均匀开设有若干螺纹孔,底部设置有开合可控的出料口;每块U型板上开设有圆孔,用于轴向固定支撑轴,支撑轴沿反应仓下部的半圆柱体轴线布置;所述箱顶设置进料口和抽风口;
所述支撑架用于支撑U型槽悬空;所述保温层包裹于反应仓外壁。
作为优选,曝气喷头包括圆筒管、勾型气路通气管、底座;
所述圆筒管安装于所述反应仓的下部,且圆筒管两端开口,其顶部出气口伸入所述反应仓中但底部位于箱体外;
所述底座密封固定于圆筒管的底部开口处;
所述勾型气路通气管弯管段位于圆筒管外部,用于连接外设曝气管路,而直管段以密封形式穿过底座中心开设的圆孔并伸入圆筒管中;所述直管段的顶部封闭,侧壁开设出气孔,且侧壁与圆筒管内壁之间保持间距以作为气路通道。
作为优选,所述螺旋叶片的螺旋内径大于支撑轴外径,螺旋外径略小于所述反应仓下部的半圆直径。
作为优选,所述刮板沿螺旋叶片外切螺旋面焊接,刮板板面与螺旋叶片外切面平行。
作为优选,所述螺旋叶片共三片,等角度固定于支撑轴的周向。
作为优选,所述曝气喷头包括圆筒管、勾型气路通气管、底座;
所述圆筒管安装于所述反应仓的下部,且圆筒管两端开口,其顶部出气口伸入所述反应仓中但底部位于箱体外;
所述底座密封固定于圆筒管的底部开口处;
所述勾型气路通气管弯管段位于圆筒管外部,用于连接外设曝气管路,而直管段以密封形式穿过底座中心开设的圆孔并伸入圆筒管中;所述直管段的顶部封闭,侧壁开设出气孔,且侧壁与圆筒管内壁之间保持间距以作为气路通道。
作为优选,所述曝气喷头均采用金属材质,勾型气路通气管顶端通过焊接一个等直径的半球形金属帽进行密封。
作为优选,所述圆筒管的顶部外壁面及底部内壁面均设有螺纹;圆筒管通过顶部外螺纹与所述箱体底部的螺纹孔装配连接;所述底座为圆环形金属板,其外侧壁攻有螺纹,与圆筒管底部的内螺纹装配连接。
另一方面,本发明提供了一种采用上述任一项方案所述生物干化设备的生物干化方法,该方法包括:生物干化工艺启动方法和生物干化工艺运行方法;
所述的生物干化启动方法包括:
将数倍于易腐垃圾日处理量的腐熟堆肥产物放置于所述反应仓内;再将日处理量的新鲜易腐垃圾进行破碎处理后,通过进料口输入所述的反应仓中;每小时多次通过所述的搅拌螺旋,将反应仓内的物料进行上下翻抛和往复推挤,用于完 全混合新鲜易腐垃圾与所述的腐熟堆肥产物;在处理过程中,不断通过所述的曝气喷头对物料进行连续曝气供氧;同时,通过箱体顶部的抽风口对反应仓内的高湿度空气进行收集;当达到预定处理时间后,将日处理量一半的物料从反应仓的出料口输出,剩余物料保留在反应仓内;
所述的生物干化工艺运行方法包括:
每日将日处理量的新鲜易腐垃圾进行破碎处理后,通过进料口输入所述的反应仓中;每小时多次通过所述的搅拌螺旋,将反应仓内的物料进行上下翻抛和往复推挤,用于完全混合新鲜易腐垃圾与所述的剩余物料;在处理过程中,不断通过所述的曝气喷头对物料进行连续曝气供氧;同时,通过箱体顶部的抽风口反应仓内的高湿度空气进行收集;当达到预定处理时间后,将日处理量一半的物料从反应仓的出料口输出,剩余物料保留在生物干化反应仓内,留待下一日的处理。
本发明采用U型反应仓作为生物干化反应仓,内部安装搅拌螺旋和曝气喷头进行翻抛搅拌和通风曝气,搅拌螺旋采用螺旋叶片避免塑料缠绕和搅拌死角;曝气喷头进行了防堵塞设计。本发明的运行方法包括启动方法和运行方法,其原理可类比于好氧活性污泥法,每天进入反应器的新鲜物料与反应器内的剩余物料完全混合后,剩余物料内数量极高的微生物获得了新鲜物料中的大量水分和有机质底物,将微生物和水分进行合理分配,微生物活性大幅度提升,可快速降解新鲜物料中的有机质底物,释放大量热量,加速水分蒸发和新鲜物料稳定化。而其他批次进料式生物干化工艺,大多由易腐垃圾直接发酵或与菌剂接种后发酵,嗜热微生物需要较长时间增殖,温度需要较长时间(1~4d)后才可上升至50度以上,低温环境极不利于水分蒸发,大大延长了工艺停留时间。
附图说明
图1是本发明提供的一种全混合式连续进料无升温期的生物干化设备的一个实施例的整体结构图;
图2是本发明提供的一种无升温期连续进料全混合式的生物干化设备的一个实施例的整体结构图(隐去一侧U型板);
