WO2021120595A1 - 一种半沉嵌入式曝气管 - Google Patents

一种半沉嵌入式曝气管 Download PDF

Info

Publication number
WO2021120595A1
WO2021120595A1 PCT/CN2020/100345 CN2020100345W WO2021120595A1 WO 2021120595 A1 WO2021120595 A1 WO 2021120595A1 CN 2020100345 W CN2020100345 W CN 2020100345W WO 2021120595 A1 WO2021120595 A1 WO 2021120595A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
trachea
aeration tube
aeration
density
Prior art date
Application number
PCT/CN2020/100345
Other languages
English (en)
French (fr)
Inventor
张胜华
彭燕燕
陈宙
郑运鸿
张有锋
袁钰林
Original Assignee
中国科学院城市环境研究所
厦门理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院城市环境研究所, 厦门理工学院 filed Critical 中国科学院城市环境研究所
Publication of WO2021120595A1 publication Critical patent/WO2021120595A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the field of aeration devices in the water treatment industry, in particular to a semi-submerged embedded aeration pipe.
  • Perforated aeration pipes are made of small holes with diameters of millimeters or centimeters on both sides of the aeration pipe.
  • gas is ejected from the small holes on both sides to achieve the purpose of oxygenation and hydraulic disturbance; but the pores of the perforated aeration pipe.
  • the micro-nano aeration tube is made of microporous material. Compressed air overflows through the micro-nano pores on the tube wall to form micro-nano-level bubbles.
  • the mass transfer efficiency of micro-nano-level bubbles in water is far greater than ordinary Perforated pipe aeration.
  • the energy consumption is relatively large, and under the same energy consumption premise, the effective area is much smaller than that of ordinary perforated tube aeration.
  • aeration devices commonly used for water body restoration are generally divided into surface aeration type and bottom aeration type.
  • surface aeration devices cannot meet the concentration requirements of dissolved oxygen below the river surface, and the commonly used perforated pipes and aeration disks Waiting for the bottom aeration method will easily cause the bottom sludge to turn up, resulting in deterioration of water quality.
  • the present invention aims to provide a semi-submerged embedded aeration tube to solve the problem that the existing aeration tube cannot simultaneously meet the requirements of higher oxygen mass transfer efficiency and dissolved oxygen concentration in the subsurface water.
  • a semi-submerged embedded aeration tube includes a vent tube and a micro-nano aeration tube sleeved on the outside of the vent tube.
  • the vent tube is provided with multiple groups of pores in sequence along its length, and each group has a pore size It is arranged on the wall of the snorkel.
  • the snorkel is defined as a first section of a trachea, a second section of a trachea, and a third section of the trachea along its length.
  • Each section of the trachea has a head end close to the inlet end and opposite The end of the first section of the air pipe is the inlet end; among them,
  • the stomata have a first density on the first section of the trachea, and the first density on the first section of the trachea presents a first curve distribution that gradually increases from the head end to the end of the first section of the trachea, and the first curve approximately conforms to the normal distribution curve
  • the climbing part
  • the pores have a third density on the third section of the trachea, and the third density is uniformly distributed in a straight line from the head end to the end of the third section of the trachea;
  • the stomata have a second density on the second section of the trachea, and the second density on the second section of the trachea is distributed in a second curve that gradually decreases from the head end to the end of the second section of the trachea.
  • the second curve is approximately in line with the normal distribution curve. The second curve starts at the highest point of the first curve and ends at the intersection with the straight line.
  • each group of air holes includes two through holes arranged axially symmetrically, and two adjacent groups of air holes are arranged vertically in the radial direction.
  • the ratio of the third density of the pores on the third section of the trachea to the peak density of the pores on the first section of the trachea ranges from 85% to 90%.
  • the length of the first section of trachea accounts for 48% to 55% of the total length of the vent pipe
  • the length of the second section of trachea accounts for 2% to 5% of the total length of the vent pipe
  • the length of the third section of trachea The length accounts for 40%-50% of the total length of the snorkel.
  • the semi-submerged embedded aeration tube provided by the present invention has the following advantages: the semi-submerged embedded aeration tube provided by the present invention combines a breather tube and a micro-nano aeration tube to make the air compressor output After the compressed air is introduced into the vent tube, it is discharged from the vent, and then overflows through the micro pores on the micro-nano aeration tube sleeved outside the vent tube to form micro-nano bubbles, which greatly improves the mass transfer of the bubbles in the water effectiveness.
  • the entire aeration tube can generate approximately uniformly distributed micro-nano-level bubbles from the front to the back, which solves the problem that the existing aeration tube does not generate bubbles in the back.
