WO2021072928A1 - 一种列车过分相区的控制方法及控制系统 - Google Patents

一种列车过分相区的控制方法及控制系统 Download PDF

Info

Publication number
WO2021072928A1
WO2021072928A1 PCT/CN2019/121878 CN2019121878W WO2021072928A1 WO 2021072928 A1 WO2021072928 A1 WO 2021072928A1 CN 2019121878 W CN2019121878 W CN 2019121878W WO 2021072928 A1 WO2021072928 A1 WO 2021072928A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
traction force
point
signal
control device
Prior art date
Application number
PCT/CN2019/121878
Other languages
English (en)
French (fr)
Inventor
周方圆
胡家喜
张敏
吴丽然
胡前
吕顺凯
田哲
周靖
何健明
肖宇翔
仇乐兵
林丽
Original Assignee
株洲中车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲中车时代电气股份有限公司 filed Critical 株洲中车时代电气股份有限公司
Publication of WO2021072928A1 publication Critical patent/WO2021072928A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems

Definitions

  • the invention relates to the technical field of train safety control, in particular to a control method and a control system for a train passing through a phase division zone.
  • the electrified railway traction power supply contact network is a special single-phase power supply network.
  • the power supply is divided into phases and sections.
  • the domestic AC electrified railway generally needs to install an electric distribution every tens of kilometers Phase devices, electrical phase separation devices are usually installed at the boundary of the railway bureau, the substation, and the junction of the two power supply arms. According to whether the main circuit breaker of the train is disconnected when the train passes through the phase separation zone, it is mainly divided into two methods: power-off over-phase and live over-phase.
  • the present invention provides a control method and control system for a train passing through the phase-separation zone to alleviate the impact caused by the instantaneous unloading of the train due to power loss when the train arrives at the commutation point, so that the train can safely and smoothly pass the phase-separation zone.
  • the present invention provides a control method for a train passing through a split-phase zone.
  • the control method is applied to a split-phase control device, and the control method includes:
  • the unloading advance signal is sent to the on-board control device of the train, so that the on-board control device will transmit the unloading force before the train reaches the commutation point.
  • the tractive force of the train is reduced from the first tractive force to the second tractive force.
  • the electric energy of the DC capacitor in the converter is used to maintain the tractive force at the second tractive force until the commutation is completed.
  • the warning point is located at a preset distance in front of the commutation point.
  • the sending the unloading advance notice signal to the on-board control device of the train includes:
  • the signal transmission device sends the unloading advance signal to the vehicle control device; wherein the signal transmission device is located within the preset range of the commutation point.
  • the acquiring a train position signal includes:
  • the train position signal sent by the train position detection device is received, and the train position detection device is arranged at the early warning point.
  • the present invention provides a control method for a train passing through a phase separation zone.
  • the control method is applied to an on-board control device, and the control method includes:
  • the unloading advance notice signal is generated by the over-phase control device when the train is determined to travel to an early warning point, and the early warning point is located at a preset distance in front of the commutation point;
  • control the train In response to the unloading force forecast signal, control the train to reduce the traction force from the first traction force to the second traction force before traveling to the commutation point;
  • the electric energy of the intermediate DC capacitor of the converter is used to maintain the traction force at the second traction force until the commutation is completed.
  • the controlling the train to reduce the traction force from the first traction force to the second traction force before traveling to the commutation point includes:
  • the train is controlled to gradually reduce the traction force from the first traction force to the second traction force within a preset time before traveling to the commutation point.
  • the step of gradually reducing the traction force from the first traction force to the second traction force within a preset time includes:
  • the traction force is reduced from the first traction force to the second traction force at a constant speed according to the preset rate of change.
  • the controlling the train to reduce the traction force from the first traction force to the second traction force before traveling to the commutation point includes:
  • the train is controlled to reduce the traction force from the first traction force to the second traction force instantaneously before traveling to the commutation point.
  • the receiving a force unloading advance notice signal includes:
  • the signal transmission device Receiving the unloading advance signal forwarded by the signal transmission device, the signal transmission device is located within the preset range of the commutation point.
  • the present invention provides a control system for a train passing a split-phase zone, which includes a split-phase control device and a vehicle-mounted control device;
  • the over-phase control device is used to obtain a train position signal, and when the train is determined to reach an early warning point based on the train position signal, it sends an unloading advance signal to the on-board control device of the train, wherein the early warning point is located at the early warning point.
  • the on-board control device is installed on the train, and the on-board control device responds to the unloading advance signal to control the train to reduce the traction force from the first traction force to the second traction force before traveling to the commutation point, and When the train travels to the commutation point, the electric energy of the intermediate DC capacitor of the converter is used to maintain the traction force at the second traction force until the commutation is completed.
  • it further includes a signal transmission device
  • the signal transmission device is located within a preset range of the commutation point, and the signal transmission device is used to receive the unloading advance signal sent by the over-phase control device, and send the unloading force to the on-board control device Preview signal.
  • the split-phase control device determines that the train is about to travel to the commutation point according to the acquired train position signal, and sends the unloading advance signal to the on-board control device of the train, and the on-board control The device reduces the traction force of the train from the first traction force to the second traction force before the train travels to the commutation point.
  • the train uses the electric energy of the intermediate DC capacitor of the converter to maintain the traction force at the second traction force until Complete the commutation.
  • the train unloads its force in advance before reaching the commutation point, and maintains a continuous traction force passing through the commutation point.
  • the first traction force is used. In terms of reducing to zero, the impact on the train is significantly smaller, therefore, the impulse of the train is significantly alleviated, so that the train can pass through the phase-separation zone safely and smoothly.
  • Fig. 1 is a flow chart of a method for controlling a train passing through a phase separation zone disclosed in the present invention
  • Figure 2 is a flow chart of another method for controlling train passing through a phase-separation zone disclosed in the present invention
  • FIG. 3 is a schematic diagram of a scene of a control system for a train passing through a phase separation zone disclosed in the present invention
  • Figure 4-1 is a schematic diagram of another scene of a control system for trains passing through a phase-separation zone disclosed in the present invention
  • Figure 4-2 is a schematic diagram of another scene of a control system for a train passing through a phase-separation zone disclosed in the present invention
  • FIG. 5 is a schematic diagram of the principle of the method for controlling the train passing through the phase separation zone disclosed in the present invention.
  • 6-1 to 6-4 are schematic diagrams of scenes of trains passing through the phase-separation zone disclosed in the present invention.
