CN106966496A - 一种高盐低温废水处理用强化剂及方法 - Google Patents
一种高盐低温废水处理用强化剂及方法 Download PDFInfo
- Publication number
- CN106966496A CN106966496A CN201710290540.1A CN201710290540A CN106966496A CN 106966496 A CN106966496 A CN 106966496A CN 201710290540 A CN201710290540 A CN 201710290540A CN 106966496 A CN106966496 A CN 106966496A
- Authority
- CN
- China
- Prior art keywords
- high salt
- low
- hardening agent
- nitrogen
- waste water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/282—Anaerobic digestion processes using anaerobic sequencing batch reactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/06—Nutrients for stimulating the growth of microorganisms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
本发明属于污水处理技术领域,涉及一种高盐低温废水用强化剂及方法,所述高盐低温废水处理用强化剂由甘露醇、四氢嘧啶、海藻糖、氨基酸、钾盐、肌醇甲酯、果聚糖、二甲基亚砜、甲醇和乙酰胺混合均匀制成,进行废水处理时,先向高盐低温废水中加入强化剂,再向序批式反应器或者连续式厌氧膜生物反应器中投加厌氧氨氧化菌和反硝化菌,然后将高盐低温废水引入序批式反应器或者连续式厌氧膜生物反应器中进行处理,其整体工艺过程简单,操作控制灵活,可以实现废水的同步脱氮除碳,节省能源和材料,生产成本低,经济效益好,便于推广应用。
Description
技术领域:
本发明属于污水处理技术领域,涉及一种高盐低温废水用强化剂及方法,特别是一种强化厌氧氨氧化反硝化处理高盐低温废水用强化剂及方法。
背景技术:
高盐废水主要来自于食品加工、制药、石油天然气加工、制革、榨菜腌制、沿海地区海水利用直接排放的污水等。人们生活质量提高的同时也造成了高盐废水的排放呈现逐年增加的趋势,这些废水如果直接排放将导致江河水质矿化度提高,给土壤、地表水、地下水带来越来越严重的污染,危及生态环境。由于高盐度会使微生物细胞的渗透压失调,对微生物的细胞壁和酶系统造成破坏作用,并最终导致微生物活性降低或死亡。因此,使用生物法处理高盐废水一直是一个棘手的问题。此外,很多高盐废水如海产品加工废水同时还具有温度低的特点,而低温同样会对污水生物处理造成不好的影响。温度影响微生物活性主要通过影响微生物酶促反应,其主要途径有两种,一是影响酶催化反应的速率,二是影响基质扩散到细胞的速率。
厌氧氨氧化耦合反硝化工艺具有同步脱氮除碳的功能,反硝化过程产生的二氧化碳可以作为厌氧氨氧化过程的无机碳源,而厌氧氨氧化过程产生的硝酸盐氮可以进一步被反硝化过程去除。此外,二者反应速率快,并且可以共存于同一个反应器内,这就大大减少了占地面积和反应器容积。然而,厌氧氨氧化工艺的最适操作温度是30-35℃,低温会严重影响厌氧氨氧化菌的活性,反硝化菌对温度虽然不像厌氧氨氧化菌那样敏感,但是低温条件下的处理效果也远不如常温条件下的处理效果。此外,二者都对盐度比较敏感,高盐度会显著影响其细胞活性进而影响处理效果。因此,如何克服高盐、低温双重影响实现废水高效脱氮除碳是现有技术的一大难点。
发明内容:
本发明的目的在于克服现有技术存在的缺点,寻求设计提供一种新型工艺和原理的高盐低温废水的同步脱氮除碳处理方法,以工业生产过程中排放的各种高盐低温废水为对象,对废水进行强化处理。
为了实现上述目的,本发明所述高盐低温废水处理用强化剂由甘露醇、四氢嘧啶、海藻糖、氨基酸、钾盐、肌醇甲酯、果聚糖、二甲基亚砜、甲醇和乙酰胺混合均匀制成,其中各组分的摩尔比为甘露醇:四氢嘧啶:海藻糖:氨基酸:钾盐:肌醇甲酯:果聚糖:二甲基亚砜:甲醇:乙酰胺=10-20:1-5:5-10:2-8:6-28:2-6:1-10:2-8:5-25:1。
本发明对高盐低温废水进行处理时,采用序批式反应器或者连续式厌氧膜生物反应器,其中连续式厌氧膜生物反应器中的膜采用微滤膜或超滤膜,微滤膜或超滤膜设置在反应器内部或外部,废水处理时微生物全部截留于反应器中,具体过程为:
(1)向高盐低温废水中加入高盐低温废水处理用强化剂,强化剂的投加量根据要处理的高盐低温废水水质指标确定,每吨废水投加量为5-25千克,强化剂透过废水中微生物的细胞膜渗透到细胞内,平衡细胞内外的渗透压,防止细胞脱水而死亡,并保护细胞免受低温的影响,最大限度地保持细胞活性;
(2)向序批式反应器或者连续式厌氧膜生物反应器中投加厌氧氨氧化菌和反硝化菌,其中,厌氧氨氧化菌的投加比例不少于50%,将高盐低温废水引入序批式反应器或者连续式厌氧膜生物反应器中,控制水力停留时间为2-25小时,pH值为6-9,反硝化菌将高盐低温废水中的有机物转化为二氧化碳,将硝酸盐氮转化为氮气,厌氧氨氧化菌利用反硝化菌产生的二氧化碳将废水中的氨氮转化为氮气和硝酸盐氮,反硝化菌进一步将产生的硝酸盐氮转化为氮气,实现同步脱氮除碳。
本发明所述序批式反应器和者连续式厌氧膜生物反应器均为市售产品。
本发明与现有技术相比,其整体工艺过程简单,操作控制灵活,可以实现废水的同步脱氮除碳,节省能源和材料,生产成本低,经济效益好,便于推广应用。
具体实施方式:
下面结合实施例对本发明作进一步说明,但本发明的保护范围并不仅限于此。
实施例1:
本实施例的工艺过程在连续式厌氧膜生物反应器中实现,所采用的膜为中空纤维超滤膜,设置于反应器的内部,微生物被全部截留于反应器中,避免了微生物的流失。
本实施例针对某海产品加工企业所产生的高盐低温废水进行处理,其水质指标如表1所示,
表1 海产品加工废水水质指标
项目 | 范围 | 均值 |
COD/(mg/L) | 767-1055 | 927 |
氨氮/(mg/L) | 56-97 | 82 |
盐度/(mg/L) | 25271-34105 | 29565 |
温度/(℃) | 5-15 | 10 |
pH | 6.0-7.5 | 6.8 |
对上述废水处理的具体过程为:
(1)向废水中加入由甘露醇、四氢嘧啶、海藻糖、氨基酸、钾盐、肌醇甲酯、果聚糖、二甲基亚砜、甲醇和乙酰胺组成的强化剂,投加量按照摩尔比甘露醇:四氢嘧啶:海藻糖:氨基酸:钾盐:肌醇甲酯:果聚糖:n二甲基亚砜:甲醇:乙酰胺=18:5:8:6:25:5:7:6:22:1进行投加,每吨废水投加10千克强化剂,这些物质可以透过废水中微生物的细胞膜渗透到细胞内,平衡细胞内外的渗透压,防止细胞脱水而死亡,并保护细胞免受低温的影响,最大限度地保持细胞活性;
(2)向反应器中投加厌氧氨氧化菌和反硝化菌,其中,厌氧氨氧化菌的投加比例为80%,将海产品加工废水引入反应器中,控制水力停留时间为12小时,pH值为7,反硝化菌将废水中的有机物转化为二氧化碳,将硝酸盐氮转化为氮气,厌氧氨氧化菌利用反硝化菌产生的二氧化碳将废水中的氨氮转化为氮气和硝酸盐氮,反硝化菌进一步将产生的硝酸盐氮转化为氮气,COD和氨氮的去除率分别为96%和92%,实现同步脱氮除碳。
实施例2:
本实施例的工艺过程在序批式反应器中实现,反应完成后待污泥完全静沉后再排水,微生物被全部截留于反应器中,避免了微生物的流失。
本实施例针对某榨菜腌制企业所产生的高盐低温废水进行处理,其水质指标如表2所示。
表2 榨菜腌制废水水质指标
项目 | 范围 | 均值 |
COD/(mg/L) | 3465-4917 | 4091 |
氨氮/(mg/L) | 47-62 | 55 |
盐度/(mg/L) | 37105-52851 | 47097 |
温度/(℃) | 8-18 | 14 |
pH | 4.5-6.2 | 5.5 |
对上述废水处理的具体过程为:
(1)向废水中加入由甘露醇、四氢嘧啶、海藻糖、氨基酸、钾盐、肌醇甲酯、果聚糖、二甲基亚砜、甲醇和乙酰胺组成的强化剂,投加量按照摩尔比甘露醇:四氢嘧啶:海藻糖:氨基酸:钾盐:肌醇甲酯:果聚糖:二甲基亚砜:甲醇:乙酰胺=12:2:10:5:20:6:8:2:5:1进行投加,每吨废水投加22千克强化剂,这些物质可以透过废水中微生物的细胞膜渗透到细胞内,平衡细胞内外的渗透压,防止细胞脱水而死亡,并保护细胞免受低温的影响,最大限度地保持细胞活性;
(2)向反应器中投加厌氧氨氧化菌和反硝化菌,其中,厌氧氨氧化菌的投加比例为50%,将榨菜腌制废水引入反应器中,控制水力停留时间为20小时,pH值为6.5,反硝化菌将废水中的有机物转化为二氧化碳,将硝酸盐氮转化为氮气,厌氧氨氧化菌利用反硝化菌产生的二氧化碳将废水中的氨氮转化为氮气和硝酸盐氮,反硝化菌进一步将产生的硝酸盐氮转化为氮气,COD和氨氮的去除率分别为91%和89%,实现同步脱氮除碳。
Claims (2)
1.一种高盐低温废水处理用强化剂,其特征在于由甘露醇、四氢嘧啶、海藻糖、氨基酸、钾盐、肌醇甲酯、果聚糖、二甲基亚砜、甲醇和乙酰胺混合均匀制成,其中各组分的摩尔比为甘露醇:四氢嘧啶:海藻糖:氨基酸:钾盐:肌醇甲酯:果聚糖:二甲基亚砜:甲醇:乙酰胺=10-20:1-5:5-10:2-8:6-28:2-6:1-10:2-8:5-25:1。
2.一种采用如权利要求1所述强化剂处理高盐低温废水的方法,其特征在于对高盐低温废水进行处理时,采用序批式反应器或者连续式厌氧膜生物反应器,其中连续式厌氧膜生物反应器中的膜采用微滤膜或超滤膜,微滤膜或超滤膜设置在反应器内部或外部,废水处理时微生物全部截留于反应器中,具体过程为:
(1)向高盐低温废水中加入高盐低温废水处理用强化剂,强化剂的投加量根据要处理的高盐低温废水水质指标确定,每吨废水投加量为5-25千克,强化剂透过废水中微生物的细胞膜渗透到细胞内,平衡细胞内外的渗透压,防止细胞脱水而死亡,并保护细胞免受低温的影响,保持细胞活性;
(2)向序批式反应器或者连续式厌氧膜生物反应器中投加厌氧氨氧化菌和反硝化菌,其中,厌氧氨氧化菌的投加比例不少于50%,将高盐低温废水引入序批式反应器或者连续式厌氧膜生物反应器中中,控制水力停留时间为2-25小时,pH值为6-9,反硝化菌将高盐低温废水中的有机物转化为二氧化碳,将硝酸盐氮转化为氮气,厌氧氨氧化菌利用反硝化菌产生的二氧化碳将废水中的氨氮转化为氮气和硝酸盐氮,反硝化菌进一步将产生的硝酸盐氮转化为氮气,实现同步脱氮除碳。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710290540.1A CN106966496B (zh) | 2017-04-28 | 2017-04-28 | 一种高盐低温废水处理用强化剂及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710290540.1A CN106966496B (zh) | 2017-04-28 | 2017-04-28 | 一种高盐低温废水处理用强化剂及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106966496A true CN106966496A (zh) | 2017-07-21 |
CN106966496B CN106966496B (zh) | 2020-09-29 |
Family