  • the generated bubbles are unevenly distributed, and can be directly fixed 0.5 to 0.8 meters below the river surface in a semi-sinking manner, which not only meets the high oxygen mass transfer efficiency, but also meets the requirements of dissolved oxygen concentration in the water below the surface.
  • Figure 1 shows a schematic cross-sectional view of the aeration tube.
  • Figure 2 shows a schematic diagram of the pore density on the snorkel.
  • Figure 3 shows a schematic cross-sectional view of the vent tube.
  • Figure 4 shows a partial schematic view of the vent tube.
  • Fig. 5 shows an enlarged view at A in Fig. 1.
  • Fig. 6 shows a diagram of the aeration effect of the aeration tube made by adopting the scheme provided by the present invention.
  • this embodiment provides a semi-submerged embedded aeration tube.
  • the semi-submerged embedded aeration tube includes a vent tube 1 and a micro-nano tube sleeved on the outside of the vent tube 1
  • Aeration tube 2 also called nano-aeration tube
  • the micro-nano aeration tube 2 is made of microporous material, and the tube wall has densely distributed micro-nano-level pores, because the micro-nano aeration tube 2 can It is directly purchased from the market, so the structure and preparation method of the micro-nano aeration tube 2 will not be described in detail here.
  • the snorkel 1 is sequentially defined as a first section of air pipe 11, a second section of air pipe 12, and a third section of air pipe 13 along its length.
  • Each section of air pipe has a head end close to the inlet end and an opposite end.
  • the head end of the first section of air pipe 11 is the air inlet end.
  • the vent pipe 1 is provided with a plurality of groups of vents 10 in sequence along its length, and each group of vents 10 is radially arranged on the wall of the vent pipe 1.
  • the air holes 10 have a first density on the first section of trachea 11, and the first density on the first section of trachea 11 is distributed in a first curve 111 that gradually increases from the head end to the end thereof, and the first curve 111 is approximately in line with the climbing part of the normal distribution curve.
  • the air holes 10 have a third density on the third section of the air pipe 13, and the third density is distributed on the third section of the air pipe 13 in a straight line 131 uniformly distributed from the head end to the end.
  • the pores 10 have a second density on the second section of the trachea 12, and the second density on the second section of the trachea 12 is distributed in a second curve 121 that gradually decreases from the head end to the end.
  • the second curve 121 approximately conforms to The descending part of the normal distribution curve, and the second curve 121 starts at the highest point of the first curve 111 and ends at the intersection with the straight line 131. What needs to be clear here is that the second curve 121 and the first curve 111 belong to different parts of the same normal distribution curve.
  • the air holes 10 are respectively arranged on the first section of the air pipe 11, the second section of the air pipe 12 and the third section of the air pipe 13 on the vent pipe 1 according to the first density, the second density and the third density, so that the compressed air output by the air compressor is ventilated. After entering the vent pipe 1, after being discharged from the vent 10, it overflows through the micro-holes on the micro-nano aeration tube 2 sheathed outside the vent pipe 1, forming micro-nano-level bubbles, which greatly improves the bubbles in the water. Mass transfer efficiency.
  • the entire aeration tube can generate approximately uniformly distributed micro-nano-level bubbles from the front section to the back section, which solves the problem of the existing aeration tube after long-distance transportation.
  • each set of air holes 10 includes two through holes arranged axially symmetrically, and the adjacent two sets of air holes are arranged vertically in the radial direction, so that the aeration tube is arranged on the entire circumference.
  • the surface has a relatively uniform aeration effect.
  • the ratio of the third density of the pores on the third section of the trachea 13 to the peak density of the pores on the first section of the trachea 11 ranges from 85% to 90%.
  • the peak density of the first section of the air pipe 11 of the aeration pipe is that there are 15 groups of pores 10 within a length of 5 cm
  • the third section of the air pipe 13 has about 13 groups of pores per 5 cm.
  • the air hole density set in this way can make the aeration area formed on the rear section of the aeration pipe and the aeration area of the front section approximately balanced.
  • the size of the pore size can be adjusted according to the gas flow, pressure and the diameter of the vent pipe 1.
  • the length of the first section of trachea 11 accounts for 48% to 55% of the total length of the vent tube 1
  • the length of the second section of trachea 12 accounts for 2% to 5% of the total length of the vent tube 1.
  • the length of the third section of the air pipe 13 accounts for 40%-50% of the total length of the air pipe 1. The length of each section of the air pipe within the above range can make the aeration pipe have a more uniform aeration effect.
  • Figure 6 is a diagram of the aeration effect of the aeration tube made by the scheme provided in this embodiment.
  • the length of the aeration tube is about 18m. It can be seen from the figure that the entire aeration tube The tube has a relatively uniform aeration effect within the length of the tube.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