图3是本发明提供的一种无升温期连续进料全混合式的生物干化设备的一个实施例的整体主视剖面图;
图4是本发明提供的一种无升温期连续进料全混合式的生物干化设备的一个实施例的整体侧视剖面图;
图5是本发明提供的一种无升温期连续进料全混合式的生物干化设备的一个实施例的整体俯视剖面图;
图6是本发明提供的一种无升温期连续进料全混合式的生物干化设备的一个实施例的箱体结构图;
图7是本发明提供的一种无升温期连续进料全混合式的生物干化设备的一个实施例的箱体主视剖面图;
图8是本发明提供的一种无升温期连续进料全混合式的生物干化设备的一个实施例的箱体侧视剖面图;
图9是本发明提供的一种无升温期连续进料全混合式的生物干化设备的一个实施例的箱体俯视剖面图;
图10是本发明提供的一种无升温期连续进料全混合式的生物干化设备的一个实施例的搅拌螺旋结构图;
图11是本发明提供的一种无升温期连续进料全混合式的生物干化设备的一个实施例的曝气喷头剖面图;
图12是本发明一个具体实施例中,温度变化情况;
图13是本发明一个具体实施例中,含水率变化情况;
图中,1-箱体;2-搅拌螺旋;3-曝气喷头;1.1-U型槽;1.2-U型板;1.3-支撑架;1.4-箱顶;1.5-保温层;1.6-螺纹孔;1.7-进料口;1.8-抽风口;1.9-出料口;1.10-圆孔;2.1-支撑轴;2.2-螺旋叶片;2.3-叶片支撑板;2.4-刮板;3.1-圆筒管;3.2-勾型气路通气管;3.3-底座;3.4-半球形金属帽。
具体实施方式
显然,本领域人员基于本发明的宗旨所做的许多修改和变化属于本发明的保护范围。
下面结合附图对一种无升温期连续进料全混合式的生物干化设备及方法进行说明,其设备结构包括箱体1、搅拌螺旋2、曝气喷头3三大部分,其具体结构U型槽1.1、U型板1.2、支撑架1.3、箱顶1.4、保温层1.5、螺纹孔1.6、进料口1.7、抽风口1.8、出料口1.9、圆孔1.10、支撑轴2.1、螺旋叶片2.2、叶片支撑板2.3、刮板2.4、圆筒管3.1、勾型气路通气管3.2、底座3.3、半球形金属帽3.4。下面对具体结构进行详细描述:
如图1~5,一种无升温期连续进料全混合式的生物干化设备由箱体1、搅拌螺旋2和曝气喷头3构成,生物干化反应仓以箱体1为承载单位,并通过搅拌螺旋2和曝气喷头3进行生物干化辅助。
箱体1的具体结构如图6~9所示,由U型槽1.1、U型板1.2、支撑架1.3、箱顶1.4和保温层1.5组成。其中U型槽1.1是一个纵剖截面呈U形的槽体,U型槽1.1两侧分别由一块U型板1.2进行封闭,顶部由箱顶1.4进行封闭,构成供物料生物干化的反应仓。因此,整个反应仓可以视为由两部分组成,下部呈半圆柱体,上部呈长方体。U型槽、U型板和箱顶组成的U型物料反应仓,用于避免搅拌螺旋在物料反应仓内搅拌时产生死角。
U型槽1.1下部的半圆柱体底面均匀开设有若干螺纹孔1.6,螺纹孔1.6的作用是用于安装曝气喷头3。半圆柱体底部设置有出料口1.9,出料口1.9铰接于壳体上,使得其开合可控,其在工作状态处于闭合,在出料时开合。箱顶1.4设置进料口1.7和抽风口1.8,用于进料和抽提高湿度空气。同样的进料口1.7和抽风口1.8也可以设置成开合可控的形式。每块U型板1.2上开设有圆孔1.10,圆孔1.10上嵌有轴承,用于轴向固定搅拌螺旋2的支撑轴2.1。U型板1.2的形状与U型槽1.1的纵剖截面一致,其下部也是一个半圆形,圆孔1.10开设于半圆形的圆心处。因此,支撑轴2.1沿反应仓下部的半圆柱体轴线布置。整个箱体1是通过支撑架1.3支顶于地面上的,保持U型槽1.1悬空。另外,为了保证堆肥反应的温度可控,需要在反应仓外壁包裹一层保温层1.5。保温层贴合U型槽外壁,起到保温作用。
搅拌螺旋2的作用是对反应仓内的物料进行全方位、无死角的搅拌,因此其形式也是特殊针对反应仓的结构进行设计的。如图10,搅拌螺旋2主体安装于箱体1内部,搅拌螺旋2包含支撑轴2.1、螺旋叶片2.2、叶片支撑板2.3和刮板2.4。其中,支撑轴2.1沿反应仓内的轴向布设,两端通过轴承固定于箱体1上的U型板1.2上。两块叶片支撑板2.3分别固定于支撑轴2.1的两端。支撑轴2.1宜采用不锈钢空心管,而叶片支撑板2.3则采用圆形不锈钢板。两块叶片支撑板2.3同轴安装于支撑轴2.1的两端。支撑轴2.1一端从箱体1伸出,与外部的驱动电机连接构成传动。
两块叶片支撑板2.3之间固定有3片随支撑轴2.1同步转动的螺旋叶片2.2,三片螺旋叶片2.2等角度固定于支撑轴2.1的周向。每片螺旋叶片2.2两端分别焊接于两块叶片支撑板2.3上。每片螺旋叶片2.2均以螺旋形式同轴绕于支撑轴 2.1外部,螺旋叶片2.2呈一定的扭转状态,但是扭转角度宜小于90°。且螺旋叶片2.2的外弧线上沿程设有一条刮板2.4,刮板2.4从一侧的叶片支撑板2.3开始,一直延伸到另一侧的叶片支撑板2.3为止。且刮板2.4仅固定于螺旋叶片2.2的一侧,即朝向螺旋叶片2.2的旋转方向一侧。参见图10所示,本实施例中的刮板2.4沿螺旋叶片2.2外切螺旋面焊接,刮板2.4宽度较窄,板面与螺旋叶片外切面平行。刮板2.4与螺旋叶片2.2之间构成了一个直角形的物料带动区域,刮板辅助螺旋叶片刮起更多的物料。另外,螺旋叶片2.2的螺旋内径大于支撑轴2.1外径,螺旋外径略小于反应仓下部的半圆柱体直径。由此,使得螺旋叶片2.2在旋转至反应仓下部时,其外弧线与刮板2.4贴近反应仓的半圆形内壁但不接触,用于带动反应仓下部的物料向上翻抛。而且,此时,整个反应仓中的物料均能够被完全搅动,不会存在死角,能有效实现全混合搅拌。并且,螺旋叶片可以有效避免纤维性垃圾或塑料袋的缠绕问题。
在该生物干化设备中,曝气喷头3有多个,分布式安装于箱体1反应仓的底部,用于对反应仓内的物料进行均匀曝气,加速干化进程。
如图11所示,本实施例中的曝气喷头3均采用金属材质,包括圆筒管3.1、勾型气路通气管3.2、底座3.3。其中,圆筒管3.1的顶部外壁面及底部内壁面均设有螺纹。圆筒管3.1通过顶部外螺纹安装于箱体1反应仓的下部开设的螺纹孔1.6中,且圆筒管3.1两端开口,其顶部出气口伸入反应仓中,但底部位于箱体1外。为了防止圆筒管3.1阻挡螺旋叶片2.2的选择,圆筒管3.1的顶部出气口尽量与反应仓内壁平齐或者适当伸入较小的距离。底座3.3为圆环形金属板,其具有一定厚度,外侧壁攻有螺纹,在使用时能够与圆筒管3.1底部的内螺纹装配连接,对圆筒管3.1的底部开口进行封堵。采用螺纹连接底座,目的在于可以拆卸清理,预防物料堵塞。
勾型气路通气管3.2由直管段和弯管段组成,内部气路呈勾型。其中弯管段位于圆筒管3.1外部,用于连接外设曝气管路,而直管段穿过底座3.3中心开设的圆孔并伸入圆筒管3.1中,且直管段与底座3.3之间密封。直管段的顶部封闭,侧壁开设出气孔。本实施例中,直管段顶端通过焊接一个等直径的半球形金属帽3.4进行密封。勾型气路通气管3.2的直管段与圆筒管3.1同轴布置,且直管段侧壁与圆筒管3.1内壁之间保持一定间距,以作为气路通道。外部曝气管路提供的空气,能够通过勾型气路通气管3.2的弯管段进入直管段,然后通过侧壁上的出 气孔进入圆筒管3.1,进而从圆筒管3.1顶部出气口排出实现反应仓内物料的曝气。需要注意的是,直管段侧壁开设的出气孔应当相对于底座3.3上表面具有一定高度,防止反应仓内的液体进入曝气管路。
作为优选,曝气喷头宜均匀分布在U型槽底部,以达到均匀曝气的效果。
另一方面,本发明提供了一种采用上述的生物干化设备的生物干化方法,包括生物干化工艺启动方法和生物干化工艺运行方法,前者用于装置前期快速启动,后者用于启动后的稳定运行。作为优选,设备的处理量宜在0.1-0.5吨/天,停留时间宜在5-7天,物料含水率宜控制在40%~50%,以控制最佳设备投资产能比。这里以0.1吨/天处理量、7天停留时间和含水率控制在45%为例进行说明。
生物干化启动方法包括:
1、将600kg数倍于处理量45%-55%含水率且接近腐熟的堆肥产物放置于生物干化反应仓内,目的在于通过简单调节后获得约45%含水率和较高微生物量的物料;
2、将100kg的新鲜易腐垃圾进行破碎处理,再通过进料口输入生物干化反应仓(生物干化反应仓内的垃圾统称为物料);
3、每小时多次通过螺旋搅拌,将物料进行上下翻抛和往复推挤,用于完全混合新鲜易腐垃圾与反应仓中的堆肥产物,主要目的在于:
①使新鲜物料获得堆肥产物中数量庞大的微生物,新鲜易腐垃圾的降解过程跳过升温期(微生物生长期),在极短时间内进入高速降解易降解有机质阶段;
②使得堆肥产物中的微生物获得新鲜垃圾中极高的水分,避免过低含水率导致堆肥产物中微生物的活性下降;
极高的微生物量和微生物活性可以为物料提供大量的生物降解放热,为水分蒸发提供能量保障;
4、在处理过程中,通过曝气喷头对物料进行24小时连续曝气供氧,曝气风量在50-100m 3/h,可以在供氧的同时携带高湿度空气离开生物干化反应仓,是去除水分的直接助力;
5、在处理过程中,通过箱体顶部的抽风口对反应仓内的高湿度空气进行收集,辅助带走生物干化反应仓内高湿度空气;
6、24小时后将50-60kg的物料从出料口输出,约600kg的剩余物料保留在 生物干化反应仓内。
生物干化工艺运行方法包括:
1、每日将100kg的新鲜易腐垃圾进行破碎处理,再通过进料口输入生物干化反应仓;
2、每小时多次通过螺旋搅拌,将物料进行上下翻抛和往复推挤,用于完全混合新鲜易腐垃圾与剩余物料,实现上述的微生物及水分分配;
3、在处理过程中,通过曝气喷头对物料进行24小时连续曝气供氧,曝气风量在50-100m 3/h;
4、在处理过程中,通过抽风口对反应仓内的高湿度空气进行收集;
5、24小时后将约50-60kg的物料从出料口输出,约600kg的剩余物料保留在生物干化反应仓内,留待下一日的处理。
以此方案开展中试实验(曝气风量70m 3/h,搅拌频次2min/h),测定正常运行下24h反应仓内物料温度、含水率变化。结果显示,反应仓内物料温度均保持40℃以上,最高温度可达到60℃以上,含水率可从进料前新鲜物料的75~85%降低至出料物料的40%以下,略优于预计效果。实验前及实验过程中反应器正常运行总时长超过两周,反应器基本实现长效稳定运行。详细反应仓内物料温度、含水率变化见图12和图13,其中,“0-”为进料前反应仓内物料含水率,“0+”为进料且混合后反应仓内物料含水率,A、B、C代表三个平行的实验组。
由此可见,本发明通过将新鲜易腐垃圾和腐熟物料的完全混合,将微生物和水分进行合理分配,获得极高的微生物量和微生物活性,使得发酵过程跳过了漫长的升温期(微生物生长期),缩短了停留时间并减少了占地面积。
在另一优选实施例中,可以在生物干化启动方案中进行菌剂接种。
在另一优选实施例中,宜对通入空气进行预热,减少通风造成的热量损失。
在另一优选实施例中,宜对抽风口抽提气体进行蒸汽冷凝和余热回收,冷凝液需经处理达标后排放。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

  1. 一种无升温期连续进料全混合式的生物干化设备,其特征在于,由箱体(1)、搅拌螺旋(2)和曝气喷头(3)组成;
    所述箱体(1)内设置有用于生物干化的反应仓,且反应仓横截面的下部呈半圆形;
    所述搅拌螺旋(2)安装于箱体(1)内部,搅拌螺旋(2)包含支撑轴(2.1)、螺旋叶片(2.2)、叶片支撑板(2.3)和刮板(2.4);支撑轴(2.1)沿反应仓内的轴向布设,两端固定于箱体(1)上;两块叶片支撑板(2.3)分别固定于支撑轴(2.1)的两端,两块叶片支撑板(2.3)之间固定有若干片随支撑轴(2.1)同步转动的螺旋叶片(2.2);每片螺旋叶片(2.2)均以螺旋形式同轴绕于支撑轴(2.1)外部,且其外弧线上沿程设有一条刮板(2.4),且刮板(2.4)朝向螺旋叶片(2.2)的旋转方向一侧;螺旋叶片(2.2)在旋转至反应仓下部时,其外弧线与刮板(2.4)贴近反应仓的半圆形内壁但不接触,用于带动反应仓下部的物料向上翻抛;
    所述曝气喷头(3)有多个,分布式安装于箱体(1)反应仓的底部,用于对反应仓进行曝气。
  2. 权利要求1所述的无升温期连续进料全混合式的生物干化设备,其特征在于,所述箱体(1)由U型槽(1.1)、U型板(1.2)、支撑架(1.3)、箱顶(1.4)和保温层(1.5)组成;