ID=59334132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710290540.1A Active CN106966496B (zh) | 2017-04-28 | 2017-04-28 | 一种高盐低温废水处理用强化剂及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106966496B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111018104A (zh) * | 2019-12-17 | 2020-04-17 | 南京大学 | 甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用 |
CN111286468A (zh) * | 2018-12-07 | 2020-06-16 | 中蓝连海设计研究院有限公司 | 一种含厌氧氨氧化菌干粉及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6420165B1 (en) * | 1997-11-26 | 2002-07-16 | The Trustees Of Columbia University In The City Of New York | Degrading sludge with microorganisms ATCC 55926 OR 202050 |
CN102826660A (zh) * | 2012-09-14 | 2012-12-19 | 江苏碧诺环保科技有限公司 | 一种复配渗透保护剂及其应用 |
US20140315716A1 (en) * | 2013-04-17 | 2014-10-23 | Envera, Llc | Novel Bacillus Strains and Compositions |
CN104909455A (zh) * | 2015-05-24 | 2015-09-16 | 北京工业大学 | 利用甜菜碱作为添加剂缓解厌氧氨氧化系统盐度冲击的方法 |
CN106386787A (zh) * | 2016-12-19 | 2017-02-15 | 南京千年健干细胞基因工程有限公司 | 一种乳腺癌干细胞冻存保护剂及制成的冻存保护试剂盒 |
-
2017
- 2017-04-28 CN CN201710290540.1A patent/CN106966496B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6420165B1 (en) * | 1997-11-26 | 2002-07-16 | The Trustees Of Columbia University In The City Of New York | Degrading sludge with microorganisms ATCC 55926 OR 202050 |
CN102826660A (zh) * | 2012-09-14 | 2012-12-19 | 江苏碧诺环保科技有限公司 | 一种复配渗透保护剂及其应用 |
US20140315716A1 (en) * | 2013-04-17 | 2014-10-23 | Envera, Llc | Novel Bacillus Strains and Compositions |
CN104909455A (zh) * | 2015-05-24 | 2015-09-16 | 北京工业大学 | 利用甜菜碱作为添加剂缓解厌氧氨氧化系统盐度冲击的方法 |
CN106386787A (zh) * | 2016-12-19 | 2017-02-15 | 南京千年健干细胞基因工程有限公司 | 一种乳腺癌干细胞冻存保护剂及制成的冻存保护试剂盒 |
Non-Patent Citations (2)
Title |
---|
SAURABH C. SAXENA ET AL.: "Osmoprotectants: Potential for Crop Improvement Under Adverse Conditions", 《PLANT ACCLIMATION TO ENVIRONMENTAL STRESS》 * |
陈立伟等: "外源渗透保护剂对活性污泥耐盐能力的影响", 《环境工程》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111286468A (zh) * | 2018-12-07 | 2020-06-16 | 中蓝连海设计研究院有限公司 | 一种含厌氧氨氧化菌干粉及其制备方法 |
CN111018104A (zh) * | 2019-12-17 | 2020-04-17 | 南京大学 | 甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用 |
WO2021120349A1 (zh) * | 2019-12-17 | 2021-06-24 | 南京大学 | 甘露醇作为添加剂在缓解厌氧氨氧化反应器盐度冲击方面的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106966496B (zh) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Influence of salinity on microorganisms in activated sludge processes: a review | |
Liu et al. | Rapid achievement of nitritation using aerobic starvation | |
Tao et al. | Impact of reactor configuration on anammox process start-up: MBR versus SBR | |