本发明涉及一种半沉嵌入式曝气管,包括通气管和套接在该通气管外侧上的微纳米曝气管,该通气管在沿其长度方向上依序布设有多组气孔,每组气孔径向设置于通气管的管壁上,该通气管沿其长度方向被依序定义为第一段气管、第二段气管和第三段气管,每段气管上分别设置有符合各自规律的气孔,使得整根曝气管从前段至后段均能够产生大致均匀分布的微纳米级气泡,以解决现有的曝气管无法同时满足较高氧传质效率和水面下水体溶解氧浓度要求的问题。

Description

一种半沉嵌入式曝气管 技术领域
本发明涉及水处理行业的曝气装置领域,具体是涉及一种半沉嵌入式曝气管。
背景技术
利用鼓风机将空气通过曝气管输送到水中,再以气泡形式弥散逸出,在气液界面把氧气溶入水中,是提供水中溶解氧的常用方法。
现有的曝气管分为穿孔曝气管和微纳米曝气管。穿孔曝气管是在曝气管两侧开孔径为毫米或厘米级的小孔,曝气时气体从两侧小孔喷出,实现充氧和水力扰动的目的;但是穿孔曝气管的气孔孔径较大,形成的气泡也较大,不利于氧在水中的传质,而且由于氧传质阻力随管道长度增加,气泡主要集中在曝气管的前段释放,后段气泡将大大减少。
微纳米曝气管由微孔材料制成管体,压缩空气通过管壁上的微纳米气孔溢出,形成直径为微纳米级的气泡,微纳米级别的气泡在水中的传质效率远远大于普通穿孔管曝气。但利用微纳米曝气管充氧过程中,能耗较大,相同的能耗前提下,作用面积远小于普通穿孔管曝气。
现有水体修复常用曝气装置一般分为表面曝气型和底部曝气型,对于天然河道,常用的表面曝气装置无法满足河面以下溶解氧的浓度要求,而常用的穿孔管和曝气盘等底部曝气方式又容易导致底泥上翻,从而导致水质恶化。
因而,现有的应用于河道水体修复的曝气装置无法同时满足较高氧传质效率和水面下水体溶解氧浓度的要求,仅用一台曝气装置并不适用于长距离大面积水面的曝气,只能分段分区域进行,增加了充氧成本。
发明内容
本发明旨在提供一种半沉嵌入式曝气管,以解决现有的曝气管无法同时满足较高氧传质效率和水面下水体溶解氧浓度要求的问题。
具体方案如下:
一种半沉嵌入式曝气管,包括通气管和套接在该通气管外侧上的微纳米曝气管,该通气管在沿其长度方向上依序布设有多组气孔,每组气孔径向设置于通气管的管壁上,该通气管沿其长度方向被依序定义为第一段气管、第二段气管和第三段气管,每段气管都具有靠近进气端的首端以及相对的末端,且第一段气管的首端为进气端;其中,
气孔在第一段气管上具有第一密度,该第一密度在第一段气管上呈从其首端往末端方向逐渐增大的第一曲线分布,且该第一曲线近似符合正态分布曲线的爬升部分;
气孔在第三段气管上具有第三密度,该第三密度在第三段气管上呈从其首端往末端方向均布的直线分布;
气孔在第二段气管上具有第二密度,该第二密度在第二段气管上呈从其首端往末端方向逐渐变小的第二曲线分布,该第二曲线近似符合正态分布曲线的下降部分,且该第二曲线起始于第一曲线的最高处,终止于与直线的相交处。
进一步的,每组气孔都包括了轴向对称设置的两通孔,且相邻两组气孔在径向上垂直设置。
进一步的,所述第三段气管上气孔的第三密度与第一段气管上气孔的峰值密度的比值范围为85%~90%。
进一步的,所述第一段气管的长度占该通气管的总长度的48%~55%,第二段气管的长度占该通气管的总长度的2%~5%,第三段气管的长度占该通气管的总长度的40%~50%。
进一步的,所述通气管和微纳米曝气管之间间隙配合。
进一步的,所述通气管的外壁与微纳米曝气管的内壁之间的间距为0.5~1mm。
本发明提供的半沉嵌入式曝气管与现有技术相比较具有以下优点:本发明提供的半沉嵌入式曝气管通过通气管以及微纳米曝气管的组合,使得空压机输出的压缩空气通入至该通气管内后,从气孔排出后,再经由套设在通气管外的微纳米曝气管上的微孔溢出,形成微纳米级气泡,大大提高了气泡在水中的传质效率。
并且通过通气管内开设符合特定排布规律的气孔,使得整根曝气管从前段至后段均能够产生大致均匀分布的微纳米级气泡,解决了现有曝气管在后段无气泡产生以及产生的气泡分布不均匀的问题,而且能够以半沉的方式直接固定在河道水面下0.5~0.8米,在满足较高氧传质效率的同时也满足水面下水体溶解氧浓度的要求。
附图说明
图1示出了曝气管的截面示意图。
图2示出了通气管上的气孔密度的示意图。
图3示出了通气管的剖面示意图。
图4示出了通气管的局部示意图。
图5示出了图1中A处的放大图。
图6示出了采用本发明所提供的方案所制得的曝气管的曝气效果图。
具体实施方式
为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点。图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
现结合附图和具体实施方式对本发明进一步说明。
如图1-图5所示的,本实施例提供了一种半沉嵌入式曝气管,该半沉嵌入式曝气管包括通气管1以及套接在该通气管1外侧上的微纳米曝气管2(也称为纳米曝气管),该微纳米曝气管2由微孔材料制成,其管壁上具有密布的微纳米级的气孔,由于该微纳米曝气管2能够直接从市面上采购而得,因此在此对该微纳米曝气管2的结构以及制备方法不进行详细的描述。
具体的,该通气管1沿其长度方向被依序定义为第一段气管11、第二段气管12和第三段气管13,每段气管都具有靠近进气端的首端以及相对的末端,且第一段气管11的首端为进气端。该通气管1在沿其长度方向上依序布设有多组气孔10,每组气孔10径向设置于通气管1的管壁上。
其中,气孔10在第一段气管11上具有第一密度,该第一密度在第一段气管11上呈从其首端往末端方向逐渐增大的第一曲线111分布,且该第一曲线111近似符合正态分布曲线的爬升部分。
气孔10在第三段气管13上具有第三密度,该第三密度在第三段气管13上 呈从其首端往末端方向均布的直线131分布。
气孔10在第二段气管12上具有第二密度,该第二密度在第二段气管12上呈从其首端往末端方向逐渐变小的第二曲线121分布,该第二曲线121近似符合正态分布曲线的下降部分,且该第二曲线121起始于第一曲线111的最高处,终止于与直线131的相交处。这里需明确的是,该第二曲线121和第一曲线111属于同一正太分布曲线的不同部分。
气孔10在通气管1上依据第一密度、第二密度、第三密度分别布设在第一段气管11、第二段气管12和第三段气管13上,使得空压机输出的压缩空气通入至该通气管1内后,从气孔10排出后,再经由套设在通气管1外的微纳米曝气管2上的微孔溢出,形成微纳米级气泡,大大提高了气泡在水中的传质效率。而且该曝气管在长距离的输送过程中,整根曝气管从前段至后段均能够产生大致均匀分布的微纳米级气泡,解决了现有曝气管在长距离输送后,再后段无气泡产生以及产生的气泡分布不均匀的问题,也正因为其整根曝气管都能够产生大致均匀分布的纳米级气泡,因此可以直接以半沉的方式固定在河道内,在保证水面以下溶解氧浓度的同时,又能够有效避免底泥上翻。
这里所说的密度是指通气管在单位长度内开设的气孔的组数。在本实施例中,参考图3和图4,每组气孔10都包括了轴向对称设置的两通孔,且相邻两组气孔在径向上垂直设置,以使该曝气管在整个周面上均具有相对均匀的曝气效果。
其中,优选的,第三段气管13上气孔的第三密度与第一段气管11上气孔的峰值密度的比值范围为85%~90%。例如,该曝气管的第一段气管11的峰值密度为在5cm的长度内具有15组气孔10,则第三段气管13在每5cm内具有约13组气孔。这样设置的气孔密度可以使得该曝气管的后段上形成的曝气区域与前 段的曝气区域处于大致均衡的效果。其中,气孔的孔径大小可以根据气体流量、压力以及通气管1的管径来进行调整设置。
在本实施例中,第一段气管11的长度占该通气管1的总长度的48%~55%,第二段气管12的长度占该通气管1的总长度的2%~5%,第三段气管13的长度占该通气管1的总长度的40%~50%。各段气管长度在上述的范围值内能够使得该曝气管具有更均匀的曝气效果。
在本实施例中,参考图5,通气管1和微纳米曝气管2之间间隙配合,以便于通气管1插入至微纳米曝气管2内来完成该曝气管的装配。其中优选的,通气管1的外壁与微纳米曝气管2的内壁之间的间距L为0.5~1mm,即该通气管1的外壁与微纳米曝气管2的内壁之间基本上是紧贴设置的,在便于通气管1和微纳米曝气管2之间装配的同时,也不会影响气孔的出气,而且还可以避免外部的水进入至两者之间的间隙内而形成水膜,从而影响该曝气管的曝气效果。
参考图6,图6是采用本实施例所提供的方案所制得的曝气管的曝气效果图,该曝气管的长度约为18m,从图中可看出,在整根曝气管的长度范围内都具有相对均匀的曝气效果。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (6)

