WO2023045120A1 - 动车组过分相牵引辅助及列供间无互连线供电实施方法 - Google Patents

动车组过分相牵引辅助及列供间无互连线供电实施方法 Download PDF

Info

Publication number
WO2023045120A1
WO2023045120A1 PCT/CN2021/138291 CN2021138291W WO2023045120A1 WO 2023045120 A1 WO2023045120 A1 WO 2023045120A1 CN 2021138291 W CN2021138291 W CN 2021138291W WO 2023045120 A1 WO2023045120 A1 WO 2023045120A1
Authority
WO
WIPO (PCT)
Prior art keywords
quadrant
traction
phase
auxiliary
grid
Prior art date
Application number
PCT/CN2021/138291
Other languages
English (en)
French (fr)
Inventor
张�林
赵宁
李金池
Original Assignee
中车大连电力牵引研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连电力牵引研发中心有限公司 filed Critical 中车大连电力牵引研发中心有限公司
Publication of WO2023045120A1 publication Critical patent/WO2023045120A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/04Arrangements for cutting in and out of individual track sections

Definitions

  • the invention relates to the technical field of train over-phase separation, and in particular to an implementation method for EMU over-phase separation traction assistance and power supply without interconnection lines between trains.
  • the traction four-quadrant When the existing electric locomotive/EMU is over-phased, the traction four-quadrant transmits the analog grid voltage signal to the auxiliary four-quadrant in real time through a differential signal (two wires), and the traction four-quadrant sends the analog grid voltage signal to the auxiliary four-quadrant.
  • High real-time high requirements for hardware and software.
  • the electric locomotive/EMU operates with high voltage and large current, which leads to serious electromagnetic interference in the control system, while the amplitude of the analog grid voltage signal sent from the traction four-quadrant to the auxiliary four-quadrant is low, which is easily disturbed, and in serious cases will cause Excessive phase power supply failure.
  • the existing EMU does not have a traction system to supply power to the train supply system when the phase is too split, and the function of the train supply system cannot be maintained in the phase separation area.
  • the present invention provides an implementation method for power supply without interconnection wires between trains and trains for over-phase separation of traction and power supply, so as to overcome the existing simulated power grid in which the four-quadrant traction is sent to the auxiliary four-quadrant during over-phase separation, and the requirements for hardware and software Higher, and the electric locomotive/EMU runs with high voltage and high current, which leads to serious electromagnetic interference in the control system, while the amplitude of the analog grid voltage signal sent from the four-quadrant traction to the auxiliary four-quadrant is low, which is easily disturbed and serious Sometimes it will lead to the failure of over-phase power supply, and the existing EMU does not have the traction system to supply power to the train supply system when the phase is over-split, and the technical problem that the function of the train supply system cannot be maintained in the phase-split area.
  • a method for implementing phase-segmented traction assistance and power supply between trains and trains without interconnection wires for an EMU comprising the following steps:
  • S1 first detect the over-phase separation warning signal; and send the warning signal to the traction system, auxiliary system and train supply system, the main section is disconnected, and the EMU starts to over-phase separation;
  • the traction four-quadrant receives the forecast signal sent by the traction system, and begins to carry out the control preparation of over-phase separation: the traction four-quadrant, auxiliary four-quadrant and column supply four-quadrant accumulate the phases of the simulated grid according to time until the The phase of the simulated grid is the same as the phase of the first actual grid; to synchronize the phase of the first actual grid to the phase of the simulated grid in the phase separation zone;
  • S4 The main section is closed, the traction four-quadrant, auxiliary four-quadrant and column supply four-quadrant enter the normal working mode, and the process of over-phase split power supply ends.