Abou-Elela et al. | Biological treatment of saline wastewater using a salt-tolerant microorganism | |
Jeong et al. | Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor | |
Wang et al. | The transformation from anammox granules to deammonification granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria | |
Zhao et al. | An innovative wood-chip-framework soil infiltrator for treating anaerobic digested swine wastewater and analysis of the microbial community | |
Zhuang et al. | Effect of pure oxygen fine bubbles on the organic matter removal and bacterial community evolution treating coal gasification wastewater by membrane bioreactor | |
Cao et al. | An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance | |
Ng et al. | Bio-entrapped membrane reactor and salt marsh sediment membrane bioreactor for the treatment of pharmaceutical wastewater: treatment performance and microbial communities | |
Bromley-Challenor et al. | Bacterial growth on N, N-dimethylformamide: implications for the biotreatment of industrial wastewater | |
CN101955885A (zh) | 一种高效脱氮的混合菌剂及其应用 | |
Rajpal et al. | Optimization to maximize nitrogen removal and microbial diversity in PVA-gel based process for treatment of municipal wastewater | |
Niu et al. | Unraveling membrane fouling in anoxic/oxic membrane bioreactors treating anaerobically digested piggery wastewater | |
Park et al. | Improved insights into the adaptation and selection of Nitrosomonas spp. for partial nitritation under saline conditions based on specific oxygen uptake rates and next generation sequencing | |
Tanikawa et al. | Seeding the drainage canal of a wastewater treatment system for the natural rubber industry with rubber for the enhanced removal of organic matter and nitrogen | |
CN106966496A (zh) | 一种高盐低温废水处理用强化剂及方法 | |
Rajput et al. | Applications of autotrophic ammonia oxidizers in bio-geochemical cycles | |
US20190092666A1 (en) | Sewage treatment system using granule | |
Pearson et al. | Implications for physical design: the effect of depth on the performance of waste stabilization ponds | |
CN108640294B (zh) | 一种化工或农药废水生化末端的处理方法 | |
CN106630190B (zh) | 降解cod真菌菌剂及其制备方法 | |
Sunday et al. | Biological wastewater treatment: microbiology, chemistry, and diversity measurement of ammonia oxidizing bacteria | |
Meerbergen | Decolorization of Textile Wastewater, with an Emphasis on Microbial Treatment Processes | |
KAMIMOTO et al. | DMF decomposition and nitrogen removal performance by a mesh-filtration bioreactor under acidic conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |