WO2021120225A1 - 摄像头组件及电子设备 - Google Patents

摄像头组件及电子设备 Download PDF

Info

Publication number
WO2021120225A1
WO2021120225A1 PCT/CN2019/127216 CN2019127216W WO2021120225A1 WO 2021120225 A1 WO2021120225 A1 WO 2021120225A1 CN 2019127216 W CN2019127216 W CN 2019127216W WO 2021120225 A1 WO2021120225 A1 WO 2021120225A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
carrier frame
frame
light reflector
camera assembly
Prior art date
Application number
PCT/CN2019/127216
Other languages
English (en)
French (fr)
Inventor
瞿佳佳
李勇
李强
安在煜
张兵
Original Assignee
南昌欧菲光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲光电技术有限公司 filed Critical 南昌欧菲光电技术有限公司
Priority to PCT/CN2019/127216 priority Critical patent/WO2021120225A1/zh
Publication of WO2021120225A1 publication Critical patent/WO2021120225A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • This application relates to the field of camera technology, in particular to a camera assembly and electronic equipment.
  • the anti-shake component part is usually designed as a shrapnel type or a ball type to realize the movement of the light reflector.
  • the related structures for realizing the movement of the light reflector are relatively complicated and difficult to assemble.
  • the present application provides a camera assembly and an electronic device containing the same.
  • the related structure of the camera assembly for realizing the movement of the optical reflector is relatively simple, making it easy to assemble.
  • the application provides a camera assembly.
  • the camera assembly includes a supporting frame assembly, a carrying assembly, a light reflector, a lens assembly, and a driving assembly.
  • the supporting frame assembly is used to carry the carrying assembly, the lens assembly, and the driving assembly
  • the carrying assembly includes A carrier frame, a first connecting piece, and a plate frame assembly
  • the carrier frame is used to carry the light reflector
  • the carrier frame is fixedly connected to the plate frame assembly through the first connecting piece
  • the plate frame The component is connected to the support frame component on a side away from the first connecting component
  • the light reflector is used to reflect incident light to the lens component
  • the driving component includes a first driving component
  • the first driving component is arranged
  • the first driving member is used to provide a first driving force to the carrier frame, so that the carrier frame rotates around the first connecting member to drive
  • the light reflector rotates, wherein the rotation plane of the light reflector forms a certain angle with the incident optical axis.
  • the camera assembly provided by the present application provides the first driving force to drive the light reflector to rotate through the first driving member, so as to change the propagation path of light, realize the anti-shake function of the camera assembly, and improve the image shooting quality.
  • the first driving member provides a first driving force acting on the carrier frame
  • the first connecting member will bend and deform, which is embodied as the carrier frame and the light reflector carried on the carrier frame as a whole.
  • the first connecting piece rotates.
  • the light reflected by the light reflector to the lens assembly will change its propagation path.
  • the lens assembly will then emit the received light and be further sensed by the image sensor.
  • the corresponding clear image is formed.
  • the surface of the carrier frame facing the first connecting member is provided with a first groove, and one end of the first connecting member is received in the first groove and connected to the carrier frame;
  • the surface of the plate frame assembly facing the first connecting piece is provided with a first groove, and one end of the first connecting piece is received in the first groove and is connected to the plate frame assembly. Connected.
  • the first groove is provided on the surface of the carrier frame facing the first connecting member, or the first groove is provided on the surface of the plate frame assembly facing the first connecting member, so that the carrier frame and the carrier frame can be carried
  • the rotation axis is closer to the first groove, and the position range of the rotation axis is smaller. Therefore, the rotation angle of the light reflector and the first drive are determined according to the rotation axis.
  • the accuracy of the relational expression derived from the parameters such as force is higher, and the anti-shake function is better realized.
  • the plate frame assembly includes a first plate frame, a second plate frame, and a second connecting piece.
  • the first plate frame and the second plate frame are connected by the second connecting piece.
  • the side of the plate frame facing away from the second connecting piece is connected to the first connecting piece
  • the side of the second plate frame facing away from the second connecting piece is connected to the supporting frame assembly
  • the driving assembly is also It includes a second driving member, and the second driving member is arranged on the side of the carrier frame away from the light reflector, and the second driving member is used to provide a second driving force to the carrier frame so as to make
  • the carrier frame rotates around the second connecting member to drive the light reflector to rotate, wherein the rotation plane of the light reflector forms a certain angle with the incident optical axis, and the carrier frame rotates around the second connecting member
  • the direction of rotation when rotating is different from the direction of rotation when the carrier frame rotates around the first connecting member.
  • the second connecting member When the second driving member provides the second driving force applied to the carrier frame, the second connecting member will bend and deform, which is embodied as the carrier frame as a whole and the light reflector carried on the carrier frame rotates around the second connecting member. It should be noted that the direction of rotation when the carrier frame rotates around the second connecting piece is different from the direction of rotation when the carrier frame rotates around the first connecting piece. Therefore, the path of light can be changed in two different directions, which means that Realize the anti-shake function in two directions, thereby further improving the image quality.
  • the surface of the first plate frame facing the second connector is provided with a second groove, and one end of the second connector is received in the second groove and is connected to the first plate frame.
  • the surface of the second plate frame facing the second connecting member is provided with a second groove, and one end of the second connecting member is received in the second groove and is connected to the second plate.
  • the frame is connected.
  • the second groove is provided on the surface of the first plate frame facing the second connecting member, or the second groove is provided on the surface of the second plate frame facing the first connecting member, so that the carrier frame and the bearing When the light reflector on the carrier frame rotates around the second connecting member, the rotation axis is closer to the second groove, and the position range of the rotation axis is smaller. Therefore, the accuracy of the relational expression derived from the rotation angle of the optical reflector determined by the rotation axis, the second driving force and other parameters is higher, and the anti-shake function is better realized.
  • the first plate frame and the second plate frame both have through holes, and the opening direction of the through holes is the same as the direction of the reflected optical axis.
  • first plate frame or/and the second plate frame will reduce the weight of the camera assembly and make the electronic device lighter; the first plate frame or/and the second plate frame are set to be non-porous
  • the structure can increase its strength, thereby increasing the service life of the camera assembly.
  • the number of the first connecting member is one or more, and when the number of the first connecting member is more than one, the centers of all the first connecting members are located on the same straight line;
  • the number of the second connecting members is one or more. When the number of the second connecting members is more than one, the centers of all the second connecting members are located on the same straight line.
  • the number of the first connecting member is one, the force of the first connecting member is uniform, and the rotation consistency of the carrier frame is better.
  • the number of the first connecting members is multiple, it will not be unable to rotate due to damage of any one of the first connecting members, and the carrier frame can still rotate around the first connecting member.
  • the first driving member includes a first coil and a first magnetic member, the first coil and the first magnetic member are spaced apart and opposite to each other, and the first coil and the first magnetic member are two Any one of them is arranged on the carrier frame, the first coil is used to generate a first magnetic field, and the first magnetic member is located within the range of the first magnetic field.
  • the light reflector is driven to rotate by electromagnetic force, and the first coil and the first magnetic part can be spaced apart, avoiding deformation and damage caused by direct contact between the first coil and the first magnetic part, thereby increasing the service life of the camera assembly .
  • the carrier frame is provided with a first accommodating space, and when the first coil is disposed on the carrier frame, the first accommodating space is used to accommodate the first coil; When the magnetic element is arranged on the carrier frame, the first accommodating space is used for accommodating the first magnetic element.
  • placing the first coil or the first magnetic member in the first accommodating space can reasonably utilize the space and make the camera assembly more compact.
  • the light reflector has a first initial position
  • the first driving member further includes a first detector
  • the first detectors are spaced apart and Correspondingly, it is arranged on one side of the first magnetic member, and the first detector is used to obtain the relative position relationship information between the current position of the light reflector and the first starting position.
  • the first detector obtains the relative position relationship information between the current position of the photo reflector and the first starting position by detecting the magnetic field state of the first magnetic member, and the jitter compensation value can be calculated more accurately through the relative position relationship information , And then obtain better jitter control effect.
  • the first driving component further includes a circuit board, the circuit board is electrically connected to the first coil, the support frame assembly includes a base, and the base is provided with a peripheral surface that matches the circuit board.
  • the circuit board is arranged in the limiting space to limit the position of the circuit board relative to the base.
  • a limit space matching the peripheral surface of the circuit board is formed on the base, and the circuit board is arranged in the limit space formed on the base, so that the position of the circuit board relative to the base can be limited and the camera assembly will not shake And fall off easily.
  • the supporting frame assembly further includes a cover plate.
  • the cover plate includes a limiting hole, the cover plate covers the base, and the limiting element The limiting hole is penetrated by the piece.
  • the cover plate By buckling the limit hole on the cover plate and the limit piece on the base, the cover plate is covered on the base, which can make the camera assembly stronger, and at the same time, prevent a large amount of dust from entering the camera assembly.
  • the second driving element includes a second coil and a second magnetic element, the second coil and the second magnetic element are spaced apart and arranged opposite to each other, and the second coil and the second magnetic element Either one of the two is arranged on the carrier frame, the second coil is used to generate a second magnetic field, and the second magnetic member is located within the range of the second magnetic field.
  • the second coil and the second magnetic part can be spaced apart, avoiding the direct contact between the second coil and the second magnetic part and causing deformation and damage, thereby increasing the service life of the camera assembly .
  • the light reflector has a second initial position
  • the second driving member further includes a second detector
  • the second detectors are spaced apart and Correspondingly, it is arranged on one side of the second magnetic member, and the second detector is used to obtain the relative position relationship information between the current position of the light reflector and the second initial position.
  • the second detector can detect the magnetic field state of the second magnetic element, and then obtain the current position information of the photoreflector.
  • the relative position relationship information can calculate the jitter compensation value more accurately, thereby obtaining a better jitter control effect.
  • the carrier frame is provided with a second accommodating space, when the second coil is disposed on the carrier frame, the second accommodating space is used to accommodate the second coil;
  • the second accommodating space is used for accommodating the second magnetic element.
  • the supporting frame assembly includes a base and a cover plate, the base and the cover plate form an accommodation space, and the accommodation space is used to accommodate the carrier assembly, the light reflector, and the lens assembly
  • the driving assembly there is a gap between the peripheral surface of the carrier frame and the adjacent wall surface of the supporting frame assembly, so that the carrier frame does not touch the base and the cover plate when the carrier frame rotates.
  • the accommodating space formed by the base and the cover includes a rotating space.
  • the volume of the rotating space is larger than the volume of the carrier frame.
  • the carrier frame is arranged in the rotating space that supports the carrier frame to rotate in different directions. Therefore, the peripheral surface of the carrier frame and the supporting frame assembly are There are gaps between adjacent walls, which provide conditions for the realization of the anti-shake function of the camera.
  • the present application also provides an electronic device, wherein the electronic device includes a device body and the above-mentioned camera assembly, the device body has a light-transmitting part, the camera assembly further includes an image sensor, and the image sensor Is arranged on the side of the lens assembly away from the light reflector, and the light reflector in the camera assembly is arranged corresponding to the light-transmitting part.
  • the electronic device includes a device body and the above-mentioned camera assembly
  • the device body has a light-transmitting part
  • the camera assembly further includes an image sensor
  • the light reflector in the camera assembly is arranged corresponding to the light-transmitting part.
  • the light reflector in the camera assembly will rotate to change the light path, so that the image taken by the electronic device is very clear.
  • the electronic device further includes a motion sensor and a function chip, the motion sensor is electrically connected to the function chip, and when the camera assembly is working, the motion sensor senses the jitter state of the electronic device and obtains Shake information, and send the shake information to the functional chip, the functional chip calculates a shake compensation value according to the shake information, and controls the first driving member to provide the first driving force according to the shake compensation value .
  • the first detector can detect the magnetic field state of the first magnetic part or the first coil, and then obtain the current position information of the photo reflector.
  • the relative position relationship information can calculate the jitter compensation value more accurately, and then obtain better jitter control effect.
  • the light reflector has a first initial position
  • the first driving member further includes a first detector
  • the first detector is used to obtain the relative position between the current position of the light reflector and the first initial position Relationship information
  • the function chip generates the jitter compensation value according to the relative position relationship information and the jitter information.
  • the motion sensor and the first detector respectively obtain the jitter information and the relative position relationship information in real time, and further provide an appropriate first driving force to drive the light reflector to rotate, thereby realizing the photographing of the electronic device
  • the anti-shake function improves the quality of image shooting.
  • the function chip calculates the jitter compensation value, and when the jitter compensation value is greater than or equal to a preset jitter threshold, the function chip controls the The first driving member provides a first driving force to the carrier frame, so that the carrier frame drives the light reflector to rotate.
  • the function chip controls the rotation of the light reflector, so as to realize the anti-shake function of the electronic device and improve the image shooting quality.
  • the function chip calculates the jitter compensation value, and when the jitter compensation value is less than a preset jitter threshold, the photo reflector remains stationary.
  • the jitter compensation value is less than the preset jitter threshold, indicating that the degree of jitter at this time is very small. Even if the light reflector remains stationary, a clear image can be formed. At the same time, the preset jitter threshold is used to determine whether the light reflector needs to be rotated to avoid The lower limit corrects the small jitter, thereby saving the power of the electronic device.
  • FIG. 1 is a schematic diagram of the camera assembly provided by this application.
  • FIG. 2 is a schematic diagram of the assembly relationship of the internal components of the camera assembly provided by this application.
  • Figure 3 is an exploded view of the camera assembly provided by this application.
  • FIG. 4 is a schematic diagram of the structure of some parts of the camera assembly provided by this application.
  • FIG. 5 is a schematic structural diagram of a bearing assembly provided in an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • FIG. 10 is a schematic structural diagram of some parts of a camera assembly provided in an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • FIG. 15 is a schematic structural diagram of the first driving assembly provided by this application.
  • FIG. 16 is a schematic structural diagram of some parts of a camera assembly provided in another embodiment of this application.
  • FIG. 17 is a schematic diagram of the structure of some parts of the camera assembly provided in another embodiment of this application.
  • FIG. 18 is a schematic structural diagram of some parts of a camera assembly provided in another embodiment of this application.
  • Fig. 19 is a schematic diagram of assembling some parts of the camera assembly shown in Fig. 18.
  • FIG. 20 is a schematic diagram of the structure of some parts of the camera assembly provided in another embodiment of this application.
  • FIG. 21 is a schematic diagram of assembling some parts of the camera assembly shown in FIG. 20.
  • FIG. 22 is a schematic diagram of the structure of some parts of the camera assembly provided in another embodiment of this application.
  • FIG. 23 is a schematic diagram of the structure of some parts of the camera assembly provided in another embodiment of this application.
  • FIG. 24 is a schematic structural diagram of some parts of a camera assembly provided in another embodiment of this application.
  • FIG. 25 is a schematic diagram of the structure of some parts of the camera assembly provided in another embodiment of this application.
  • Fig. 26 is a cross-sectional view of the camera assembly shown in Fig. 1 on the A-A section.
  • Fig. 27 is a cross-sectional view of the camera assembly shown in Fig. 1 on the B-B section.
  • Figure 28 is a schematic diagram of an electronic device provided by this application.
  • Fig. 29 is a schematic structural diagram of the electronic device shown in Fig. 28 on the C-C section.
  • FIG. 30 is a schematic diagram of the connection relationship between the motion sensor, the function chip, the camera assembly, and the first detector provided by this application.
  • FIG. 1 is a schematic diagram of the camera assembly provided by this application
  • FIG. 2 is a schematic diagram of the assembly relationship of the internal components of the camera assembly provided by this application
  • FIG. 3 is an exploded view of the camera assembly provided by this application.
  • the direction of L1 is the direction of the incident light
  • the direction of L2 is the direction of the reflected light after the incident light is reflected on the light reflector 300
  • the direction of L3 is the outgoing light on the side of the lens assembly.
  • the X axis is parallel to the LI axis
  • the Z axis is parallel to the L2 axis and the L3 axis
  • the Y axis is perpendicular to the X axis and the Z axis. Please refer to the description of the following embodiments involving the XYZ coordinate system.
  • the camera assembly 10 includes a supporting frame assembly 100, a carrying assembly 200, a light reflector 300, a lens assembly 500, and a driving assembly 400.
  • the supporting frame assembly 100 is used to carry the carrying assembly 200, the lens assembly 500, and the driving assembly 400.
  • the light reflector 300 is used to reflect incident light to the lens assembly 500. It can be understood that the main function of the light reflector 300 is to change the path of light (incident light) from the outside. Therefore, the light reflector 300 can be, but is not limited to, a prism, a flat mirror, a convex mirror, a concave mirror, etc., which can reflect light.
  • FIG. 4 is a schematic structural diagram of some parts of the camera assembly provided by this application
  • FIG. 5 is a structural schematic diagram of a carrying assembly provided in an embodiment of the application.
  • the carrier assembly 200 includes a carrier frame 210, a first connector 230, and a plate frame assembly 220, and the carrier frame 210 is fixedly connected to the plate frame assembly 220 through the first connector 230.
  • the carrier frame 210 is used to carry the light reflector 300.
  • the structure of the carrier frame 210 may be designed according to the provided light reflector 300, or the type of the light reflector 300 may be determined according to the provided carrier frame 210.
  • the plate frame assembly 220 is connected to the supporting frame assembly 100 on a side away from the first connecting member 230.
  • the connection mode of the plate frame assembly 220 and the supporting frame assembly 100 can be, but is not limited to, connection by glue, connection with threaded connectors, welding, etc., which is not limited in this application.
  • the driving assembly 400 includes a first driving member 420.
  • the first driving member 420 is arranged on a side of the carrier frame 210 away from the light reflector 300.
  • the first driving member 420 is used to provide a first driving force to the carrier frame 210 so that the carrier frame 210 rotates around the first connecting member 230 to drive the light reflector 300 to rotate.
  • the rotation plane of the light reflector 300 forms a certain angle with the incident optical axis.
  • the so-called certain included angle means that the positional relationship between the incident optical axis and the rotation plane of the light reflector 300 may be parallel, perpendicular or oblique, which is not limited in this application.
  • the arrangement of the first connecting member 230 in FIG. 5 can realize the rotation of the light reflector 300 around the Y axis
  • the arrangement of the first connection member 230 in FIG. 6 can realize the rotation of the light reflector 300 around the X axis (incident optical axis).
  • the arrangement of the first connecting member 230 may also be different from the above two figures, that is, the rotation direction of the light reflector 300 may be different from the above two figures.
  • the arrangement of the first connecting member 230 can realize the rotation of the light reflector 300 around the Y-axis as an example for illustration, but it should not be regarded as a reference to this application.
  • the present application does not limit the arrangement form of the first connecting member 230.
  • the carrier frame 210, the plate frame assembly 220, and the first connecting piece 230 can be understood as a cantilever beam model, where the carrier frame 210 is a free end, the plate frame assembly 220 is a fixed end, and the first connecting piece 230 is at opposite ends They are respectively connected to the carrier frame 210 and the plate frame assembly 220.
  • the carrier frame 210 When the first driving force is applied to the carrier frame 210, the carrier frame 210 will rotate around the first connecting member 230.
  • the size of the first connecting member 230 is smaller than the carrier frame 210 and the plate frame assembly 220.
  • the first connecting member 230 is preferentially deformed due to the size factor, and the carrier frame 210 will rotate around the first connecting member 230.
  • FIG. 7 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • the surface of the carrier frame 210 facing the first connecting member 230 is provided with a first groove 231, and one end of the first connecting member 230 is received in the first groove 231 and connected to the carrier frame 210.
  • FIG. 8 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • the surface of the plate frame assembly 220 facing the first connecting member 230 is provided with a first groove 231, and one end of the first connecting member 230 is received in the first groove.
  • the slot 231 is connected to the board frame assembly 220.
  • the first groove 231 is provided on the surface of the carrier frame 210 facing the first connecting member 230, or the first groove 231 is provided on the surface of the plate frame assembly 220 facing the first connecting member 230, so that the carrier frame 210, and the light reflector 300 carried on the carrier frame 210 rotates around the first connecting member 230 when the rotation axis is closer to the first groove 231, and the position range of the rotation axis is smaller. Therefore, it is determined according to the rotation axis.
  • the accuracy of the relational expression derived from the rotation angle of the optical reflector 300, the first driving force and other parameters is higher, and the anti-shake function is better realized.
  • FIG. 9 is a schematic structural diagram of a carrier assembly provided in another embodiment of this application
  • FIG. 10 is a structural schematic diagram of some parts of a camera assembly provided in an embodiment of this application.
  • the plate frame assembly 220 includes a first plate frame 221, a second plate frame 222, and a second connecting member 223.
  • the first plate frame 221 and the second plate frame 222 are connected by the second connecting member 223.
  • the side of the first plate frame 221 facing away from the second connecting member 223 is connected to the first connecting member 230.
  • the side of the second plate frame 222 facing away from the second connecting member 223 is connected to the supporting frame assembly 100.
  • the driving assembly 400 further includes a second driving part 410.
  • the second driving members 410 are all arranged on a side of the carrier frame 210 away from the light reflector 300.
  • the second driving member 410 is used to provide a second driving force to the carrier frame 210 to rotate the carrier frame 210 around the second connecting member 223 to drive the light reflector 300 to rotate.
  • the rotation plane of the light reflector 300 forms a certain angle with the incident optical axis, and the rotation direction of the carrier frame 210 when the carrier frame 210 rotates around the second connector 223 is the same as that of the carrier frame 210 around the first connector The direction of rotation when the 230 rotates is different.
  • the deformation principle of the above-mentioned cantilever beam model under the action of external force is the same.
  • the second driving member 410 provides the second driving force acting on the carrier frame 210
  • the second connecting member 223 will bend and deform, which is reflected as a whole.
  • the carrier frame 210 and the light reflector 300 carried on the carrier frame 210 rotate around the second connecting member 223.
  • the direction of rotation when the carrier frame 210 rotates around the second connecting piece 223 is different from the direction of rotation when the carrier frame 210 rotates around the first connecting piece 230, so that the path of light is changed in two different directions. That is to say, the anti-shake function can be realized in two directions, thereby further improving the image quality.
  • the arrangement of the first connecting member 223 in FIG. 9 can realize the rotation of the light reflector 300 around the Y axis
  • the arrangement of the second connecting member 223 in FIG. 9 can realize the rotation of the light reflector 300 perpendicular to the Y axis.
  • the X axis (incident optical axis) rotates.
  • the arrangement form of the second connecting member 223 may also be different from that of FIG. 9, that is, the arrangement form of the second connecting member 223 can realize the rotation direction of the light reflector 300, and can be connected to the first connecting member 223.
  • the arrangement form can realize that the rotation direction of the light reflector 300 is not vertical.
  • the surface of the first plate frame 221 facing the second connecting member 223 is provided with a second groove 224, and one end of the second connecting member 223 is received in the second groove 224 and connected to the first plate frame 221.
  • FIG. 11 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • the surface of the second plate frame 222 facing the second connecting member 223 is provided with a second groove 224, and one end of the second connecting member 223 is received in the second groove.
  • the slot 224 is connected to the second plate frame 222.
  • the second groove 224 is provided on the surface of the first plate frame 221 facing the second connecting member 223, or the second groove 224 is provided on the surface of the second plate frame 222 facing the first connecting member 230.
  • the rotation axis is closer to the second groove 224, and the position range of the rotation axis is smaller. Therefore, the accuracy of the relational expression derived based on the rotation angle of the photo reflector 300 determined by the rotation axis, the second driving force and other parameters has higher accuracy, and thus the anti-shake function can be better realized.
  • both the first plate frame 221 and the second plate frame 222 have through holes, and the opening direction of the through holes is the same as the direction of the reflected optical axis.
  • the opening direction of the through hole is the same as the direction of the reflected optical axis, which means that the opening direction of the through hole is the direction of the reflected optical axis (Z-axis direction).
  • FIG. 13 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • the first plate frame 221 and the second plate frame 222 do not have through holes on the plate surfaces.
  • any one of the first plate frame 221 and the second plate frame 222 has a through hole, and the other does not have a through hole.
  • the hole forming direction of the through hole described is the direction toward the carrier frame 210.
  • the described through holes can also be replaced with grooves, and the number of through holes or grooves can be one or multiple. The so-called multiple means that the number is greater than or equal to two.
  • first plate frame 221 or/and the second plate frame 222 will reduce the weight of the camera assembly and make the electronic device lighter.
  • the first plate frame 221 or/and the second plate frame 222 are not provided with through holes, which can increase its strength, thereby increasing the service life of the camera assembly.
  • FIG. 14 is a schematic structural diagram of a bearing assembly provided in another embodiment of this application.
  • the number of the first connecting member 230 may be one or more. When the number of the first connecting members 230 is multiple, the centers of all the first connecting members 230 are located on the same straight line.
  • the number of the second connecting member 223 may be one or more. When the number of the second connecting members 223 is multiple, the centers of all the second connecting members 223 are located on the same straight line.
  • the so-called multiple means that the number is greater than or equal to two.
  • the cross-sections of the first connecting member 230 and the second connecting member 223 may be rectangular, trapezoidal, circular, etc., which are not limited in this application. It should be noted that this embodiment can be combined with the description of the above-mentioned related or non-conflicting implementation manners and the accompanying drawings. In this embodiment, only the arrangement form of the first connecting member 230 is exemplified.
  • the number of the first connecting member 230 is one, and the direction of the largest dimension of the first connecting member 230 is the Y-axis direction.
  • the direction of the largest dimension of the first connecting member 230 may also be the X-axis direction.
  • the number of the first connecting members 230 is multiple, all the first connecting members 230 are arranged at intervals, and the centers of all the first connecting members 230 are located on the same straight line, and the The direction of the straight line is the Y-axis direction.
  • all the first connecting members 230 are arranged in a row at intervals, and the arrangement direction should be perpendicular to the direction in which the carrier frame 210 rotates around the first connecting member 230.
  • the direction of the aforementioned straight line may also be the X-axis direction or other directions.
  • first connecting member 230 Since there are many combinations of the shape and arrangement of the first connecting member 230, we will not list them one by one here, but only one and two first connecting members 230 are given: in FIG. 14 with the first connecting member 230 The number of the members 230 is one as an example, and in FIG. 5, the number of the first connecting members 230 is two for illustration.
  • the carrier frame 210 can still rotate around the first connecting member 230 without being unable to rotate due to damage to any one of the first connecting members 230.
  • FIG. 15 is a schematic structural diagram of the first driving member provided by this application
  • FIG. 16 is a schematic structural diagram of some parts of a camera assembly provided in another embodiment of this application
  • FIG. 17 is another A schematic diagram of the structure of some parts in the camera assembly provided in an embodiment.
  • the driving assembly 400 includes a first driving member 420.
  • the first driving member 420 is arranged on a side of the carrier frame 210 away from the light reflector 300.
  • the first driving member 420 is used to provide a first driving force to the carrier frame 210 so that the carrier frame 210 rotates around the first connecting member 230 to drive the light reflector 300 to rotate.
  • the camera assembly 10 drives the light reflector 300 to rotate through the first driving member 420 to provide the first driving force to change the propagation path of light, realize the anti-shake function of the camera assembly 10, and improve the image shooting quality.
  • the first driving member 420 provides a first driving force acting on the carrier frame 210
  • the first connecting member 230 will bend and deform, which is embodied as the carrier frame 210 as a whole and carried on the carrier frame.
  • the light reflector 300 of 210 rotates around the first connecting member 230.
  • the light reflected by the light reflector 300 to the lens assembly 500 will change its propagation path.
  • the lens assembly 500 then emits the received light and is further sensed by the image sensor 600.
  • the measured light forms a corresponding clear image.
  • the first driving member 420 includes a first coil 422 and a first magnetic member 423.
  • the first coil 422 and the first magnetic member 423 are spaced apart and arranged opposite to each other. Either one of the first coil 422 and the first magnetic member 423 is disposed on the carrier frame 210.
  • the first coil 422 is used to generate a first magnetic field.
  • the first magnetic member 423 is located in the range of the first magnetic field.
  • the carrier frame 210 may be provided with a first accommodating space 211.
  • the first accommodating space 211 is used The first coil 422 is accommodated.
  • the first magnetic element 423 is disposed on the carrier frame 210, the first accommodating space 211 is used to receive the first magnetic element 423.
  • the first magnetic member 423 is provided on the carrier frame 210, and the first accommodating space 211 is used for accommodating the first magnetic member 423. Taking an example for schematic description, the present application does not limit the arrangement positions of the first coil 422 and the first magnetic member 423.
  • the current-carrying conductor will generate an interaction force in a magnetic field, that is, an electromagnetic force.
  • a magnetic field that is, an electromagnetic force.
  • the first coil 422 when the first coil 422 is energized, it will interact with the first magnetic member 423 located in the first magnetic field. Further, the first magnetic member 423 provided on the carrier frame 210 acts on the electromagnetic force. The lower causes the carrier frame 210 to move, thereby causing the light reflector 300 to rotate.
  • the first coil 422 and the first magnetic member 423 appear as a pair.
  • the number of the first coil 422 and the first magnetic element 423 are both two, and they are respectively arranged on both sides of the carrier frame 210 symmetrically based on the carrier frame 210.
  • the interaction between the first coil 422 on one side of the carrier frame 210 and the first magnetic member 423 in the working process can be attraction, repulsion, or non-interaction.
  • the first coil 422 on the opposite side of the carrier frame 210 The interaction with the first magnetic member 423 in the working process can also be attraction, repulsion, or no interaction.
  • the first coil 422 and the first magnetic member 423 at the opposite ends of the carrier frame 210 can drive the carrier frame 210 to rotate under the cooperative action.
  • the present application does not limit the magnitude and the force existing at the opposite ends of the carrier frame 210.
  • the directions are the same, opposite, or different.
  • the first coil 422 and the first magnetic member 423 can be spaced apart, which prevents the direct contact between the first coil 422 and the first magnetic member 423 from causing deformation and damage, thereby improving The service life of the camera assembly 10.
  • placing the first coil 422 or the first magnetic member 423 in the first accommodating space 211 can reasonably utilize the space and make the arrangement of parts more compact.
  • the light reflector 300 has a first initial position.
  • the first driving member 420 further includes a first detector 424.
  • the first detectors 424 are arranged on one side of the first magnetic member 423 at intervals and correspondingly. The first detector 424 is used to obtain the relative position relationship information between the current position of the light reflector 300 and the first starting position.
  • the first magnetic member 423 is placed on the carrier frame 210 for description.
  • the first detector 424 may be, but is not limited to, a Hall element.
  • the first detector 424 can detect the magnetic field state of the first magnetic member 423, and thereby obtain the current position information of the light reflector 300.
  • the position of the light reflector 300 is the first initial position.
  • the first detector 424 detects the magnetic field state of the first magnetic member 423 to obtain the relative positional relationship information between the current position of the photoreflector 300 and the first starting position, and the jitter compensation value can be calculated more accurately through the relative positional relationship information. In turn, a better jitter control effect can be obtained.
  • FIG. 18 is a schematic structural diagram of some parts of the camera assembly provided in another embodiment of this application
  • FIG. 19 is a schematic diagram of assembly of some parts of the camera assembly shown in FIG. 18.
  • the first driving component 420 may further include a circuit board.
  • the circuit board is electrically connected to the first coil 422.
  • the supporting frame assembly 100 includes a base 110.
  • the base 110 is provided with a limiting space 112 matching the peripheral surface of the circuit board.
  • the circuit board is disposed in the limiting space 112 to limit the position of the circuit board relative to the base 110.
  • the circuit board may include a first circuit board 421 and a second circuit board 414.
  • the first circuit board 421 is electrically connected to the first coil 422, and the second circuit board 414 is electrically connected to the second coil 411 in the second driving assembly 400.
  • the first circuit board 421 and the second circuit board 414 can be arranged as a whole or can be arranged as an independent structure. It should be noted that, in the embodiment of the present application, the first circuit board 421 and the second circuit board 414 are described as an integral structure, but it should not be considered as a limitation.
  • the second circuit board 414 may include a first board 414a and a second board 414b.
  • the first board 414a and the second board 414b are disposed on one side of the first circuit board 421, and are respectively connected to the first circuit board 421 by bending.
  • the first plate 414a and the second plate 414b are electrically connected to the second coils 411 symmetrically arranged on both sides of the carrier frame 210, respectively. It can be understood that integrating the first circuit board 421 and the second circuit board 414 into a whole can make the electrical signal transmission between the first circuit board 421 and the second circuit board 414 more stable and facilitate assembly.
  • a limit space 112 matching the peripheral surfaces of the first circuit board 421 and the second circuit board 414 is formed on the base 110, and the first circuit board 421 and the second circuit board 414 are arranged in the limit space formed on the base 110 In 112, the position of the circuit board relative to the base 110 can be limited so as not to easily fall off due to the shaking of the camera assembly 10.
  • FIG. 20 is a schematic structural diagram of some parts of the camera assembly provided in another embodiment of this application
  • FIG. 21 is a schematic diagram of assembly of some parts of the camera assembly shown in FIG. 20.
  • the supporting frame assembly 100 may further include a cover plate 120.
  • the cover 120 includes a limiting hole 121.
  • the cover 120 covers the base 110, and the limiting member 111 passes through the limiting hole 121.
  • the cover 120 may further include a first portion 120a, a second portion 120b, a third portion 120c, and a fourth portion 120d.
  • the second portion 120b, the third portion 120c, and the fourth portion 120d are all the same as the first portion 120a. Bend and connect.
  • the first portion 120 a, the second portion 120 b, the third portion 120 c, and the fourth portion 120 d may all be provided with a limiting hole 121 that cooperates with the limiting member 111 of the base 110.
  • a limiting member 111 may be provided on the cover 120, and a limiting hole 121 that is matched with the limiting member 111 is provided on the base 110.
  • the present application is concerned with the limiting member 111 and the limiting hole.
  • the installation position and shape of 121 are not limited.
  • FIG. 22 is a schematic structural diagram of some parts of a camera assembly provided in another embodiment of this application
  • FIG. 23 is a structural schematic diagram of some parts of a camera assembly provided in another embodiment of this application.
  • the second driving member 410 may further include a second coil 411 and a second magnetic member 412.
  • the second coil 411 and the second magnetic member 412 are spaced apart and arranged opposite to each other. Either one of the second coil 411 and the second magnetic element 412 is disposed on the carrier frame 210.
  • the second coil 411 is used to generate a second magnetic field.
  • the second magnetic member 412 is located within the second magnetic field range.
  • the second coil 411 and the second magnetic member 412 can be spaced apart, avoiding the direct contact between the second coil 411 and the second magnetic member 412 and causing deformation and damage, thereby improving The service life of the camera assembly 10.
  • FIG. 24 is a schematic structural diagram of some parts of a camera assembly provided in another embodiment of this application.
  • the light reflector 300 has a second initial position.
  • the second driving member 410 may further include a second detector 413.
  • the second detectors 413 are arranged on one side of the second magnetic member 412 at intervals and correspondingly. The second detector 413 is used to obtain the relative position relationship information between the current position of the light reflector 300 and the second initial position.
  • the second magnetic member 412 is placed on the carrier frame 210 for description.
  • the second detector 413 may be, but is not limited to, a Hall element.
  • the second detector 413 can detect the magnetic field state of the second magnetic member 412, and thereby obtain the current position information of the light reflector 300.
  • the position of the light reflector 300 is the second initial position.
  • the second detector 413 detects the magnetic field state of the second magnetic member 412 to obtain the relative position relationship information between the current position of the photo reflector 300 and the second starting position, and the jitter compensation value can be calculated more accurately through the relative position relationship information , And then obtain better jitter control effect.
  • FIG. 25 is a schematic structural diagram of some parts of a camera assembly provided in another embodiment of this application.
  • the carrier frame 210 may be provided with a second accommodating space 212.
  • the second accommodating space 212 is used to accommodate the second coil 411.
  • the second magnetic element 412 is disposed on the carrier frame 210, the second accommodating space 212 is used for accommodating the second magnetic element 412. It can be understood that placing the second coil 411 or the second magnetic member 412 in the second accommodating space 212 can make reasonable use of the space and make the structural arrangement more compact.
  • FIG. 26 is a cross-sectional view of the camera assembly shown in FIG. 1 on the A-A section
  • FIG. 27 is a cross-sectional view of the camera assembly shown in FIG. 1 on the B-B section.
  • the supporting frame assembly 100 may include a base 110 and a cover 120.
  • the base 110 and the cover 120 form a receiving space.
  • the accommodating space is used for accommodating the carrying assembly 200, the light reflector 300, the lens assembly 500 and the driving assembly 400.
  • the anti-shake function of the camera assembly 10 of the present application is realized by the carrier frame 210 driving the light reflector 300 to rotate under the action of the driving force. It is understandable that the carrier frame 210 will rotate within a certain spatial range and cannot be rotated on the path. There are obstacles, otherwise the anti-shake function cannot be realized.
  • the accommodating space formed by the base 110 and the cover 120 includes a rotating space. The volume of the rotating space is larger than the volume of the carrier frame 210.
  • the carrier frame 210 is arranged in the rotating space that supports the carrier frame 210 to rotate in different directions. There is a gap 113 between the peripheral surface of the carrier frame 210 and the adjacent wall surface of the support frame assembly 100, and the gap 113 provides conditions for the realization of the anti-shake function of the camera.
  • FIG. 28 is a schematic diagram of the electronic device provided in this application
  • FIG. 29 is a schematic diagram of the structure of the electronic device shown in FIG. 28 on the C-C section.
  • this application also provides an electronic device 1.
  • the electronic device 1 includes a device body 20 and a camera assembly 10.
  • the device body 20 has a light-transmitting part 2100.
  • the camera assembly 10 further includes an image sensor 600.
  • the image sensor 600 is arranged on a side of the lens assembly 500 away from the light reflector 300.
  • the light reflector 300 in the camera assembly 10 is provided corresponding to the light transmitting part 2100.
  • the incident light When incident light is irradiated, the incident light enters the light reflector 300 through the light-transmitting part 2100, and then is reflected by the light reflector 300 to the lens assembly 500 and the image sensor 600.
  • the camera assembly 10 please refer to the foregoing description, which will not be repeated here.
  • the electronic device 1 includes, but is not limited to, devices with a camera anti-shake function, such as a smart phone, an e-book, or a tablet.
  • the device body 20 further includes a battery cover 2000.
  • the battery cover 2000 has a light-transmitting portion 2100.
  • the light reflector 300 in the camera assembly 10 is disposed on the side of the corresponding light-transmitting portion 2100.
  • the lens assembly 500 is used for focusing
  • the image sensor 600 is used for sensing light emitted from one side of the lens assembly 500 and forming a corresponding image according to the sensed light.
  • the light reflector 300 in the camera assembly 10 will rotate to change the light path, so that the clarity of the image captured by the electronic device 1 can be improved to a certain extent.
  • FIG. 30 is a schematic diagram of the connection relationship between the motion sensor, the functional chip, the camera assembly, and the first detector provided by this application.
  • the electronic device 1 may further include a motion sensor 30 and a functional chip 40.
  • the motion sensor 30 is electrically connected to the function chip 40.
  • the motion sensor 30 senses the shaking state of the electronic device 1 and obtains shaking information, and sends the shaking information to the functional chip 40.
  • the function chip 40 calculates a shake compensation value according to the shake information, and controls the first driving member 420 to provide the first driving force according to the shake compensation value.
  • the motion sensor 30 and the function chip 40 may be integrated in the camera assembly 10, or may be separately provided in the device body 20, which is not limited in this application.
  • the light reflector 300 has a first initial position.
  • the first driving member 420 may further include a first detector 424.
  • the first detector 424 is used to obtain the relative position relationship information between the current position of the light reflector 300 and the first initial position.
  • the function chip 40 generates the jitter compensation value according to the relative position relationship information and the jitter information.
  • the electronic device 1 further includes a motion sensor 30 and a function chip 40.
  • the motion sensor 30 will acquire the jitter information (for example, the jitter offset angle, etc.) of the electronic device 1 or the camera assembly 10, and send the jitter information to the functional chip 40.
  • the first detector 424 further obtains the relative position relationship information between the current position of the photo reflector 300 and the first initial position according to the state characteristics of the first coil 422 or the first magnetic member 423, and sends the relative position relationship information ⁇ Function chip 40.
  • the function chip 40 calculates the jitter compensation value according to the received jitter information and the relative position relationship information, and controls the energization state of the first coil 422, and the first driving member 420 provides the first driving force correspondingly.
  • Controlling the energized state of the first coil 422 may be controlling the current of the first coil 422.
  • the change of the current of the first coil 422 causes the state of the magnetic field to also change, thereby generating the corresponding first driving force.
  • the motion sensor 30 and the first detector 424 obtain jitter information and relative position relationship information in real time, and further provide an appropriate first driving force to drive the light reflector 300 By rotating, the camera anti-shake function of the electronic device 1 is realized, and the image shooting quality is improved.
  • the function chip 40 calculates the jitter compensation value.
  • the function chip 40 controls the first driving member 420 to provide driving force to the carrier frame 210, so that the carrier frame 210 drives the light reflection ⁇ 300 rotates.
  • the function chip 40 calculates the jitter compensation value, and when the jitter compensation value is less than a preset jitter threshold, the photo reflector 300 remained motionless.
  • the function chip 40 calculates the jitter compensation value, it further includes a comparison with a preset jitter threshold.
  • the function chip 40 controls the first driving member 420 to provide a first driving force to the carrier frame 210, so that the carrier frame 210 drives the light reflection ⁇ 300 rotates.
  • the jitter compensation value is less than the preset jitter threshold, the photo reflector 300 remains stationary.
  • the jitter compensation value is less than the preset jitter threshold, indicating that the degree of jitter at this time is very small. Even if the photo reflector 300 remains stationary, a clear image can be formed.
  • the preset jitter threshold is used to determine whether the photo reflector 300 needs to be rotated. Avoid correcting small jitter without a lower limit, thereby saving the power of the electronic device 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

本申请提供了一种摄像头组件及电子设备。摄像头组件包括支承框架组件、承载组件、光反射器、镜头组件、驱动组件,支承框架组件用于承载承载组件、镜头组件、驱动组件,承载组件包括载体架、第一连接件、板架组件,载体架用于承载光反射器,载体架通过第一连接件固定连接于板架组件,板架组件远离第一连接件的一侧连接至支承框架组件,光反射器用于将入射光线反射至镜头组件,驱动组件包括第一驱动件,第一驱动件设置于载体架远离光反射器的一侧,第一驱动件用于向载体架提供第一驱动力,以使载体架围绕第一连接件旋转以带动光反射器旋转。本申请提供的具有防抖功能的摄像头组件,摄像头组件中实现光反射器运动的相关结构较为简单,易于组装。

Description

摄像头组件及电子设备 技术领域
本申请涉及摄像头技术领域,具体涉及一种摄像头组件及电子设备。
背景技术
随着科技的发展,摄像技术越来越成熟,具有摄像功能的电子设备也越来越受用户青睐。相关技术中,具有防抖功能的潜望式摄像头模组,其防抖组件部分通常设计成弹片式或者滚珠式来实现光反射器的运动。然而,上述两种形式,实现光反射器运动的相关结构较为复杂,不易组装。
发明内容
本申请提供了一种摄像头组件及包含其的电子设备,摄像头组件中实现光学反射器运动的相关结构较为简单,使得其易于组装。
本申请提供了一种摄像头组件。其中,所述摄像头组件包括支承框架组件、承载组件、光反射器、镜头组件、及驱动组件,所述支承框架组件用于承载所述承载组件、镜头组件、及驱动组件,所述承载组件包括载体架、第一连接件、及板架组件,所述载体架用于承载所述光反射器,所述载体架通过所述第一连接件固定连接于所述板架组件,所述板架组件远离所述第一连接件的一侧连接至所述支承框架组件,所述光反射器用于将入射光线反射至镜头组件,所述驱动组件包括第一驱动件,所述第一驱动件设置于所述载体架远离所述光反射器的一侧,所述第一驱动件用于向所述载体架提供第一驱动力,以使所述载体架围绕所述第一连接件旋转以带动所述光反射器旋转,其中,光反射器的旋转平面与入射光轴成一定夹角。
本申请提供的摄像头组件通过第一驱动件提供第一驱动力驱动光反射器转动,以改变光线的传播路径,实现摄像头组件的防抖功能,从而提高图像拍摄质量。具体的,摄像头组件发生抖动时,第一驱动件提供作用至载体架的第一驱动力,第一连接件将弯曲变形,在整体上体现为载体架、以及承载于载体架的光反射器围绕第一连接件旋转,此时,通过光反射器反射至镜头组件的光线将改变传播路径,镜头组件再将接收到的光线射出并进一步的被图像传感器感测,图像传感器根据所感测到的光线形成相应的清晰图像。从上述工作原理可知,本申请提供的具有防抖功能的摄像头组件,摄像头组件中实现光反射器运动的相关结构较为简单,易于组装。
其中,所述载体架面对所述第一连接件的表面设置有第一凹槽,所述第一连接件的一端收容于所述第一凹槽内且与所述载体架相连;
和/或,所述板架组件面对所述第一连接件的表面设置有第一凹槽,所述第一连接件的一端收容于所述第一凹槽内且与所述板架组件相连。
可以理解的,在载体架面对第一连接件的表面设置第一凹槽,或在板架组件面对第一连接件的表面设置第一凹槽,可以使得载体架、以及承载于载体架的光反射器围绕第一连接件旋转时的旋转轴更靠近于第一凹槽处,旋转轴所处的位置范围更小,因此,根据旋转轴确定的光反射器的旋转角度、第一驱动力等参数所推导出的关系式的精度更高,进而更好的实现防抖功能。
其中,所述板架组件包括第一板架、第二板架、及第二连接件,所述第一板架与所述第二板架通过所述第二连接件连接,所述第一板架背离所述第二连接件 的一侧连接于所述第一连接件,所述第二板架背离所述第二连接件的一侧连接于所述支承框架组件,所述驱动组件还包括第二驱动件,所述第二驱动件均设置于所述载体架远离所述光反射器的一侧,所述第二驱动件用于向所述载体架提供第二驱动力,以使所述载体架围绕所述第二连接件旋转以带动所述光反射器旋转,其中,光反射器的旋转平面与入射光轴成一定夹角,且所述载体架绕所述第二连接件旋转时的旋转方向与所述载体架绕所述第一连接件旋转时的旋转方向不同。
当第二驱动件提供作用至载体架的第二驱动力时,第二连接件将弯曲变形,在整体上体现为载体架、以及承载于载体架的光反射器围绕第二连接件旋转。需要说明的是,载体架绕第二连接件旋转时的旋转方向与载体架绕第一连接件旋转时的旋转方向不同,因此实现了在两个不同方向上改变光线的路径,也就是说可以在两个方向上实现防抖功能,从而进一步的提高了图像的拍摄质量。
其中,所述第一板架面对所述第二连接件的表面设置有第二凹槽,所述第二连接件的一端收容于所述第二凹槽内且与所述第一板架相连;
和/或,所述第二板架面对所述第二连接件的表面设置有第二凹槽,所述第二连接件的一端收容于所述第二凹槽内且与所第二板架相连。
可以理解的,在第一板架面对第二连接件的表面设置第二凹槽,或在第二板架面对第一连接件的表面设置第二凹槽,可以使得载体架、以及承载于载体架的光反射器围绕第二连接件旋转时的旋转轴更靠近于第二凹槽处,旋转轴所处的位置范围更小。因此,根据旋转轴确定的光反射器的旋转角度、第二驱动力等参数所推导出的关系式的精度更高,进而更好的实现防抖功能。
其中,所述第一板架与所述第二板架都具有通孔,所述通孔的开口方向与反射光轴的所在方向相同。
可以理解的,在第一板架或/和第二板架上形成通孔将降低摄像头组件的重量,使得电子设备轻量化;将第一板架或/和第二板架设置为无孔式结构,可以增大其强度,进而提高摄像头组件的使用寿命。
其中,所述第一连接件的数量为一个或多个,当所述第一连接件的数量为多个时,所有的第一连接件的中心均位于同一条直线上;
所述第二连接件的数量为一个或多个,当所述第二连接件的数量为多个时,所有的第二连接件的中心均位于同一条直线上。
可以理解的,当第一连接件的数量为一个时,第一连接件的受力均匀,载体架的转动一致性较好。当第一连接件的数量为多个时,不会因其中任意一个第一连接件的损坏而不能转动,载体架仍然可以围绕第一连接件旋转。
其中,所述第一驱动件包括第一线圈及第一磁性件,所述第一线圈与所述第一磁性件间隔且相对的设置,且所述第一线圈与所述第一磁性件两者中的任意一个设置于所述载体架上,所述第一线圈用于产生第一磁场,所述第一磁性件位于所述第一磁场范围内。
通过电磁力来驱动光反射器旋转,可以将第一线圈与第一磁性件间隔设置,避免了第一线圈与第一磁性件的直接接触导致产生变形而造成损坏,从而提高摄像头组件的使用寿命。
其中,所述载体架设置有第一容置空间,当所述第一线圈设置于所述载体架上时,所述第一容置空间用于收容所述第一线圈;当所述第一磁性件设置于所述载体架上时,所述第一容置空间用于收容所述第一磁性件。
可以理解的,将第一线圈或第一磁性件放置于第一容置空间内,合理的利用了空间,可以使得摄像头组件更加紧凑。
其中,所述光反射器具有第一初始位置,所述第一驱动件还包括第一检测器,当所述第一磁性件设置于所述载体架上时,所述第一检测器间隔且对应的设置于所述第一磁性件的一侧,所述第一检测器用于获取光反射器当前所在位置与所述第一起始位置的相对位置关系信息。
可以理解的,第一检测器通过检测第一磁性件的磁场状态,从而获得光反射器当前所在位置与第一起始位置的相对位置关系信息,通过相对位置关系信息可以更加精确的计算抖动补偿值,进而获得更好的抖动控制效果。
其中,所述第一驱动件还包括电路板,所述电路板与所述第一线圈电连接,所述支承框架组件包括基座,所述基座上设置有与所述电路板周面相匹配的限位空间,所述电路板设置在限位空间内,以限定所述电路板相对所述基座的位置。
在基座上形成与电路板周面相匹配的限位空间,将电路板设置于基座上形成的限位空间内,可以限定电路板相对所述基座的位置而不至于因摄像头组件的抖动而轻易脱落。
其中,所述支承框架组件还包括盖板,当所述基座上设置有限位件时,所述盖板包括限位孔,所述盖板盖合于所述基座,且所述限位件穿设所述限位孔。
通过盖板上的限位孔与基座上的限位件的相扣合,将盖板盖合于基座,可以使摄像头组件更加牢固,同时,也避免了大量灰尘进入到摄像头组件中。
其中,所述第二驱动件包括第二线圈、及第二磁性件,所述第二线圈与所述第二磁性件间隔且相对的设置,且所述第二线圈及所述第二磁性件两者中的任意一个设置于所述载体架上,所述第二线圈用于产生第二磁场,所述第二磁性件位于所述第二磁场范围内。
通过电磁力来驱动光反射器旋转,可以将第二线圈与第二磁性件间隔设置,避免了第二线圈与第二磁性件的直接接触导致产生变形而造成损坏,从而提高摄像头组件的使用寿命。
其中,所述光反射器具有第二初始位置,所述第二驱动件还包括第二检测器,当所述第二磁性件设置于所述载体架上时,所述第二检测器间隔且对应的设置于所述第二磁性件的一侧,所述第二检测器用于获取光反射器当前所在位置与所述第二初始位置的相对位置关系信息。
第二检测器能够检测第二磁性件的磁场状态,进而获得光反射器当前所在的位置信息,通过相对位置关系信息可以更加精确的计算抖动补偿值,进而获得更好的抖动控制效果。
其中,所述载体架设置有第二容置空间,当所述第二线圈设置于所述载体架上时,所述第二容置空间用于收容所述第二线圈;当所述第二磁性件设置于所述载体架上时,所述第二容置空间用于收容所述第二磁性件。
将第二线圈或第二磁性件放置于第二容置空间内,合理的利用了空间,可以使得摄像头组件更加紧凑。
其中,所述支承框架组件包括基座及盖板,所述基座与所述盖板形成收容空间,所述收容空间用于容置所述承载组件、所述光反射器、所述镜头组件及所述驱动组件,所述载体架周面与所述支承框架组件上相邻壁面存在间隙,以使得所述载体架在转动时不会触碰到所述基座及所述盖板。
基座与盖板形成的收容空间包括转动空间,转动空间体积大于载体架体积,将载体架设置在支持载体架可绕不同方向转动的转动空间内,因此,载体架周面与支承框架组件上相邻壁面都存在间隙,该间隙为摄像头防抖功能的实现提供了条件。
本申请还提供了一种电子设备,其中,所述电子设备包括设备本体、和如上 所述的摄像头组件,所述设备本体具有透光部,所述摄像头组件还包括图像传感器,所述图像传感器设置于所述镜头组件背离所述光反射器的一侧,所述摄像头组件中的光反射器对应所述透光部设置,当入射光线照射时,入射光线经由所述透光部入射到所述光反射器,再由所述光反射器反射至所述镜头组件及所述图像传感器。
在本实施例中,电子设备发生抖动时,摄像头组件中的光反射器在将旋转以改变光线路径,从而使得电子设备所拍摄的图像非常清晰。
其中,所述电子设备还包括运动传感器、及功能芯片,所述运动传感器与所述功能芯片电连接,当所述摄像头组件工作时,所述运动传感器感测所述电子设备的抖动状态并获取抖动信息,并向所述功能芯片发送所述抖动信息,所述功能芯片根据所述抖动信息计算抖动补偿值,并根据所述抖动补偿值控制所述第一驱动件提供所述第一驱动力。
第一检测器能够检测第一磁性件或第一线圈的磁场状态,进而获得光反射器当前所在的位置信息,通过相对位置关系信息可以更加精确的计算抖动补偿值,进而获得更好的抖动控制效果。
其中,所述光反射器具有第一初始位置,所述第一驱动件还包括第一检测器,所述第一检测器用于获取光反射器当前所在位置与所述第一初始位置的相对位置关系信息,所述功能芯片根据所述相对位置关系信息以及所述抖动信息产生所述抖动补偿值。
在摄像头组件工作时,运动传感器和第一检测器都是实时分别获取抖动信息和相对位置关系信息,并进一步的提供适当的第一驱动力以驱动光反射器旋转,从而实现了电子设备的拍照防抖功能,提高了图像拍摄质量。
其中,当所述运动传感器感测到所述电子设备抖动时,所述功能芯片计算所述抖动补偿值,当所述抖动补偿值大于或等于预设抖动阈值时,所述功能芯片控制所述第一驱动件向所述载体架提供第一驱动力,以使得所述载体架带动所述光反射器旋转。
当抖动补偿值大于或等于预设抖动阈值时,功能芯片控制光反射器转动,从而实现电子设备的拍照防抖功能,提高图像拍摄质量。
其中,当所述运动传感器感测到所述电子设备抖动时,所述功能芯片计算所述抖动补偿值,当所述抖动补偿值小于预设抖动阈值时,所述光反射器维持不动。
抖动补偿值小于预设抖动阈值,说明此时的抖动程度微乎其微,纵然光反射器维持不动,也可以形成清晰的影像,同时,通过预设抖动阈值来判断是否需要转动光反射器,避免无下限的对微小抖动进行矫正,进而节约电子设备的电量。
附图说明
图1为本申请提供的摄像头组件的示意图。
图2为本申请提供的摄像头组件内部组件的装配关系示意图。
图3为本申请提供的摄像头组件的爆炸图。
图4为本申请提供的摄像头组件的部分零件的结构示意图。
图5为本申请一实施方式中提供的承载组件的结构示意图。
图6为本申请另一实施方式中提供的承载组件的结构示意图。
图7为本申请又一实施方式中提供的承载组件的结构示意图。
图8为本申请又一实施方式中提供的承载组件的结构示意图。
图9为本申请又一实施方式中提供的承载组件的结构示意图。
图10为本申请一实施方式中提供的摄像头组件的部分零件的结构示意图。
图11为本申请又一实施方式中提供的承载组件的结构示意图。
图12为本申请又一实施方式中提供的承载组件的结构示意图。
图13为本申请又一实施方式中提供的承载组件的结构示意图。
图14为本申请又一实施方式中提供的承载组件的结构示意图。
图15为本申请提供的第一驱动组件的结构示意图。
图16为本申请另一实施方式中提供的摄像头组件的部分零件的结构示意图。
图17为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。
图18为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。
图19为图18所示的摄像头组件中部分零件的装配示意图。
图20为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。
图21为图20所示的摄像头组件中部分零件的装配示意图。
图22为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。
图23为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。
图24为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。
图25为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。
图26为图1所示的摄像头组件在A-A截面上的剖视图。
图27为图1所示的摄像头组件在B-B截面上的剖视图。
图28为本申请提供的电子设备示意图。
图29为图28所示的电子设备在C-C截面上的结构示意图。
图30为本申请提供的运动传感器、功能芯片、摄像头组件、及第一检测器的连接关系示意图。
具体实施方式
需要说明的是,本申请所给出的实施例仅为所描述特征的一种或多种形式,并非指定或者暗示所展示的结构件的构造、结构件与结构件之间的位置关系、以及实施方法,仅是为了便于描述本申请。下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
请参阅图1至图3,图1为本申请提供的摄像头组件的示意图,图2为本申请提供的摄像头组件内部组件的装配关系示意图,图3为本申请提供的摄像头组件的爆炸图。
需要说明的,图1至图3中,L1的方向为入射光线的方向,L2的方向为入射光线在光反射器300上反射后的反射光线方向,L3的方向为镜头组件一侧的出射光线方向;坐标轴中,X轴平行于LI轴,Z轴平行于L2轴和L3轴,Y轴垂直于X轴和Z轴。以下涉及到XYZ坐标系的实施例描述,请参考此处。
请参阅图1至图3,所述摄像头组件10包括支承框架组件100、承载组件200、光反射器300、镜头组件500、及驱动组件400。所述支承框架组件100用于承载所述承载组件200、镜头组件500、及驱动组件400。
请参阅图1至图3,所述光反射器300用于将入射光线反射至镜头组件500。可以理解,光反射器300的主要作用在于改变外界射入光线(入射光线)的路径,因此,光反射器300可以但不仅限于棱镜、平面镜、凸面镜、凹面镜等可以反射 光线的反射镜。
请进一步参阅图4至图5,图4为本申请提供的摄像头组件的部分零件的结构示意图,图5为本申请一实施方式中提供的承载组件的结构示意图。所述承载组件200包括载体架210、第一连接件230、及板架组件220,所述载体架210通过所述第一连接件230固定连接于所述板架组件220。所述载体架210用于承载所述光反射器300。载体架210的结构可根据所提供的光反射器300设计,或者,光反射器300根据提供的载体架210确定类型。所述板架组件220远离所述第一连接件230的一侧连接至所述支承框架组件100。其中,板架组件220与支承框架组件100的连接方式可以但不仅限于通过胶水连接、具有螺纹的连接件连接、焊接等,本申请对此不做限定。
请继续参阅图3至图5,所述驱动组件400包括第一驱动件420。所述第一驱动件420设置于所述载体架210远离所述光反射器300的一侧。所述第一驱动件420用于向所述载体架210提供第一驱动力,以使所述载体架210围绕所述第一连接件230旋转以带动所述光反射器300旋转。其中,光反射器300的旋转平面与入射光轴成一定夹角。所谓的成一定的夹角是指,入射光轴与光反射器300的旋转平面的位置关系可以是平行、垂直或者斜交,本申请对此不做限定。
如图5和图6所示。其中,图5中第一连接件230的布置形式可实现光反射器300绕Y轴转动,图6中第一连接件230的布置形式可实现光反射器300绕X轴(入射光轴)转动。当然,在其他实施方式中,第一连接件230的布置形式也可以不同于以上两图,即,光反射器300的转动方向可以不同于以上两图。需说明的是,本申请提供的各实施例中,是以第一连接件230的布置形式可实现光反射器300绕Y轴转动为基础进行示例性说明的,但不应认定为是对本申请的限制,本申请对第一连接件230的布置形式不做限定。
具体的,载体架210、板架组件220、及第一连接件230可以理解为悬臂梁模型,其中,载体架210为自由端,板架组件220为固定端,第一连接件230相对两端分别连接于载体架210和板架组件220,当第一驱动力施加在载体架210上时,载体架210将围绕第一连接件230旋转。可选的,第一连接件230的尺寸小于载体架210和板架组件220。当第一驱动力施加在载体架210上时,第一连接件230因尺寸因素而优先变形,载体架210将围绕第一连接件230旋转。
请参阅图7,图7为本申请又一实施方式中提供的承载组件的结构示意图。在一种可行的实施例中,所述载体架210面对所述第一连接件230的表面设置有第一凹槽231,所述第一连接件230的一端收容于所述第一凹槽231内且与所述载体架210相连。
请参阅图8,图8为本申请又一实施方式中提供的承载组件的结构示意图。在一种可行的实施例中,所述板架组件220面对所述第一连接件230的表面设置有第一凹槽231,所述第一连接件230的一端收容于所述第一凹槽231内且与所板架组件220相连。
请结合图3参阅图7至图8。可以理解的,在载体架210面对第一连接件230的表面设置第一凹槽231,或在板架组件220面对第一连接件230的表面设置第一凹槽231,可以使得载体架210、以及承载于载体架210的光反射器300围绕第一连接件230旋转时的旋转轴更靠近于第一凹槽231处,旋转轴所处的位置范围更小,因此,根据旋转轴确定的光反射器300的旋转角度、第一驱动力等参数所推导出的关系式的精度更高,进而更好的实现防抖功能。
请结合图3参阅图9至图10,图9为本申请又一实施方式中提供的承载组件的 结构示意图,图10为本申请一实施方式中提供的摄像头组件的部分零件的结构示意图。所述板架组件220包括第一板架221、第二板架222、及第二连接件223。所述第一板架221与所述第二板架222通过所述第二连接件223连接。所述第一板架221背离所述第二连接件223的一侧连接于所述第一连接件230。所述第二板架222背离所述第二连接件223的一侧连接于所述支承框架组件100。
所述驱动组件400还包括第二驱动件410。所述第二驱动件410均设置于所述载体架210远离所述光反射器300的一侧。所述第二驱动件410用于向所述载体架210提供第二驱动力,以使所述载体架210围绕所述第二连接件223旋转以带动所述光反射器300旋转。其中,光反射器300的旋转平面与入射光轴成一定夹角,且所述载体架210绕所述第二连接件223旋转时的旋转方向与所述载体架210绕所述第一连接件230旋转时的旋转方向不同。
可以理解的,同上述悬臂梁模型在外力作用下的变形原理相同,当第二驱动件410提供作用至载体架210的第二驱动力时,第二连接件223将弯曲变形,在整体上体现为载体架210、以及承载于载体架210的光反射器300围绕第二连接件223旋转。需要说明的是,载体架210绕第二连接件223旋转时的旋转方向与载体架210绕第一连接件230旋转时的旋转方向不同,因此实现了在两个不同方向上改变光线的路径,也就是说可以在两个方向上实现防抖功能,从而进一步的提高了图像的拍摄质量。
需说明的是,图9中第一连接件223的布置形式可实现光反射器300绕Y轴转动,图9中第二连接件223的布置形式可实现光反射器300绕垂直于Y轴的X轴(入射光轴)转动。当然,在其他实施方式中,第二连接件223的布置形式也可以不同于图9,即,第二连接件223的布置形式可实现光反射器300的旋转方向,可以与第一连接件223的布置形式可实现光反射器300的转动方向不垂直。需说明的是,本申请提供的各实施例中,是以第二连接件223的布置形式可实现光反射器300绕X轴(入射光轴)转动为基础进行示例性说明的,但不应认定为是对本申请的限制,本申请对第二连接件223的布置形式不做限定。
请继续参阅图9。在一种实施方式中,所述第一板架221面对所述第二连接件223的表面设置有第二凹槽224,所述第二连接件223的一端收容于所述第二凹槽224内且与所述第一板架221相连。
请参阅图11,图11为本申请又一实施方式中提供的承载组件的结构示意图。在另一种实施方式中,所述第二板架222面对所述第二连接件223的表面设置有第二凹槽224,所述第二连接件223的一端收容于所述第二凹槽224内且与所第二板架222相连。
可以理解的,在第一板架221面对第二连接件223的表面设置第二凹槽224,或在第二板架222面对第一连接件230的表面设置第二凹槽224,可以使得载体架210、以及承载于载体架210的光反射器300围绕第二连接件223旋转时的旋转轴更靠近于第二凹槽224处,旋转轴所处的位置范围更小。因此,根据旋转轴确定的光反射器300的旋转角度、第二驱动力等参数所推导出的关系式的精度更高,进而更好的实现防抖功能。
请参阅图12,图12为本申请又一实施方式中提供的承载组件的结构示意图。在一种实施方式中,所述第一板架221与所述第二板架222都具有通孔,所述通孔的开口方向与反射光轴的所在方向相同。其中,所谓通孔的开口方向与反射光轴的所在方向相同,是指通孔的开孔方向为反射光轴方向(Z轴方向)。
请参阅图13,图13为本申请又一实施方式中提供的承载组件的结构示意图。 在另一种实施方式中,所述第一板架221与所述第二板架222的板面上不开设通孔。
在其他实施方式中,也可以是所述第一板架221与所述第二板架222两者中的任意一个开设通孔,另一个不开设通孔。需要说明的,此部分几个实施方式中,所描述的通孔的成孔方向为朝向载体架210的方向。当然,所描述的通孔也可以替换为凹槽,且通孔或者凹槽的数量可以为一个,也可以为多个,所谓多个是指数量大于或等于两个。
可以理解的,在第一板架221或/和第二板架222上形成通孔将降低摄像头组件的重量,使得电子设备轻量化。在第一板架221或/和第二板架222不设置通孔,可以增大其强度,进而提高摄像头组件的使用寿命。
请参阅图14,图14为本申请又一实施方式中提供的承载组件的结构示意图。在一种可行的实施例中,所述第一连接件230的数量可以为一个或多个。当所述第一连接件230的数量为多个时,所有的第一连接件230的中心均位于同一条直线上。所述第二连接件223的数量可以为一个或多个。当所述第二连接件223的数量为多个时,所有的第二连接件223的中心均位于同一条直线上。所谓多个,是指数量大于或等于两个。其中,第一连接件230与第二连接件223的横截面可以是矩形、梯形、圆形等,本申请对此不做限定。需说明的是,本实施例可以结合到上述相关的,或者不冲突的实施方式的描述及其附图中。在本实施例中,仅以第一连接件230的布置形式进行示例性说明。
请继续参照图14。在一种实施方式中,第一连接件230的数量为一个,第一连接件230的最大尺寸所在的方向为Y轴方向。当然,第一连接件230的最大尺寸所在的方向也可以是X轴方向。
请参照图5。在另一种实施方式中,第一连接件230的数量为多个,所有的第一连接件230间隔排布,且所有的第一连接件230的中心均位于同条直线上,且所述直线的方向为Y轴方向。换而言之,所有的第一连接件230成一列间隔排布,排布方向应与载体架210围绕第一连接件230旋转所在方向垂直。当然,上述直线的方向也可以是X轴方向或者其他方向。
由于第一连接件230的形状和布置形式的组合例较多,此处不一一例举,仅给出了第一连接件230为一个和两个的情形:在图14中以第一连接件230的数量为一个为例进行示意,在图5中以第一连接件230的数量为两个进行示意。
可以理解的,当第一连接件230的数量为一个时,第一连接件230的受力均匀,载体架210的转动一致性较好。当第一连接件230的数量为多个时,不会因其中任意一个第一连接件230的损坏而不能转动,载体架210仍然可以围绕第一连接件230旋转。
请参照图15至图17,图15为本申请提供的第一驱动件的结构示意图,图16为本申请另一实施方式中提供的摄像头组件的部分零件的结构示意图,图17为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。所述驱动组件400包括第一驱动件420。所述第一驱动件420设置于所述载体架210远离所述光反射器300的一侧。所述第一驱动件420用于向所述载体架210提供第一驱动力,以使所述载体架210围绕所述第一连接件230旋转以带动所述光反射器300旋转。
本申请提供的摄像头组件10通过第一驱动件420提供第一驱动力驱动光反射器300转动,以改变光线的传播路径,实现摄像头组件10的防抖功能,从而提高图像拍摄质量。具体的,摄像头组件10发生抖动时,第一驱动件420提供作用至载体架210的第一驱动力,第一连接件230将弯曲变形,在整体上体现为载体架210、以及承载于载体架210的光反射器300围绕第一连接件230旋转。此时,可以参考 图29,通过光反射器300反射至镜头组件500的光线将改变传播路径,镜头组件500再将接收到的光线射出并进一步的被图像传感器600感测,图像传感器600根据所感测到的光线形成相应的清晰图像。从上述工作原理可知,本申请提供的具有防抖功能的摄像头组件10,摄像头组件10中实现光反射器300运动的相关结构较为简单,易于组装。
请结合图3参阅图15至图16。在一种可行的实施例中,所述第一驱动件420包括第一线圈422及第一磁性件423。所述第一线圈422与所述第一磁性件423间隔且相对的设置。所述第一线圈422与所述第一磁性件423两者中的任意一个设置于所述载体架210上。所述第一线圈422用于产生第一磁场。所述第一磁性件423位于所述第一磁场范围内。
在一种可行的实施例中,所述载体架210可以设置有第一容置空间211,当所述第一线圈422设置于所述载体架210上时,所述第一容置空间211用于收容所述第一线圈422。当所述第一磁性件423设置于所述载体架210上时,所述第一容置空间211用于收容所述第一磁性件423。需说明的是,在本申请实施方式的示意图中,均以所述第一磁性件423设置于所述载体架210上,所述第一容置空间211用于收容所述第一磁性件423为例进行示意说明,本申请对第一线圈422与第一磁性件423的布置位置不做限定。
可以理解的,载流导体在磁场中将产生相互作用力,即电磁力。在本实施例中,当第一线圈422通电后,将与位于第一磁场内的第一磁性件423相互作用,进一步的,设置于载体架210上的第一磁性件423在电磁力的作用下促使载体架210运动,进而使光反射器300旋转。
可以理解的,第一线圈422与第一磁性件423成对出现。在一种实施方式中,第一线圈422与第一磁性件423的数量均为两个,且分别基于载体架210对称的布置于载体架210的两侧。载体架210一侧的第一线圈422与第一磁性件423在工作过程中的相互作用可以为相吸、相斥、或无相互作用,载体架210上相对的另一侧的第一线圈422与第一磁性件423在工作过程中的相互作用也可以为相吸、相斥、或无相互作用。也就是说,载体架210相对两端的第一线圈422和第一磁性件423在协同作用下带动载体架210旋转即可,本申请并不限定载体架210相对两端存在的作用力的大小和方向相同、相反、或不同。
通过电磁力来驱动光反射器300旋转,可以将第一线圈422与第一磁性件423间隔设置,避免了第一线圈422与第一磁性件423的直接接触导致产生变形而造成损坏,从而提高摄像头组件10的使用寿命。
可以理解的,将第一线圈422或第一磁性件423放置于第一容置空间211内,合理的利用了空间,可以使得零件布置的更加紧凑。
请参阅图17。在一种可行的实施例中,所述光反射器300具有第一初始位置。所述第一驱动件420还包括第一检测器424。当所述第一磁性件423设置于所述载体架210上时,所述第一检测器424间隔且对应的设置于所述第一磁性件423的一侧。所述第一检测器424用于获取光反射器300当前所在位置与所述第一起始位置的相对位置关系信息。
在本实施例中,以第一磁性件423放置于载体架210进行说明。第一检测器424可以为但不仅限于霍尔元件,第一检测器424能够检测第一磁性件423的磁场状态,进而获得光反射器300当前所在的位置信息。具体的,当第一线圈422断电时,或者说载体架210未接受到第一驱动力驱动时,光反射器300所处的位置为第一初始位置。第一检测器424通过检测第一磁性件423的磁场状态,从而 获得光反射器300当前所在位置与第一起始位置的相对位置关系信息,通过相对位置关系信息可以更加精确的计算抖动补偿值,进而获得更好的抖动控制效果。
请结合图3参阅图18至图19,图18为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图,图19为图18所示的摄像头组件中部分零件的装配示意图。在一种可行的实施例中,所述第一驱动件420还可以包括电路板。所述电路板与所述第一线圈422电连接。所述支承框架组件100包括基座110。所述基座110上设置有与所述电路板周面相匹配的限位空间112。所述电路板设置在限位空间112内,以限定所述电路板相对所述基座110的位置。
电路板可以包括第一电路板421、及第二电路板414。第一电路板421与第一线圈422电连接,第二电路板414与第二驱动组件400中的第二线圈411电连接。第一电路板421与第二电路板414可以设置为一个整体,也可以设置为独立的结构。需要注意的是,在本申请实施方式中,是以第一电路板421与第二电路板414为整体式结构来说明,但不应认定为是限定。
进一步的,第二电路板414可以包括第一板414a、及第二板414b。第一板414a、第二板414b设置在第一电路板421一侧,且分别与第一电路板421弯折相连。第一板414a和第二板414b分别与对称设置于载体架210两侧的第二线圈411电连接。可以理解的,将第一电路板421与第二电路板414整合为一个整体,可以使得第一电路板421与第二电路板414之间的电信号传输更加稳定,且有利于装配。在基座110上形成与第一电路板421和第二电路板414周面相匹配的限位空间112,将第一电路板421和第二电路板414设置于基座110上形成的限位空间112内,可以限定电路板相对所述基座110的位置而不至于因摄像头组件10的抖动而轻易脱落。
请参阅图20至图21,图20为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图,图21为图20所示的摄像头组件中部分零件的装配示意图。在一种可行的实施例中,所述支承框架组件100还可以包括盖板120。当所述基座110上设置有限位件111时,所述盖板120包括限位孔121。所述盖板120盖合于所述基座110,且所述限位件111穿设所述限位孔121。
所述盖板120还可以包括第一部120a、第二部120b、第三部120c、及第四部120d,第二部120b、第三部120c、及第四部120d均与第一部120a弯折相连。第一部120a、第二部120b、第三部120c、及第四部120d均可以设置有与基座110上限位件111相配合的限位孔121。通过限位孔121与限位件111的相扣合,将盖板120盖合于基座110,可以使摄像头组件10更加牢固,同时,也避免了大量灰尘进入到摄像头组件10中。在其他实施方式中,也可以是盖板120上设置限位件111,基座110上设置于所述限位件111相配合的限位孔121,本申请对限位件111和限位孔121的设置位置及形状不做限定。
请参阅图22至图23,图22为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图,图23为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。在一种可行的实施例中,所述第二驱动件410还可以包括第二线圈411、及第二磁性件412。所述第二线圈411与所述第二磁性件412间隔且相对的设置。所述第二线圈411及所述第二磁性件412两者中的任意一个设置于所述载体架210上。所述第二线圈411用于产生第二磁场。所述第二磁性件412位于所述第二磁场范围内。
通过电磁力来驱动光反射器300旋转,可以将第二线圈411与第二磁性件412间隔设置,避免了第二线圈411与第二磁性件412的直接接触导致产生变形 而造成损坏,从而提高摄像头组件10的使用寿命。
请结合图10参阅图24,图24为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。在一种可行的实施例中,所述光反射器300具有第二初始位置。所述第二驱动件410还可以包括第二检测器413。当所述第二磁性件412设置于所述载体架210上时,所述第二检测器413间隔且对应的设置于所述第二磁性件412的一侧。所述第二检测器413用于获取光反射器300当前所在位置与所述第二初始位置的相对位置关系信息。
在本实施例中,以第二磁性件412放置于载体架210进行说明。第二检测器413可以为但不仅限于霍尔元件,第二检测器413能够检测第二磁性件412的磁场状态,进而获得光反射器300当前所在的位置信息。具体的,当第二线圈411断电时,或者说载体架210未接受到第二驱动力驱动时,光反射器300所处的位置为第二初始位置。第二检测器413通过检测第二磁性件412的磁场状态,从而获得光反射器300当前所在位置与第二起始位置的相对位置关系信息,通过相对位置关系信息可以更加精确的计算抖动补偿值,进而获得更好的抖动控制效果。
请结合图22参阅图25,图25为本申请又一实施方式中提供的摄像头组件中部分零件的结构示意图。在一种可行的实施例中,所述载体架210可以设置有第二容置空间212。当所述第二线圈411设置于所述载体架210上时,所述第二容置空间212用于收容所述第二线圈411。当所述第二磁性件412设置于所述载体架210上时,所述第二容置空间212用于收容所述第二磁性件412。可以理解的,将第二线圈411或第二磁性件412放置于第二容置空间212内,合理的利用了空间,可以使得结构布置的更加紧凑。
请结合参阅图3和图21参阅图25至图27,图26为图1所示的摄像头组件在A-A截面上的剖视图,图27为图1所示的摄像头组件在B-B截面上的剖视图。在一种可行的实施例中,所述支承框架组件100可以包括基座110及盖板120。所述基座110与所述盖板120形成收容空间。所述收容空间用于容置所述承载组件200、所述光反射器300、所述镜头组件500及所述驱动组件400。所述载体架210周面与所述支承框架组件100上相邻壁面存在间隙113,以使得所述载体架210在转动时不会触碰到所述基座110及所述盖板120。
本申请摄像头组件10的防抖功能是载体架210在驱动力作用下,从而带动光反射器300旋转来实现的,可以理解的,载体架210将在一定空间范围内旋转,在旋转路径上不能存在障碍,否则无法实现防抖功能。本实施例中,基座110与盖板120形成的收容空间包括转动空间,转动空间体积大于载体架210体积,将载体架210设置在支持载体架210可绕不同方向转动的转动空间内,因此,载体架210周面与支承框架组件100上相邻壁面都存在间隙113,该间隙113为摄像头防抖功能的实现提供了条件。
请参阅图28至图29,图28为本申请提供的电子设备示意图,图29为图28所示的电子设备在C-C截面上的结构示意图。进一步的,本申请还提供了一种电子设备1。所述电子设备1包括设备本体20、和摄像头组件10。所述设备本体20具有透光部2100。所述摄像头组件10还包括图像传感器600。所述图像传感器600设置于所述镜头组件500背离所述光反射器300的一侧。所述摄像头组件10中的光反射器300对应所述透光部2100设置。当入射光线照射时,入射光线经由所述透光部2100入射到所述光反射器300,再由所述光反射器300反射至所述镜头组件500及所述图像传感器600。所述摄像头组件10请参阅前面的描述,在此不再赘述。
电子设备1包括但不仅限于智能手机、电子书、或平板等具有摄像防抖功能的设备。本实施方式中,设备本体20进一步包括电池盖2000,电池盖2000具有透光部2100,摄像头组件10中的光反射器300设置在对应透光部2100一侧,当外界光线照射时,光线经由透光部2100入射到光反射器300,再由光反射器300反射至镜头组件500及图像传感器600。其中,镜头组件500用于对焦,图像传感器600用于感知从镜头组件500一侧射出的光线,并根据所感测到的光线形成相应的图像。
在本实施例中,电子设备1发生抖动时,摄像头组件10中的光反射器300将旋转以改变光线路径,从而可以在一定程度上提高电子设备1所拍摄的图像的清晰度。
请进一步参阅图30以及以上实施例中的相关描述及附图,图30为本申请提供的运动传感器、功能芯片、摄像头组件、及第一检测器的连接关系示意图。在一种可行的实施例中,所述电子设备1还可以包括运动传感器30、及功能芯片40。所述运动传感器30与所述功能芯片40电连接。当所述摄像头组件10工作时,所述运动传感器30感测所述电子设备1的抖动状态并获取抖动信息,并向所述功能芯片40发送所述抖动信息。所述功能芯片40根据所述抖动信息计算抖动补偿值,并根据所述抖动补偿值控制所述第一驱动件420提供所述第一驱动力。其中,所述运动传感器30和所述功能芯片40可以集成在摄像头组件10中,也可以独立设置于所述设备本体20中,本申请对此不做限定。
进一步的,所述光反射器300具有第一初始位置。所述第一驱动件420还可以包括第一检测器424。所述第一检测器424用于获取光反射器300当前所在位置与所述第一初始位置的相对位置关系信息。所述功能芯片40根据所述相对位置关系信息以及所述抖动信息产生所述抖动补偿值。
可以理解的,用户在使用不具备防抖功能的设备拍照时,通常会不可控的使设备抖动,尽管抖动程度很小,但是也会造成拍摄画面不清晰。
本实施例中,电子设备1进一步包括运动传感器30、及功能芯片40。具体的,当摄像头组件10工作时,运动传感器30将获取电子设备1或摄像头组件10的抖动信息(比如,抖动偏移角度等),并将该抖动信息发送给功能芯片40。同时,第一检测器424根据第一线圈422或第一磁性件423的状态特征进一步获取光反射器300当前所处位置与第一初始位置的相对位置关系信息,并将该相对位置关系信息发送给功能芯片40。功能芯片40根据接收到的抖动信息、以及相对位置关系信息计算出抖动补偿值,并控制第一线圈422的通电状态,第一驱动件420相应的提供第一驱动力。控制第一线圈422的通电状态可以是控制第一线圈422的电流。第一线圈422的电流改变使得磁场状态也发生变化,进而产生相应的第一驱动力。由上述工作过程可知,在摄像头组件10工作时,运动传感器30和第一检测器424都是实时分别获取抖动信息和相对位置关系信息,并进一步的提供适当的第一驱动力带动光反射器300旋转,从而实现了电子设备1的拍照防抖功能,提高了图像拍摄质量。
进一步的,当所述运动传感器30感测到所述电子设备1抖动时,所述功能芯片40计算所述抖动补偿值。当所述抖动补偿值大于或等于预设抖动阈值时,所述功能芯片40控制所述第一驱动件420向所述载体架210提供驱动力,以使得所述载体架210带动所述光反射器300旋转。
进一步的,当所述运动传感器30感测到所述电子设备1抖动时,所述功能芯片40计算所述抖动补偿值,当所述抖动补偿值小于预设抖动阈值时,所述光 反射器300维持不动。
可以理解的,在使用电子设备1拍照时,通常会发生不可避免的轻微抖动,致使成像模糊,成像质量底下。但是,若产生的抖动非常微弱,电子设备1所输出的照片也非常清晰,在这种情况下,则可以不对抖动进行矫正,仅矫正对成像质量影响较大的抖动。本实施例中,功能芯片40计算出抖动补偿值之后还包括与预设抖动阈值进行比较。当抖动补偿值大于或等于预设抖动阈值时,所述功能芯片40控制所述第一驱动件420向所述载体架210提供第一驱动力,以使得所述载体架210带动所述光反射器300旋转。当抖动补偿值小于预设抖动阈值时,所述光反射器300则维持不动。抖动补偿值小于预设抖动阈值,说明此时的抖动程度微乎其微,纵然光反射器300维持不动,也可以形成清晰的影像,同时,通过预设抖动阈值来判断是否需要转动光反射器300,避免无下限的对微小抖动进行矫正,进而节约电子设备1的电量。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种摄像头组件,其特征在于,所述摄像头组件包括支承框架组件、承载组件、光反射器、镜头组件、及驱动组件,所述支承框架组件用于承载所述承载组件、镜头组件、及驱动组件,所述承载组件包括载体架、第一连接件、及板架组件,所述载体架用于承载所述光反射器,所述载体架通过所述第一连接件固定连接于所述板架组件,所述板架组件远离所述第一连接件的一侧连接至所述支承框架组件,所述光反射器用于将入射光线反射至镜头组件,所述驱动组件包括第一驱动件,所述第一驱动件设置于所述载体架远离所述光反射器的一侧,所述第一驱动件用于向所述载体架提供第一驱动力,以使所述载体架围绕所述第一连接件旋转以带动所述光反射器旋转,其中,光反射器的旋转平面与入射光轴成一定夹角。
  2. 如权利要求1所述的摄像头组件,其特征在于,所述载体架面对所述第一连接件的表面设置有第一凹槽,所述第一连接件的一端收容于所述第一凹槽内且与所述载体架相连;
    和/或,所述板架组件面对所述第一连接件的表面设置有第一凹槽,所述第一连接件的一端收容于所述第一凹槽内且与所述板架组件相连。
  3. 如权利要求1所述的摄像头组件,其特征在于,所述板架组件包括第一板架、第二板架、及第二连接件,所述第一板架与所述第二板架通过所述第二连接件连接,所述第一板架背离所述第二连接件的一侧连接于所述第一连接件,所述第二板架背离所述第二连接件的一侧连接于所述支承框架组件,所述驱动组件还包括第二驱动件,所述第二驱动件均设置于所述载体架远离所述光反射器的一侧,所述第二驱动件用于向所述载体架提供第二驱动力,以使所述载体架围绕所述第二连接件旋转以带动所述光反射器旋转,其中,光反射器的旋转平面与入射光轴成一定夹角,且所述载体架绕所述第二连接件旋转时的旋转方向与所述载体架绕所述第一连接件旋转时的旋转方向不同。
  4. 如权利要求3所述的摄像头组件,其特征在于,所述第一板架面对所述第二连接件的表面设置有第二凹槽,所述第二连接件的一端收容于所述第二凹槽内且与所述第一板架相连;
    和/或,所述第二板架面对所述第二连接件的表面设置有第二凹槽,所述第二连接件的一端收容于所述第二凹槽内且与所第二板架相连。
  5. 如权利要求3所述的摄像头组件,其特征在于,所述第一板架与所述第二板架都具有通孔,所述通孔的开口方向与反射光轴的所在方向相同。
  6. 如权利要求3所述的摄像头组件,其特征在于,所述第一连接件的数量为一个或多个,当所述第一连接件的数量为多个时,所有的第一连接件的中心均位于同一条直线上;
    所述第二连接件的数量为一个或多个,当所述第二连接件的数量为多个时,所有的第二连接件的中心均位于同一条直线上。
  7. 如权利要求1所述的摄像头组件,其特征在于,所述第一驱动件包括第一线圈及第一磁性件,所述第一线圈与所述第一磁性件间隔且相对的设置,且所述第一线圈与所述第一磁性件两者中的任意一个设置于所述载体架上,所述第一线圈用于产生第一磁场,所述第一磁性件位于所述第一磁场范围内。
  8. 如权利要求7所述的摄像头组件,其特征在于,所述载体架设置有第一容置空间,当所述第一线圈设置于所述载体架上时,所述第一容置空间用于收容所述第一线圈;当所述第一磁性件设置于所述载体架上时,所述第一容置空间用于收容所述第一磁性件。
  9. 如权利要求7所述的所述的摄像头组件,其特征在于,所述光反射器具有第一初始位置,所述第一驱动件还包括第一检测器,当所述第一磁性件设置于所述载体架上时,所述第一检测器间隔且对应的设置于所述第一磁性件的一侧,所述第一检测器用于获取光反射器当前所在位置与所述第一起始位置的相对位置关系信息。
  10. 如权利要求7所述的摄像头组件,其特征在于,所述第一驱动件还包括电路板,所述电路板与所述第一线圈电连接,所述支承框架组件包括基座,所述基座上设置有与所述电路板周面相匹配的限位空间,所述电路板设置在限位空间内,以限定所述电路板相对所述基座的位置。
  11. 如权利要求10所述的摄像头组件,其特征在于,所述支承框架组件还包括盖板,当所述基座上设置有限位件时,所述盖板包括限位孔,所述盖板盖合于所述基座,且所述限位件穿设所述限位孔。
  12. 如权利要求3所述的摄像头组件,其特征在于,所述第二驱动件包括第二线圈、及第二磁性件,所述第二线圈与所述第二磁性件间隔且相对的设置,且所述第二线圈及所述第二磁性件两者中的任意一个设置于所述载体架上,所述第二线圈用于产生第二磁场,所述第二磁性件位于所述第二磁场范围内。
  13. 如权利要求12所述的所述的摄像头组件,其特征在于,所述光反射器具有第二初始位置,所述第二驱动件还包括第二检测器,当所述第二磁性件设置于所述载体架上时,所述第二检测器间隔且对应的设置于所述第二磁性件的一侧,所述第二检测器用于获取光反射器当前所在位置与所述第二初始位置的相对位置关系信息。
  14. 如权利要求13所述的摄像头组件,其特征在于,所述载体架设置有第二容置空间,当所述第二线圈设置于所述载体架上时,所述第二容置空间用于收容所述第二线圈;当所述第二磁性件设置于所述载体架上时,所述第二容置空间用于收容所述第二磁性件。
  15. 如权利要求1所述的摄像头组件,其特征在于,所述支承框架组件包括基座及盖板,所述基座与所述盖板形成收容空间,所述收容空间用于容置所述承载组件、所述光反射器、所述镜头组件及所述驱动组件,所述载体架周面与所述 支承框架组件上相邻壁面存在间隙,以使得所述载体架在转动时不会触碰到所述基座及所述盖板。
  16. 一种电子设备,其特征在于,所述电子设备包括设备本体和权利要求1-15任意一项所述的摄像头组件,所述设备本体具有透光部,所述摄像头组件还包括图像传感器,所述图像传感器设置于所述镜头组件背离所述光反射器的一侧,所述摄像头组件中的光反射器对应所述透光部设置,当入射光线照射时,入射光线经由所述透光部入射到所述光反射器,再由所述光反射器反射至所述镜头组件及所述图像传感器。
  17. 如权利要求16所述的电子设备,其特征在于,所述电子设备还包括运动传感器及功能芯片,所述运动传感器与所述功能芯片电连接,当所述摄像头组件工作时,所述运动传感器感测所述电子设备的抖动状态并获取抖动信息,并向所述功能芯片发送所述抖动信息,所述功能芯片根据所述抖动信息计算抖动补偿值,并根据所述抖动补偿值控制所述第一驱动件提供所述第一驱动力。
  18. 如权利要求17所述的电子设备,其特征在于,所述光反射器具有第一初始位置,所述第一驱动件还包括第一检测器,所述第一检测器用于获取光反射器当前所在位置与所述第一初始位置的相对位置关系信息,所述功能芯片根据所述相对位置关系信息以及所述抖动信息产生所述抖动补偿值。
  19. 如权利要求18所述的电子设备,其特征在于,当所述运动传感器感测到所述电子设备抖动时,所述功能芯片计算所述抖动补偿值,当所述抖动补偿值大于或等于预设抖动阈值时,所述功能芯片控制所述第一驱动件向所述载体架提供第一驱动力,以使得所述载体架带动所述光反射器旋转。
  20. 如权利要求18所述的电子设备,其特征在于,当所述运动传感器感测到所述电子设备抖动时,所述功能芯片计算所述抖动补偿值,当所述抖动补偿值小于预设抖动阈值时,所述功能芯片控制所述光反射器维持不动。
PCT/CN2019/127216 2019-12-20 2019-12-20 摄像头组件及电子设备 WO2021120225A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127216 WO2021120225A1 (zh) 2019-12-20 2019-12-20 摄像头组件及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127216 WO2021120225A1 (zh) 2019-12-20 2019-12-20 摄像头组件及电子设备

Publications (1)

Publication Number Publication Date
WO2021120225A1 true WO2021120225A1 (zh) 2021-06-24

Family

ID=76477047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127216 WO2021120225A1 (zh) 2019-12-20 2019-12-20 摄像头组件及电子设备

Country Status (1)

Country Link
WO (1) WO2021120225A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489886A (zh) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 摄像模组以及电子设备
CN114047659A (zh) * 2021-11-12 2022-02-15 江西晶浩光学有限公司 反射模块、摄像模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206728129U (zh) * 2016-04-08 2017-12-08 台湾东电化股份有限公司 摄像模块
CN107659758A (zh) * 2017-09-26 2018-02-02 努比亚技术有限公司 潜望式拍摄装置及移动终端
US20190206924A1 (en) * 2016-04-08 2019-07-04 Tdk Taiwan Corp. Camera module
KR20190101104A (ko) * 2018-02-22 2019-08-30 자화전자(주) 카메라용 액추에이터 및 이를 포함하는 단일 카메라를 이용한 심도영상 생성장치
CN209659420U (zh) * 2019-01-02 2019-11-19 信利光电股份有限公司 双向防抖反射模块及潜望式模组
CN110519427A (zh) * 2019-08-27 2019-11-29 Oppo广东移动通信有限公司 移动终端
CN209787281U (zh) * 2019-06-11 2019-12-13 南昌欧菲光电技术有限公司 摄像头模组及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206728129U (zh) * 2016-04-08 2017-12-08 台湾东电化股份有限公司 摄像模块
US20190206924A1 (en) * 2016-04-08 2019-07-04 Tdk Taiwan Corp. Camera module
CN107659758A (zh) * 2017-09-26 2018-02-02 努比亚技术有限公司 潜望式拍摄装置及移动终端
KR20190101104A (ko) * 2018-02-22 2019-08-30 자화전자(주) 카메라용 액추에이터 및 이를 포함하는 단일 카메라를 이용한 심도영상 생성장치
CN209659420U (zh) * 2019-01-02 2019-11-19 信利光电股份有限公司 双向防抖反射模块及潜望式模组
CN209787281U (zh) * 2019-06-11 2019-12-13 南昌欧菲光电技术有限公司 摄像头模组及电子设备
CN110519427A (zh) * 2019-08-27 2019-11-29 Oppo广东移动通信有限公司 移动终端

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489886A (zh) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 摄像模组以及电子设备
CN113489886B (zh) * 2021-08-03 2023-05-30 Oppo广东移动通信有限公司 摄像模组以及电子设备
CN114047659A (zh) * 2021-11-12 2022-02-15 江西晶浩光学有限公司 反射模块、摄像模组及电子设备

Similar Documents

Publication Publication Date Title
US11409073B2 (en) Camera module
US20220082852A1 (en) Reflecting module for optical image stabilization (ois) and camera module including the same
US11269194B2 (en) Reflecting module for OIS and camera module including the same
US10416473B2 (en) Camera module and reflecting module
US8279289B2 (en) Optical unit with shake correcting function
CN104935792B (zh) 透镜移动单元及其摄像模组
KR20180095420A (ko) 손떨림 보정 반사모듈 및 이를 포함하는 카메라 모듈
JP2017037306A (ja) レンズ駆動装置
TWI701494B (zh) 無轉軸防抖反射模組及潛望式模組
CN212115441U (zh) 摄像头组件及电子设备
US20220342276A1 (en) Camera module and optical device comprising same
WO2021120225A1 (zh) 摄像头组件及电子设备
WO2023142721A1 (zh) 防抖组件、摄像模组及电子设备
CN213633958U (zh) 光学元件驱动机构
KR20190059444A (ko) 듀얼 카메라모듈
CN113014750A (zh) 摄像头组件及电子设备
US20240045309A1 (en) Optical element drive device, camera module, and camera mounting device
KR102442834B1 (ko) 카메라 모듈
KR102260376B1 (ko) 폴디드 모듈 및 이를 포함하는 휴대용 전자기기
CN108810374B (zh) 成像组件、电子组件、电子装置和电子装置的控制方法
US20220070379A1 (en) Optical Member Driving Device, Camera Device and Electronic Apparatus
US20220066232A1 (en) Optical Member Driving Device, Camera Device and Electronic Apparatus
CN109343294B (zh) 潜望式防抖模组及潜望式摄像模组
WO2024067162A1 (zh) 用于光学防抖的光转向组件以及光学系统
CN216490711U (zh) 反射模块、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956208

Country of ref document: EP

Kind code of ref document: A1