  • the method of accumulating the phases of the simulated power grid according to time in the four traction quadrants, the auxiliary four quadrants and the column supply quadrants in the S2 is as follows: the traction four quadrants, the auxiliary four quadrants and the column supply four quadrants simultaneously follow each first The method of accumulating the first degree in the time period is accumulated to ensure that the phases of the four-quadrant traction, the auxiliary four-quadrant and the power grid used by the four-quadrant are consistent.
  • the method of accumulating the phases of the analog grid according to time in the traction four-quadrant, auxiliary four-quadrant and column supply quadrant in the S3 is as follows: At the same time, the accumulation is carried out in the manner of accumulating the second degree every second time period, so as to ensure that the phases of the power grid used by the traction four-quadrant, the auxiliary four-quadrant and the column supply four-quadrant are consistent with the phase of the second actual power grid.
  • the present invention provides an implementation method for EMU over-phase separation traction assistance and power supply without interconnection lines between trains and trains.
  • the traction system passes the traction during over-phase separation.
  • Fig. 1 is the cross-separation phase schematic diagram of EMU of the present invention
  • Fig. 2 is a schematic diagram of the power supply of the traction system to the auxiliary system and the train supply system during the phase separation period of the present invention
  • Fig. 3 is a flow chart of the method for implementing power supply without interconnection wires according to the present invention.
  • A is the warning signal of over-phase
  • B is the end signal of over-phase
  • C the first actual grid
  • D phase-splitting area
  • E the second actual power grid
  • the present invention provides a control method without interconnection lines between the independent windings of the EMU over-phase-splitting traction auxiliary, as shown in Figures 1-3, because during the over-phase-splitting period of the EMU, the phase of the power grid used by the traction system must be used with the auxiliary four-quadrant Since there is no actual grid during the over-phase period, if the traction system wants to supply power to the auxiliary system, the simulated grid phase generated by the traction four-quadrant during the over-phase period must be transmitted to the auxiliary four-quadrant.
  • the main method of the present invention is to synchronize the analog grid voltage phases between the traction four-quadrant and the auxiliary four-quadrant without interconnection lines.
  • the EMU cannot obtain energy from the catenary in the phase separation area.
  • the auxiliary system for heat dissipation and the train power supply system will be cut off.
  • the auxiliary system and the train supply system do not stop, and the traction system is required to perform braking.
  • the traction four-quadrant feeds back the braking energy to the traction transformer auxiliary winding and train supply winding through the traction transformer.
  • the auxiliary system and train supply system are respectively Energy is obtained from the auxiliary winding and column supply winding of the transformer to maintain normal operation.
  • the EMU in this embodiment adopts the auxiliary system with independent windings, and provides a control method without interconnection lines between the independent windings of the EMU over-phase-splitting traction auxiliary, specifically for the traction system to the auxiliary system and the train supply system when the EMU over-phases
  • the way of power supply, and the way of using no interconnection wires, are as follows:
  • a method for implementing phase-segmented traction assistance and power supply between trains and trains without interconnection wires for an EMU comprising the following steps:
  • the traction four-quadrant receives the forecast signal sent by the traction system, and begins to carry out the control preparation of over-phase separation: the traction four-quadrant, auxiliary four-quadrant and column supply four-quadrant accumulate the phases of the simulated grid according to time until the The phase of the simulated grid is the same as the phase of the first actual grid; to synchronize the phase of the first actual grid to the phase of the simulated grid in the phase separation area;
  • the traction four-quadrants receive the forecast signal sent by the traction system, and start to carry out the control preparation for over-phase: when the main section is disconnected, the traction four-quadrants, auxiliary four-quadrants and train supply four-quadrants At the same time, the quadrants are accumulated in the manner of accumulating the first degree in the first time period.
  • the accumulation is performed in the manner of accumulating 1.8° every 0.1ms (the power grid voltage cycle is 20ms, and a cycle is 360°), wherein the analog grid phase
  • the accumulative speed is 50Hz accumulating 360°, and the initial phase is the first actual grid phase; when the electric locomotive/EMU actually enters the phase-separation zone, the traction four-quadrant and auxiliary four-quadrant are always accumulating at this accumulative rate to ensure
  • the grid phases of traction four-quadrant, auxiliary four-quadrant and column supply four-quadrant are consistent.
  • the motor car begins to split phases, and the induced voltage of the catenary is lower than 3KV.
  • the traction four-quadrant, auxiliary four-quadrant and train supply four-quadrant simultaneously detect the grid voltage of the second actual power grid (E power supply arm in Figure 1), when the traction four-quadrant 1.
  • the auxiliary four-quadrant and column supply quadrant detect that the actual grid voltage is higher than the set value
  • the traction four-quadrant, auxiliary four-quadrant and column supply four-quadrant accumulate the phases of the simulated grid according to time; The phase is synchronized to the second actual grid phase.
  • phase of the actual grid voltage is used for control.
  • the induced voltage of the real catenary is lower than 3kV at this time, and when the EMU is over-phase-separated, the traction four-quadrant, auxiliary four-quadrant and train-supply four-quadrant will simultaneously detect the second The actual grid voltage of the actual grid (E power supply arm in Figure 1), when the traction four-quadrant, auxiliary four-quadrant and column supply detect that the second actual grid voltage is higher than the set value, the second actual grid voltage is set in this embodiment
  • the grid voltage is higher than 17.5kV
  • the phases of the traction four-quadrant, auxiliary four-quadrant and auxiliary four-quadrant simulated power grid are accumulated at the same speed, that is, the second degree is accumulated every second time period to ensure that the traction four-quadrant, auxiliary four-quadrant
  • the grid phases of the quadrants and columns for the four quadrants are consistent with the phases of the second actual grid.
  • phase of the simulated grid is consistent with the phase of the second actual grid, the phase of the second actual grid is used for control; the traction four-quadrant, auxiliary four-quadrant and column supply four-quadrant are respectively switched to the phase of the actual grid, and the traction four-quadrant
  • the quadrant sends a signal to close the main section, and the main section is closed.
  • the main section is closed, the traction four-quadrant and auxiliary four-quadrant enter the normal working mode, and the entire over-phase power supply process ends.
  • the transmission of virtual grid signals between the traction auxiliary system and the train supply system improves the reliability of the over-phase power supply of the EMU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种动车组过分相牵引辅助及列供间无互连线供电实施方法,包括:S1:检测到过分相预告信号;并将预告信号发送到牵引系统、辅助系统和列供系统,动车组开始过分相;S2:牵引四象限开始进行过分相的控制准备,以将第一实际电网相位同步到分相区的模拟电网相位;S3:将模拟电网相位同步到第二实际电网相位;S4:主段闭合,牵引四象限、辅助四象限和列供四象限进入到正常工作模式,过分相供电过程结束。本发明取消牵引四象限、辅助四象限和列供四象限之间的互连线,降低成本,同时降低生产、制造、维护的难度;同时在过分相实施过程中,牵引给辅助系统及列供系统之间传递虚拟电网信号提高了动车组过分相供电的可靠性。