  • Fig. 6-5 is a control sequence diagram of the train passing through the phase separation zone disclosed in the present invention.
  • the terms "include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes no Other elements clearly listed, or also include elements inherent to this process, method, article, or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the process, method, article, or equipment that includes the element.
  • the present invention provides a control method for a train passing a split-phase zone.
  • the control method is applied to a split-phase control device. As shown in FIG. 1, the control method includes:
  • the over-phase control device obtains the train position signal, and when the train is determined to reach the pre-warning point based on the signal (that is, the train is about to reach the commutation point), it sends the unloading advance signal to the on-board control device of the train, so that the on-board control device is in the train.
  • the traction force of the train is reduced from the first traction force to the second traction force, and when the train travels to the commutation point, the electric energy of the DC capacitor in the converter is used to maintain the traction force at the second traction force until the changeover point.
  • Phase completion that is, the train uses the electric energy of the DC capacitor in the converter to maintain the traction force at the second traction force during the commutation and loss of power.
  • the impact on the train is significantly smaller, which can significantly alleviate the impulse of the train.
  • the present invention provides another control method for a train passing through a phase separation zone.
  • the control method is applied to an on-board control device. As shown in FIG. 2, the control method includes:
  • the vehicle-mounted control device receives the unloading force advance notice signal, wherein the unloading force advance notice signal is generated by the over-phase control device when it is determined that the train is traveling to the early warning point.
  • the pre-warning point is located at a preset distance in front of the commutation point.
  • the on-board control device responds to the unloading advance signal sent by the over-phase control device, and before the train travels to the commutation point, reduces the traction force from the first traction force to the second traction force, that is, controls the train to unload ahead of time before traveling to the commutation point. force.
  • the electric energy of the intermediate DC capacitor of the converter is used to maintain the traction force at the second traction force until the commutation is completed, that is, the train uses the converter during the commutation loss of power.
  • the electric energy of the intermediate DC capacitor keeps the traction force at the second traction force.
  • the train maintains a continuous traction force passing through the commutation point. Compared with the instantaneous unloading force of the train falling from the first traction force to zero due to power loss when the train reaches the commutation point, the impact on the train is significantly smaller. Therefore, the train is impulsive. Obviously relieved.
  • point K is the critical point of the phase separation zone
  • point M is the commutation point
  • L is the distance between point K and point M.
  • the two power supply arms in the phase separation zone They are called power supply arm A and power supply arm B respectively.
  • the switch connected to power supply arm A is called mechanical switch or electronic switch 1
  • the switch connected to power supply arm B is called mechanical switch or electronic switch 2.
  • point K is the early warning point for explanation.
  • the selection of the pre-warning point can also be located before the K point or after the K point, but it must be located before the commutation point M.
  • the pre-warning point is located at a preset distance in front of the commutation point.
  • the selection of the pre-warning point should ensure that the time required for the train to travel from the pre-warning point to the commutation point M is not less than that after the over-phase control device generates the unloading force warning signal, the on-board control device reduces the traction force of the train from the first traction force to the second traction force. 2. Time required for traction.
  • the over-phase control device When the train travels to the critical point of the phase separation zone, that is, the pre-warning point K, the over-phase control device obtains the train position signal, and based on the position signal, determines that the train is traveling to the pre-warning point, and sends the unloading advance warning signal to the on-board control device for the on-board vehicle
  • the control device controls the train to reduce the traction force of the train from the first traction force to the second traction force before moving to the commutation point M.
  • the train maintains the second traction force F 2 through the electric energy provided by the intermediate DC capacitor of the converter until the commutation is completed.
  • F 1 and F 2 to represent the first traction force and the second traction force of the train, so as to facilitate the subsequent description more clearly.
  • the resultant external force of the train is zero at this time, that is, the train running resistance is equal to the traction force.
  • the train running resistance is equal to the traction force.
  • the train running resistance is equal to the traction force.
  • the train running resistance is equal to the traction force.
  • the traction force decreases from F 1 to zero instantaneously, and the traction force change ⁇ F 1 is relatively large.
  • the amount of change in the combined external force is relatively large, and the impact on the train is more obvious, which not only affects the driving comfort of the driver, but also affects the safe and stable operation of the train if it is serious.
  • the over-phase control device sends the unloading advance warning signal to the on-board control device of the train; the on-board control device receives the unloading advance warning signal and controls the train to arrive at the commutation point
  • the traction force of the train is reduced from the first traction force to the second traction force, that is, the traction force of the train is reduced from F 1 to F 2 .
  • the train maintains the traction force at the second traction force F 2 through the electric energy provided by the intermediate DC capacitor of the converter until the commutation is completed. As shown in Fig.
  • the present invention sets an early warning point before the commutation point, and when the over-phase control device determines that the train is traveling to the early warning point, it sends an unloading advance warning signal to the on-board control device of the train, so that the train can unload its force in advance before reaching the commutation point, and When the train reaches the commutation point, the electric energy provided by the train through the intermediate DC capacitor of the converter maintains the second traction force through the commutation point.
  • the train maintains a continuous traction force during the commutation period, so that when the train travels to the commutation point
  • the train will not be subject to a large impact due to excessive changes in the traction force, ensuring the driving comfort of the driver, and at the same time avoiding potential safety hazards that may be caused by a large impact on the train.
  • the train position signal obtained above is detected and obtained by the train position detection device and sent to the over-phase control device. It should be noted here that the train position detection device is arranged at the early warning point.
  • the train position detection device can use any one of detection technologies such as magnetic steel equipment detection, radio frequency card detection, infrared beam detection, and radar reflection detection.
  • the over-phase control device sends the unloading advance signal to the on-board control device of the train, which is sent to the on-board control device through the signal transmission device, as shown in Figure 4-1, the signal transmission device is located at the commutation point.
  • the signal transmission device may be located before the commutation point M or after the commutation point M, but the position of the signal transmission device should be within the preset range of the commutation point. That is, if it is located before the commutation point M, it should be ensured that the signal transmission device is located after the selected pre-warning point and is located in the phase division zone. If it is located after the commutation point M, it should also be ensured that the signal transmission device is in the division. Phase area interval.
  • the signal transmission device can be set on the ground and located within the preset range of the commutation point.
  • the over-phase control device has a built-in signal transmission device.
  • the internal signal transmission device sends the unloading notice to the train's on-board control device. Signal, as shown in Figure 4-2.
  • the over-phase control device receives the train position signal sent by the train position detection device, and when the train is determined to reach the warning point based on the train position signal, it sends the unloading advance signal to the on-board control device of the train, The on-board control device controls the train to instantaneously reduce the traction force from the first traction force F 1 to the second traction force F 2 before traveling to the commutation point M.
  • the on-board control device receives the unloading force warning signal, and instantaneously reduces the traction force of the train from the first traction force F 1 to the second traction force F 2 .
  • the traction force of the train becomes the second traction force F 2 , and the train keeps the second traction force F 2 to travel.
  • the electric energy of the DC capacitor in the converter is used to maintain the traction force at the second traction force, so that the train Maintain a continuous tractive force through the commutation point, that is, the train maintains the second tractive force F 2 through the commutation point.
  • the traction force change ⁇ F 1 occurs when the first traction force F 1 drops to zero instantaneously when the train reaches the commutation point M. Is zero.
  • the amount of change in the total external force received by the train is reduced, and the impact on the train has been slowed down compared with the previous one. This has achieved the purpose of alleviating the impact on the train. Not only does it not affect the driving comfort of the train driver, but also eliminates it. Safety hazards caused by a large impact on the train.
  • the tractive force change is ⁇ (F 1 -F 2 ), which is compared to the tractive force change of the train from the first tractive force F 1 to zero instantaneously In terms of ⁇ F 1 , it is still small. Although the train has received a certain impact, the impact is relatively small.
  • the over-phase control device receives the train position signal sent by the train position detection device, and according to the train position signal determines that the train is traveling to the pre-warning point, it sends the unloading advance signal to the on-board control device of the train ,
  • the on-board control device controls the train to gradually reduce the traction force from the first traction force F 1 to the second traction force F 2 within a preset time before the train travels to the commutation point M, and the preset time is not greater than the train from the pre-warning point to the The time required for the commutation point.
  • the on-board control device controls the train to gradually reduce the traction force from the first traction force F 1 to the second traction force F 2 according to a preset rate of change.
  • the control means controls the vehicle-mounted train small change rate decreased from a first traction traction force F 1 in accordance with the gradually tapered, the train arrived at the point M before commutation, the traction train from the first traction F 1 Reduce to the second tractive force F 2 .
  • the on-board control device controls the train to gradually decrease the traction force from the first traction force F 1 according to a fixed rate of change.
  • the train reduces the traction force from the first traction force F 1 to The second traction force F 2 . That is, within a preset time, the on-board control device controls the train to gradually reduce the traction force at a constant speed from the first traction force F 1 to the second traction force F 2 according to a preset rate of change.
  • the following describes the method for controlling the train passing through the phase-separated area provided by the present invention in conjunction with the entire process of the train passing through the phase-separated area.
  • J1 and J4 are the critical points of the phase separation zone
  • J3 is the commutation point
  • J2 is another mark point. If the traveling direction of the train is from left to right, the critical point J1 of the phase separation zone can be selected as the early warning point, and the train keeps moving at a constant speed before reaching the J1 point.
  • the first circuit breaker QF1 and the second circuit breaker QF2 are turned on, and the third circuit breaker QF3 and the fourth circuit breaker QF4 are turned off.
  • the figure also shows an RC circuit.
  • the first switch SCR-V1 and the second switch SCR-V2 are both disconnected, and there is no electricity in the phase separation zone at this time.
  • the train position detection device cannot detect the train position, and will not send a train position signal to the over-phase control device, and the over-phase control device will not send the unloading advance signal to the train on-board control device through the signal transmission device, and the train continues to run.
  • the train position detection device detects the position of the train and sends the train position signal to the over-phase control device.
  • the over-phase control device sends the signal to the train through the signal transmission device.
  • the vehicle-mounted control device of the vehicle sends the unloading force warning signal, so that the vehicle-mounted control device controls the train to reduce the traction force of the train from the first traction force to the second traction force before the train reaches the J3 point.
  • the over-phase control device issues a control command to control the first switch SCR-V1 to conduct, so that the train is charged through the left power supply arm area of the phase-separated area.
  • the second switch SCR-V2 of the right power supply arm area of the split phase area is still in an off state, and the right power supply arm area is without electricity.
  • the over-phase control device issues a control command to control the first switch SCR-V1 to open, and then issues a control command to control the second switch SCR-V2 Turning on, since the state switching of the first switch SCR-V1 and the second switch SCR-V2 will consume a certain amount of time, there will be a certain amount of time for the train to lose power.
  • the electric energy of the DC capacitor in the converter is used to maintain the traction force at the second traction force until the commutation is completed.
  • the right power supply arm of the phase-separation zone supplies power to the train, and the traction of the train is restored to the rated traction.
  • the second switch SCR-V2 is controlled by the split-phase control device to open, as shown in Figure 6-4.
  • the invention also provides a control system for the train passing through the phase separation zone.
  • the control system includes an over-phase control device and an on-board control device.
  • the over-phase control device is used to obtain the train position signal, and when the train is determined to reach the pre-warning point according to the train position signal, it sends the unloading advance signal to the on-board control device of the train, where the pre-warning point is located at a preset distance in front of the commutation point .
  • the on-board control device is installed on the train.
  • the on-board control device responds to the unloading forecast signal to control the train to reduce the traction force from the first traction force to the second traction force before the train travels to the commutation point, and when the train travels to the commutation point At the time, the electric energy of the DC capacitor in the middle of the converter is used to keep the traction force at the second traction force until the commutation is completed.
  • control system for a train passing through the phase separation zone further includes a signal transmission device located within a preset range of the commutation point.
  • the signal transmission device is used to receive the unloading advance notice signal sent by the split-phase control device, and send the unloading advance notice signal to the on-board control device of the train.
  • the excess phase control device has a built-in signal transmission device, and the excess phase control device sends the unloading advance signal to the on-board control device of the train through the built-in signal transmission device.

Abstract

本发明提供一种列车过分相区的控制方法,过分相控制装置获取列车位置信号,在基于该列车位置信号确定列车行进至预警点时,向车载控制装置发送卸力预告信号,车载控制装置接收卸力预告信号并响应该卸力预告信号,控制列车在行进至换相点之前,将牵引力由第一牵引力降至第二牵引力。基于本发明提供的列车过分相区的控制方法,列车在行进至换相点之前,将牵引力由第一牵引力降至第二牵引力,当列车到达换相点时,因失电由第二牵引力瞬时卸力产生的冲击较由第一牵引力瞬时卸力产生的冲击要小,列车冲动得到缓解,使得列车安全平稳通过分相区。

Description

一种列车过分相区的控制方法及控制系统
本申请要求于2019年10月17日提交中国专利局、申请号为201910998270.9、发明名称为“一种列车过分相区的控制方法及控制系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及列车安全控制技术领域,特别涉及一种列车过分相区的控制方法及控制系统。
背景技术
电气化铁路牵引供电接触网是一种特殊的单相供电网。为了防止两供电臂之间发生异相短路和保证接触网末端电压不低于列车的最低工作电压,采用分相、分段供电,国内交流电气化铁路一般每隔几十公里就需要设置一个电分相装置,电分相装置通常设置在铁路局分界处、变电所处和两供电臂交界处等。根据列车经过分相区时列车的主断路器是否断开,主要分为断电过分相和带电过分相两种方式。
断电过分相方式由于断电时间较长,容易造成列车降牵引、速度损失大,导致列车过分相时快速卸力,产生明显的列车冲动,不仅影响驾驶人员的驾驶舒适感,还存在安全运行的隐患。带电过分相又主要有柱上式过分相和地面自动过分相两种方式,前者因结构复杂、无法使用锚段结构及易形成硬点等问题没有得到广泛应用;后者由两供电臂间电源在列车经过分相区时轮流切换为分相区供电,使列车保持牵引力通过分相区,但由于切换过程仍有一定的断电时间,仍然会导致列车瞬时卸力,造成较大的冲击。
发明内容
有鉴于此,本发明提供一种列车过分相区的控制方法及控制系统,以缓解 列车在到达换相点时因失电而瞬时卸力产生的冲击,使得列车安全平稳通过分相区。
为实现上述目的,本发明实施例提供如下技术方案:
一方面,本发明提供一种列车过分相区的控制方法,所述控制方法应用于过分相控制装置,所述控制方法包括:
获取列车位置信号;
在根据所述列车位置信号确定列车行进至预警点时,向所述列车的车载控制装置发送卸力预告信号,以使得所述车载控制装置在所述列车行进至换相点之前,将所述列车的牵引力由第一牵引力降至第二牵引力,在所述列车行进至所述换相点时,利用变流器中间直流电容的电能将牵引力保持在所述第二牵引力,直至完成换相,其中,所述预警点位于所述换相点前方的预设距离处。
可选的,在上述控制方法中,所述向所述列车的车载控制装置发送卸力预告信号,包括:
通过信号传输装置向所述车载控制装置发送卸力预告信号;其中,所述信号传输装置位于所述换相点的预设范围内。
可选的,在上述控制方法中,所述获取列车位置信号,包括:
接收列车位置检测装置发送的列车位置信号,所述列车位置检测装置布置于所述预警点。
另一方面,本发明提供一种列车过分相区的控制方法,所述控制方法应用于车载控制装置,所述控制方法包括:
接收卸力预告信号,其中,所述卸力预告信号由过分相控制装置在确定列车行进至预警点时生成,所述预警点位于换相点前方的预设距离处;
响应所述卸力预告信号,控制所述列车在行进至所述换相点之前,将牵引力由第一牵引力降至第二牵引力;
在所述列车行进至所述换相点时,利用变流器中间直流电容的电能将牵引力保持在所述第二牵引力,直至完成换相。
可选的,在上述控制方法中,所述控制所述列车在行进至所述换相点之前,将牵引力由第一牵引力降至第二牵引力,包括:
控制所述列车在行进至所述换相点之前,在预设时间内逐步将牵引力由第一牵引力降至第二牵引力。
可选的,在上述控制方法中,所述在预设时间内逐步将牵引力由第一牵引力降至第二牵引力,包括:
在预设时间内,按照预设的变化率将牵引力匀速由第一牵引力降至第二牵引力。
可选的,在上述控制方法中,所述控制所述列车在行进至所述换相点之前,将牵引力由第一牵引力降至第二牵引力,包括:
控制所述列车在行进至所述换相点之前,将牵引力由第一牵引力瞬时降至第二牵引力。
可选的,在上述控制方法中,所述接收卸力预告信号,包括:
接收信号传输装置转发的卸力预告信号,所述信号传输装置位于所述换相点的预设范围内。
另一方面,本发明提供一种列车过分相区的控制系统,包括过分相控制装置和车载控制装置;
所述过分相控制装置用于获取列车位置信号,在根据所述列车位置信号确定列车行进至预警点时,向所述列车的车载控制装置发送卸力预告信号,其中,所述预警点位于所述换相点前方的预设距离处;
所述车载控制装置安装在列车上,所述车载控制装置响应所述卸力预告信号,控制所述列车在行进至所述换相点之前,将牵引力由第一牵引力降至第二牵引力,并且,在所述列车行进至所述换相点时,利用变流器中间直流电容的电能将牵引力保持在所述第二牵引力,直至完成换相。
可选的,在上述控制系统的基础上,还包括信号传输装置;
所述信号传输装置位于所述换相点的预设范围内,所述信号传输装置用于接收所述过分相控制装置发送的卸力预告信号,并向所述车载控制装置发送所述卸力预告信号。
基于本发明实施例提供的列车过分相区的控制方法,过分相控制装置根据获取到的列车位置信号确定列车即将行进至换相点时,向列车的车载控制装置 发送卸力预告信号,车载控制装置在列车行进至换相点之前将列车的牵引力由第一牵引力降至第二牵引力,列车在换相失电过程中,利用变流器中间直流电容的电能将牵引力保持在第二牵引力,直至完成换相。基于本发明提供的控制方法,列车在行进至换相点之前提前卸力,并保持一个持续的牵引力通过换相点,相对于列车到达换相点时因失电而瞬时卸力由第一牵引力降至零而言,列车受到的冲击是明显变小的,因此,列车冲动得到明显缓解,使得列车安全平稳通过分相区。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明公开的一种列车过分相区的控制方法的流程图;
图2为本发明公开的另一种列车过分相区的控制方法的流程图;
图3为本发明公开的一种列车过分相区的控制系统的场景示意图;
图4-1为本发明公开的另一种列车过分相区的控制系统的场景示意图;
图4-2为本发明公开的另一种列车过分相区的控制系统的场景示意图;
图5为本发明公开的列车过分相区的控制方法的原理示意图;
图6-1至图6-4为本发明公开的列车通过分相区的场景示意图;
图6-5为本发明公开的列车通过分相区的控制时序图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他 性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
由背景技术我们知道,列车在经过分相区时由两供电臂间电源轮流切换为分相区供电,使列车保持牵引力通过分相区,但切换过程有一定的断电时间,这使得列车会失电而瞬时卸力,对列车造成较大的冲击,引起列车冲动,不仅影响驾驶人员驾驶的舒适性,严重甚至发生安全事故。列车冲动是指:列车受到外力干扰出现的横向或纵向冲击感。
本发明提供一种列车过分相区的控制方法,该控制方法应用于过分相控制装置,如图1所示,该控制方法包括:
S101:获取列车位置信号。
S102:基于该列车位置信号确定列车行进至预警点时,向列车的车载控制装置发送卸力预告信号。其中,预警点位于换相点前方的预设距离处。
过分相控制装置获取列车位置信号,在基于该信号确定列车行进至预警点时(也就是列车即将到达换相点),向列车的车载控制装置发送卸力预告信号,以使得车载控制装置在列车行进至换相点之前,将列车的牵引力由第一牵引力降至第二牵引力,并且,列车行进至换相点时,利用变流器中间直流电容的电能将牵引力保持在第二牵引力,直至换相完成,也就是说,列车在换相失电过程中,利用变流器中间直流电容的电能将牵引力保持在第二牵引力。相对于列车到达换相点时因失电而瞬时卸力由第一牵引力降至零而言,列车受到的冲击是明显变小的,能够明显缓解列车冲动。
本发明提供另一种列车过分相区的控制方法,该控制方法应用于车载控制装置,如图2所示,该控制方法包括:
S201:接收卸力预告信号。
车载控制装置接收卸力预告信号,其中,该卸力预告信号由过分相控制装置在确定列车行进至预警点时生成。预警点位于换相点前方的预设距离处。
S202:响应卸力预告信号,控制列车在行进至换相点之前,将牵引力由第一牵引力降至第二牵引力。其中,第二牵引力为正数。
S203:在列车行进至换相点时,利用变流器中间直流电容的电能将牵引力保持在第二牵引力,直至完成换相。
车载控制装置响应过分相控制装置发送的卸力预告信号,在列车行进至换相点之前,将牵引力由第一牵引力降至第二牵引力,也就是,控制列车在行进至换相点之前提前卸力。另外,当列车行进至换相点时,利用变流器中间直流电容的电能将牵引力保持在第二牵引力,直至完成换相,也就是说,列车在换相失电过程中,利用变流器中间直流电容的电能将牵引力保持在第二牵引力。列车保持一个持续的牵引力通过换相点,相对于列车到达换相点时因失电而瞬时卸力由第一牵引力降至零而言,列车受到的冲击是明显变小的,因此,列车冲动得到明显缓解。
下面对本发明提供的列车过分相区的控制方法做具体介绍。
如图3示,这里需要说明的是,K点为分相区的临界点,M点为换相点,L为K点与M点之间的距离,该分相区内的两个供电臂分别称为供电臂A和供电臂B,与供电臂A连接的开关称为机械开关或电子开关1,与供电臂B连接的开关称为机械开关或电子开关2。
为了方便理解,我们选取K点为预警点进行阐释。当然预警点的选取也可以位于K点之前或者K点之后,但必须位于换相点M点之前。也就是说,预警点位于换相点前方的预设距离处。预警点的选择应当保证:列车从预警点行进至换相点M点所需要的时间,不小于过分相控制装置生成卸力预告信号后,车载控制装置将列车的牵引力由第一牵引力降至第二牵引力所需的时间。
列车行进至分相区的临界点,即预警点K点时,过分相控制装置获取列车位置信号,并基于该位置信号确定列车行进至预警点,向车载控制装置发送卸力预告信号,以便车载控制装置控制列车在行进至换相点M点之前,将列车的 牵引力由第一牵引力降至第二牵引力。并且,当列车到达换相点M点时,列车通过变流器中间直流电容提供的电能保持第二牵引力F 2,直至换相完成。
这里我们用F 1、F 2分别表示列车的第一牵引力和第二牵引力,方便后续更清楚地描述。
假设列车在进入分相区之前保持匀速运动,此时列车合外力为零,即列车运行阻力等于牵引力。现有技术中,当列车到达换相点M点时,因存在一定的断电时间使得列车瞬时卸力,牵引力由F 1瞬时降至零,牵引力变化量ΔF 1较大,此时列车所受合外力变化量较大,列车受到的冲击较明显,不仅给驾驶人员驾驶舒适性带来影响,严重的话还会影响列车的安全稳定运行。
通过本发明提供的控制方法,列车在到达预警点K点时,过分相控制装置向列车的车载控制装置发送卸力预告信号;车载控制装置接收该卸力预告信号,控制列车在到达换相点M点前将列车牵引力由第一牵引力降至第二牵引力,即,将列车牵引力由F 1降至F 2。当列车到达换相点M点时,列车通过变流器中间直流电容提供的电能将牵引力保持在第二牵引力F 2,直至换相完成。如图5中所示,在换相点M至换相完成点之间,列车的牵引力维持在第二牵引力F 2。相对于列车到达换相点时因失电而瞬时卸力由第一牵引力F 1降至零而言,列车保持一个持续的牵引力通过换相点,列车受到的冲击得到很大程度的缓解。
本发明在换相点之前设置预警点,过分相控制装置在确定列车行进至预警点时,向列车的车载控制装置发送卸力预告信号,使得列车能在到达换相点前提前卸力,并且,在列车行进至换相点时,列车通过变流器中间直流电容提供的电能保持第二牵引力通过换相点,列车在换相期间保持一个持续的牵引力,使得列车在行进至换相点时不至于因牵引力变化过大导致列车受到较大的冲击,保证了驾驶人员的驾驶舒适性,同时避免了列车受到较大冲击可能会造成的安全隐患。
上文中的获取列车位置信号,由列车位置检测装置检测获得,并向过分相控制装置发送。这里需要说明的是,该列车位置检测装置布置于预警点。
列车位置检测装置可采用磁钢设备检测、射频卡检测、红外对射检测、雷达反射检测等检测技术中任意一种。
在一个实施例中,过分相控制装置向列车的车载控制装置发送卸力预告信号,是通过信号传输装置向车载控制装置发送,如图4-1所示,该信号传输装置位于换相点的预设范围内。实施中,信号传输装置可以位于换相点M点之前,也可以位于换相点M点之后,但信号传输装置的位置应当是处于换相点的预设范围内。即,若位于换相点M点之前,应保证该信号传输装置位于所选预警点之后且位于该分相区区间,若位于换相点M点之后,也应保证该信号传输装置处于该分相区区间。实施中,信号传输装置可以设置于地面上,且位于换相点的预设范围内。
在另一个实施例中,过分相控制装置内置信号传输装置,当过分相控制装置根据列车位置信号确定列车行进至预警点时,通过其内部的信号传输装置向列车的车载控制装置发送卸力预告信号,如图4-2所示。
将列车的牵引力由第一牵引力F 1降至第二牵引力F 2的过程,下面我们进行详细地阐述。
在一种可能的实现方式中,过分相控制装置接收列车位置检测装置发送的列车位置信号,并根据该列车位置信号确定列车行进至预警点时,向列车的车载控制装置发送卸力预告信号,车载控制装置控制列车在行进至换相点M点之前,将牵引力由第一牵引力F 1瞬时降至第二牵引力F 2
如图5中线c所示,列车在进入分相区之前为匀速运动,此时列车所受合外力为零,即列车牵引力等于运行阻力。
当列车行驶到预警点K点时,车载控制装置接收卸力预告信号,将列车的牵引力由第一牵引力F 1瞬时降至第二牵引力F 2。此时列车牵引力变为第二牵引力F 2,列车保持第二牵引力F 2行进,当列车到达换相点M点时,利用变流器中间直流电容的电能将牵引力保持在第二牵引力,使列车保持一个持续的牵引力通过换相点,即列车保持第二牵引力F 2通过换相点。相比于现有技术中列车在 到达换相点M点时由第一牵引力F 1瞬时降为零发生的牵引力变化量ΔF 1(如图5中线a所示)而言,此时牵引力变化量为零。相比之下,列车所受的合外力变化量减小,列车受到的冲击相对之前有所减缓,达到了缓解列车受到的冲击的目的,不仅没有影响列车驾驶人员的驾驶舒适性,还消除了列车受到较大的冲击会造成的安全隐患。
对于列车牵引力由第一牵引力F 1降至第二牵引力F 2是瞬时完成的,列车可能会造成一定的冲击,在这里本发明作出解释。
列车由第一牵引力F 1瞬时降至第二牵引力F 2的过程,牵引力变化量为Δ(F 1-F 2),相比于列车由第一牵引力F 1瞬时降为零发生的牵引力变化量ΔF 1而言,仍然是较小的,列车虽受到一定的冲击,但相对来说,该冲击也是较小的。
在另外一种可能的实现方式中,过分相控制装置接收列车位置检测装置发送的列车位置信号,并根据该列车位置信号确定列车行进至预警点时,向列车的车载控制装置发送卸力预告信号,车载控制装置控制列车在行进至换相点M点之前,在预设时间内逐步将牵引力由第一牵引力F 1降至第二牵引力F 2,该预设时间不大于列车从预警点行进到换相点所需的时间。
可选的,在预设时间内,车载控制装置控制列车按照预设的变化率将牵引力由第一牵引力F 1逐步降至第二牵引力F 2
如图5中线b1所示,车载控制装置控制列车按照逐渐变小的变化率将牵引力由第一牵引力F 1逐渐下降,列车在到达换相点M点前,列车将牵引力从第一牵引力F 1降为第二牵引力F 2
如图5中线b2所示,车载控制装置控制列车按照固定的变化率将牵引力由第一牵引力F 1逐渐下降,列车在到达换相点M点前,列车将牵引力从第一牵引力F 1降为第二牵引力F 2。也就是说,在预设时间内,车载控制装置控制列车按照预设的变化率将牵引力匀速由第一牵引力F 1逐步降至第二牵引力F 2
下面结合列车通过分相区的整个过程,对本发明提供的列车过分相区的控制方法进行描述。
在图6-1至图6-4中,J1、J4均为分相区的临界点,J3为换相点,J2为另一 标记点。假如列车的行进方向是从左至右,那么可选取分相区的临界点J1点为预警点,列车在行进至J1点之前保持匀速运动。另外,第一断路器QF1和第二断路器QF2导通,第三断路器QF3和第四断路器QF4断开,图中还示出了RC电路。
当列车未行驶至预警点J1点时,如图6-1所示,第一开关SCR-V1和第二开关SCR-V2均断开,此时分相区无电。列车位置检测装置检测不到列车位置,不会向过分相控制装置发送列车位置信号,过分相控制装置也不会通过信号传输装置向列车车载控制装置发送卸力预告信号,列车继续行驶。
当列车行驶到预警点J1点时,如图6-2所示,列车位置检测装置检测到列车位置,并将该列车位置信号发送给过分相控制装置,过分相控制装置通过信号传输装置向列车的车载控制装置发送卸力预告信号,使得车载控制装置控制列车在行进至J3点前将列车牵引力由第一牵引力降至第二牵引力。同时,过分相控制装置下发控制命令,控制第一开关SCR-V1导通,使得列车带电通过分相区的左供电臂区。此时分相区的右供电臂区的第二开关SCR-V2仍为断开状态,右供电臂区无电。
列车行进至J3点前将列车牵引力由第一牵引力降至第二牵引力的具体过程,上述实施例已进行说明,这里不再进一步解释。
