WO2021120349A1 - 甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用 - Google Patents

甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用 Download PDF

Info

Publication number
WO2021120349A1
WO2021120349A1 PCT/CN2020/070616 CN2020070616W WO2021120349A1 WO 2021120349 A1 WO2021120349 A1 WO 2021120349A1 CN 2020070616 W CN2020070616 W CN 2020070616W WO 2021120349 A1 WO2021120349 A1 WO 2021120349A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
anammox
mannitol
salinity
additive
Prior art date
Application number
PCT/CN2020/070616
Other languages
English (en)
French (fr)
Inventor
黄开龙
张徐祥
叶林
任洪强
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2021120349A1 publication Critical patent/WO2021120349A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Definitions

  • the invention relates to the application of mannitol as an additive to alleviate the impact of salinity in an anaerobic ammonia oxidation reactor, and belongs to the technical field of high-salt wastewater treatment.
  • High-salt wastewater mainly comes from food processing, pharmacy, oil and gas processing, tanning, pickling of mustard tuber, and sewage directly discharged from the use of seawater in coastal areas.
  • the continuous improvement of people’s quality of life has also caused the discharge of high-salt wastewater to increase year by year. If these wastewater is directly discharged, it will increase the mineralization of river water quality and cause serious pollution to soil, surface water, and groundwater, thereby endangering it. ecosystem. Due to high salinity, the osmotic pressure of the microbial cells will be unregulated, causing damage to the cell wall and enzyme system of the microbes, resulting in reduced microbial activity or death. Therefore, high salinity has always been a thorny problem that needs to be solved urgently in the biological treatment of sewage.
  • Anammox does not require additional electron donors or aeration and oxygenation. Compared with other technologies, it has significant operating cost advantages. Therefore, anammox has broad application prospects.
  • anammox technology also has some shortcomings, and its ability to withstand impact is weak. For example, when the wastewater contains high salinity (greater than 20g ⁇ L -1 ), the activity of anammox bacteria will be inhibited, resulting in the entire anaerobic The treatment efficiency of the ammonia oxidation system deteriorates.
  • the present invention improves the denitrification performance of the anammox reactor under high salt conditions by adding mannitol to the reactor.
  • the salinity of wastewater is high, and the activity of anammox bacteria will be severely inhibited.
  • the reduction in the treatment effect of the anammox reactor under high salinity conditions can be greatly slowed down, thereby recovering And improve the denitrification performance of the anaerobic ammonia oxidation reactor.
  • the technical means adopted by the present invention are:
  • mannitol as an additive in mitigating the impact of salinity in anammox reactors.
  • mannitol when the salinity of wastewater entering the anammox reactor is greater than 20g/L, mannitol is added to the reactor, and the addition amount of mannitol is 0.1-0.4mmol/L.
  • the hydraulic retention time of the anammox reactor is controlled to 12h, and the anammox sludge is stirred once every time the reactor runs for a hydraulic retention time to prevent the addition of