Description

动车组过分相牵引辅助及列供间无互连线供电实施方法 技术领域
本发明涉及列车过分相技术领域,尤其涉及一种动车组过分相牵引辅助及列供间无互连线供电实施方法。
背景技术
在我国的铁路系统中大部分采用的是单相25KV、50Hz供电机制,通过接触网向机车供电,经钢轨回流。在实际的电力机车/动车组供电过程中,由于电网容量、线路情况等原因,给电力机车/动车组供电的接触网并不是一个整体,而是每个一段距离都会有一个变电站给接触网供电。这样就造成了实际的接触网上的电压并不是同一型式的电压(幅值、频率、相位等完全一样),因此每一段接触网和下一段接触网并不是直接连接在一起,而是两段接触网之间有短暂的距离是断开的,对于电力机车/动车组而言每运行一段距离之后就会存在一定的距离是无法从接触网上取电的(这就是电力机车/动车组的过分相),此时车上的设备大部分都会停止运行,但是为了保证电力机车/动车组的舒适性,需要辅助系统工作,此时牵引系统进行制动,将制动的能量传递给辅助系统,从而保证辅助系统在过分相期间不停机,正常运行。
在现有的电力机车/动车组过分相时,牵引四象限通过差分信号(两根导线)给辅助四象限实时传送模拟电网电压信号,牵引四象限发送给辅助四象限的模拟电网电压信号需要很高的实时性,对于硬件及软件的要求较高。并且电力机车/动车组运行时电压高、电流大,导致控制系统的电磁干扰比较严重,而牵引四象限发送给辅助四象限的模拟电网电压信号幅值较低,容易受到干扰,严重时会导致过分相供电失败。同时,现有的动车组在过分相时不存在牵引系统给列供系统供电,在分相区内无法维持列供系统的功能。
发明内容
本发明提供了一种动车组过分相牵引辅助及列供间无互连线供电实施方 法,以克服现有的过分相时牵引四象限发送给辅助四象限的模拟电网,对于硬件及软件的要求较高,并且电力机车/动车组运行时电压高、电流大,导致控制系统的电磁干扰比较严重,而牵引四象限发送给辅助四象限的模拟电网电压信号幅值较低,容易受到干扰,严重时会导致过分相供电失败,和现有的动车组在过分相时不存在牵引系统给列供系统供电,在分相区内无法维持列供系统的功能的技术问题。
为了实现上述目的,本发明的技术方案是:
一种动车组过分相牵引辅助及列供间无互连线供电实施方法,包括如下步骤:
S1:首先检测到过分相预告信号;并将所述预告信号发送到牵引系统、辅助系统和列供系统,主段断开,所述动车组开始过分相;
S2:牵引四象限接收到牵引系统发送的所述预告信号,开始进行过分相的控制准备:所述牵引四象限、辅助四象限和列供四象限对模拟电网相位按照时间进行累加,直至所述模拟电网相位与第一实际电网相位相同;以将所述第一实际电网相位同步到分相区的模拟电网相位;
S3:当检测到过分相结束信号,所述牵引四象限、辅助四象限及列供四象限同时检测到第二实际电网的电网电压,且当所述牵引四象限、辅助四象限和列供四象限检测到实际电网电压高于设定值时,所述牵引四象限、辅助四象限和列供四象限对模拟电网相位按照时间进行累加;以将所述模拟电网相位同步到第二实际电网相位;
S4:主段闭合,牵引四象限、辅助四象限和列供四象限进入到正常工作模式,过分相供电过程结束。
进一步的,所述S2中牵引四象限、辅助四象限和列供四象限对模拟电网相位按照时间进行累加的方法如下:所述牵引四象限、辅助四象限和列供四象限同时按照每第一时间段累加第一度数的方式进行累加,以保证牵引四象限、辅助四象限以及列供四象限使用的电网相位保持一致。
进一步的,所述S3中牵引四象限、辅助四象限和列供四象限对模拟电网相位按照时间进行累加的方法如下:所述牵引四象限、辅助四象限和列供四象限使用的模拟电网相位同时按照每第二时间段累加第二度数的方式进行累加,以保证牵引四象限、辅助四象限以及列供四象限使用的电网相位与第二 实际电网的相位保持一致。
有益效果:本发明提供了一种动车组过分相牵引辅助及列供间无互连线供电实施方法,当提供辅助系统采用独立绕组的主电路结构的动车组,在过分相时牵引系统通过牵引变压器耦合给辅助四象限及列供四象限供电的控制原理,以及在过分相供电过程中,牵引系统与辅助四象限及列供四象限之间无互连线的实施方法。本发明的采用独立绕组的动车组过分相时,取消牵引四象限和辅助四象限之间的互连线,降低成本,同时降低生产、制造、维护的难度;同时在过分相实施过程中,牵引给辅助系统及列供系统之间传递虚拟电网信号提高了动车组过分相供电的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明动车组过分相示意图;
图2为本发明过分相期间牵引系统给辅助系统、列供系统供电示意图;
图3为本发明无互连线供电实施方法流程图。
其中:A为过分相预告信号;B为过分相结束信号;C、第一实际电网;
D、分相区;E、第二实际电网。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种动车组独立绕组过分相牵引辅助间无互连线控制方法,如附图1-3所示,由于动车组过分相期间,牵引系统使用的电网相位必须与辅助四象限使用的电网相位保持一致;由于过分相期间没有实际电网,所以 牵引系统要想给辅助系统供电,必须使得牵引四象限在过分相期间产生的模拟电网相位传送给辅助四象限。本发明主要方式为牵引四象限与辅助四象限之间通过无互连线的方式同步两者的模拟电网电压相位。
由于动车组组过分相期间,由于接触网存在分相区,在分相区内动车组无法从接触网获取能量,此时用于散热的辅助系统和列车供电系统就会断电,为了保证动车组过分相期间,辅助系统和列供系统不停机,需要牵引系统进行制动,牵引四象限将制动的能量经牵引变压器反馈到牵引变压器辅助绕组和列供绕组,辅助系统和列供系统分别从变压器的辅助绕组和列供绕组获取能量维持正常运行。
在过分相期间牵引系统为了能够给辅助系统和列供系统供电,需要保证过分相期间牵引系统经变压器耦合的虚拟电网相位与辅助四象限以及列供四象限控制使用的电网相位时刻保持一致。
本实施例的动车组采用独立绕组的辅助系统,提供一种动车组独立绕组过分相牵引辅助间无互连线控制方法,具体的为在动车组过分相时牵引系统给辅助系统及列供系统供电的方式,以及采用无互连线方式进行,具体如下:
一种动车组过分相牵引辅助及列供间无互连线供电实施方法,包括如下步骤:
S1:当动车组过分相时,首先动车组从地面检测到过分相预告信号,并将所述预告信号发送到牵引系统、辅助系统和列供系统,主段断开,所述动车组开始过分相;
S2:牵引四象限接收到牵引系统发送的所述预告信号,开始进行过分相的控制准备:所述牵引四象限、辅助四象限和列供四象限对模拟电网相位按照时间进行累加,直至所述模拟电网相位与第一实际电网相位相同;以将所述第一实际电网相位同步到分相区的模拟电网相位;
优选地,在本实施例中,牵引四象限接收到牵引系统发送的所述预告信号,开始进行过分相的控制准备:当主段断开瞬间,所述牵引四象限、辅助四象限和列供四象限同时按照第一时间段累加第一度数的方式进行累加,在本实施例中按照每0.1ms累加1.8°(电网电压周期为20ms,一个周期360°)的方式进行累加,其中模拟电网相位累加速度为50Hz累加360°,初始相位为第一实际电网相位;当所述电力机车/动车组真正进入分相区后,牵引 四象限和辅助四象限都按照这个累加的速率一直累加,以保证牵引四象限、辅助四象限以及列供四象限使用的电网相位保持一致。此时动车开始过分相,接触网的感应电压低于3KV。
S3:当所述动车组过分相结束,所述牵引四象限、辅助四象限及列供四象限同时检测到第二实际电网(图1中E供电臂)的电网电压,当所述牵引四象限、辅助四象限和列供四象限检测到实际电网电压高于设定值时,所述牵引四象限、辅助四象限和列供四象限对模拟电网相位按照时间进行累加;以将所述模拟电网相位同步到第二实际电网相位。
当模拟电网相位与第二实际电网相位一致时,再采用实际电网电压的相位进行控制。
优选地,当动车组运行到分相区后,此时真实接触网的感应电压低于3kV,当动车组过分相结束,牵引四象限、辅助四象限和列供四象限会同时检测到第二实际电网(图1中E供电臂)的实际电网电压,当牵引四象限、辅助四象限和列供检测到第二实际电网电压高于设定值时,在本实施例中设定第二实际网压高于17.5kV,牵引四象限、辅助四象限和列供四象限使用的模拟电网相位按照同一个速度进行累加,即每第二时间段累加第二度数,以保证牵引四象限、辅助四象限以及列供四象限使用的电网相位与第二实际电网的相位保持一致。在本实施例中,按照每0.1ms累加1.9°向第二实际电网的相位靠拢。
S4:当模拟电网相位与第二实际电网相位保持一致时,采用第二实际电网相位进行控制;牵引四象限、辅助四象限和列供四象限各自切换到实际电网的相位上,此时牵引四象限发送闭合主段信号,主段闭合,当主段闭合后,牵引四象限和辅助四象限进入到正常工作模式,整个过分相供电过程结束。
本发明具有如下有益效果:
1、本发明的采用独立绕组的动车组过分相时,取消牵引四象限和辅助四象限之间的互连线,降低成本,同时降低生产、制造、维护的难度;
2、本发明的动车组采用独立绕组过分相实施过程中,牵引给辅助系统及 列供系统之间传递虚拟电网信号提高了动车组过分相供电的可靠性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (3)

  1. 一种动车组过分相牵引辅助及列供间无互连线供电实施方法,其特征在于,所述方法包括如下步骤:
    S1:首先检测到过分相预告信号;并将所述预告信号发送到牵引系统、辅助系统和列供系统,主段断开,所述动车组开始过分相;
    S2:牵引四象限接收到牵引系统发送的所述预告信号,开始进行过分相的控制准备:所述牵引四象限、辅助四象限和列供四象限对模拟电网相位按照时间进行累加,直至所述模拟电网相位与第一实际电网相位相同;以将所述第一实际电网相位同步到分相区的模拟电网相位;
    S3:当检测到过分相结束信号,所述牵引四象限、辅助四象限及列供四象限同时检测到第二实际电网的电网电压,且当所述牵引四象限、辅助四象限和列供四象限检测到实际电网电压高于设定值时,所述牵引四象限、辅助四象限和列供四象限对模拟电网相位按照时间进行累加;以将所述模拟电网相位同步到第二实际电网相位;
    S4:主段闭合,牵引四象限、辅助四象限和列供四象限进入到正常工作模式,过分相供电过程结束。
  2. 根据权利要求1所述的一种动车组过分相牵引辅助及列供间无互连线供电实施方法,其特征在于,所述S2中牵引四象限、辅助四象限和列供四象限对模拟电网相位按照时间进行累加的方法如下:所述牵引四象限、辅助四象限和列供四象限同时按照每第一时间段累加第一度数的方式进行累加,以保证牵引四象限、辅助四象限以及列供四象限使用的电网相位保持一致。
  3. 根据权利要求1所述的一种动车组过分相牵引辅助及列供间无互连线供电实施方法,其特征在于,所述S3中牵引四象限、辅助四象限和列供四象限对模拟电网相位按照时间进行累加的方法如下:所述牵引四象限、辅助四象限和列供四象限使用的模拟电网相位同时按照每第二时间段累加第二度数的方式进行累加,以保证牵引四象限、辅助四象限以及列供四象限使用的电网相位与第二实际电网的相位保持一致。
PCT/CN2021/138291 2021-09-24 2021-12-15 动车组过分相牵引辅助及列供间无互连线供电实施方法 WO2023045120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111123211.0 2021-09-24
CN202111123211.0A CN113771701A (zh) 2021-09-24 2021-09-24 动车组过分相牵引辅助及列供间无互连线供电实施方法

