WO2021120593A1 - 一种列车过分相方法和系统 - Google Patents

一种列车过分相方法和系统 Download PDF

Info

Publication number
WO2021120593A1
WO2021120593A1 PCT/CN2020/100158 CN2020100158W WO2021120593A1 WO 2021120593 A1 WO2021120593 A1 WO 2021120593A1 CN 2020100158 W CN2020100158 W CN 2020100158W WO 2021120593 A1 WO2021120593 A1 WO 2021120593A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
phase
phase separation
control
signal
Prior art date
Application number
PCT/CN2020/100158
Other languages
English (en)
French (fr)
Inventor
鲁振山
Original Assignee
中车大连电力牵引研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连电力牵引研发中心有限公司 filed Critical 中车大连电力牵引研发中心有限公司
Publication of WO2021120593A1 publication Critical patent/WO2021120593A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/04Arrangements for cutting in and out of individual track sections

Definitions

  • the present invention relates to the technical field of train passing phase separation, and in particular, to a train passing phase separation method and system.
  • the phase-separated area is the non-electrical section of the electrified railway.
  • the traction power supply adopts the single-frequency power supply mode.
  • single-phase segmented power supply is required, or the different phases of electricity supplied by different substations are isolated.
  • a phase separation area must be established between the independent power supply areas, and the phases are separated by air or insulators, which is called electrical phase separation.
  • the phase separation area is generally set near the substation of the AC line or the separation between the power supply areas of two AC substations. In our country, electric locomotives run long distances. Therefore, there will be multiple phase-separated sections along the electrified railway in the operating section. Therefore, it is of great significance to study the phase separation control method so that trains, especially heavy-duty freight trains, can pass through the phase separation zone smoothly, safely and reliably.
  • the present invention mainly utilizes a train passing phase separation system, which is characterized in that it comprises: a ground magnetic induction device which is arranged on both sides of the auxiliary track of the phase separation zone to determine the start and end signs of the phase separation zone, which senses and picks up the ground magnetic steel signal
  • the vehicle-mounted over-phase device refers to the train network control system, the main circuit breaker, and the converter actuator;
  • the ground magnetic induction device includes four magnet signals G1, G2, G3 and G4, and the G1, G2, G3, and G4 four A magnetic steel signal is used as a signal input as the signal source and input of the train passing phase separation system;
  • the vehicle-mounted phase passing device transmits the ground magnetic steel signal to the vehicle-mounted TCMS system;
  • the train network control system TCMS system includes: an IO acquisition unit and a microcomputer main control unit that perform signal interaction with the vehicle-mounted phase passing device; the IO acquisition unit and the microcomputer main control unit are connected by a multifunctional vehicle bus MVB; The IO acquisition unit simultaneously transmits the four magnetic steel signals G1, G2, G3, and G4 picked up by the vehicle-mounted over-phase separation device to the main control unit of the microcomputer.
  • the microcomputer main control unit receives the over-phase-related signals transmitted by the IO unit and the vehicle-mounted over-phase device, it performs timing and logic control, and outputs the calculation result through the IO unit and the vehicle bus, and controls the main circuit breaker and The main and auxiliary converters perform actions as required.
  • this application also includes a method for passing phase separation of a train, which is characterized in that:
  • Step S1 Set four G1, G2, G3, G4 magnet signals in a symmetrical manner in the vicinity of the phase separation zone, and pass the G1, G2, G3, and G4 magnets in turn, where G1 means excessive phase preparation, G2 means excessive phase forced , G3 means excessive phase recovery; when the train runs in the opposite direction, G4 means excessive phase preparation, G3 means excessive phase force, and G2 means excessive phase recovery.
  • Step S2 The above-mentioned TCMS system realizes the automatic phase separation function by collecting the signal of the vehicle-mounted phase separation device; at the same time, a semi-automatic phase separation button is installed on the train, and the TCMS system realizes semi-automatic phase separation by collecting the button and referring to the change of the catenary voltage state.
  • Step S3 When the vehicle-mounted phase separation device is not faulty, the train automatic phase separation function is automatically activated.
  • the control system receives the warning signal G1, the control system will set the phase separation zone distance S1 and the current running speed V according to the preset Real-time control of train unloading traction or electric braking force Tq to ensure that when the distance of Sr meters before the strong break signal G2 is reached, the traction/electric braking force is unloaded to zero, and then the main circuit breaker is disconnected; when the train passes through the phase separation zone, After the control system detects the recovery of the catenary voltage or receives the recovery magnet signal G3, the control system will control the main circuit breaker to automatically close, and again give the current setting value of the traction or constant speed control function of the master controller main handle. Constant force continues to run.
  • the present invention Compared with the prior art, the present invention has the following advantages: the present invention realizes the automatic control of the train passing the phase separation, including the traction control and the main circuit breaker control; cuts off the high-voltage circuit before the train passes through the no-power zone, and prevents the train from entering the phase separation zone with electricity. Damage to train equipment.
  • Fig. 1 is a schematic diagram of the overall structure of the train passing phase separation control system of the present invention.
  • Figure 2 is a schematic diagram of the layout of the ground electromagnetic induction device of the present invention.
  • Figure 3 is a schematic diagram of the structure of the TCMS system of the present invention.
  • Figure 4 is a schematic diagram of the IO unit of the TCMS system of the present invention.
  • Figure 5 is a schematic diagram of the microcomputer main control unit of the TCMS system of the present invention.
  • Figure 6 is a schematic diagram of the reconnection gateway unit of the TCMS system of the present invention.
  • Figure 7 is a schematic diagram of the unloading/loading process of the excessive phase separation of the present invention.
  • Fig. 8 is a schematic diagram of the overall flow of the excessive phase separation process of the present invention.
  • Fig. 9 is a schematic diagram of the excessive phase separation of the reconnection of the present invention.
  • a train passing phase separation system shown in the present invention includes: a ground magnetic induction device for judging the start and end signs of the phase separation zone, which is installed on both sides of the track at the accessory of the phase separation zone, senses and picks up
  • the vehicle-mounted phase-separation device for ground magnetic steel signals refers to the train network control system, the main circuit breaker, and the converter actuator;
  • the ground magnetic induction device includes four magnetic steel signals G1, G2, G3 and G4.
  • the G1, G2 , G3, G4 four magnetic steel signals as signal input as the signal source and input of the train passing phase separation system;
  • the vehicle-mounted phase passing device transmits the ground magnetic steel signal to the vehicle-mounted TCMS system.
  • the train network control system TCMS system includes: an IO acquisition unit and a microcomputer main control unit for signal interaction with the vehicle-mounted phase passing device; the IO acquisition unit and the microcomputer main control unit
  • the functional vehicle bus MVB is connected; the IO acquisition unit simultaneously transmits the four magnetic steel signals G1, G2, G3, G4 picked up by the vehicle-mounted phase separation device to the microcomputer main control unit.
  • the setting of the magnetic steel signal can be set according to the actual train traveling direction, as long as the data can be collected clearly and the data can be clearly picked up.
  • the train should be equipped with a vehicle-mounted phase passing device that meets the requirements of the standard, and the TCMS system realizes the automatic phase passing function by collecting the signal of the device.
  • the train is equipped with a semi-automatic phase separation button, and the TCMS system realizes the semi-automatic phase separation function by collecting the button while referring to the change of the catenary voltage state.
  • the input and output signals involved are shown in the table.
  • the vehicle-mounted phase-separation device at the active end of the driver's cab is in an active state, and the vehicle-mounted phase-separation device at the inactive end does not work.
  • the vehicle-mounted phase passing device activated in the driver's cab is used to collect ground magnetic signals and transmit them to the TCMS system. It can be seen from the above table that the forecast signal G1 and the recovery signal G3 are used as the common output terminal of the vehicle-mounted phase passing device. As shown in Figure 2, TCMS can distinguish the specific meaning of the signal according to the timing relationship.
  • the microcomputer main control unit receives the over-phase related signal transmitted by the IO unit and the on-board over-phase device, it performs timing and logic control, and calculates the real-time value of the calculation result, that is, the traction force. And the timing of the main breaking and closing is output through the IO unit and the vehicle bus, and the main circuit breaker and the main and auxiliary converters are controlled to perform actions as required.
  • the actions performed here mainly include the traction load slope and the delay time for the main circuit breaker to open after the unloading is complete.
  • the specific parameter requirements can be determined according to different projects and vehicle models, as long as they can meet the requirements of the main and auxiliary converters.
  • the timing and logic control is usually through the microcomputer main control unit for the unloading and loading control of the train traction, and the opening and closing of the main train breaker to realize the control.
  • the microcomputer main control unit unloads the traction force to 0 according to the required slope, then disconnects the main circuit breaker. After passing through the sub-phase area, closes the main circuit breaker first, and then closes the main circuit breaker. Complete the traction load according to the required slope.
  • the microcomputer main control unit For controlling the main circuit breaker, the microcomputer main control unit sends the real-time value of the traction force to the main converter control unit through the MVB bus, and the main converter control unit is responsible for driving the traction motor to realize the traction output.
  • the microcomputer main control sends the start and stop instructions of the auxiliary converter control unit through the MVB bus, and the auxiliary converter control unit is responsible for driving cooling loads such as the traction fan.
  • the magnets buried on the track near the phase separation zone serve as the early warning signal.