    所述U型槽(1.1)两侧分别由一块U型板(1.2)进行封闭,顶部由箱顶(1.4)进行封闭,构成供物料生物干化的反应仓;反应仓下部呈半圆柱体,上部呈长方体,U型槽(1.1)下部均匀开设有若干螺纹孔(1.6),底部设置有开合可控的出料口(1.9);每块U型板(1.2)上开设有圆孔(1.10),用于轴向固定支撑轴(2.1),支撑轴(2.1)沿反应仓下部的半圆柱体轴线布置;所述箱顶(1.4)设置进料口(1.7)和抽风口(1.8);
    所述支撑架(1.3)用于支撑U型槽(1.1)悬空;所述保温层(1.5)包裹于反应仓外壁。
  3. 权利要求1所述的无升温期连续进料全混合式的生物干化设备,其特征在于,曝气喷头(3)包括圆筒管(3.1)、勾型气路通气管(3.2)、底座(3.3);
    所述圆筒管(3.1)安装于所述反应仓的下部,且圆筒管(3.1)两端开口,其顶部出气口伸入所述反应仓中但底部位于箱体(1)外;
    所述底座(3.3)通过密封固定于圆筒管(3.1)的底部开口处;
    所述勾型气路通气管(3.2)弯管段位于圆筒管(3.1)外部,用于连接外设曝气管路,而直管段以密封形式穿过底座(3.3)中心开设的圆孔并伸入圆筒管(3.1)中;所述直管段的顶部封闭,侧壁开设出气孔,且侧壁与圆筒管(3.1)内壁之间保持间距以作为气路通道。
  4. 权利要求1所述的无升温期连续进料全混合式的生物干化设备,其特征在于,所述螺旋叶片(2.2)的螺旋内径大于支撑轴(2.1)外径,螺旋外径略小于所述反应仓下部的半圆直径。
  5. 权利要求1所述的无升温期连续进料全混合式的生物干化设备,其特征在于,所述刮板(2.4)沿螺旋叶片(2.2)外切螺旋面焊接,刮板(2.4)板面与螺旋叶片外切面平行。
  6. 权利要求1所述的无升温期连续进料全混合式的生物干化设备,其特征在于,所述螺旋叶片(2.2)共三片,等角度固定于支撑轴(2.1)的周向。
  7. 权利要求1中所述的无升温期连续进料全混合式的生物干化设备,其特征在于,所述曝气喷头(3)包括圆筒管(3.1)、勾型气路通气管(3.2)、底座(3.3);
    所述圆筒管(3.1)安装于所述反应仓的下部,且圆筒管(3.1)两端开口,其顶部出气口伸入所述反应仓中但底部位于箱体(1)外;
    所述底座(3.3)通过密封固定于圆筒管(3.1)的底部开口处;
    所述勾型气路通气管(3.2)弯管段位于圆筒管(3.1)外部,用于连接外设曝气管路,而直管段以密封形式穿过底座(3.3)中心开设的圆孔并伸入圆筒管(3.1)中;所述直管段的顶部封闭,侧壁开设出气孔,且侧壁与圆筒管(3.1)内壁之间保持间距以作为气路通道。
  8. 权利要求7所述的无升温期连续进料全混合式的生物干化设备,其特征在于,所述曝气喷头(3)均采用金属材质,勾型气路通气管(3.2)顶端通过焊接一个等直径的半球形金属帽(3.4)进行密封。
  9. 权利要求7所述的无升温期连续进料全混合式的生物干化设备,其特征在于,所述圆筒管(3.1)的顶部外壁面及底部内壁面均设有螺纹;圆筒管(3.1)通过顶部外螺纹与所述箱体(1)底部的螺纹孔装配连接;所述底座(3.3)为圆环形金属板,其外侧壁攻有螺纹,与圆筒管(3.1)底部的内螺纹装配连接。
  10. 一种采用如权利要求1~9中任一项所述生物干化设备的生物干化方法,其特征在于,所述方法包括:生物干化工艺启动方法和生物干化工艺运行方法;
    所述的生物干化启动方法包括:
    将数倍于易腐垃圾日处理量的腐熟堆肥产物放置于所述反应仓内;再将日处理量的新鲜易腐垃圾进行破碎处理后,通过进料口输入所述的反应仓中;每小时多次通过所述的搅拌螺旋(2),将反应仓内的物料进行上下翻抛和往复推挤,用于完全混合新鲜易腐垃圾与所述的腐熟堆肥产物;在处理过程中,不断通过所述的曝气喷头(3)对物料进行连续曝气供氧;同时,通过箱体(1)顶部的抽风口对反应仓内的高湿度空气进行收集;当达到预定处理时间后,将日处理量一半的物料从反应仓的出料口输出,剩余物料保留在反应仓内;
    所述的生物干化工艺运行方法包括:
    每日将日处理量的新鲜易腐垃圾进行破碎处理后,通过进料口输入所述的反应仓中;每小时多次通过所述的搅拌螺旋(2),将反应仓内的物料进行上下翻抛和往复推挤,用于完全混合新鲜易腐垃圾与所述的剩余物料;在处理过程中,不断通过所述的曝气喷头(3)对物料进行连续曝气供氧;同时,通过箱体(1)顶部的抽风口反应仓内的高湿度空气进行收集;当达到预定处理时间后,将日处理量一半的物料从反应仓的出料口输出,剩余物料保留在生物干化反应仓内,留待下一日的处理。
PCT/CN2020/122171 2019-12-18 2020-10-20 一种无升温期连续进料全混合式的生物干化设备及方法 WO2021120822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911311862.5 2019-12-18
CN201911311862.5A CN110981559B (zh) 2019-12-18 2019-12-18 无升温期连续进料全混合式的生物干化设备及方法

Publications (1)

Publication Number Publication Date
WO2021120822A1 true WO2021120822A1 (zh) 2021-06-24

Family

ID=70095649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122171 WO2021120822A1 (zh) 2019-12-18 2020-10-20 一种无升温期连续进料全混合式的生物干化设备及方法

Country Status (2)

Country Link
CN (1) CN110981559B (zh)
WO (1) WO2021120822A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817485A (zh) * 2021-10-20 2021-12-21 济南恒誉环保科技股份有限公司 一种固体裂解产物热能转化出料装置
CN114653240A (zh) * 2022-04-17 2022-06-24 石河子大学 一种新型交错转轮式混合试验台
CN116724738A (zh) * 2023-07-12 2023-09-12 中国热带农业科学院热带作物品种资源研究所 一种施肥量可调式耕地施肥装置
CN117400445A (zh) * 2023-12-14 2024-01-16 山东乾华塑胶有限公司 一种塑料颗粒冷却干燥装置
CN117553557A (zh) * 2024-01-12 2024-02-13 江西新世野农业股份有限公司 一种大米加工烘干设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981559B (zh) * 2019-12-18 2023-10-17 浙江大学 无升温期连续进料全混合式的生物干化设备及方法
CN111623602B (zh) * 2020-05-06 2021-09-24 大连理工大学 一种新型回转式生物干化装置
CN112474736A (zh) * 2020-11-18 2021-03-12 湖北松为科技有限公司 一种生活垃圾资源化处理方法
CN117774177B (zh) * 2024-02-23 2024-05-28 江苏田园主义健康科技有限公司 一种淀粉基多孔材料的制备方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3041620B1 (ja) * 1999-05-14 2000-05-15 株式会社テックコーポレーション 生ごみ処理における攪拌粉砕装置
JP2004196554A (ja) * 2002-12-16 2004-07-15 Clean Ecobio:Kk 有機廃棄物の堆肥化処理装置及びこれに用いる回転型処理槽
CN102924131A (zh) * 2012-10-30 2013-02-13 湖南深拓智能设备股份有限公司 一种卧置好氧发酵反应器及好氧发酵反应方法
CN104311178A (zh) * 2014-10-23 2015-01-28 湖南屎壳郎环境科技有限公司 斜置底部进气式好氧发酵反应器及其好氧发酵反应方法