Publications (1)

Publication Number Publication Date
WO2023045120A1 true WO2023045120A1 (zh) 2023-03-30

Family

ID=78853265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138291 WO2023045120A1 (zh) 2021-09-24 2021-12-15 动车组过分相牵引辅助及列供间无互连线供电实施方法

Country Status (2)

Country Link
CN (1) CN113771701A (zh)
WO (1) WO2023045120A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771701A (zh) * 2021-09-24 2021-12-10 中车大连电力牵引研发中心有限公司 动车组过分相牵引辅助及列供间无互连线供电实施方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026055A1 (en) * 1998-11-04 2000-05-11 Balfour Beatty Plc Ac traction power supply
CN101434206A (zh) * 2008-12-24 2009-05-20 西南交通大学 一种交直交电力机车自动过电分相方法
CN105378572A (zh) * 2014-06-09 2016-03-02 北京交通大学 铁路列车过分相时辅助绕组不停电的控制方法
CN107839549A (zh) * 2017-12-08 2018-03-27 中车大连电力牵引研发中心有限公司 铁路列车过分相供电系统和铁路列车
CN109532507A (zh) * 2018-12-20 2019-03-29 中车大连电力牵引研发中心有限公司 相位同步方法及装置
CN113771701A (zh) * 2021-09-24 2021-12-10 中车大连电力牵引研发中心有限公司 动车组过分相牵引辅助及列供间无互连线供电实施方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026055A1 (en) * 1998-11-04 2000-05-11 Balfour Beatty Plc Ac traction power supply
CN101434206A (zh) * 2008-12-24 2009-05-20 西南交通大学 一种交直交电力机车自动过电分相方法
CN105378572A (zh) * 2014-06-09 2016-03-02 北京交通大学 铁路列车过分相时辅助绕组不停电的控制方法
CN107839549A (zh) * 2017-12-08 2018-03-27 中车大连电力牵引研发中心有限公司 铁路列车过分相供电系统和铁路列车
CN109532507A (zh) * 2018-12-20 2019-03-29 中车大连电力牵引研发中心有限公司 相位同步方法及装置
CN113771701A (zh) * 2021-09-24 2021-12-10 中车大连电力牵引研发中心有限公司 动车组过分相牵引辅助及列供间无互连线供电实施方法

Also Published As

Publication number Publication date
CN113771701A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN105292141B (zh) 一种电动车组自动过分相控制系统及控制方法
CN107351730B (zh) 一种电气化铁路列车不断电自动过分相系统及其运行方法
CN103950394B (zh) 一种兼具融冰功能的交直流混合牵引供电系统
WO2019061894A1 (zh) 一种短编组电动车组重联过分相控制方法及系统
JP3184217B2 (ja) 電気的推進による鉄道車輛用回生制動保護システム
CN101774356A (zh) 一种通过渐进式移相实现机车过分相的方法及所用的设备
CN105034856A (zh) 一种交流电气化铁路智能电分相装置
CN108790956B (zh) 一种双流制列车过分相区时控制方法
WO2021120593A1 (zh) 一种列车过分相方法和系统
CN105313723B (zh) 一种电动车组自动通过分相区的控制方法
CN106347143B (zh) 电动车辆及其通过第三轨无电区间的控制系统与控制方法
US9308923B2 (en) Regenerative braking emergency stop system
WO2023045120A1 (zh) 动车组过分相牵引辅助及列供间无互连线供电实施方法
CN105790274A (zh) 一种贯通供电系统变流器型牵引变电所潮流调控装置及其调控方法
WO2019109716A1 (zh) 铁路列车过分相供电系统和铁路列车
CN109624793A (zh) 一种智能化自动过分相的方法
CN205407265U (zh) 一种贯通供电系统变流器型牵引变电所潮流调控装置
CN201349181Y (zh) 可组合的高压单相渐进移相式电源装置
CN111823957B (zh) 车地协同过分相控制方法、系统及轨道交通车辆
CN205311365U (zh) 一种列车过分相能量再利用装置
CN116424163A (zh) 一种铁路轨道工程车辆作业过分相控制方法及控制系统
CN205686215U (zh) 一种动车组不分闸过分相系统
CN209938376U (zh) 一种电力列车过分段控制系统
CN210062723U (zh) 一种双受电靴电力列车不断电过分段控制系统
CN108859868B (zh) 一种同相供电方式下的车载自动过分相的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21958231

Country of ref document: EP

Kind code of ref document: A1