  • the locomotive collects and processes the early warning signal so that the locomotive unloads traction before the phase separation zone, disconnects the main circuit breaker, and After passing through the split phase area, close the main circuit breaker, load the traction force, and return to the state before the split phase area.
  • this application also includes a method for passing train phase separation, which includes the following steps:
  • Step S1 Set four G1, G2, G3, G4 magnet signals in a symmetrical manner in the vicinity of the phase separation zone, and pass the G1, G2, G3, and G4 magnets in turn, where G1 means excessive phase preparation, G2 means excessive phase forced , G3 means excessive phase recovery; when the train runs in the opposite direction, G4 means excessive phase preparation, G3 means excessive phase force, and G2 means excessive phase recovery.
  • Step S2 The above-mentioned TCMS system realizes the automatic phase passing function by collecting the signal of the vehicle-mounted phase passing device.
  • the train is equipped with a semi-automatic phase separation button, and the TCMS system realizes the semi-automatic phase separation function by collecting the button while referring to the change of the catenary voltage state.
  • Step S3 When the vehicle-mounted phase separation device is not faulty, the train automatic phase separation function is automatically activated.
  • the control system receives the warning signal G1, the control system will set the phase separation zone distance S1 and the current running speed V according to the preset Real-time control of train unloading traction or electric braking force Tq to ensure that when the distance of Sr meters before the strong break signal G2 is reached, the traction/electric braking force is unloaded to zero, and then the main circuit breaker is disconnected; when the train passes through the phase separation zone, After the control system detects the recovery of the catenary voltage or receives the recovery magnet signal G3, the control system will control the main circuit breaker to automatically close, and again give the current setting value of the traction or constant speed control function of the master controller main handle. Constant force continues to run.
  • control system If the control system does not receive the advance signal G1 due to signal interference or other reasons, but directly receives the strong interrupt signal G2, regardless of the degree of unloading of the traction/electric braking force, the control system will immediately block the traction, and then immediately disconnect the main engine. Circuit breaker to prevent the train from entering the no-power zone when the train is charged.
  • the auxiliary inverter is supplied by the intermediate DC circuit of the main converter.
  • the auxiliary power supply should not be interrupted, and the corresponding auxiliary machine should work normally.
  • the present invention uses the state machine method to realize the automatic over-phase control strategy.
  • State0 represents the initial state
  • State1 represents that the control system enters the load shedding control logic state after receiving the automatic over-phase warning signal.
  • State2 represents that the control system has completed the traction unloading and the main break control operation, and enters the state of waiting for the over-phase recovery signal
  • State3 represents that the control system receives the automatic over-phase recovery signal and starts to enter the recovery state
  • State4 represents the control system has completed the main break closing and The traction recovery action, the state machine returns to the initial state and waits for the next automatic over-phase start.
  • the heavy-loaded and multiple-connected trains usually need to consider two issues when passing through the phase separation zone: one is to avoid the rapid loss of train traction when entering the phase separation zone. If the loss is too fast, the train It may not be easy to pass through the phase separation zone; second, when leaving the phase separation zone, ensure that all trains leave the phase separation zone before closing the main circuit breaker, which requires multiple trains to have timing differences in the control of the phase separation zone. .
  • the reconnection over-phase control can be carried out according to the following strategy.
  • Option 1 The head and tail multiple-coupled vehicles simultaneously reduce the load and divide the main break at the same time.
  • the control section train TCMS receives the signal from the vehicle-loaded over-phase separation device or the semi-automatic over-phase separation button signal, it also sends the over-phase signal to the slave control car through the train bus. All multi-connected vehicles carry out traction/electric brake unloading and main break control at the same time as described above.
  • Option 2 Reduce the load of the head and tail multiple cars separately, and divide the main break separately.
  • the control section train TCMS receives the signal of the on-board over-phase separation device or the semi-automatic over-phase separation button signal, it performs traction/electric power unloading and sub-master-off control as described above, and sends the over-phase signal to the slave control car through the train bus.
  • the timing of unloading and main breaking calculates the timing of unloading and main breaking to ensure that the unloading and main breaking control are completed before the forced breaking. This scheme can ensure that the train at the rear of the train does not lose traction too early.
  • the first and rear multiple-coupled vehicles should be turned on and off respectively, and the traction/electric braking force loading control shall be performed separately.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which can be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供一种列车过分相系统,包括:设置在分相区附近轨道两侧的判断分相区开始和结束标志的地面磁感应装置,感应并拾起地面磁钢信号的车载过分相装置,列车网络控制系统以及主断路器、变流器执行机构;所述地面磁感应装置包括G1,G2,G3和G4四个磁钢信号,所述G1,G2,G3,G4四个磁钢信号作为信号输入作为列车过分相系统的信号来源与输入;所述车载过分相装置将所述地面磁钢信号传输至车载TCMS系统。本发明实现列车过分相自动控制,包括牵引力控制与主断路器控制;在列车经过无电区前切断高压电路,避免列车带电进入分相区,对列车设备造成损坏。