  1. 一种半沉嵌入式曝气管,其特征在于:包括通气管和套接在该通气管外侧上的微纳米曝气管,该通气管在沿其长度方向上依序布设有多组气孔,每组气孔径向设置于通气管的管壁上,该通气管沿其长度方向被依序定义为第一段气管、第二段气管和第三段气管,每段气管都具有靠近进气端的首端以及相对的末端,且第一段气管的首端为进气端;其中,
    气孔在第一段气管上具有第一密度,该第一密度在第一段气管上呈从其首端往末端方向逐渐增大的第一曲线分布,且该第一曲线近似符合正态分布曲线的爬升部分;
    气孔在第三段气管上具有第三密度,该第三密度在第三段气管上呈从其首端往末端方向均布的直线分布;
    气孔在第二段气管上具有第二密度,该第二密度在第二段气管上呈从其首端往末端方向逐渐变小的第二曲线分布,该第二曲线近似符合正态分布曲线的下降部分,且该第二曲线起始于第一曲线的最高处,终止于与直线的相交处。
  2. 根据权利要求1所述的半沉嵌入式曝气管,其特征在于:每组气孔都包括了轴向对称设置的两通孔,且相邻两组气孔在径向上垂直设置。
  3. 根据权利要求2所述的半沉嵌入式曝气管,其特征在于:所述第三段气管上气孔的第三密度与第一段气管上气孔的峰值密度的比值范围为85%~90%。
  4. 根据权利要求1所述的半沉嵌入式曝气管,其特征在于:所述第一段气管的长度占该通气管的总长度的48%~55%,第二段气管的长度占该通气管的总长度的2%~5%,第三段气管的长度占该通气管的总长度的40%~50%。
  5. 根据权利要求1所述的半沉嵌入式曝气管,其特征在于:所述通气管和微纳米曝气管之间间隙配合。
  6. 根据权利要求5所述的半沉嵌入式曝气管,其特征在于:所述通气管的外壁与微纳米曝气管的内壁之间的间距为0.5~1mm。
PCT/CN2020/100345 2019-12-20 2020-07-06 一种半沉嵌入式曝气管 WO2021120595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911322317.6 2019-12-20
CN201911322317.6A CN110845027A (zh) 2019-12-20 2019-12-20 一种半沉嵌入式曝气管