CN106693824A (zh) * 2016-11-21 2017-05-24 成都格瑞思文化传播有限公司 一种猪饲料混合机
CN107363073A (zh) * 2017-07-12 2017-11-21 浙江大学 生活垃圾发酵装置及减量资源一体化设备和方法
CN108940037A (zh) * 2018-08-10 2018-12-07 河北腾龙辉煌再生资源利用有限公司 湿拌轻集料搅拌机
CN109879683A (zh) * 2019-03-01 2019-06-14 江苏天楹环保能源成套设备有限公司 一种易腐垃圾堆肥快速脱水设备
CN110981559A (zh) * 2019-12-18 2020-04-10 浙江大学 无升温期连续进料全混合式的生物干化设备及方法
CN211595452U (zh) * 2019-12-18 2020-09-29 浙江大学 一种无升温期连续进料全混合式的生物干化设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566788A (zh) * 2013-10-15 2014-02-12 江苏朝阳液压机械集团有限公司 一种螺旋搅拌机
CN106040725B (zh) * 2016-08-03 2018-08-21 大连理工大学 一种生活垃圾热风耦合生物干化的处理方法
CN106089501A (zh) * 2016-08-09 2016-11-09 河南柴油机重工有限责任公司 一种瓦斯输送用安全放散装置和使用方法
CN108439587A (zh) * 2018-05-31 2018-08-24 张荣斌 一种活性污泥污水处理系统用曝气设备
CN110407616A (zh) * 2019-02-21 2019-11-05 浙江大学 农村易腐垃圾阳光房堆肥设施及其堆肥方法
CN109987975B (zh) * 2019-02-21 2023-08-01 浙江大学 防堵塞堆肥曝气管及其曝气方法
CN110550834A (zh) * 2019-09-29 2019-12-10 安徽安特治废弃物资源化研究中心有限公司 一种推移式污泥连续好氧发酵系统及其应用方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3041620B1 (ja) * 1999-05-14 2000-05-15 株式会社テックコーポレーション 生ごみ処理における攪拌粉砕装置
JP2004196554A (ja) * 2002-12-16 2004-07-15 Clean Ecobio:Kk 有機廃棄物の堆肥化処理装置及びこれに用いる回転型処理槽
CN102924131A (zh) * 2012-10-30 2013-02-13 湖南深拓智能设备股份有限公司 一种卧置好氧发酵反应器及好氧发酵反应方法
CN104311178A (zh) * 2014-10-23 2015-01-28 湖南屎壳郎环境科技有限公司 斜置底部进气式好氧发酵反应器及其好氧发酵反应方法
CN106693824A (zh) * 2016-11-21 2017-05-24 成都格瑞思文化传播有限公司 一种猪饲料混合机
CN107363073A (zh) * 2017-07-12 2017-11-21 浙江大学 生活垃圾发酵装置及减量资源一体化设备和方法
CN108940037A (zh) * 2018-08-10 2018-12-07 河北腾龙辉煌再生资源利用有限公司 湿拌轻集料搅拌机
CN109879683A (zh) * 2019-03-01 2019-06-14 江苏天楹环保能源成套设备有限公司 一种易腐垃圾堆肥快速脱水设备
CN110981559A (zh) * 2019-12-18 2020-04-10 浙江大学 无升温期连续进料全混合式的生物干化设备及方法
CN211595452U (zh) * 2019-12-18 2020-09-29 浙江大学 一种无升温期连续进料全混合式的生物干化设备

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817485A (zh) * 2021-10-20 2021-12-21 济南恒誉环保科技股份有限公司 一种固体裂解产物热能转化出料装置
CN114653240A (zh) * 2022-04-17 2022-06-24 石河子大学 一种新型交错转轮式混合试验台
CN116724738A (zh) * 2023-07-12 2023-09-12 中国热带农业科学院热带作物品种资源研究所 一种施肥量可调式耕地施肥装置
CN116724738B (zh) * 2023-07-12 2023-12-12 中国热带农业科学院热带作物品种资源研究所 一种施肥量可调式耕地施肥装置
CN117400445A (zh) * 2023-12-14 2024-01-16 山东乾华塑胶有限公司 一种塑料颗粒冷却干燥装置
CN117400445B (zh) * 2023-12-14 2024-03-12 山东乾华塑胶有限公司 一种塑料颗粒冷却干燥装置
CN117553557A (zh) * 2024-01-12 2024-02-13 江西新世野农业股份有限公司 一种大米加工烘干设备
CN117553557B (zh) * 2024-01-12 2024-04-09 江西新世野农业股份有限公司 一种大米加工烘干设备

Also Published As

Publication number Publication date
CN110981559A (zh) 2020-04-10
CN110981559B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2021120822A1 (zh) 一种无升温期连续进料全混合式的生物干化设备及方法
CN102517200B (zh) 一种有机废弃物干式厌氧高温发酵系统及发酵工艺
TWI596051B (zh) 餐廚垃圾處理設備
CN101381674B (zh) 一种立式无搅拌有机废物干式厌氧消化处理设备及方法
CN102321675B (zh) 一种有机废弃物生产生物燃气的方法及设备
WO2016061846A1 (zh) 斜置底部进气式好氧发酵反应器及其好氧发酵反应方法
CN105948832A (zh) 一种小型餐厨垃圾发酵装置
CN111215432A (zh) 一种有机生物质垃圾三段式集成处理系统及方法
CN104893961A (zh) 餐厨废弃物能源与肥料一体化处理装置及方法
CN110760433A (zh) 干式厌氧发酵及有机肥发酵一体化系统
CN202322661U (zh) 一种有机废弃物干式厌氧高温发酵系统
CN208055226U (zh) 一种阶段鼓风堆肥装置
KR20130001828A (ko) 음식물쓰레기, 가축분뇨 등 유기물에서 퇴비 제조를 위한 수직원통형 호기성 다단식 연속 발효장치
CN211947003U (zh) 一种高浓度干式厌氧发酵装置
CN113233926A (zh) 一种好氧发酵处理系统
CN211595452U (zh) 一种无升温期连续进料全混合式的生物干化设备
CN209210665U (zh) 一种生活垃圾堆肥装置
CN114015541B (zh) 一种有机废弃物两相联合型的厌氧干发酵系统
CN216614457U (zh) 一种好氧发酵处理系统
CN215667952U (zh) 一种干式厌氧发酵装置
CN111623602B (zh) 一种新型回转式生物干化装置
CN112457089B (zh) 一种交错桨叶曝气的好氧堆肥反应装置
CN210103937U (zh) 一种有机物厌氧干式发酵装置
CN210030709U (zh) 一种半干式两相厌氧发酵罐
CN109678571B (zh) 可加热滚筒式好氧堆肥反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901572

Country of ref document: EP

Kind code of ref document: A1