Description

一种列车过分相方法和系统 技术领域
本发明涉及列车过分相技术领域,具体而言,尤其涉及一种列车过分相方法和系统。
背景技术
分相区是电气化铁路的无电区间。在电气化铁路牵引区段,牵引供电采用单工频供电方式,为使电力系统三相尽可能平衡,需进行单相分段供电,或者是将不同变电所供出的不用相位的电进行隔离。为防止相间短路,必须在各独立供电区之间建立分相区,各相之间用空气或绝缘子分割,称为电分相。分相区一般设置于交流电线路的变电站附近或两交流变电站供电区域的分隔处。在我国,电力机车运行距离远,因此,在运行区间的电气化铁路沿线,会存在多个分相区间。因此,研究过分相控制方法,使列车特别是重载货运列车能够平稳地,安全可靠地通过分相区具有重要意义。
发明内容
根据上述提出的技术问题,而提供一种列车过分相方法和系统。本发明主要利用一种列车过分相系统,其特征在于,包括:装置设置在分相区附件轨道两侧的判断分相区开始和结束标志的地面磁感应装置,感应并拾起地面磁钢信号的车载过分相装置,指列车网络控制系统以及主断路器、变流器执行机构;所述地面磁感应装置包括G1,G2,G3和G4四个磁钢信号,所述G1,G2,G3,G4四个磁钢信号作为信号输入作为列车过分相系统的信号来源与输入;所述车载过分相装置将所述地面磁钢信号传输至车载TCMS系统;
所述列车网络控制系统TCMS系统包括:与所述车载过分相装置进行信号交互的IO采集单元和微机主控单元;所述IO采集单元和微机主控单元通过多功能车辆总线MVB连接;所述IO采集单元同时将采集所述车载过分相 装置拾取的所述G1,G2,G3,G4四个磁钢信号传输至所述微机主控单元。
进一步地,所述微机主控单元接收所述IO单元和车载过分相装置传输的过分相相关信号后,进行时序与逻辑控制,并把计算结果通过IO单元和车辆总线输出,控制主断路器和主辅变流器按要求执行动作。
更进一步地,本申请还包含一种列车过分相方法,其特征在于:
步骤S1:在分相区附件设置依次对称方式设置4个G1、G2、G3、G4磁钢信号,依次通过G1、G2、G3、G4磁钢,其中G1表示过分相预备,G2表示过分相强迫,G3表示过分相恢复;当列车按相反方向运行,G4表示过分相预备,G3表示过分相强迫,G2表示过分相恢复。
步骤S2:上述TCMS系统通过采集所述车载过分相装置的信号实现自动过分相功能;同时,列车安装有半自动过分相按钮,TCMS系统通过采集该按钮同时参考接触网电压状态的变化实现半自动过分相功能。
步骤S3:当车载过分相装置无故障时,列车自动过分相功能自动处于激活状态,当列车控制系统收到预告信号G1时,控制系统将根据预先设定分相区距离S1及当前运行速度V实时控制列车卸载牵引或电制动力Tq,保证在达到强断信号G2电前Sr米距离时,将牵引/电制动力卸载至零,然后断开主断路器;当列车通过分相区后,控制系统检测到接触网电压恢复或收到恢复磁钢信号G3后,控制系统将控制主断路器自动闭合,并再次给出司控器主手柄当前设定值的牵引力或定速控制功能的设定力继续运行。
较现有技术相比,本发明具有以下优点:本发明实现列车过分相自动控制,包括牵引力控制与主断路器控制;在列车经过无电区前切断高压电路,避免列车带电进入分相区,对列车设备造成损坏。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明列车过分相控制系统整体结构示意图。
图2为本发明地面电磁感应装置布设示意图。
图3为本发明TCMS系统结构示意图。
图4为本发明TCMS系统IO单元示意图。
图5为本发明TCMS系统微机主控单元示意图。
图6为本发明TCMS系统重联网关单元示意图。
图7为本发明过分相卸载/加载过程示意图。
图8为本发明过分相过程整体流程示意图。
图9为本发明重联过分相示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1-9所示为本发明所示的一种列车过分相系统,包括:装置设置在分相区附件轨道两侧的判断分相区开始和结束标志的地面磁感应装置,感应并拾起地面磁钢信号的车载过分相装置,指列车网络控制系统以及主断路器、 变流器执行机构;所述地面磁感应装置包括G1,G2,G3和G4四个磁钢信号,所述G1,G2,G3,G4四个磁钢信号作为信号输入作为列车过分相系统的信号来源与输入;所述车载过分相装置将所述地面磁钢信号传输至车载TCMS系统。
作为一种优选的实施方式,所述列车网络控制系统TCMS系统包括:与所述车载过分相装置进行信号交互的IO采集单元和微机主控单元;所述IO采集单元和微机主控单元通过多功能车辆总线MVB连接;所述IO采集单元同时将采集所述车载过分相装置拾取的所述G1,G2,G3,G4四个磁钢信号传输至所述微机主控单元。可以理解为在其他的实施方式中,所述的磁钢信号的设置可以按照实际的列车行进方向进行设定,只要能够满足能够将数据采集清楚并且能够清楚的拾取数据即可。
作为优选的,列车应装有满足标准要求的车载过分相装置,TCMS系统通过采集该装置的信号实现自动过分相功能。同时,列车安装有半自动过分相按钮,TCMS系统通过采集该按钮同时参考接触网电压状态的变化实现半自动过分相功能。涉及的输入输出信号见表。
Figure PCTCN2020100158-appb-000001
通常,司机室激活端的车载过分相装置处于激活状态,非激活端的车载过分相装置不工作。司机室激活的车载过分相装置用于采集地面磁感信号,并传输给TCMS系统。通过上表可知,预告信号G1和恢复信号G3作为车载 过分相装置的共用输出端,结合图2可知,TCMS可根据时序关系来区分出该信号的具体含义。
在本发明中,作为一种优选的实施方式,微机主控单元接收所述IO单元和车载过分相装置传输的过分相相关信号后,进行时序与逻辑控制,并把计算结果即牵引力计算实时值及主断分合时机通过IO单元和车辆总线输出,控制主断路器和主辅变流器按要求执行动作。在这里执行动作主要包括牵引力加载斜率及主断路器在卸载完成后断开的延时时间。具体参数要求可根据不同项目和车辆型号确定,只要能够满足能够实现主辅变流器的动作即可。
在这里时序与逻辑控制通常是通过微机主控单元进行列车牵引力卸载与加载控制、列车主断路器的断开与闭合实现控制。通常是,列车到达分项取区前指定距离时,微机主控单元把牵引力按照要求斜率卸载至0后,断开主断路器,在通过分相区后指定位置,先闭合主断路器,再按照要求斜率完成牵引力加载。
进一步地,对于IO输出110V电平信号驱动主断路器的继电器,继电器得电与失电将决定主断路器的闭合与断开;
对控制主断路器是微机主控单元通过MVB总线发送给主变流器控制单元牵引力实时值,由主变流器控制单元负责驱动牵引电机实现牵引力输出。微机主控通过MVB总线发送辅助变流器控制单元起机与停机指令,辅助变流器控制单元负责驱动牵引风机等冷却负载工作。
当机车通过分相区时,由埋在分相区附近轨道上的磁铁作为预警信号,机车对该预警信号进行采集、处理,使得机车在分相区前卸载牵引力,断开主断路器,在通过分相区后闭合主断路器,加载牵引力,并恢复到过分相区之前的状态。
作为本申请优选的实施方式,在本申请中还包含一种列车过分相方法,包括以下步骤:
步骤S1:在分相区附件设置依次对称方式设置4个G1、G2、G3、G4磁钢信号,依次通过G1、G2、G3、G4磁钢,其中G1表示过分相预备,G2表示过分相强迫,G3表示过分相恢复;当列车按相反方向运行,G4表示过分相预备,G3表示过分相强迫,G2表示过分相恢复。
步骤S2:上述TCMS系统通过采集所述车载过分相装置的信号实现自动过分相功能。同时,列车安装有半自动过分相按钮,TCMS系统通过采集该按钮同时参考接触网电压状态的变化实现半自动过分相功能。
步骤S3:当车载过分相装置无故障时,列车自动过分相功能自动处于激活状态,当列车控制系统收到预告信号G1时,控制系统将根据预先设定分相区距离S1及当前运行速度V实时控制列车卸载牵引或电制动力Tq,保证在达到强断信号G2电前Sr米距离时,将牵引/电制动力卸载至零,然后断开主断路器;当列车通过分相区后,控制系统检测到接触网电压恢复或收到恢复磁钢信号G3后,控制系统将控制主断路器自动闭合,并再次给出司控器主手柄当前设定值的牵引力或定速控制功能的设定力继续运行。
如果由于信号干扰或其它原因导致控制系统未收到预告信号G1,而直接收到强断信号G2时,无论牵引/电制力的卸载程度如何,控制系统将立刻封锁牵引,然后立即断开主断路器,避免列车带电进入无电区。
对于有过分相不间断供电需求的列车,在过分相断主断过程中,辅助逆变器由主变流器中间直流回路供电的列车,在自动过分相过程中,如速度达到技术要求时,辅助电源应不中断,相应辅机应正常工作。
同时,如图8所示为本发明对于用状态机方法实现自动过分相控制策略,状态机中,State0代表初始状态;State1代表控制系统收到自动过分相预告信号后,进入减载控制逻辑状态;State2代表控制系统完成了牵引力卸载和分主断控制操作,进入等待过分相恢复信号状态;State3代表控制系统收到自动过分相恢复信号,开始进入恢复状态;State4代表控制系统完成主断闭合和牵引力恢复动作,状态机回到初始状态等待下一次自动过分相开始。
当列车重载时,往往需要重联运行,因此重载重联列车通过分相区通常需要考虑2个问题:一是进入分相区时,避免列车牵引力损失过快,如果损失过快,列车可能不容易通过分相区;二是出分相区时,保证所有列车出分相区后再闭合主断路器,这就要求重联车在出分相区的控制上存在时序上的差异性。可以按照以下策略进行重联过分相控制。
进入分相区时,可以考虑2种方案:
方案1:首尾重联车同时减载,同时分主断。操控节列车TCMS接收车 载过分相装置信号或半自动过分相按钮信号后,同时把过分相信号通过列车总线发送到从控车。所有重联车按照上文所述同时进行牵引/电制力卸载与分主断控制。
方案2:首尾重联车分别减载,分别分主断。操控节列车TCMS接收车载过分相装置信号或半自动过分相按钮信号后,按照上文所述进行牵引/电制力卸载与分主断控制,同时把过分相信号通过列车总线发送到从控车。从控车考虑计算精度及中间拖车长度数据等因素,计算卸载与分主断时机,保证在强断前完成卸载和分主断控制。该方案可保证位于列车尾部的列车不过早的损失牵引力。
首车通过分相区后,禁止所有重联车同时进行合主断控制,首尾重联车应分别合主断,并分别进行牵引/电制力加载控制。
实施例:
在分相区附件设置有4个磁钢信号,如图2所示。列车按箭头所示方向运行,依次通过G1、G2、G3、G4磁钢,G1代表“过分相预备”,G2代表“过分相强迫”,G3代表“过分相恢复”,G4在该列车运行方向时可不使用,即在过分相控制过程中只用到G1,G2和G3三个磁钢信号,因为考虑到列车如果按相反方向运行,而不改变车载过分相装置布线,因此地面磁钢按对称方式布置。如果列车按相反方向运行,G4代表“过分相预备”,G3代表“过分相强迫”,G2代表“过分相恢复”。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (3)

  1. 一种列车过分相系统,其特征在于,包括:装置设置在分相区附件轨道两侧的判断分相区开始和结束标志的地面磁感应装置,感应并拾起地面磁钢信号的车载过分相装置,指列车网络控制系统以及主断路器、变流器执行机构;所述地面磁感应装置包括G1,G2,G3和G4四个磁钢信号,所述G1,G2,G3,G4四个磁钢信号作为信号输入作为列车过分相系统的信号来源与输入;所述车载过分相装置将所述地面磁钢信号传输至车载TCMS系统;
    所述列车网络控制系统TCMS系统包括:与所述车载过分相装置进行信号交互的IO采集单元和微机主控单元;所述IO采集单元和微机主控单元通过多功能车辆总线MVB连接;所述IO采集单元同时将采集所述车载过分相装置拾取的所述G1,G2,G3,G4四个磁钢信号传输至所述微机主控单元。
  2. 根据权利要求1所述的一种列车过分相系统,其特征还在于:
    所述微机主控单元接收所述IO单元和车载过分相装置传输的过分相相关信号后,进行时序与逻辑控制,并把计算结果通过IO单元和车辆总线输出,控制主断路器和主辅变流器按要求执行动作。
  3. 应用权利要求1-2所述的列车过分相系统的一种列车过分相方法,其特征在于,包括以下步骤:
    S1:在分相区附件设置依次对称方式设置4个G1、G2、G3、G4磁钢信号,依次通过G1、G2、G3、G4磁钢,其中G1表示过分相预备,G2表示过分相强迫,G3表示过分相恢复;当列车按相反方向运行,G4表示过分相预备,G3表示过分相强迫,G2表示过分相恢复;
    S2:上述TCMS系统通过采集所述车载过分相装置的信号实现自动过分相功能;同时,列车安装有半自动过分相按钮,TCMS系统通过采集该按钮同时参考接触网电压状态的变化实现半自动过分相功能;
    S3:当车载过分相装置无故障时,列车自动过分相功能自动处于激活状态,当列车控制系统收到预告信号G1时,控制系统将根据预先设定分相区距离S1及当前运行速度V实时控制列车卸载牵引或电制动力Tq,保证在达到强断信号G2电前Sr米距离时,将牵引/电制动力卸载至零,然后断开主断路器;当列车通过分相区后,控制系统检测到接触网电压恢复或收到恢复磁 钢信号G3后,控制系统将控制主断路器自动闭合,并再次给出司控器主手柄当前设定值的牵引力或定速控制功能的设定力继续运行。
PCT/CN2020/100158 2019-12-16 2020-07-03 一种列车过分相方法和系统 WO2021120593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911296714.0 2019-12-16
CN201911296714.0A CN110962699A (zh) 2019-12-16 2019-12-16 一种列车过分相方法和系统