Publications (1)

Publication Number Publication Date
WO2021120595A1 true WO2021120595A1 (zh) 2021-06-24

Family

ID=69609966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100345 WO2021120595A1 (zh) 2019-12-20 2020-07-06 一种半沉嵌入式曝气管

Country Status (2)

Country Link
CN (1) CN110845027A (zh)
WO (1) WO2021120595A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113636635A (zh) * 2021-07-12 2021-11-12 轻工业环境保护研究所 一种原位化学氧化材料长效精准释放动态控制技术

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845027A (zh) * 2019-12-20 2020-02-28 中国科学院城市环境研究所 一种半沉嵌入式曝气管
CN115010243B (zh) * 2022-06-17 2023-12-01 江南大学 基于物联网的河道治理潜水震荡波漫流系统及净化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280625B1 (en) * 1999-10-22 2001-08-28 Westinghouse Savannah River Company In-situ remediation system for volatile organic compounds with deep recharge mechanism
CN106045012A (zh) * 2016-07-13 2016-10-26 农业部沼气科学研究所 一种微动力缓释型曝气结构及方法
CN209039180U (zh) * 2018-10-11 2019-06-28 湖北安联绿色产业科技有限公司 一种应用于污水一体化处理设备的穿孔曝气管
CN110204034A (zh) * 2019-05-22 2019-09-06 浙江东大环境工程有限公司 一种浮动式微纳米曝气装置
CN110845027A (zh) * 2019-12-20 2020-02-28 中国科学院城市环境研究所 一种半沉嵌入式曝气管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280625B1 (en) * 1999-10-22 2001-08-28 Westinghouse Savannah River Company In-situ remediation system for volatile organic compounds with deep recharge mechanism
CN106045012A (zh) * 2016-07-13 2016-10-26 农业部沼气科学研究所 一种微动力缓释型曝气结构及方法
CN209039180U (zh) * 2018-10-11 2019-06-28 湖北安联绿色产业科技有限公司 一种应用于污水一体化处理设备的穿孔曝气管
CN110204034A (zh) * 2019-05-22 2019-09-06 浙江东大环境工程有限公司 一种浮动式微纳米曝气装置
CN110845027A (zh) * 2019-12-20 2020-02-28 中国科学院城市环境研究所 一种半沉嵌入式曝气管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113636635A (zh) * 2021-07-12 2021-11-12 轻工业环境保护研究所 一种原位化学氧化材料长效精准释放动态控制技术
CN113636635B (zh) * 2021-07-12 2023-03-14 轻工业环境保护研究所 一种原位化学氧化材料长效精准释放动态控制方法

Also Published As

Publication number Publication date
CN110845027A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2021120595A1 (zh) 一种半沉嵌入式曝气管
CN203079758U (zh) 自吸式三混合管双级射流曝气装置
CN108211838A (zh) 一种多孔孔板促进混合效果的文丘里混合器
CN205999141U (zh) 全自动旋转高效充氧扩散装置
CN207046963U (zh) 一种微纳米气泡曝气装置
CN201077802Y (zh) 纳米曝气管
CN205151874U (zh) 一种污水池曝气装置
CN106380010A (zh) 水景充氧装置
CN204873999U (zh) 微孔曝气管
CN113371853B (zh) 一种基于纳米气泡的污水处理装置
CN211946488U (zh) 一种半沉嵌入式曝气管
CN103086525B (zh) 一种自吸式三混合管双级射流曝气装置
CN203700011U (zh) 悬挂链式微孔曝气器
CN204779071U (zh) 一种曝气管
CN107694326A (zh) 一种废气生物处理装置
CN210559617U (zh) 一种旋混式曝气装置
CN203683213U (zh) 固定管式微孔曝气器
CN108704420B (zh) 一种文丘里管洗涤器
CN205993408U (zh) 一种地埋式鱼塘打氧泵
CN207476698U (zh) 活水注氧机
CN110330098A (zh) 一种旋混式曝气装置
CN220951354U (zh) 一种中央空调冷却水自动灭菌除藻装置
CN206045140U (zh) 氧气湿化瓶
CN207108628U (zh) 一种曝气管路
CN109626546A (zh) 一种环壁分布式射流空化水处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902864

Country of ref document: EP

Kind code of ref document: A1