WO2021120525A1 - 无人设备的导航 - Google Patents

无人设备的导航 Download PDF

Info

Publication number
WO2021120525A1
WO2021120525A1 PCT/CN2020/092392 CN2020092392W WO2021120525A1 WO 2021120525 A1 WO2021120525 A1 WO 2021120525A1 CN 2020092392 W CN2020092392 W CN 2020092392W WO 2021120525 A1 WO2021120525 A1 WO 2021120525A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
receiver
antenna
speed
unmanned equipment
Prior art date
Application number
PCT/CN2020/092392
Other languages
English (en)
French (fr)
Inventor
周小红
申浩
郝立良
廖方波
Original Assignee
北京三快在线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京三快在线科技有限公司 filed Critical 北京三快在线科技有限公司
Publication of WO2021120525A1 publication Critical patent/WO2021120525A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Definitions

  • the present disclosure relates to the field of navigation, in particular, to the navigation of unmanned equipment.
  • Unmanned equipment such as unmanned delivery vehicles
  • Unmanned delivery vehicles rely on the support of high-precision navigation technology. Only accurate navigation information can ensure the safe and accurate delivery of unmanned delivery vehicles and provide users with high-quality delivery services.
  • inertial navigation technology has strong autonomy and can provide continuous navigation information, but navigation errors accumulate over time. Satellite navigation technology errors do not accumulate over time and have high long-term accuracy. However, they are easily affected by random factors such as building occlusion and electromagnetic interference.
  • the purpose of the present disclosure is to provide a navigation device, method and unmanned equipment for unmanned equipment, which can provide accurate and effective navigation information for unmanned equipment.
  • a navigation device for unmanned equipment is provided.
  • the unmanned equipment is provided with a first antenna and a second antenna, and the device includes: a first receiver for communicating with The first antenna is coupled to determine the first position information and the first speed information of the first antenna according to the first radio frequency signal sent by the first antenna; the second receiver is used to couple with the second antenna , Determine the second position information of the second antenna according to the second radio frequency signal sent by the second antenna; an inertial measurement unit for collecting acceleration information and angular velocity information; a processor component, a processor component, and the The first receiver, the second receiver, and the inertial measurement unit are connected to each other, and are configured to use the first position information determined by the first receiver and the second receiver determined by the second receiver.
  • Position information determining the current heading angle information of the unmanned equipment, and based on the current heading angle information, the first position information, the first speed information determined by the first receiver, and the inertial measurement
  • the acceleration information and the angular velocity information acquired by the unit determine the target navigation information of the unmanned equipment.
  • the processor component is configured to, when the states of the first receiver and the second receiver meet a preset condition, according to the first position information and the second position information, Determine the current heading angle information of the unmanned equipment.
  • the preset condition includes at least one of the following: the time when the first receiver sends the first location information is the same as the time when the second receiver sends the second location information; Both the first receiver and the second receiver meet real-time dynamic carrier phase differential positioning conditions; the position accuracy of the first receiver is less than a preset strength threshold; the first receiver The first longitude error standard deviation and the first latitude error standard deviation, and the second longitude error standard deviation and the second latitude error standard deviation of the second receiver are all less than a preset standard deviation threshold.
  • the processor component includes a first processor and a second processor, and the first processor is connected to the first receiver and the second receiver, and is configured to Information and the second position information to determine the current heading angle information of the unmanned equipment; the second processor is connected to the first processor, and is configured to determine the current heading angle of the unmanned equipment according to the current Heading angle information, the first position information, the first velocity information, the acceleration information, and the angular velocity information to determine the target navigation information of the unmanned equipment; wherein, the second processor and the The inertial measurement unit is connected to receive the acceleration information and the angular velocity information from the inertial measurement unit, or the first processor is connected to the inertial measurement unit to receive the acceleration information and the acceleration information from the inertial measurement unit. The angular velocity information, and forward the acceleration information and the angular velocity information to the second processor.
  • the processor component is configured to: determine the initial pitch angle information and initial roll angle information of the unmanned device according to the acceleration information; according to the current heading angle information, the first position information, The first velocity information, the acceleration information, the angular velocity information, the initial pitch angle information, and the initial roll angle information determine the current navigation information of the unmanned equipment; obtain the information of the inertial measurement unit Second speed information; according to the first speed information and the second speed information, correct the current navigation information to obtain the target navigation information of the unmanned device.
  • correcting the current navigation information according to the first speed information and the second speed information includes: determining a filtered observation according to the first speed information and the second speed information; The filtered observations are subjected to filtering processing to obtain a filtering state quantity; the current navigation information is corrected according to the filtering state quantity to obtain the target navigation information of the unmanned equipment.
  • the first receiver is further configured to send a pulse signal to the processor component every preset duration; the processor component is further configured to receive the first receiver sent by the first receiver according to the Determine the time difference between the time of position information and the first speed information and the time when the pulse signal was received last time; determine the filtered observations according to the first speed information and the second speed information, including : Determine the speed change of the first antenna according to the time difference; correct the first speed information according to the speed change to obtain the third speed information of the first antenna; according to the second The speed information and the third speed information determine the filtered observation.
  • a navigation method for unmanned equipment is provided, the unmanned equipment is provided with a first antenna and a second antenna, and the method includes: determining according to a first radio frequency signal sent by the first antenna The first position information and the first speed information of the first antenna; the second position information of the second antenna is determined according to the second radio frequency signal sent by the second antenna; the acceleration information and the angular velocity information are collected; The first position information and the second position information determine the current heading angle information of the unmanned equipment; according to the current heading angle information, the first position information, the first speed information, and the acceleration information And the angular velocity information to determine the target navigation information of the unmanned equipment.
  • the first position information and the first speed information are received through a first receiver, and the second position information is received through a second receiver; the method further includes: determining the first receiver and the first receiver Whether the state of the second receiver meets a preset condition; in the case of determining that the states of the first receiver and the second receiver meet the preset condition, according to the first location information and the The second position information determines the current heading angle information of the unmanned equipment.
  • the preset condition includes at least one of the following: the time when the first receiver sends the first location information is the same as the time when the second receiver sends the second location information; Both the first receiver and the second receiver meet real-time dynamic carrier phase differential positioning conditions; the position accuracy of the first receiver is less than a preset strength threshold; the first receiver The first longitude error standard deviation and the first latitude error standard deviation, and the second longitude error standard deviation and the second latitude error standard deviation of the second receiver are all less than a preset standard deviation threshold.
  • the acceleration information and the angular velocity information are collected by an inertial measurement unit; the first position information and the first velocity information are received by a first receiver; the current heading angle information and the current heading angle information and the speed information are determined by a processor component.
  • the target navigation information; the method further includes: the first receiver sends a pulse signal to the processor component every preset time; the processor component sends the inertial measurement signal to the inertial measurement after receiving the pulse signal The unit sends a trigger signal to trigger the inertial measurement unit to send the acceleration information and the angular velocity information.
  • determining the target navigation information of the unmanned equipment according to the current heading angle information, the first position information, the first velocity information, the acceleration information, and the angular velocity information includes: The acceleration information determines the initial pitch angle information and the initial roll angle information of the unmanned equipment; according to the current heading angle information, the first position information, the first speed information, the acceleration information, and the The angular velocity information, the initial pitch angle information, and the initial roll angle information determine the current navigation information of the unmanned equipment; obtain the second velocity information of the inertial measurement unit; according to the first velocity information and the The second speed information is to modify the current navigation information to obtain the target navigation information of the unmanned equipment.
  • correcting the current navigation information according to the first speed information and the second speed information includes: determining a filtered observation according to the first speed information and the second speed information; The filtered observations are subjected to filtering processing to obtain a filtering state quantity; the current navigation information is corrected according to the filtering state quantity to obtain the target navigation information of the unmanned equipment.
  • the time difference between the time of the signal; determining the filtered observation according to the first speed information and the second speed information includes: determining the speed change of the first antenna according to the time difference; according to the speed The amount of change corrects the first speed information to obtain the third speed information of the first antenna; and determines the filtered observation according to the second speed information and the third speed information.
  • an unmanned device is provided, the unmanned device is provided with a first antenna and a second antenna, and the unmanned device further includes the navigation for the unmanned device provided in the first aspect of the present disclosure Device.
  • the navigation device adopts two receiver modules.
  • the first receiver can be used to determine the first position information and the first speed information of the first antenna
  • the second The receiver can be used to determine the second position information of the second antenna.
  • the processor component can first determine the current heading angle information of the unmanned equipment based on the first location information and the second location information. The current heading angle can ensure the heading accuracy when determining the target navigation information, and improve the accuracy and accuracy of the target navigation information Therefore, it can provide effective navigation information for unmanned equipment and ensure the safe and accurate operation of unmanned equipment.
  • Fig. 1 is a schematic diagram showing a navigation device for unmanned equipment according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram showing a navigation device for unmanned equipment according to another exemplary embodiment.
  • Fig. 3 is a flowchart showing a method for determining target navigation information according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a method for determining filtered observations according to an exemplary embodiment.
  • Fig. 5 is a flowchart showing a navigation method for unmanned equipment according to an exemplary embodiment.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or “when” or "in response to determination”.
  • Fig. 1 is a schematic diagram showing a navigation device 100 for unmanned equipment according to an exemplary embodiment.
  • a first antenna 101 and a second antenna 102 may be provided on the unmanned equipment.
  • an antenna may be provided at the front of the vehicle, called a front antenna
  • an antenna may be provided at the rear of the vehicle, called a rear antenna.
  • an antenna can be set at the front fuselage of the drone, called a front antenna
  • an antenna can be set at the rear fuselage of the drone. , Called the rear antenna.
  • the first antenna 101 may be used as a front antenna or a rear antenna.
  • the second antenna 102 may be used as a rear antenna or a front antenna, which is not limited in the present disclosure. Both the first antenna 101 and the second antenna 102 can be used to receive radio frequency signals of navigation satellites.
  • the navigation device 100 may include a first receiver 103, a second receiver 104, an inertial measurement unit 105 and a processor component 106.
  • the first receiver 103 may be used to couple with the first antenna 101, and determine the first position information and the first speed information of the first antenna 101 according to the first radio frequency signal sent by the first antenna 101.
  • the second receiver 104 may be used to couple with the second antenna 102, and determine the second position information of the second antenna 102 according to the second radio frequency signal sent by the second antenna 102.
  • the first antenna 101 and the first receiver 103 may be connected through a feeder.
  • the first antenna 101 can be used to receive the first radio frequency signal of the navigation satellite and send the first radio frequency signal to the first receiver 103.
  • the first receiver 103 can process the first radio frequency signal to determine the first radio frequency signal. First position information and first speed information of an antenna 101. After that, the first receiver 103 may send the first position information and the first speed information to the processor component 106.
  • the second antenna 102 and the second receiver 104 may be connected through a feeder line.
  • the second antenna 102 can be used to receive the second radio frequency signal of the navigation satellite and send the second radio frequency signal to the second receiver 104.
  • the second receiver 104 can process the second radio frequency signal to determine the first radio frequency signal.
  • the first receiver 103 and the second receiver 104 may be any of the following: GNSS (Global Navigation Satellite System) receiver, GPS (Global Positioning System, Global Positioning System) receiver, Beidou Navigation satellite system receiver, GLONASS (Global Navigation Satellite System) receiver, Galileo navigation satellite system receiver, navigation receiver, etc.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System, Global Positioning System
  • GLONASS Global Navigation Satellite System
  • Galileo navigation satellite system receiver navigation receiver, etc.
  • the specific method for the receiver to determine the position information and the speed information according to the radio frequency signal of the navigation satellite collected by the antenna may refer to the related technology in the art, which will not be repeated here.
  • the inertial measurement unit 105 can be used to collect acceleration information and angular velocity information of unmanned equipment.
  • the Inertial Measurement Unit (IMU) 105 may include three single-axis accelerometers and three single-axis gyroscopes. Among them, the accelerometer can collect the three-axis acceleration information of the unmanned device in the carrier coordinate system, and the gyroscope can collect the angular velocity information of the unmanned device relative to the three-axis of the navigation coordinate system. The inertial measurement unit 105 can send the collected acceleration information and angular velocity information to the processor component 106.
  • the processor component 106 can determine the current heading angle information of the unmanned equipment according to the first position information determined by the first receiver and the second position information determined by the second receiver, and according to the current heading angle information and the first position information , The first speed information determined by the first receiver, the acceleration information and the angular velocity information obtained by the inertial measurement unit, to determine the target navigation information of the unmanned equipment.
  • the processor component 106 can be implemented by a dedicated logic circuit, such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit, application specific integrated circuit), or it can be implemented by a general logic circuit, such as CPU (Central Processing Unit, central processing unit), DSP (Digital Signal Processing, digital signal processing) chip or ARM (Advanced RISC Machine, advanced reduced instruction set machine) processor is completed, and can also be implemented as a dedicated logic circuit.
  • a dedicated logic circuit such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit, application specific integrated circuit
  • CPU Central Processing Unit, central processing unit
  • DSP Digital Signal Processing, digital signal processing
  • ARM Advanced RISC Machine, advanced reduced instruction set machine
  • the target navigation information can include the position information, speed information and attitude information of the unmanned equipment.
  • position information may include longitude information, latitude information, altitude information, etc.
  • speed information may include east speed, north speed, sky speed, etc.
  • attitude information may include heading angle information, pitch angle information, and roll angle information, etc. .
  • the navigation device adopts two receiver modules.
  • the first receiver can be used to determine the first position information and the first speed information of the first antenna
  • the second The receiver can be used to determine the second position information of the second antenna.
  • the processor component can first determine the current heading angle information of the unmanned equipment based on the first location information and the second location information. The current heading angle can ensure the heading accuracy when determining the target navigation information, and improve the accuracy and accuracy of the target navigation information Therefore, it can provide effective navigation information for unmanned equipment and ensure the safe and accurate operation of unmanned equipment.
  • the processor component 106 may be used to determine the current heading angle information through formula (1) according to the first position information and the second position information:
  • x 1 represents the component of the first position information on the x-axis
  • y 1 represents the component of the first position information on the y-axis
  • x 2 represents the component of the second position information on the x-axis
  • y 2 represents the second The component of the position information on the y-axis.
  • the processor component 106 can be used to determine the current status of the unmanned equipment based on the first location information and the second location information when the states of the first receiver 103 and the second receiver 104 meet preset conditions. Heading angle information.
  • the preset condition may include at least one of the following conditions.
  • the time when the first receiver 103 transmits the first position information is the same as the time when the second receiver 104 transmits the second position information.
  • the data frame of the first location information sent by the first receiver 103 may include first time stamp information
  • the data frame of the second location information sent by the second receiver 104 may include second time stamp information.
  • the processor component 106 can determine whether the time is the same according to the first time stamp information and the second time stamp information. If the time is the same, it indicates that the first location information and the second location information are location information at the same time. In this way, the current heading angle information determined according to the first position information and the second position information is more accurate.
  • Both the first receiver 103 and the second receiver 104 meet the real-time dynamic carrier phase differential positioning condition.
  • Real-Time Kinematic (RTK) carrier phase differential positioning technology is a real-time dynamic positioning technology based on carrier phase observations, which can achieve high-precision positioning.
  • RTK Real-Time Kinematic
  • the position accuracy strength of the first receiver 103 is less than a preset strength threshold.
  • Position Dilution of Precision is the three-dimensional position precision factor.
  • the calculation method is the root of the square sum of the three errors of latitude, longitude and elevation, which can characterize the spatial geometric distribution of navigation satellites. Under normal circumstances, the better the geometric distribution of the measured navigation satellites, the smaller the PDOP of the receiver, and the higher the positioning accuracy.
  • the preset strength threshold can be set in advance, for example, it can be set to 1.5. When the strength of the position accuracy of the first receiver 103 is less than the preset strength threshold, it indicates that the geometric distribution of the navigation satellites is better, and the positioning accuracy is higher.
  • the first longitude error standard deviation and the first latitude error standard deviation of the first receiver 103, and the second longitude error standard deviation and the second latitude error standard deviation of the second receiver 104 are all less than the preset standard deviation Threshold.
  • the preset standard deviation threshold can be set in advance, for example, it can be set to 0.015.
  • the preset condition may include one or more of the condition (1), the condition (2), the condition (3), and the condition (4).
  • the preset condition may include the above four at the same time.
  • the processor component 106 determines that no one is there based on the first location information and the second location information.
  • the current heading angle information of the device makes the determined current heading angle information more accurate.
  • Fig. 2 is a schematic diagram showing a navigation device for unmanned equipment according to another exemplary embodiment.
  • the processor component 106 may include a first processor 107 and a second processor 108.
  • the first processor 107 may be connected to the first receiver 103 and the second receiver 104, and is configured to determine the current heading angle information of the unmanned equipment according to the first position information and the second position information.
  • the second processor 108 is connected to the first processor 107, and the first processor 107 can send the current heading angle information, the first position information and the first speed information to the second processor 108.
  • the first processor 107 and the second processor 108 may be two identical processors. In another embodiment, the first processor 107 and the second processor 108 may be two different processors. In yet another implementation manner, the first processor 107 and the second processor 108 may also be different processing units of the same processor, and are divided into the first processor 107 and the second processor 108 according to functions.
  • the second processor 108 may be connected to the inertial measurement unit 105 (not shown in FIG. 2) to receive acceleration information and angular velocity information from the inertial measurement unit 105.
  • the inertial measurement unit 105 and the second processor 108 may be connected via an SPI (Serial Peripheral Interface) bus, which improves the transmission speed of acceleration information and angular velocity information.
  • SPI Serial Peripheral Interface
  • the inertial measurement unit 105 and the second processor 108 may also be connected through other buses, which is not limited in this application.
  • the first processor 107 may be connected to the inertial measurement unit 105 to receive acceleration information and angular velocity information from the inertial measurement unit 105, and forward the acceleration information and the angular velocity information To the second processor 108.
  • the inertial measurement unit 105 and the first processor 107 can be connected via an SPI bus.
  • the inertial measurement unit 105 and the first processor 107 may also be connected through other buses, which is not limited in this application.
  • the second processor 108 may be used to determine the target navigation information of the unmanned equipment according to the current heading angle information, the first position information, the first speed information, the acceleration information, and the angular velocity information.
  • the processing capabilities of the first processor 107 and the second processor 108 can be set as required.
  • the calculation process for determining the target navigation information of the unmanned device is more complicated. Therefore, the processing capability of the second processor 108 can be greater than First processor 107.
  • the first receiver 103 can also be used to send a pulse signal to the processor component 106 every preset duration; the processor component 106 can also be used to send a trigger signal to the inertial measurement unit 105 after receiving the pulse signal, The inertial measurement unit 105 is triggered to send acceleration information and angular velocity information.
  • a preset frequency threshold can be set, so that the inertial measurement unit 105 sends acceleration information and angular velocity information according to the frequency threshold.
  • the clock accuracy of the inertial measurement unit 105 is low, and acceleration information and angular velocity information may not be sent according to the preset frequency threshold, and the frequency error will accumulate over time.
  • the first receiver 103 can send a pulse signal with higher time accuracy to the processor component 106.
  • the inertial measurement unit 105 may be connected to the second processor 108 in the processor component 106.
  • the first receiver 103 may send a pulse signal to the first processor 107 every preset duration (such as 500 ms or 1 s). After receiving the pulse signal, the first processor 107 may send the pulse signal to the first processor 107. The signal is forwarded to the second processor 108, and after receiving the pulse signal, the second processor 108 sends a trigger signal to the inertial measurement unit 105 to trigger the inertial measurement unit 105 to send its collected acceleration information and angular velocity information.
  • the inertial measurement unit 105 may be connected to the first processor 107 in the processor component 106.
  • the first receiver 103 may send a pulse signal to the first processor 107 every preset duration, and after receiving the pulse signal, the first receiver 103 may directly send a trigger signal to the inertial measurement unit 105 , To trigger the inertial measurement unit 105 to send its collected acceleration information and angular velocity information.
  • the clock of the first receiver 103 or the second receiver 104 is relatively accurate, and the pulse signal sent by it is used as a time reference to send a trigger signal to the inertial measurement unit 105, which can effectively prevent the inertial measurement unit 105 from sending inaccurate frequencies. problem.
  • Fig. 3 is a flowchart showing a method for determining target navigation information according to an exemplary embodiment. As shown in FIG. 3, the processor component 106 can be used to execute S301-S304.
  • the initial pitch angle information and initial roll angle information of the unmanned equipment are determined according to the acceleration information.
  • the second processor 108 may determine the initial pitch angle information by formula (2) according to the acceleration information, and determine the initial roll angle information by formula (3):
  • represents the initial pitch angle information
  • represents the initial roll angle information
  • a x represents the component of acceleration information on the x-axis
  • a y represents the component of acceleration information on the y-axis
  • a z represents the component of acceleration information on the z-axis.
  • the current navigation information of the unmanned equipment is determined according to the current heading angle information, the first position information, the first speed information, the acceleration information, the angular velocity information, the initial pitch angle information, and the initial roll angle information.
  • the method of determining the current navigation information can refer to related technologies in the art.
  • Kalman filter technology can be used for fusion calculation to determine the current navigation information of the unmanned equipment.
  • the second processor 108 may directly determine the second speed information according to the acceleration information of the inertial measurement unit 105, for example, integrate the acceleration information to obtain the second speed information.
  • the inertial measurement unit 105 itself may determine the second speed information according to the collected acceleration information, and send the second speed information to the processor component 106.
  • the second speed information can be sent to the second processor 108; or, if the inertial measurement unit 105 is connected to the first processor 107, then The second speed information can be sent to the first processor 107 and forwarded by the first processor 107 to the second processor 108.
  • the current navigation information is corrected according to the first speed information and the second speed information to obtain target navigation information of the unmanned equipment.
  • the second processor 108 can determine the filtered observation according to the first velocity information of the first antenna 101 and the second velocity information of the inertial measurement unit 105, and perform filtering processing on the filtered observation, for example, Kalman filtering technology performs filtering iterations to obtain filtering state quantities.
  • filtering processing for example, Kalman filtering technology performs filtering iterations to obtain filtering state quantities.
  • the current navigation information is corrected according to the filtering state quantity to obtain the target navigation information of the unmanned equipment. Since the target navigation information is obtained by correcting the current navigation information, the target navigation information is more accurate.
  • Fig. 4 is a flow chart showing a method for determining filtered observations according to an exemplary embodiment. As shown in Fig. 4, the processor component 106 may also be used to execute S401-S403.
  • the first processor 107 Since the data transmission process takes time, the first processor 107 will generate a certain delay in the process of receiving the first position information and the first speed information, and the first processor 107 parses out the first position information and the first speed information after receiving it. A position information and the first speed information also require time, and a certain delay will also occur.
  • the first receiver 103 may be used to send a pulse signal to the processor component 106 every preset duration (such as 500 ms or 1 s), for example, send a pulse signal to the first processor 107, and use the first receiver 103 to send a pulse signal.
  • the pulse signal of is the time reference, and the time difference can be accurately determined.
  • a timer interrupt program can be set in the first processor 107, such as a 50 ⁇ s timer.
  • the timer starts counting from zero. The count is incremented by 1 every 50 ⁇ s, and when the first position information and the first speed information sent by the first receiver 103 are received, the count is stopped, and the count value is recorded as k. Then the time difference can be based on the count value k and It is determined by the product of 50 ⁇ s.
  • the speed change amount of the first antenna is determined according to the time difference, and the first speed information is corrected according to the speed change amount to obtain the third speed information of the first antenna.
  • the first processor 107 may send the time difference to the second processor 108.
  • the second processor 108 may store the speed information of the first antenna 101, determine the speed change of the first antenna 101 within the time difference (for example, 30ms) according to the stored speed information, and can perform the calculation according to the speed change
  • the first speed information is corrected to obtain the third speed information of the first antenna 101.
  • the sum of the amount of speed change and the first speed information may be used as the third speed information of the first antenna 101.
  • the filtered observation is determined according to the second speed information and the third speed information.
  • the difference between the third speed information of the first antenna 101 and the second speed information of the inertial measurement unit 105 may be determined as the filtered observation. Since the third velocity information of the first antenna 101 is based on the velocity information after the time difference compensation, which avoids the influence of transmission delay, the determined filtered observation is more accurate, so that the filtering state quantity obtained according to the filtered observation, and The finally determined target navigation information is more accurate.
  • Fig. 5 is a flowchart showing a navigation method for unmanned equipment according to an exemplary embodiment. As shown in Figure 5, the method may include S501-S504.
  • the first position information and the first speed information of the first antenna are determined according to the first radio frequency signal sent by the first antenna.
  • the second position information of the second antenna is determined according to the second radio frequency signal sent by the second antenna.
  • acceleration information and angular velocity information are collected.
  • the current heading angle information of the unmanned equipment is determined according to the first position information and the second position information.
  • the target navigation information of the unmanned equipment is determined according to the current heading angle information, the first position information, the first speed information, the acceleration information, and the angular velocity information.
  • the current heading angle information of the unmanned equipment is determined according to the first position information and the second position information.
  • the current heading angle can ensure the heading accuracy when determining the target navigation information, and improve the accuracy and accuracy of the target navigation information Therefore, it can provide effective navigation information for unmanned equipment and ensure the safe and accurate operation of unmanned equipment.
  • the first position information and the first speed information are received through a first receiver, and the second position information is received through a second receiver; the method further includes: determining the first receiver and the first receiver Whether the state of the second receiver meets a preset condition; in the case of determining that the states of the first receiver and the second receiver meet the preset condition, according to the first location information and the The second position information determines the current heading angle information of the unmanned equipment.
  • the preset condition includes at least one of the following: the time when the first receiver sends the first location information is the same as the time when the second receiver sends the second location information; Both the first receiver and the second receiver meet real-time dynamic carrier phase differential positioning conditions; the position accuracy of the first receiver is less than a preset strength threshold; the first receiver The first longitude error standard deviation and the first latitude error standard deviation, and the second longitude error standard deviation and the second latitude error standard deviation of the second receiver are all less than a preset standard deviation threshold.
  • the acceleration information and the angular velocity information are collected by an inertial measurement unit; the first position information and the first velocity information are received by a first receiver; the current heading angle information and the current heading angle information and the speed information are determined by a processor component.
  • the target navigation information; the method further includes: the first receiver sends a pulse signal to the processor component every preset time; the processor component sends the inertial measurement signal to the inertial measurement after receiving the pulse signal The unit sends a trigger signal to trigger the inertial measurement unit to send the acceleration information and the angular velocity information.
  • determining the target navigation information of the unmanned equipment according to the current heading angle information, the first position information, the first velocity information, the acceleration information, and the angular velocity information includes: The acceleration information determines the initial pitch angle information and the initial roll angle information of the unmanned equipment; according to the current heading angle information, the first position information, the first speed information, the acceleration information, and the The angular velocity information, the initial pitch angle information, and the initial roll angle information are used to determine the current navigation information of the unmanned equipment; obtain the second velocity information of the inertial measurement unit; according to the first velocity information and the The second speed information is to modify the current navigation information to obtain the target navigation information of the unmanned equipment.
  • correcting the current navigation information according to the first speed information and the second speed information includes: determining a filtered observation according to the first speed information and the second speed information; The filtered observations are subjected to filtering processing to obtain a filtering state quantity; the current navigation information is corrected according to the filtering state quantity to obtain the target navigation information of the unmanned equipment.
  • the time difference between the moments of the signal; determining the filtered observation according to the first speed information and the second speed information includes: determining the speed change of the first antenna according to the time difference; according to the speed change The first speed information is corrected to obtain the third speed information of the first antenna; and the filtered observation is determined according to the second speed information and the third speed information.
  • the present disclosure also provides an unmanned equipment, the unmanned equipment is provided with a first antenna and a second antenna, and the unmanned equipment further includes the navigation device 100 for the unmanned equipment provided above.
  • the unmanned equipment may be an unmanned delivery vehicle, a drone, a robot, an unmanned ship, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种用于无人设备的导航装置(100)、方法及无人设备。无人设备上设置有第一天线(101)和第二天线(102),导航装置(100)包括:第一接收机(103),用于与第一天线(101)耦合,根据第一天线(101)发送的第一射频信号确定第一天线(101)的第一位置信息和第一速度信息;第二接收机(104),用于与第二天线(102)耦合,根据第二天线(102)发送的第二射频信号确定第二天线(102)的第二位置信息;惯性测量单元(105),用于采集加速度信息和角速度信息;处理器组件(106),分别与第一接收机(103)、第二接收机(104)以及惯性测量单元(105)相连接,用于根据第一接收机(103)确定的第一位置信息和第二接收机(104)确定的第二位置信息,确定无人设备的当前航向角信息,并根据当前航向角信息、第一位置信息、第一接收机(103)确定的第一速度信息、惯性测量单元(105)获取的加速度信息和角速度信息,确定无人设备的目标导航信息。

Description

无人设备的导航 技术领域
本公开涉及导航领域,具体地,涉及无人设备的导航。
背景技术
无人设备,例如无人配送车,在配送、物流等领域的使用越来越广泛。无人配送车依靠于高精度的导航技术支撑,只有准确的导航信息,才能保证无人配送车的安全、精准配送,为用户提供高质量的配送服务。
在导航技术中,惯性导航技术自主性强,能提供连续的导航信息,但是导航误差随时间积累。卫星导航技术误差不随时间积累,长期精度高,然而容易受到建筑遮挡、电磁干扰等随机因素的影响。
发明内容
本公开的目的是提供一种用于无人设备的导航装置、方法及无人设备,可以为无人设备提供准确有效的导航信息。
为了实现上述目的,第一方面,提供一种用于无人设备的导航装置,所述无人设备上设置有第一天线和第二天线,所述装置包括:第一接收机,用于与所述第一天线耦合,根据所述第一天线发送的第一射频信号确定所述第一天线的第一位置信息和第一速度信息;第二接收机,用于与所述第二天线耦合,根据所述第二天线发送的第二射频信号确定所述第二天线的第二位置信息;惯性测量单元,用于采集加速度信息和角速度信息;处理器组件,处理器组件,分别与所述第一接收机、所述第二接收机以及所述惯性测量单元相连接,用于根据所述第一接收机确定的所述第一位置信息和所述第二接收机确定的所述第二位置信息,确定所述无人设备的当前航向角信息,并根据所述当前航向角信息、所述第一位置信息、所述第一接收机确定的所述第一速度信息、所述惯性测量单元获取的所述加速度信息和所述角速度信息,确定所述无人设备的目标导航信息。
可选地,所述处理器组件用于在所述第一接收机和所述第二接收机的状态满足预设条件的情况下,根据所述第一位置信息和所述第二位置信息,确定所述无人设备的当前航向角信息。
可选地,所述预设条件包括以下中的至少一者:所述第一接收机发送所述第一位置信息的时间与所述第二接收机发送所述第二位置信息的时间相同;所述第一接收机和所述第二接收机均满足实时动态载波相位差分定位条件;所述第一接收机的位置精度强弱度小于预设的强弱度阈值;所述第一接收机的第一经度误差标准差和第一纬度误差标准差以及所述第二接收机的第二经度误差标准差和第二纬度误差标准差均小于预设的标准差阈值。
可选地,所述处理器组件包括第一处理器和第二处理器,所述第一处理器与所述第一接收机和所述第二接收机连接,用于根据所述第一位置信息和所述第二位置信息,确定所述无人设备的当前航向角信息;所述第二处理器与所述第一处理器连接,用于根据所述第一处理器确定的所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息和所述角速度信息,确定所述无人设备的目标导航信息;其中,所述第二处理器与所述惯性测量单元连接以从所述惯性测量单元接收所述加速度信息和所述角速度信息,或者所述第一处理器与所述惯性测量单元连接以从所述惯性测量单元接收所述加速度信息和所述角速度信息,并将所述加速度信息和所述角速度信息转发至所述第二处理器。
可选地,所述第一接收机还用于每隔预设时长向所述处理器组件发送脉冲信号;所述处理器组件还用于在接收到所述脉冲信号后向所述惯性测量单元发送触发信号,以触发所述惯性测量单元发送所述加速度信息和所述角速度信息。
可选地,所述处理器组件用于:根据所述加速度信息确定所述无人设备的初始俯仰角信息和初始横滚角信息;根据所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息、所述角速度信息、所述初始俯仰角信息和所述初始横滚角信息,确定所述无人设备的当前导航信息;获取所述惯性测量单元的第二速度信息;根据所述第一速度信息和所述第二速度信息,对所述当前导航信息进行修正,以获得所述无人设备的所述目标导航信息。
可选地,根据所述第一速度信息和所述第二速度信息,对所述当前导航信息进行修正,包括:根据所述第一速度信息和所述第二速度信息确定滤波观测量;对所述滤波观测量进行滤波处理,以得到滤波状态量;根据所述滤波状态量对所述当前导航信息进行修正,以获得所述无人设备的所述目标导航信息。
可选地,所述第一接收机还用于每隔预设时长向所述处理器组件发送脉冲信号;所述处理器组件还用于根据接收到所述第一接收机发送的所述第一位置信息和所述第一 速度信息的时刻,确定与最近一次接收到所述脉冲信号的时刻之间的时间差;根据所述第一速度信息和所述第二速度信息确定滤波观测量,包括:根据所述时间差确定所述第一天线的速度变化量;根据所述速度变化量对所述第一速度信息进行修正,以获得所述第一天线的第三速度信息;根据所述第二速度信息和所述第三速度信息,确定所述滤波观测量。
第二方面,提供一种用于无人设备的导航方法,所述无人设备上设置有第一天线和第二天线,所述方法包括:根据所述第一天线发送的第一射频信号确定所述第一天线的第一位置信息和第一速度信息;根据所述第二天线发送的第二射频信号确定所述第二天线的第二位置信息;采集加速度信息和角速度信息;根据所述第一位置信息和所述第二位置信息,确定所述无人设备的当前航向角信息;根据所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息和所述角速度信息,确定所述无人设备的目标导航信息。
可选地,通过第一接收机接收所述第一位置信息和第一速度信息,通过第二接收机接收所述第二位置信息;所述方法还包括:确定所述第一接收机和所述第二接收机的状态是否满足预设条件;在确定所述第一接收机和所述第二接收机的状态满足所述预设条件的情况下,根据所述第一位置信息和所述第二位置信息,确定所述无人设备的当前航向角信息。
可选地,所述预设条件包括以下中的至少一者:所述第一接收机发送所述第一位置信息的时间与所述第二接收机发送所述第二位置信息的时间相同;所述第一接收机和所述第二接收机均满足实时动态载波相位差分定位条件;所述第一接收机的位置精度强弱度小于预设的强弱度阈值;所述第一接收机的第一经度误差标准差和第一纬度误差标准差以及所述第二接收机的第二经度误差标准差和第二纬度误差标准差均小于预设的标准差阈值。
可选地,通过惯性测量单元采集所述加速度信息和所述角速度信息;通过第一接收机接收所述第一位置信息和第一速度信息;通过处理器组件确定所述当前航向角信息和所述目标导航信息;所述方法还包括:所述第一接收机每隔预设时长向所述处理器组件发送脉冲信号;所述处理器组件在接收到所述脉冲信号后向所述惯性测量单元发送触发信号,以触发所述惯性测量单元发送所述加速度信息和所述角速度信息。
可选地,根据所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息和所述角速度信息,确定所述无人设备的目标导航信息,包括:根据所述加 速度信息确定所述无人设备的初始俯仰角信息和初始横滚角信息;根据所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息、所述角速度信息、所述初始俯仰角信息和所述初始横滚角信息,确定所述无人设备的当前导航信息;获取惯性测量单元的第二速度信息;根据所述第一速度信息和所述第二速度信息,对所述当前导航信息进行修正,以获得所述无人设备的所述目标导航信息。
可选地,根据所述第一速度信息和所述第二速度信息,对所述当前导航信息进行修正,包括:根据所述第一速度信息和所述第二速度信息确定滤波观测量;对所述滤波观测量进行滤波处理,以得到滤波状态量;根据所述滤波状态量对所述当前导航信息进行修正,以获得所述无人设备的所述目标导航信息。
可选地,通过第一接收机接收所述第一位置信息和第一速度信息;通过处理器组件确定所述当前航向角信息和所述目标导航信息;所述方法还包括:所述第一接收机每隔预设时长向所述处理器组件发送脉冲信号;所述处理器组件根据接收到所述第一位置信息和所述第一速度信息的时刻,确定与最近一次接收到所述脉冲信号的时刻之间的时间差;根据所述第一速度信息和所述第二速度信息确定所述滤波观测量,包括:根据所述时间差确定所述第一天线的速度变化量;根据所述速度变化量对所述第一速度信息进行修正,以获得所述第一天线的第三速度信息;根据所述第二速度信息和所述第三速度信息,确定所述滤波观测量。
第三方面,提供一种无人设备,所述无人设备上设置有第一天线和第二天线,所述无人设备还包括本公开第一方面提供的所述用于无人设备的导航装置。
在上述技术方案中,无人设备上设置有两个天线,导航装置采用两个接收机模块,其中,第一接收机可用于确定第一天线的第一位置信息和第一速度信息,第二接收机可用于确定第二天线的第二位置信息。处理器组件可首先根据第一位置信息和第二位置信息,确定无人设备的当前航向角信息,该当前航向角可以在确定目标导航信息时,保证航向精度,提高目标导航信息的精度和准确性,从而能够为无人设备提供有效的导航信息,保证无人设备的安全、精准运行。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体 实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据一示例性实施例示出的一种用于无人设备的导航装置的示意图。
图2是根据另一示例性实施例示出的一种用于无人设备的导航装置的示意图。
图3是根据一示例性实施例示出的一种确定目标导航信息的方法的流程图。
图4是根据一示例性实施例示出的一种确定滤波观测量的方法的流程图。
图5是根据一示例性实施例示出的一种用于无人设备的导航方法的流程图。
附图标记说明
101第一天线                          102第二天线
103第一接收机                        104第二接收机
105惯性测量单元                      106处理器组件
107第一处理器                        108第二处理器
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1是根据一示例性实施例示出的一种用于无人设备的导航装置100的示意图。如图1所示,该无人设备上可以设置有第一天线101和第二天线102。示例地,以无人设备为车辆为例,例如在车辆的车头位置处可以设置有一个天线,称为前天线,在车辆的车尾位置处可以设置有一个天线,称为后天线。又示例地,以无人设备为无人机为例,例如在无人机的前机身位置处可以设置一个天线,称为前天线,在无人机的后机身位置处可以设置一个天线,称为后天线。本公开中,第一天线101可作为前天线也可作为后天线,相应地,第二天线102可作为后天线也可作为前天线,本公开对此不作限定。第一天线101和第二天线102均可以用于接收导航卫星的射频信号。
如图1所示,该导航装置100可以包括第一接收机103、第二接收机104、惯性测量单元105以及处理器组件106。
第一接收机103,可以用于与第一天线101耦合,根据第一天线101发送的第一射频信号确定第一天线101的第一位置信息和第一速度信息。
第二接收机104,可以用于与第二天线102耦合,根据第二天线102发送的第二射频信号确定第二天线102的第二位置信息。
其中,第一天线101与第一接收机103之间可通过馈线连接。第一天线101可以用于接收导航卫星的第一射频信号,并将该第一射频信号发送至第一接收机103,第一接收机103可以对该第一射频信号进行处理,以确定出第一天线101的第一位置信息和第一速度信息。之后,第一接收机103可将该第一位置信息和该第一速度信息发送至处理器组件106。
第二天线102与第二接收机104之间可通过馈线连接。第二天线102可以用于接收导航卫星的第二射频信号,并将该第二射频信号发送至第二接收机104,第二接收机104可以对该第二射频信号进行处理,以确定出第二天线102的第二位置信息。之后,第二接收机104可将该第二位置信息发送至处理器组件106。
第一接收机103和第二接收机104分别可以为以下中的任一种:GNSS(Global Navigation Satellite System,全球导航卫星系统)接收机、GPS(Global Positioning System,全球定位系统)接收机、北斗导航卫星系统接收机、GLONASS(Global Navigation Satellite System,全球导航卫星系统)接收机、伽利略导航卫星系统接收机、导航型接收机等。其中,接收机根据天线采集的导航卫星的射频信号,确定位置信息和速度信息的具体方式,可参照本领域相关技术,此处不再赘述。
惯性测量单元105,可以用于采集无人设备的加速度信息和角速度信息。
惯性测量单元(Inertial Measurement Unit,IMU)105可以包含三个单轴的加速度计和三个单轴的陀螺仪。其中,加速度计可以采集无人设备在载体坐标系中的三轴的加速度信息,陀螺仪可以采集无人设备相对于导航坐标系的三轴的角速度信息。惯性测量单元105可将采集到的加速度信息和角速度信息发送至处理器组件106。
处理器组件106,可以根据第一接收机确定的第一位置信息和第二接收机确定的第二位置信息,确定无人设备的当前航向角信息,并根据当前航向角信息、第一位置信息、第一接收机确定的第一速度信息、惯性测量单元获取的加速度信息和角速度信息,确定 无人设备的目标导航信息。
处理器组件106,可以是由专用逻辑电路,例如FPGA(Field Programmable Gate Array,现场可编程门阵列)或ASIC(Application Specific Integrated Circuit,专用集成电路)来实现,也可以由通用逻辑电路,如CPU(Central Processing Unit,中央处理单元)、DSP(Digital Signal Processing,数字信号处理)芯片或ARM(Advanced RISC Machine,进阶精简指令集机器)处理器完成,并且也可以实现为专用逻辑电路。
目标导航信息可以包括无人设备的位置信息、速度信息和姿态信息。具体地,位置信息可以包括经度信息、纬度信息、高度信息等,速度信息可以包括东向速度、北向速度、天向速度等,姿态信息可以包括航向角信息、俯仰角信息和横滚角信息等。
在上述技术方案中,无人设备上设置有两个天线,导航装置采用两个接收机模块,其中,第一接收机可用于确定第一天线的第一位置信息和第一速度信息,第二接收机可用于确定第二天线的第二位置信息。处理器组件可首先根据第一位置信息和第二位置信息,确定无人设备的当前航向角信息,该当前航向角可以在确定目标导航信息时,保证航向精度,提高目标导航信息的精度和准确性,从而能够为无人设备提供有效的导航信息,保证无人设备的安全、精准运行。
可选地,处理器组件106可以用于根据第一位置信息和第二位置信息,通过公式(1),确定当前航向角信息:
Figure PCTCN2020092392-appb-000001
其中,
Figure PCTCN2020092392-appb-000002
表示当前航向角信息,x 1表示第一位置信息在x轴的分量,y 1表示第一位置信息在y轴的分量,x 2表示第二位置信息在x轴的分量,y 2表示第二位置信息在y轴的分量。
可选地,处理器组件106可以用于在第一接收机103和第二接收机104的状态满足预设条件的情况下,根据第一位置信息和第二位置信息,确定无人设备的当前航向角信息。
本公开中,预设条件可以包括以下条件中的至少一者。
(1)第一接收机103发送第一位置信息的时间与第二接收机104发送第二位置信息的时间相同。
其中,第一接收机103发送的第一位置信息的数据帧中可包含有第一时间戳信息,第二接收机104发送的第二位置信息的数据帧中可包含有第二时间戳信息,处理器组件 106可根据第一时间戳信息和第二时间戳信息,判断时间是否相同。如果时间相同,表明第一位置信息和第二位置信息是同一时刻的位置信息。这样,根据该第一位置信息和第二位置信息确定出的当前航向角信息更准确。
(2)第一接收机103和第二接收机104均满足实时动态载波相位差分定位条件。
实时动态(Real-Time Kinematic,RTK)载波相位差分定位技术是基于载波相位观测值的实时动态定位技术,可以实现高精度的定位。第一接收机103和第二接收机104均满足实时动态载波相位差分定位条件时,表明第一接收机103和第二接收机104的定位精度较高,确定出的位置信息和速度信息更准确。
(3)第一接收机103的位置精度强弱度小于预设的强弱度阈值。
位置精度强弱度(Position Dilution of Precision,PDOP)即三维位置精度因子,计算方法为对纬度、经度和高程三个误差的平方和开根号,可表征导航卫星的空间几何分布程度。通常情况下,被测量的导航卫星几何分布程度越好,接收机的PDOP越小,定位精度越高。该预设的强弱度阈值可以预先设置,例如可以设置为1.5。当第一接收机103的位置精度强弱度小于该预设的强弱度阈值时,表明导航卫星的几何分布程度较好,定位精度较高。
(4)第一接收机103的第一经度误差标准差和第一纬度误差标准差以及第二接收机104的第二经度误差标准差和第二纬度误差标准差均小于预设的标准差阈值。
其中,经度误差标准差和纬度误差标准差越小,表明定位精确度越高。该预设的标准差阈值可预先设置,例如可以设置为0.015。
本公开中,预设条件可以包括条件(1)、条件(2)、条件(3)、条件(4)中的一者或多者,例如预设条件可以同时包括以上四者。当预设条件包括上述多者时,第一接收机103和第二接收机104的状态同时满足该多个条件时,处理器组件106再根据第一位置信息和第二位置信息,确定无人设备的当前航向角信息,使得确定出的当前航向角信息更准确。
图2是根据另一示例性实施例示出的一种用于无人设备的导航装置的示意图。如图2所示,处理器组件106可以包括第一处理器107和第二处理器108。
其中,第一处理器107可以与第一接收机103和第二接收机104连接,用于根据第一位置信息和第二位置信息,确定无人设备的当前航向角信息。第二处理器108与第一处理器107连接,第一处理器107可将该当前航向角信息以及第一位置信息和第一速度 信息发送至第二处理器108。
在一种实施方式中,第一处理器107和第二处理器108可以是两个相同的处理器。在另一种实施方式中,第一处理器107和第二处理器108可以是不同的两个处理器。在再一种实施方式中,第一处理器107和第二处理器108还可以是同一个处理器的不同处理单元,按功能划分为第一处理器107和第二处理器108。
在一种实施方式中,第二处理器108可以与惯性测量单元105连接(图2中未示出),以从惯性测量单元105接收加速度信息和角速度信息。惯性测量单元105与第二处理器108之间可通过SPI(Serial Peripheral Interface,串行外设接口)总线连接,提高加速度信息和角速度信息的传输速度。惯性测量单元105与第二处理器108之间还可以通过其他总线进行连接,本申请对此不做限制。
在另一种实施方式中,如图2所示,第一处理器107可以与惯性测量单元105连接,以从惯性测量单元105接收加速度信息和角速度信息,并将该加速度信息和该角速度信息转发至第二处理器108。惯性测量单元105与第一处理器107之间可通过SPI总线连接。惯性测量单元105与第一处理器107之间还可以通过其他总线进行连接,本申请对此不做限制。
第二处理器108可以用于根据当前航向角信息、第一位置信息、第一速度信息、加速度信息和角速度信息,确定无人设备的目标导航信息。
本公开中,第一处理器107与第二处理器108的处理能力可以根据需要设置,例如确定无人设备的目标导航信息的计算过程更复杂,因此,第二处理器108的处理能力可以大于第一处理器107。
可选地,第一接收机103还可以用于每隔预设时长向处理器组件106发送脉冲信号;处理器组件106还可以用于在接收到脉冲信号后向惯性测量单元105发送触发信号,以触发惯性测量单元105发送加速度信息和角速度信息。
其中,对于惯性测量单元105,可以设置一预设的频率阈值,使得惯性测量单元105按照该频率阈值发送加速度信息和角速度信息。然而,一般来讲,惯性测量单元105的时钟精度较低,可能无法按照该预设的频率阈值发送加速度信息和角速度信息,且频率误差会随时间积累。而作为导航卫星的接收机,由于可以从导航卫星中获取准确的时间信息,因此第一接收机103可以发送时间精度较高的脉冲信号给处理器组件106。因此,本公开中,通过发送触发信号的方式,触发惯性测量单元105发送加速度信息和角速度 信息,可以为惯性测量单元105提供精确的时钟,防止其发送数据的频率不准确,同时有效避免频率误差随时间积累的问题。
在一种实施方式中,惯性测量单元105可以与处理器组件106中的第二处理器108连接。在该实施方式中,第一接收机103可以每隔预设时长(如500ms或1s)向第一处理器107发送脉冲信号,第一处理器107在接收到该脉冲信号后,可将该脉冲信号转发至第二处理器108,由第二处理器108在接收到该脉冲信号后,向惯性测量单元105发送触发信号,以触发惯性测量单元105发送其采集到的加速度信息和角速度信息。
在另一种实施方式中,如图2所示,惯性测量单元105可以与处理器组件106中的第一处理器107连接。在该实施方式中,第一接收机103可以每隔预设时长向第一处理器107发送脉冲信号,第一接收机103在接收到该脉冲信号后,可直接向惯性测量单元105发送触发信号,以触发惯性测量单元105发送其采集到的加速度信息和角速度信息。
如此,由于第一接收机103或第二接收机104的时钟较为精准,以其发送的脉冲信号为时间基准,向惯性测量单元105发送触发信号,可以有效避免惯性测量单元105发送频率不准确的问题。
图3是根据一示例性实施例示出的一种确定目标导航信息的方法的流程图。如图3所示,处理器组件106可以用于执行S301-S304。
在S301中,根据加速度信息确定无人设备的初始俯仰角信息和初始横滚角信息。
示例地,第二处理器108在接收到加速度信息后,可以根据该加速度信息,通过公式(2)确定初始俯仰角信息,通过公式(3)确定初始横滚角信息:
Figure PCTCN2020092392-appb-000003
Figure PCTCN2020092392-appb-000004
其中,θ表示初始俯仰角信息,β表示初始横滚角信息,a x表示加速度信息在x轴的分量,a y表示加速度信息在y轴的分量,a z表示加速度信息在z轴的分量。
在S302中,根据当前航向角信息、第一位置信息、第一速度信息、加速度信息、角速度信息、初始俯仰角信息和初始横滚角信息,确定无人设备的当前导航信息。
确定当前导航信息的方式可参照本领域相关技术,例如可以采用卡尔曼滤波技术进行融合解算,以确定无人设备的当前导航信息。
在S303中,获取惯性测量单元的第二速度信息。
在一种实施方式中,第二处理器108可直接根据惯性测量单元105的加速度信息,确定第二速度信息,例如对加速度信息进行积分,得到该第二速度信息。
在另一种实施方式中,惯性测量单元105自身可以根据采集到的加速度信息确定第二速度信息,并将该第二速度信息发送至处理器组件106。在该实施方式中,若惯性测量单元105与第二处理器108连接,则可将第二速度信息发送至第二处理器108;或者,若惯性测量单元105与第一处理器107连接,则可将第二速度信息发送至第一处理器107,由第一处理器107转发至第二处理器108。
在S304中,根据第一速度信息和第二速度信息,对当前导航信息进行修正,以获得无人设备的目标导航信息。
在该步骤中,第二处理器108可根据第一天线101的第一速度信息和惯性测量单元105的第二速度信息,确定滤波观测量,并对该滤波观测量进行滤波处理,例如可以采用卡尔曼滤波技术进行滤波迭代,以得到滤波状态量。之后,根据滤波状态量对当前导航信息进行修正,以获得无人设备的目标导航信息。由于该目标导航信息是通过对当前导航信息进行修正之后得到的,因此,该目标导航信息更为精确。
图4是根据一示例性实施例示出的一种确定滤波观测量的方法的流程图。如图4所示,处理器组件106还可以用于执行S401-S403。
在S401中,根据接收到第一位置信息和第一速度信息的时刻,确定与最近一次接收到脉冲信号的时刻之间的时间差。
由于数据传输过程需要消耗时间,因此,第一处理器107在接收第一位置信息和第一速度信息的过程中会产生一定的延时,并且,第一处理器107接收到之后解析出该第一位置信息和该第一速度信息也需要时间,也会产生一定的延时。本公开中,第一接收机103可以用于每隔预设时长(如500ms或1s)向处理器组件106发送脉冲信号,例如向第一处理器107发送脉冲信号,以第一接收机103发送的脉冲信号为时间基准,可以准确确定该时间差。
示例地,可以在第一处理器107中设置一个定时器中断程序,例如50μs定时器,第一处理器107在接收到第一接收机103发送的脉冲信号时,定时器从零开始进行计数,每隔50μs将计数加1,并在接收到第一接收机103发送的第一位置信息和第一速度信息的时刻,停止计数,并记录计数值为k,则该时间差可以根据计数值k与50μs的乘积来 确定。
在S402中,根据时间差确定第一天线的速度变化量,并根据速度变化量对第一速度信息进行修正,以获得第一天线的第三速度信息。
第一处理器107在确定上述的时间差之后,可将该时间差发送至第二处理器108。第二处理器108可以存储第一天线101的速度信息,根据存储的速度信息,确定出在该时间差内(如30ms),第一天线101的速度变化量,并可以根据该速度变化量,对第一速度信息进行修正,以获得第一天线101的第三速度信息。示例地,可以将速度变化量与第一速度信息之和,作为第一天线101的第三速度信息。
在S403中,根据第二速度信息和第三速度信息,确定滤波观测量。
其中,可以将第一天线101的第三速度信息与惯性测量单元105的第二速度信息之差,确定为滤波观测量。由于第一天线101的第三速度信息是根据时间差补偿之后的速度信息,避免了传输延时的影响,因此,确定出的滤波观测量更准确,从而根据滤波观测量得到的滤波状态量,以及最后确定的目标导航信息更准确。
基于同一发明构思,本公开还提供一种用于无人设备的导航方法,该无人设备上设置有第一天线和第二天线。图5是根据一示例性实施例示出的一种用于无人设备的导航方法的流程图。如图5所示,该方法可以包括S501-S504。
在S501中,根据第一天线发送的第一射频信号确定第一天线的第一位置信息和第一速度信息。
在S502中,根据第二天线发送的第二射频信号确定第二天线的第二位置信息。
在S503中,采集加速度信息和角速度信息。
在S504中,根据第一位置信息和第二位置信息,确定无人设备的当前航向角信息。
在S505中,根据当前航向角信息、第一位置信息、第一速度信息、加速度信息和角速度信息,确定无人设备的目标导航信息。
通过上述技术方案,根据第一位置信息和第二位置信息,确定无人设备的当前航向角信息,该当前航向角可以在确定目标导航信息时,保证航向精度,提高目标导航信息的精度和准确性,从而能够为无人设备提供有效的导航信息,保证无人设备的安全、精准运行。
可选地,通过第一接收机接收所述第一位置信息和第一速度信息,通过第二接收机 接收所述第二位置信息;所述方法还包括:确定所述第一接收机和所述第二接收机的状态是否满足预设条件;在确定所述第一接收机和所述第二接收机的状态满足所述预设条件的情况下,根据所述第一位置信息和所述第二位置信息,确定所述无人设备的当前航向角信息。
可选地,所述预设条件包括以下中的至少一者:所述第一接收机发送所述第一位置信息的时间与所述第二接收机发送所述第二位置信息的时间相同;所述第一接收机和所述第二接收机均满足实时动态载波相位差分定位条件;所述第一接收机的位置精度强弱度小于预设的强弱度阈值;所述第一接收机的第一经度误差标准差和第一纬度误差标准差以及所述第二接收机的第二经度误差标准差和第二纬度误差标准差均小于预设的标准差阈值。
可选地,通过惯性测量单元采集所述加速度信息和所述角速度信息;通过第一接收机接收所述第一位置信息和第一速度信息;通过处理器组件确定所述当前航向角信息和所述目标导航信息;所述方法还包括:所述第一接收机每隔预设时长向所述处理器组件发送脉冲信号;所述处理器组件在接收到所述脉冲信号后向所述惯性测量单元发送触发信号,以触发所述惯性测量单元发送所述加速度信息和所述角速度信息。
可选地,根据所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息和所述角速度信息,确定所述无人设备的目标导航信息,包括:根据所述加速度信息确定所述无人设备的初始俯仰角信息和初始横滚角信息;根据所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息、所述角速度信息、所述初始俯仰角信息和所述初始横滚角信息,确定所述无人设备的当前导航信息;获取惯性测量单元的第二速度信息;根据所述第一速度信息和所述第二速度信息,对所述当前导航信息进行修正,以获得所述无人设备的所述目标导航信息。
可选地,根据所述第一速度信息和所述第二速度信息,对所述当前导航信息进行修正,包括:根据所述第一速度信息和所述第二速度信息确定滤波观测量;对所述滤波观测量进行滤波处理,以得到滤波状态量;根据所述滤波状态量对所述当前导航信息进行修正,以获得所述无人设备的所述目标导航信息。
可选地,通过第一接收机接收所述第一位置信息和第一速度信息;通过处理器组件确定所述当前航向角信息和所述目标导航信息;所述方法还包括:所述第一接收机每隔预设时长向所述处理器组件发送脉冲信号;所述处理器组件根据接收到所述第一位置信息和所述第一速度信息的时刻,确定与最近一次接收到所述脉冲信号的时刻之间的 时间差;根据所述第一速度信息和所述第二速度信息确定滤波观测量,包括:根据所述时间差确定所述第一天线的速度变化量;根据所述速度变化量对所述第一速度信息进行修正,以获得所述第一天线的第三速度信息;根据所述第二速度信息和所述第三速度信息,确定所述滤波观测量。
关于上述实施例中的方法,其中各个步骤执行操作的具体方式已经在有关该装置的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还提供一种无人设备,所述无人设备上设置有第一天线和第二天线,所述无人设备还包括上述提供的所述用于无人设备的导航装置100。该无人设备可以是无人配送车、无人机、机器人、无人船等。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (16)

  1. 一种用于无人设备的导航装置,所述无人设备上设置有第一天线和第二天线,其特征在于,所述装置包括:
    第一接收机,用于与所述第一天线耦合,根据所述第一天线发送的第一射频信号确定所述第一天线的第一位置信息和第一速度信息;
    第二接收机,用于与所述第二天线耦合,根据所述第二天线发送的第二射频信号确定所述第二天线的第二位置信息;
    惯性测量单元,用于采集加速度信息和角速度信息;
    处理器组件,分别与所述第一接收机、所述第二接收机以及所述惯性测量单元相连接,用于根据所述第一接收机确定的所述第一位置信息和所述第二接收机确定的所述第二位置信息,确定所述无人设备的当前航向角信息,并根据所述当前航向角信息、所述第一位置信息、所述第一接收机确定的所述第一速度信息、所述惯性测量单元获取的所述加速度信息和所述角速度信息,确定所述无人设备的目标导航信息。
  2. 根据权利要求1所述的装置,其特征在于,所述处理器组件用于在所述第一接收机和所述第二接收机的状态满足预设条件的情况下,根据所述第一位置信息和所述第二位置信息,确定所述无人设备的当前航向角信息。
  3. 根据权利要求2所述的装置,其特征在于,所述预设条件包括以下中的至少一者:
    所述第一接收机发送所述第一位置信息的时间与所述第二接收机发送所述第二位置信息的时间相同;
    所述第一接收机和所述第二接收机均满足实时动态载波相位差分定位条件;
    所述第一接收机的位置精度强弱度小于预设的强弱度阈值;
    所述第一接收机的第一经度误差标准差和第一纬度误差标准差以及所述第二接收机的第二经度误差标准差和第二纬度误差标准差均小于预设的标准差阈值。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,所述处理器组件包括第一处理器和第二处理器,
    所述第一处理器与所述第一接收机和所述第二接收机连接,用于根据所述第一位置信息和所述第二位置信息,确定所述无人设备的当前航向角信息;
    所述第二处理器与所述第一处理器连接,用于根据所述第一处理器确定的所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息和所述角速度信 息,确定所述无人设备的目标导航信息;
    其中,所述第二处理器与所述惯性测量单元连接以从所述惯性测量单元接收所述加速度信息和所述角速度信息,或者
    所述第一处理器与所述惯性测量单元连接以从所述惯性测量单元接收所述加速度信息和所述角速度信息,并将所述加速度信息和所述角速度信息转发至所述第二处理器。
  5. 根据权利要求1至3中任一项所述的装置,其特征在于,
    所述第一接收机还用于每隔预设时长向所述处理器组件发送脉冲信号;
    所述处理器组件还用于在接收到所述脉冲信号后向所述惯性测量单元发送触发信号,以触发所述惯性测量单元发送所述加速度信息和所述角速度信息。
  6. 根据权利要求1至3中任一项所述的装置,其特征在于,所述处理器组件用于:
    根据所述加速度信息确定所述无人设备的初始俯仰角信息和初始横滚角信息;
    根据所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息、所述角速度信息、所述初始俯仰角信息和所述初始横滚角信息,确定所述无人设备的当前导航信息;
    获取所述惯性测量单元的第二速度信息;
    根据所述第一速度信息和所述第二速度信息,对所述当前导航信息进行修正,以获得所述无人设备的所述目标导航信息。
  7. 根据权利要求6所述的装置,其特征在于,根据所述第一速度信息和所述第二速度信息,对所述当前导航信息进行修正,包括:
    根据所述第一速度信息和所述第二速度信息确定滤波观测量;
    对所述滤波观测量进行滤波处理,以得到滤波状态量;
    根据所述滤波状态量对所述当前导航信息进行修正,以获得所述无人设备的所述目标导航信息。
  8. 根据权利要求7所述的装置,其特征在于,
    所述第一接收机还用于每隔预设时长向所述处理器组件发送脉冲信号;
    所述处理器组件还用于根据接收到所述第一接收机发送的所述第一位置信息和所述第一速度信息的时刻,确定与最近一次接收到所述脉冲信号的时刻之间的时间差;
    根据所述第一速度信息和所述第二速度信息确定滤波观测量,包括:
    根据所述时间差确定所述第一天线的速度变化量;
    根据所述速度变化量对所述第一速度信息进行修正,以获得所述第一天线的第三速度信息;
    根据所述第二速度信息和所述第三速度信息,确定所述滤波观测量。
  9. 一种用于无人设备的导航方法,所述无人设备上设置有第一天线和第二天线,其特征在于,所述方法包括:
    根据所述第一天线发送的第一射频信号确定所述第一天线的第一位置信息和第一速度信息;
    根据所述第二天线发送的第二射频信号确定所述第二天线的第二位置信息;
    采集加速度信息和角速度信息;
    根据所述第一位置信息和所述第二位置信息,确定所述无人设备的当前航向角信息;
    根据所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息和所述角速度信息,确定所述无人设备的目标导航信息。
  10. 根据权利要求9所述的方法,其特征在于,通过第一接收机接收所述第一位置信息和第一速度信息,通过第二接收机接收所述第二位置信息;
    所述方法还包括:
    确定所述第一接收机和所述第二接收机的状态是否满足预设条件;
    在确定所述第一接收机和所述第二接收机的状态满足所述预设条件的情况下,根据所述第一位置信息和所述第二位置信息,确定所述无人设备的当前航向角信息。
  11. 根据权利要求10所述的方法,其特征在于,所述预设条件包括以下中的至少一者:
    所述第一接收机发送所述第一位置信息的时间与所述第二接收机发送所述第二位置信息的时间相同;
    所述第一接收机和所述第二接收机均满足实时动态载波相位差分定位条件;
    所述第一接收机的位置精度强弱度小于预设的强弱度阈值;
    所述第一接收机的第一经度误差标准差和第一纬度误差标准差以及所述第二接收机的第二经度误差标准差和第二纬度误差标准差均小于预设的标准差阈值。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,通过惯性测量单元采集所述加速度信息和所述角速度信息;通过第一接收机接收所述第一位置信息和第一速度信息;通过处理器组件确定所述当前航向角信息和所述目标导航信息;
    所述方法还包括:
    所述第一接收机每隔预设时长向所述处理器组件发送脉冲信号;
    所述处理器组件在接收到所述脉冲信号后向所述惯性测量单元发送触发信号,以触发所述惯性测量单元发送所述加速度信息和所述角速度信息。
  13. 根据权利要求9至11中任一项所述的方法,其特征在于,根据所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息和所述角速度信息,确定所述无人设备的目标导航信息,包括:
    根据所述加速度信息确定所述无人设备的初始俯仰角信息和初始横滚角信息;
    根据所述当前航向角信息、所述第一位置信息、所述第一速度信息、所述加速度信息、所述角速度信息、所述初始俯仰角信息和所述初始横滚角信息,确定所述无人设备的当前导航信息;
    获取惯性测量单元的第二速度信息;
    根据所述第一速度信息和所述第二速度信息,对所述当前导航信息进行修正,以获得所述无人设备的所述目标导航信息。
  14. 根据权利要求13所述的方法,其特征在于,根据所述第一速度信息和所述第二速度信息,对所述当前导航信息进行修正,包括:
    根据所述第一速度信息和所述第二速度信息确定滤波观测量;
    对所述滤波观测量进行滤波处理,以得到滤波状态量;
    根据所述滤波状态量对所述当前导航信息进行修正,以获得所述无人设备的所述目标导航信息。
  15. 根据权利要求14所述的方法,其特征在于,通过第一接收机接收所述第一位置信息和第一速度信息;通过处理器组件确定所述当前航向角信息和所述目标导航信息;所述方法还包括:
    所述第一接收机每隔预设时长向所述处理器组件发送脉冲信号;
    所述处理器组件根据接收到所述第一位置信息和所述第一速度信息的时刻,确定与最近一次接收到所述脉冲信号的时刻之间的时间差;
    根据所述第一速度信息和所述第二速度信息确定所述滤波观测量,包括:
    根据所述时间差确定所述第一天线的速度变化量;
    根据所述速度变化量对所述第一速度信息进行修正,以获得所述第一天线的第三速度信息;
    根据所述第二速度信息和所述第三速度信息,确定所述滤波观测量。
  16. 一种无人设备,所述无人设备上设置有第一天线和第二天线,其特征在于,所述无人设备还包括:权利要求1-8中任一项所述的导航装置。
PCT/CN2020/092392 2019-12-19 2020-05-26 无人设备的导航 WO2021120525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911320657.5A CN110986937B (zh) 2019-12-19 2019-12-19 用于无人设备的导航装置、方法及无人设备
CN201911320657.5 2019-12-19

Publications (1)

Publication Number Publication Date
WO2021120525A1 true WO2021120525A1 (zh) 2021-06-24

Family

ID=70065647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092392 WO2021120525A1 (zh) 2019-12-19 2020-05-26 无人设备的导航

Country Status (2)

Country Link
CN (1) CN110986937B (zh)
WO (1) WO2021120525A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485644A (zh) * 2022-01-26 2022-05-13 中国第一汽车股份有限公司 一种导航模块及汽车

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986937B (zh) * 2019-12-19 2022-05-17 北京三快在线科技有限公司 用于无人设备的导航装置、方法及无人设备
CN112240998B (zh) * 2020-09-29 2024-01-19 北京环境特性研究所 船载角反射器控制方法和装置
CN114509067B (zh) * 2022-01-05 2023-11-17 广州极飞科技股份有限公司 一种定位导航设备及其标定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065727A1 (en) * 2003-09-20 2005-03-24 Guohui Hu Low cost multisensor high precision positioning and data integrated method and system thereof
JP2012202749A (ja) * 2011-03-24 2012-10-22 Yokogawa Denshikiki Co Ltd 方位測定装置
CN107525503A (zh) * 2017-08-23 2017-12-29 王伟 基于双天线gps和mimu组合的自适应级联卡尔曼滤波方法
CN108535755A (zh) * 2018-01-17 2018-09-14 南昌大学 基于mems的gnss/imu车载实时组合导航方法
CN110221330A (zh) * 2018-03-02 2019-09-10 苏州宝时得电动工具有限公司 自移动设备及其方向确定方法、自动工作系统
CN110986937A (zh) * 2019-12-19 2020-04-10 北京三快在线科技有限公司 用于无人设备的导航装置、方法及无人设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594128B (zh) * 2009-07-06 2011-04-13 中国人民解放军国防科学技术大学 组合导航处理器用同步脉冲合成方法及同步脉冲合成器
CN102809377B (zh) * 2012-08-15 2015-08-12 南京航空航天大学 飞行器惯性/气动模型组合导航方法
CN203204161U (zh) * 2013-05-03 2013-09-18 武汉大学 一种撞击式脉冲触发的ins/gps时间同步装置
CN204256148U (zh) * 2014-12-08 2015-04-08 中国科学院上海微系统与信息技术研究所 一种基于gps同步的航空超导全张量磁梯度测控装置
CN104407310B (zh) * 2014-12-08 2018-01-23 中国科学院上海微系统与信息技术研究所 一种基于gps同步的航空超导全张量磁梯度测控装置
CN104698486B (zh) * 2015-03-26 2018-09-04 北京航空航天大学 一种分布式pos用数据处理计算机系统实时导航方法
CN105258698B (zh) * 2015-10-13 2017-12-19 北京航天控制仪器研究所 一种高动态自旋制导炮弹空中组合导航方法
WO2017066915A1 (zh) * 2015-10-20 2017-04-27 深圳市大疆创新科技有限公司 一种卫星导航测姿方法和装置及无人机
CN105259787B (zh) * 2015-11-03 2018-06-08 中国电子科技集团公司第五十四研究所 一种组合导航半物理仿真测试同步控制方法
CN106767787A (zh) * 2016-12-29 2017-05-31 北京时代民芯科技有限公司 一种紧耦合gnss/ins组合导航装置
CN106908759A (zh) * 2017-01-23 2017-06-30 南京航空航天大学 一种基于uwb技术的室内行人导航方法
CN106990426B (zh) * 2017-03-16 2020-04-10 北京无线电计量测试研究所 一种导航方法和导航装置
CN106970406A (zh) * 2017-04-11 2017-07-21 北京七维航测科技股份有限公司 机载双天线测向方法及装置
CN108802788A (zh) * 2018-04-10 2018-11-13 拓攻(南京)机器人有限公司 一种航向偏差的确定方法、装置、设备以及存储介质
CN109459776B (zh) * 2018-10-08 2023-04-11 上海交通大学 基于gnss信号非连续跟踪的gnss/ins深组合导航方法
CN109443349A (zh) * 2018-11-14 2019-03-08 广州中海达定位技术有限公司 一种姿态航向测量系统及其融合方法、存储介质
CN109459044B (zh) * 2018-12-17 2022-09-06 北京计算机技术及应用研究所 一种gnss双天线辅助的车载mems惯导组合导航方法
CN110058288B (zh) * 2019-04-28 2021-04-06 北京微克智飞科技有限公司 无人机ins/gnss组合导航系统航向误差修正方法及系统
CN110146079A (zh) * 2019-06-20 2019-08-20 郑州轻工业学院 一种基于主副imu和气压计的三维行人导航方法
CN110487269A (zh) * 2019-08-20 2019-11-22 Oppo(重庆)智能科技有限公司 Gps/ins组合导航方法、装置、存储介质与电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065727A1 (en) * 2003-09-20 2005-03-24 Guohui Hu Low cost multisensor high precision positioning and data integrated method and system thereof
JP2012202749A (ja) * 2011-03-24 2012-10-22 Yokogawa Denshikiki Co Ltd 方位測定装置
CN107525503A (zh) * 2017-08-23 2017-12-29 王伟 基于双天线gps和mimu组合的自适应级联卡尔曼滤波方法
CN108535755A (zh) * 2018-01-17 2018-09-14 南昌大学 基于mems的gnss/imu车载实时组合导航方法
CN110221330A (zh) * 2018-03-02 2019-09-10 苏州宝时得电动工具有限公司 自移动设备及其方向确定方法、自动工作系统
CN110986937A (zh) * 2019-12-19 2020-04-10 北京三快在线科技有限公司 用于无人设备的导航装置、方法及无人设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485644A (zh) * 2022-01-26 2022-05-13 中国第一汽车股份有限公司 一种导航模块及汽车
CN114485644B (zh) * 2022-01-26 2024-03-26 中国第一汽车股份有限公司 一种导航模块及汽车

Also Published As

Publication number Publication date
CN110986937B (zh) 2022-05-17
CN110986937A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021120525A1 (zh) 无人设备的导航
US10267924B2 (en) Systems and methods for using a sliding window of global positioning epochs in visual-inertial odometry
JP4014642B2 (ja) Gps/irsグローバル位置決定方法およびインテグリティ損失の対策を講じた装置
CN105783922B (zh) 用于确定针对具有磁力计辅助的混合导航系统的航向的方法
TW518422B (en) Positioning and proximity warning method and system thereof for vehicle
US10168157B2 (en) Smoothed navigation solution using filtered resets
CA3003298A1 (en) Gnss and inertial navigation system utilizing relative yaw as an observable for an ins filter
US20040036650A1 (en) Remote velocity sensor slaved to an integrated GPS/INS
CN111854740B (zh) 能够在交通工具中进行航位推算的惯性导航系统
JP2009192325A (ja) 衛星航法/推測航法統合測位装置
CN110779496B (zh) 三维地图构建系统、方法、设备和存储介质
CN108051839A (zh) 一种车载三维定位装置及三维定位的方法
EP2549230A2 (en) Navigation system initialization with inertial data compensation
CN110243364A (zh) 无人机航向确定方法、装置、无人机及存储介质
US11977150B2 (en) Vehicle localization precision enhancement via multi-sensor fusion
CN113009816B (zh) 时间同步误差的确定方法及装置、存储介质及电子装置
CN116678406B (zh) 组合导航姿态信息确定方法、装置、终端设备及存储介质
Liu et al. Performance evaluation of real-time MEMS INS/GPS integration with ZUPT/ZIHR/NHC for land navigation
TWI591365B (zh) 旋翼飛行器的定位方法
CN105182394A (zh) 一种北斗定位系统和惯性导航系统的组合导航无源定位方法及装置
CN112649001B (zh) 一种小型无人机姿态与位置解算方法
US8812235B2 (en) Estimation of N-dimensional parameters while sensing fewer than N dimensions
CN112229401B (zh) 适用于ins-gps伪距融合的量测信息同步外推方法及系统
Kennedy et al. GPS/INS Integration in Real-time and Post-processing with NovAtel’s SPAN System
CN115184977A (zh) 一体化组合导航装置及导航系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903401

Country of ref document: EP

Kind code of ref document: A1