Publications (1)

Publication Number Publication Date
WO2021120593A1 true WO2021120593A1 (zh) 2021-06-24

Family

ID=70034446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100158 WO2021120593A1 (zh) 2019-12-16 2020-07-03 一种列车过分相方法和系统

Country Status (2)

Country Link
CN (1) CN110962699A (zh)
WO (1) WO2021120593A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110962699A (zh) * 2019-12-16 2020-04-07 中车大连电力牵引研发中心有限公司 一种列车过分相方法和系统
CN111605441B (zh) * 2020-04-27 2021-10-26 中车青岛四方机车车辆股份有限公司 一种自动过分相控制方法及装置
CN111845471A (zh) * 2020-08-07 2020-10-30 中车大连机车车辆有限公司 一种动力集中动车组
CN114426034B (zh) * 2022-01-14 2023-06-23 中车青岛四方机车车辆股份有限公司 轨道车辆滑行状态的检测方法及轨道车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811451A (zh) * 2010-04-16 2010-08-25 南车株洲电力机车有限公司 一种机车过分相控制方法
US20190241201A1 (en) * 2016-07-25 2019-08-08 Mitsubishi Electric Corporation Train communication system and vehicle-mounted device
CN110962699A (zh) * 2019-12-16 2020-04-07 中车大连电力牵引研发中心有限公司 一种列车过分相方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811451A (zh) * 2010-04-16 2010-08-25 南车株洲电力机车有限公司 一种机车过分相控制方法
US20190241201A1 (en) * 2016-07-25 2019-08-08 Mitsubishi Electric Corporation Train communication system and vehicle-mounted device
CN110962699A (zh) * 2019-12-16 2020-04-07 中车大连电力牵引研发中心有限公司 一种列车过分相方法和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KANG CHENGWEI , QI ZHIXIN , JIANG HANG: "Design and Operating Principle of Automatic Passing Neutral Section Control for CRH3A EMU", RAILWAY QUALITY CONTROL, vol. 45, no. 8, 15 August 2017 (2017-08-15), pages 37 - 40+47, XP055822549, ISSN: 1006-9178 *
LU, ZHENSHAN: "Research on the Controlling Methods of Passing Phase Breaks for Electric Locomotive Using TCMS", 14 April 2018 (2018-04-14), pages 1 - 3, XP055822544, Retrieved from the Internet <URL:https://www.qikanchina.net/thesis/view/2542218> *
ZHANG SHUGUANG: "China Railway CRH5", 31 July 2008, CHINA RAILWAY PRESS, CN, ISBN: 978-7-113-08194-2, article ZHANG SHUGUANG: "Traction Converter, Phase Breaks for Electric Locomotive, and Information Transmission", pages: 250-255, 325 - 336, 434-439, XP009528784 *

Also Published As

Publication number Publication date
CN110962699A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2021120593A1 (zh) 一种列车过分相方法和系统
CN100497032C (zh) 电车控制装置
CN108790956B (zh) 一种双流制列车过分相区时控制方法
US6864598B2 (en) Method of and a system for controlling the supply of electrical power to an electrically propelled vehicle designed to operate in an external power supply mode or in an autonomous power supply mode
CN103950394A (zh) 一种兼具融冰功能的交直流混合牵引供电系统
CN110588450B (zh) 一种基于双流制列车tcms控制vcb、hscb自动切换的方法
CN108696149A (zh) 牵引变流器及其控制、故障处理和载波移相方法
WO2019061894A1 (zh) 一种短编组电动车组重联过分相控制方法及系统
CN101746282A (zh) 一种电气化铁道无分相贯通供电系统
TWI797423B (zh) 使三相電流對稱的方法及控制設備
CN109878333A (zh) 一种中压交流母线控制方法及系统
CN111845471A (zh) 一种动力集中动车组
CN109861367B (zh) 一种电力机车供电系统
CN105109362A (zh) 一种电气化铁路牵引供电系统
WO2021072928A1 (zh) 一种列车过分相区的控制方法及控制系统
CN103281019B (zh) 永磁同步电机容错型牵引模块及其控制方法
CN212380993U (zh) 轨道交通车站的供电系统
CN106541828B (zh) 轨道交通车辆交流电源系统冗余供电电路、车辆及方法
CN113119807A (zh) 一种双流制车辆
CN116424163A (zh) 一种铁路轨道工程车辆作业过分相控制方法及控制系统
WO2020077688A1 (zh) 一种磁悬浮列车及其牵引控制方法
WO2023045120A1 (zh) 动车组过分相牵引辅助及列供间无互连线供电实施方法
CN208306400U (zh) 一种同相供电方式下的车载自动过分相的系统
CN108068640B (zh) 一种双源无轨电车供电控制方法和装置
JP2003205772A (ja) 交流電気鉄道の電源設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903409

Country of ref document: EP

Kind code of ref document: A1