  • the denitrifying bacteria grown by mannitol adhere to the surface of the anammox granular sludge to reduce the activity of the latter.
  • the temperature of the reactor is controlled to 35°C through a constant temperature water tank, and the dissolved oxygen DO is controlled to 0 ⁇ 0.1mg/L.
  • the pH is stable at 7.5 ⁇ 8.0.
  • mannitol is added to the reactor to improve the denitrification performance of the anaerobic ammonia oxidation reactor in the high-salt state, and the specific method is as follows:
  • the anammox sludge is taken from a stable anammox reactor;
  • the influent of the anammox reactor is synthetic wastewater, which is added by (NH 4 ) 2 SO 4 and NaNO 2 to control the molar ratio of NH 4 + -N and NO 2 -- N in the feed water to 1:1 ⁇ 1:1.32;
  • the temperature of the reactor is controlled to 35°C through a constant temperature water tank, and the DO is controlled to 0 ⁇ 0.1 mg/L, the pH of the influent water is stable at 7.5 ⁇ 8.0; after one month of operation, the total nitrogen load of the reactor influent is 0.2kgN ⁇ m -3 ⁇ d -1 on average, and the total nitrogen removal rate remains around 70% ,
  • the anammox reactor that has been successfully started is used to treat salty wastewater, and Na 2 SO 4 with gradient salinity is added to the synthetic wastewater to gradually domesticate the salt tolerance of anammox bacteria.
  • Initial control The concentration of NH 4 + -N and NO 2 -- N in the inlet water remains unchanged, and the addition amount of Na 2 SO 4 is determined according to the concentration of NH 4 + -N in the outlet water.
  • the NH 4 + -N concentration of the reactor effluent is continuously lower than 10 mg/L, it indicates that the current salinity does not inhibit the activity of anammox bacteria, and the concentration of Na 2 SO 4 is gradually increased according to a 5g/L gradient.
  • the reactor inlet salinity reaches 20g/L or more, the NH 4 + -N removal rate drops below 5%, indicating that the anaerobic ammonia oxidation process is completely suppressed.
  • mannitol is added to the reactor, the amount of mannitol added is 0.1-0.4mmol/L; the hydraulic retention time in the anammox reactor is controlled to 12h, and the anammox is performed every time the reactor runs one HRT
  • the sludge is stirred once to prevent denitrifying bacteria that grow due to the addition of mannitol from adhering to the surface of the anaerobic ammonia oxidation granular sludge to reduce the activity of the latter.
  • the temperature of the reactor is controlled to 35°C through a constant temperature water tank, and the aeration device controls
  • the dissolved oxygen DO in the reactor is 0 ⁇ 0.1mg/L, and the pH of the inlet water is stable at 7.5 ⁇ 8.0.
  • the present invention can effectively alleviate and significantly improve the denitrification performance of the anammox process under high-salt conditions; experiments have shown that this method can effectively alleviate the effects of salinity on anammox bacteria.
  • Impact it can realize that the anammox reactor can quickly recover and operate efficiently and stably when responding to the impact of high salinity load, thereby alleviating the adverse effect of high salt conditions on the performance of anammox denitrification; Alcohol can also be used as a carbon source for microorganisms, and the denitrifying bacteria in the reactor system can use mannitol as a carbon source for denitrification, further improving the removal effect of total nitrogen in the system.
  • Figure 1 shows the nitrogen removal situation of the anaerobic ammonia oxidation reactor under different gradient salinity conditions
  • Figure 2 shows the removal of total nitrogen in the two anammox reactors in the embodiment under 2% salinity.
  • the composition of the trace element concentrate I is: EDTA 5g/L and FeSO 4 5g/L;
  • the composition of the trace element concentrate II is: EDTA 15g/L, H 3 BO 4 0.014 g/L, MnCl 2 ⁇ 4H 2 O 0.99g/L, CuSO 4 ⁇ 5H 2 O 0.25g/L, ZnSO 4 ⁇ 7H 2 O 0.43g/L, NiCl 2 ⁇ 6H 2 O 0.19g/L, NaSeO 4 ⁇ 10H 2 O 0.21g/L and NaMoO 4 ⁇ 2H 2 O 0.22g/L.
  • the inlet water of the two UASB reactors is the same synthetic wastewater, and the total nitrogen load of the synthetic wastewater is 0.2kgN ⁇ m -3 ⁇ d -1 on average.
  • the inlet water is controlled by adding (NH 4 ) 2 SO 4 and NaNO 2
  • the molar ratio of NH 4 + -N and NO 2 -- N is 1:1 ⁇ 1:1.32;
  • the temperature of the two UASB reactors is controlled to 35°C through a constant temperature water tank, and the dissolved oxygen DO of the influent water is controlled to 0 ⁇ 0.1mg/L ,
  • the pH of the feed water is stabilized at 7.5 ⁇ 8.0 by adding NaOH/HCl dropwise;
  • Na 2 SO 4 Increase the concentration of Na 2 SO 4 as a way to increase the salinity of the influent, add Na 2 SO 4 with gradient salinity to the synthetic wastewater, and initially control the concentration of NH 4 + -N and NO 2 --N in the influent.
  • Na 2 SO 4 added in an amount of 4 + -N concentration determination according NH effluent, the reactor effluent when the NH 4 + -N concentration of less than 10mg / L water will increase the dosage of Na 2 SO 4, and gradually increase the administered
  • the concentrations of Na 2 SO 4 are 5 g/L, 10 g/L, 15 g/L, and 20 g/L, respectively.
  • mannitol is added to one of the UASB reactors, denoted as R1, and the addition amount of mannitol is 0.1 to 0.4 mmol/L (per 1 liter of water in the reactor).
  • R1 the addition amount of mannitol is 0.1 to 0.4 mmol/L (per 1 liter of water in the reactor).
  • another UASB reactor R0 is used as a control group, no additional mannitol is added to the influent; the two UASB reactors control the hydraulic retention time to 12h, and react after each hydraulic retention time operation The anammox sludge in the vessel is stirred once.
  • Figure 1 shows that the anaerobic ammonia oxidation efficiency will be greatly reduced when the salinity of the reactor is gradually increased.
  • Figure 2 shows the comparison of the total nitrogen removal efficiency of the two reactors with and without mannitol at 2% salinity.
  • the denitrification efficiency of the anammox reactor gradually decreases.
  • the anammox bacteria in the reactor are completely affected. Inhibition; but the denitrification efficiency of the anammox reactor with mannitol (experimental group) was significantly better than that of the anammox reactor without mannitol (control group).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用,通过向反应器内添加甘露醇来提高厌氧氨氧化反应器在高盐状态下的脱氮性能,当进入厌氧氨氧化反应器内的废水盐度较高,厌氧氨氧化菌活性会受到严重抑制,此时通过向反应器内添加甘露醇,能够大大减缓高盐度条件下厌氧氨氧化活性受到抑制的问题,从而恢复并提高厌氧氨氧化反应器的脱氮性能。

Description

甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用 技术领域
本发明涉及甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用,属于高盐废水处理技术领域。
背景技术
高盐废水主要来自于食品加工、制药、石油天然气加工、制革、榨菜腌制、沿海地区海水利用直接排放的污水等。人们生活质量不断提高的同时也造成了高盐废水的排放呈现逐年增加的趋势,这些废水如果直接排放将导致江河水质矿化度提高,给土壤、地表水、地下水带来严重的污染,进而危及生态环境。由于高盐度会使微生物细胞的渗透压失调,对微生物的细胞壁和酶系统造成破坏,进而导致微生物活性降低或死亡。因此,高盐一直是污水生物处理亟需解决的棘手问题。
厌氧氨氧化作为新一代生物脱氮技术,既不需要额外投加电子供体,也不需要曝气充氧,与其他技术相比,运行成本优势显著。因此,厌氧氨氧化具有广阔的应用前景。但是厌氧氨氧化技术也存在一些不足,耐受冲击能力较弱,例如废水中含有高盐度(大于20g·L -1)时,厌氧氨氧化菌活性会受到抑制,从而导致整个厌氧氨氧化体系处理效能变差。
发明内容
发明目的:针对现有技术中存在的问题,本发明通过向反应器内添加甘露醇来提高厌氧氨氧化反应器在高盐状态下的脱氮性能,当进入厌氧氨氧化反应器内的废水盐度较高,厌氧氨氧化菌活性会受到严重抑制,通过向反应器内添加适量的甘露醇,能够大大减缓高盐度条件下厌氧氨氧化反应器处理效果降低的情况,从而恢复并提高厌氧氨氧化反应器的脱氮性能。
为解决上述技术问题,本发明所采用的技术手段为:
甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用。
其中,当进入厌氧氨氧化反应器内废水的盐度大于20g/L时,向反应器内添加甘露醇,甘露醇的添加量为0.1~0.4mmol/L。
其中,在向反应器内添加甘露醇后,控制厌氧氨氧化反应器的水力停留时间为12h,反应器每运行一个水力停留时间后对厌氧氨氧化污泥进行一次搅拌,以防止因添加甘露醇而生长的反硝化菌附着在厌氧氨氧化颗粒污泥表面降低后者的活性,通过恒温水槽将反应器温度控制为35℃,控制溶解氧DO为0~0.1mg/L,进水pH稳定在7.5~8.0。
本发明通过向反应器内添加甘露醇来提高厌氧氨氧化反应器在高盐状态下的脱氮性能,具体方式为:
厌氧氨氧化反应器的启动,厌氧氨氧化污泥取自一个已稳定运行的厌氧氨氧化反应器;厌氧氨氧化反应器的进水为合成废水,通过添加(NH 4) 2SO 4和NaNO 2来控制进水中的NH 4 +-N和NO 2 --N摩尔比为1∶1~1∶1.32;通过恒温水槽将反应器温度控制为35℃,控制DO为0~0.1mg/L,进水pH稳定在7.5~8.0;经过一个月的运行,反应器进水的总氮负荷平均为0.2kgN·m -3·d -1,且总氮去除率保持在70%上下,完成厌氧氨氧化反应器的启动;
将已成功启动的厌氧氨氧化反应器用来处理含盐废水,通过向合成废水中添加梯度盐度的Na 2SO 4,以达到逐渐驯化厌氧氨氧化菌的耐盐性能的目的,初期控制进水NH 4 +-N和NO 2 --N浓度不变,Na 2SO 4的添加量根据出水的NH 4 +-N浓度决定。当反应器出水NH 4 +-N浓度持续低于10mg/L时,表明当前的盐度没有抑制厌氧氨氧化菌的活性,并按照5g/L梯度的浓度逐步提高投加Na 2SO 4的量;当反应器进水盐度达到20g/L以上时,NH 4 +-N去除率降至5%以下,表明厌氧氨氧化过程完全被抑制。此时,向反应器内添加甘露醇,甘露醇的添加量为0.1~0.4mmol/L;控制厌氧氨氧化反应器内水力停留时间为12h,反应器每运行一个HRT后对厌氧氨氧化污泥进行一次搅拌,以防止因添加甘露醇而生长的反硝化菌附着在厌氧氨氧化颗粒污泥表面降低后者的活性,通过恒温水槽将反应器温度控制为35℃,曝气装置控制反应器内溶解氧DO为0~0.1mg/L,进水pH稳定在7.5~8.0。
有益效果:本发明通过添加外源甘露醇,可有效缓解并显著提高了厌氧氨氧化工艺在高盐条件下的脱氮性能;实验证明该方法可以有效缓解盐度对厌氧氨氧化菌的冲击,可实现厌氧氨氧化反应器在应对高盐度负荷冲击时能够快速恢复并高效稳定运行,从而在一定程度上缓解了高盐条件对厌氧氨氧化脱氮性能的不利影响;另外甘露醇也能作为微生物利用的碳源,反应器体系内的反硝化菌能够利用甘露醇作为碳源进行反硝化作用,进一步提高系统总氮的去除效果。
附图说明
图1为不同梯度盐度条件下厌氧氨氧化反应器氮素脱除情况;
图2为2%盐度下实施例中两个厌氧氨氧化反应器中总氮脱除情况。
具体实施方式
以下结合具体实施例对本发明的技术方案做进一步说明。
厌氧氨氧化反应器(UASB)的启动:往密封的厌氧氨氧化反应器中投入厌 氧氨氧化污泥,厌氧氨氧化污泥取自一个已稳定运行的厌氧氨氧化反应器;厌氧氨氧化反应器的进水为合成废水,通过添加(NH 4) 2SO 4和NaNO 2控制进水中NH 4 +-N和NO 2 --N的摩尔比为1∶1~1∶1.32;通过恒温水槽将反应器温度控制为35℃,控制溶解氧DO为0~0.1mg/L,进水pH稳定在7.5~8.0;反应器进水的总氮负荷平均为0.2kgN·m -3·d -1,且总氮去除率保持在70%上下,经过一个月的运行完成厌氧氨氧化反应器的启动;进水(合成废水)的组成为:K 2PO 4 0.01g/L、CaCl 2·2H 2O 0.056g/L、MgSO 4·7H 2O 0.3g/L、KHCO 3 0.5g/L;以及微量元素浓缩液I和II各1.25mL/L;废水中的NH 4 +-N、NO 2 --N用(NH 4) 2SO 4和NaNO 2提供,浓度按需配制,盐度由Na 2SO 4提供。
其中,微量元素浓缩液I的组成为:EDTA 5g/L和FeSO 4 5g/L;微量元素浓缩液II的组成为:EDTA 15g/L、H 3BO 4 0.014g/L、MnCl 2·4H 2O 0.99g/L、CuSO 4·5H 2O 0.25g/L、ZnSO 4·7H 2O 0.43g/L、NiCl 2·6H 2O 0.19g/L、NaSeO 4·10H 2O 0.21g/L以及NaMoO 4·2H 2O 0.22g/L。
采用长期在35℃环境中运行的两个UASB反应器来考察甘露醇在高盐条件下对UASB反应器脱氮性能的影响,两个UASB反应器的接种污泥均取自上述已稳定运行的厌氧氨氧化反应器。
两个UASB反应器进水均为相同的合成废水,合成废水的的总氮负荷平均为0.2kgN·m -3·d -1,通过添加(NH 4) 2SO 4和NaNO 2控制进水中NH 4 +-N和NO 2 --N摩尔比为1∶1~1∶1.32;通过恒温水槽将两个UASB反应器温度控制为35℃,控制进水溶解氧DO为0~0.1mg/L,进水pH通过滴加NaOH/HCl控制其稳定在7.5~8.0;
以增加Na 2SO 4浓度作为提高进水盐度的方式,向合成废水中添加梯度盐度的Na 2SO 4,初期控制进水NH 4 +-N和NO 2 --N的浓度不变,Na 2SO 4的添加量根据出水的NH 4 +-N浓度决定,当反应器出水NH 4 +-N浓度低于10mg/L时便提高进水Na 2SO 4的投加量,逐步提高投加Na 2SO 4的浓度分别为5g/L、10g/L、15g/L、20g/L。
当进水盐度提高至厌氧氨氧化过程完全抑制时,向其中一个UASB反应器内添加甘露醇,记作R1,甘露醇的添加量为0.1~0.4mmol/L(反应器中每1升水对应加0.1~0.4mmol甘露醇);另一个UASB反应器R0作为对照组,进水不额外添加甘露醇;两个UASB反应器控制水力停留时间为12h,并且每运行一个水力停留时间后对反应器中的厌氧氨氧化污泥进行一次搅拌。
每个阶段取样测定出水中NH 4 +-N、NO 2 --N、NO 3 --N浓度,计算NRR及 TN去除率。两个UASB反应器运行期间的脱氮性能如表1所示,添加甘露醇的UASB反应器R1脱氮性能显著优于对照组UASB反应器R0。
表1 两个厌氧氨氧化反应器的运行性能
Figure PCTCN2020070616-appb-000001
图1为反应器在盐度逐步提高时厌氧氨氧化效率会大大降低,图2为在2%盐度下,加甘露醇和没加甘露醇的两个反应器总氮脱除效率的对比情况,由图1~2可知,随着反应器内盐度的提高,厌氧氨氧化反应器的脱氮效率逐步降低,当盐度大于2%时,反应器内的厌氧氨氧化菌完全受到抑制;但是加了甘露醇的厌氧氨氧化反应器(实验组)的脱氮效率要明显优于未添加甘露醇的厌氧氨氧化反应器(对照组)。

Claims (3)

  1. 甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用。
  2. 根据权利要求1所述的甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用,其特征在于:当进入厌氧氨氧化反应器内废水的盐度大于20g/L时,向反应器中添加甘露醇,甘露醇的添加量为0.1~0.4mmol/L。
  3. 根据权利要求1所述的甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用,其特征在于:在反应器中添加甘露醇后,控制厌氧氨氧化反应器的水力停留时间为12h,反应器每运行一个水力停留时间后对厌氧氨氧化污泥进行一次搅拌,反应器温度为35℃,溶解氧DO为0~0.1mg/L,进水pH为7.5~8.0。
PCT/CN2020/070616 2019-12-17 2020-01-07 甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用 WO2021120349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911305920.3A CN111018104A (zh) 2019-12-17 2019-12-17 甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用
CN201911305920.3 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021120349A1 true WO2021120349A1 (zh) 2021-06-24

Family

ID=70210161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070616 WO2021120349A1 (zh) 2019-12-17 2020-01-07 甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用

Country Status (2)

Country Link
CN (1) CN111018104A (zh)
WO (1) WO2021120349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477627A (zh) * 2022-01-05 2022-05-13 安阳工学院 一种促进厌氧氨氧化污泥贴壁生长的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200772A1 (en) * 1999-01-29 2004-10-14 Morris Barrington A. Method of rapid bio-cycling an aquarium
CN104694525A (zh) * 2015-02-17 2015-06-10 中国海洋大学 一种耐盐耐冷复合菌种固定化方法与应用
CN106966496A (zh) * 2017-04-28 2017-07-21 青岛大学 一种高盐低温废水处理用强化剂及方法
CN108117157A (zh) * 2016-11-29 2018-06-05 中国石油化工股份有限公司 一种难降解有机含氮废水的处理方法
CN110194568A (zh) * 2019-06-21 2019-09-03 见嘉环境科技(苏州)有限公司 一种高氨氮废水的处理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118021B (zh) * 2016-11-29 2020-11-10 中国石油化工股份有限公司 完成硝化过程的微生物生长促进剂及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200772A1 (en) * 1999-01-29 2004-10-14 Morris Barrington A. Method of rapid bio-cycling an aquarium
CN104694525A (zh) * 2015-02-17 2015-06-10 中国海洋大学 一种耐盐耐冷复合菌种固定化方法与应用
CN108117157A (zh) * 2016-11-29 2018-06-05 中国石油化工股份有限公司 一种难降解有机含氮废水的处理方法
CN106966496A (zh) * 2017-04-28 2017-07-21 青岛大学 一种高盐低温废水处理用强化剂及方法
CN110194568A (zh) * 2019-06-21 2019-09-03 见嘉环境科技(苏州)有限公司 一种高氨氮废水的处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG ZHENLIN: "Enhanced Carbon and Nitrogen Removal Performance of Simultaneous Anammox and Denitrification (SAD) with Compatible Solutes Addition Treating Saline Wastewater", CHINESE MASTER'S THESES FULL-TEXT DATABASE, no. 12, 19 May 2018 (2018-05-19), pages 1 - 67, XP055821825 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477627A (zh) * 2022-01-05 2022-05-13 安阳工学院 一种促进厌氧氨氧化污泥贴壁生长的方法

Also Published As

Publication number Publication date
CN111018104A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
Jin et al. Anammox in a UASB reactor treating saline wastewater
US11401185B2 (en) Method and device for treating ammonia-nitrogen wastewater using microbial electrolysis cell assisted SANI system
He et al. Operation stability and recovery performance in an Anammox EGSB reactor after pH shock
WO2014204913A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
CN102259976A (zh) 一种厌氧氨氧化反应器的快速启动方法
WO2022016769A1 (zh) 一种锂电池生产废水的生物强化处理工艺
JP5148550B2 (ja) メタン発酵処理水の蒸発濃縮手段を備えた嫌気性処理方法と装置
JP5791359B2 (ja) 廃水処理方法
CN104787977A (zh) 一种连续流一体化电极生物膜反应器及去除硝酸盐的工艺
CN105692896B (zh) 一种耐受铜离子的反硝化颗粒污泥的培养方法
WO2021120349A1 (zh) 甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用
CN101560041B (zh) 电镀废水生化法与破络合组合处理方法
CN104710007A (zh) 一种实现同步亚硝化-厌氧氨氧化与反硝化工艺稳定运行的方法
CN110217940B (zh) 一种高浓度硝酸盐废液与有机废液协同处理装置及其两相处理方法
CN106430590B (zh) 一种基于两级ao装置的高电导率废水处理方法
CN111362425B (zh) 一种微电解强化硫酸盐还原菌处理酸性矿山废水的方法及微电解生物反应器
CN105174492A (zh) 一种硝化菌受重金属抑制后快速恢复促进剂
CN101693581A (zh) 水解-催化铁-好氧耦合处理有毒有害难降解废水方法
JP5362637B2 (ja) 窒素含有排水の生物処理方法及び処理装置
CN111186904B (zh) 一种富集氨氧化菌抑制亚硝酸盐氧化菌的方法和应用
CN113003714B (zh) 一种基于膜分离循环进水实现亚氮快速积累的方法
CN110615525A (zh) 一种富集厌氧氨氧化菌的方法及应用
CN101597128B (zh) 电镀废水破络合处理方法
CN106673297A (zh) 一种利用abr‑土地渗滤组合技术处理高氨氮工业废水的方法
CN101597129B (zh) 一种电镀废水生化处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901431

Country of ref document: EP

Kind code of ref document: A1