列车行进至换相点J3点时,如图6-3所示,过分相控制装置下发控制命令,控制第一开关SCR-V1断开,再下发控制命令,控制第二开关SCR-V2导通,由于第一开关SCR-V1和第二开关SCR-V2的状态切换会消耗一定时间,因此列车会存在一定的失电时间。在列车行进至换相点J3点时,利用变流器中间直流电容的电能将牵引力保持在第二牵引力,直至换相完成。在完成换相后,由分相区的右供电臂为列车供电,列车的牵引力恢复至额定牵引力。
列车完全驶离J4点时,过分相控制装置控制第二开关SCR-V2断开,如图6-4所示。
列车通过分相区的整个过程中,针对第一开关SCR-V1和第二开关SCR-V2的控制时序如图6-5所示。
本发明还提供一种列车过分相区的控制系统。
该控制系统包括过分相控制装置和车载控制装置。
过分相控制装置用于获取列车位置信号,在根据列车位置信号确定列车行进至预警点时,向列车的车载控制装置发送卸力预告信号,其中,预警点位于换相点前方的预设距离处。
车载控制装置安装在列车上,车载控制装置响应卸力预告信号,控制列车在行进至所述换相点之前,将牵引力由第一牵引力降至第二牵引力,并且,在列车行进至换相点时,利用变流器中间直流电容的电能将牵引力保持在第二牵引力,直至完成换相。
在一种可能的实现方式中,本发明提供的列车过分相区的控制系统还包括信号传输装置,该信号传输装置位于换相点的预设范围内。该信号传输装置用于:接收过分相控制装置发送的卸力预告信号,并向列车的车载控制装置发送卸力预告信号。
在一种可能的实现方式中,过分相控制装置内置信号传输装置,过分相控制装置通过内置的信号传输装置向列车的车载控制装置发送卸力预告信号。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于 技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种列车过分相区的控制方法,其特征在于,所述控制方法应用于过分相控制装置,所述控制方法包括:
    获取列车位置信号;
    在根据所述列车位置信号确定列车行进至预警点时,向所述列车的车载控制装置发送卸力预告信号,以使得所述车载控制装置在所述列车行进至换相点之前,将所述列车的牵引力由第一牵引力降至第二牵引力,在所述列车行进至所述换相点时,利用变流器中间直流电容的电能将牵引力保持在所述第二牵引力,直至完成换相,其中,所述预警点位于所述换相点前方的预设距离处。
  2. 根据权利要求1所述的控制方法,其特征在于,所述向所述列车的车载控制装置发送卸力预告信号,包括:
    通过信号传输装置向所述车载控制装置发送卸力预告信号;其中,所述信号传输装置位于所述换相点的预设范围内。
  3. 根据权利要求1或2所述的控制方法,其特征在于,所述获取列车位置信号,包括:
    接收列车位置检测装置发送的列车位置信号,所述列车位置检测装置布置于所述预警点。
  4. 一种列车过分相区的控制方法,其特征在于,所述控制方法应用于车载控制装置,所述控制方法包括:
    接收卸力预告信号,其中,所述卸力预告信号由过分相控制装置在确定列车行进至预警点时生成,所述预警点位于换相点前方的预设距离处;
    响应所述卸力预告信号,控制所述列车在行进至所述换相点之前,将牵引力由第一牵引力降至第二牵引力;
    在所述列车行进至所述换相点时,利用变流器中间直流电容的电能将牵引力保持在所述第二牵引力,直至完成换相。
  5. 根据权利要求4所述的控制方法,其特征在于,所述控制所述列车在行进至所述换相点之前,将牵引力由第一牵引力降至第二牵引力,包括:
    控制所述列车在行进至所述换相点之前,在预设时间内逐步将牵引力由第 一牵引力降至第二牵引力。
  6. 根据权利要求5所述的控制方法,其特征在于,所述在预设时间内逐步将牵引力由第一牵引力降至第二牵引力,包括:
    在预设时间内,按照预设的变化率将牵引力匀速由第一牵引力降至第二牵引力。
  7. 根据权利要求4所述的控制方法,其特征在于,所述控制所述列车在行进至所述换相点之前,将牵引力由第一牵引力降至第二牵引力,包括:
    控制所述列车在行进至所述换相点之前,将牵引力由第一牵引力瞬时降至第二牵引力。
  8. 根据权利要求4至7中任一项所述的控制方法,其特征在于,所述接收卸力预告信号,包括:
    接收信号传输装置转发的卸力预告信号,所述信号传输装置位于所述换相点的预设范围内。
  9. 一种列车过分相区的控制系统,其特征在于,包括过分相控制装置和车载控制装置;
    所述过分相控制装置用于获取列车位置信号,在根据所述列车位置信号确定列车行进至预警点时,向所述车载控制装置发送卸力预告信号,其中,所述预警点位于换相点前方的预设距离处;
    所述车载控制装置安装在列车上,所述车载控制装置响应所述卸力预告信号,控制所述列车在行进至所述换相点之前,将牵引力由第一牵引力降至第二牵引力,并且,在所述列车行进至所述换相点时,利用变流器中间直流电容的电能将牵引力保持在所述第二牵引力,直至完成换相。
  10. 根据权利要求9所述的控制系统,其特征在于,所述控制系统还包括信号传输装置;
    所述信号传输装置位于所述换相点的预设范围内,所述信号传输装置用于接收所述过分相控制装置发送的卸力预告信号,并向所述车载控制装置发送所述卸力预告信号。
PCT/CN2019/121878 2019-10-17 2019-11-29 一种列车过分相区的控制方法及控制系统 WO2021072928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910998270.9 2019-10-17
CN201910998270.9A CN110667650A (zh) 2019-10-17 2019-10-17 一种列车过分相区的控制方法及控制系统

Publications (1)

Publication Number Publication Date
WO2021072928A1 true WO2021072928A1 (zh) 2021-04-22

Family

ID=69083301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121878 WO2021072928A1 (zh) 2019-10-17 2019-11-29 一种列车过分相区的控制方法及控制系统

Country Status (2)

Country Link
CN (1) CN110667650A (zh)
WO (1) WO2021072928A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111361464A (zh) * 2020-03-19 2020-07-03 株洲中车时代电气股份有限公司 列车带电过电分相冲动抑制系统及列车带电过分相系统
CN113060053B (zh) * 2021-04-23 2022-09-16 重庆中车长客轨道车辆有限公司 双流制车辆的过分相区域控制系统及方法
CN113183832B (zh) * 2021-05-18 2022-08-12 中铁二院工程集团有限责任公司 一种电气化铁路功率平衡协同柔性过分相装置及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271610A (ja) * 1997-03-26 1998-10-09 Railway Technical Res Inst 交流電気鉄道用電源切替制御装置
CN101811451A (zh) * 2010-04-16 2010-08-25 南车株洲电力机车有限公司 一种机车过分相控制方法
CN104442402A (zh) * 2014-12-03 2015-03-25 南车株洲电力机车有限公司 一种列车供电设备
CN109353249A (zh) * 2018-09-25 2019-02-19 交控科技股份有限公司 一种atp自动过分相区处理方法
CN109861367A (zh) * 2017-11-30 2019-06-07 株洲中车时代电气股份有限公司 一种电力机车供电系统
CN110116658A (zh) * 2018-02-05 2019-08-13 中车株洲电力机车研究所有限公司 用于分区所电子开关地面过分相车网匹配的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8825239B2 (en) * 2010-05-19 2014-09-02 General Electric Company Communication system and method for a rail vehicle consist
CN103496326B (zh) * 2013-09-23 2016-07-06 南车株洲电力机车研究所有限公司 一种用于电力机车及电动车组的车载储能装置及方法
CN106671828A (zh) * 2015-11-11 2017-05-17 中车大连电力牵引研发中心有限公司 列车过分相控制方法和装置
CN110015278B (zh) * 2019-03-27 2021-02-02 北京全路通信信号研究设计院集团有限公司 一种提高过分相区舒适度的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271610A (ja) * 1997-03-26 1998-10-09 Railway Technical Res Inst 交流電気鉄道用電源切替制御装置
CN101811451A (zh) * 2010-04-16 2010-08-25 南车株洲电力机车有限公司 一种机车过分相控制方法
CN104442402A (zh) * 2014-12-03 2015-03-25 南车株洲电力机车有限公司 一种列车供电设备
CN109861367A (zh) * 2017-11-30 2019-06-07 株洲中车时代电气股份有限公司 一种电力机车供电系统
CN110116658A (zh) * 2018-02-05 2019-08-13 中车株洲电力机车研究所有限公司 用于分区所电子开关地面过分相车网匹配的方法及装置
CN109353249A (zh) * 2018-09-25 2019-02-19 交控科技股份有限公司 一种atp自动过分相区处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DA-JUN WANG: "Application Research of Ground-controlled Automatic Passing Neutral Section Compatible Technology for Electric Locomotive", ELECTRIC DRIVE FOR LOCOMOTIVES, no. 6, 10 November 2012 (2012-11-10), pages 23 - 26, XP055802773, DOI: 10.13890/j.issn.1000-128x.2012.06.020 *

Also Published As

Publication number Publication date
CN110667650A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2021072928A1 (zh) 一种列车过分相区的控制方法及控制系统
JP6813674B2 (ja) 電化鉄道のセクションポストの自動分相通過システム及びその制御方法
AU650340B2 (en) Regenerative braking protection for an electrically-propelled traction vehicle
CN102343835B (zh) 采用电力电子变换装置实现列车带电自动过分相方法
CN105790274A (zh) 一种贯通供电系统变流器型牵引变电所潮流调控装置及其调控方法
CN110091766B (zh) 一种智能地面自动过分相方法及装置
CN110667439B (zh) 一种用于控制列车自动过分相的方法及系统
JP2019509209A (ja) 融氷機能を兼備する機関車回生電力フィードバックシステムおよび制御方法
CN101774356A (zh) 一种通过渐进式移相实现机车过分相的方法及所用的设备
CN107351730A (zh) 一种电气化铁路列车不断电自动过分相系统及其运行方法
CN110239398B (zh) 一种同相供电牵引变电所馈线保护跳闸方法
WO2021120593A1 (zh) 一种列车过分相方法和系统
CN105128704B (zh) 一种智能化自动过分相系统
CN103057439B (zh) 一种电气化铁道星形阻尼式开关自动切换过分相系统
CN102729841B (zh) 供电臂布线系统和锚段关节式分相系统
CN111845471A (zh) 一种动力集中动车组
CN110091764B (zh) 铁路地面自动过分相控制方法及地面自动过分相装置
WO2021072929A1 (zh) 一种列车过分相区的控制方法及系统
CN106347175B (zh) 一种改进型交流电气化铁路智能电分相装置
CN205407265U (zh) 一种贯通供电系统变流器型牵引变电所潮流调控装置
CN105691244A (zh) 一种电气化铁路贯通供电的系统空载监控装置及其监控方法
CN109215977A (zh) 一种牵引-补偿变压器
CN109065338A (zh) 一种同相牵引变压器
CN201349181Y (zh) 可组合的高压单相渐进移相式电源装置
CN205395812U (zh) 一种电气化铁路贯通供电的系统空载监控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948974

Country of ref document: EP

Kind code of ref document: A1