WO2021119954A1 - 一种弱光检测方法 - Google Patents
一种弱光检测方法 Download PDFInfo
- Publication number
- WO2021119954A1 WO2021119954A1 PCT/CN2019/125768 CN2019125768W WO2021119954A1 WO 2021119954 A1 WO2021119954 A1 WO 2021119954A1 CN 2019125768 W CN2019125768 W CN 2019125768W WO 2021119954 A1 WO2021119954 A1 WO 2021119954A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- photoelectric sensor
- measured
- light source
- compensation
- Prior art date
Links
- 238000000691 measurement method Methods 0.000 title abstract 2
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 45
- 230000000694 effects Effects 0.000 claims description 5
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 3
- 230000002238 attenuated effect Effects 0.000 claims description 3
- 229910052805 deuterium Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052724 xenon Inorganic materials 0.000 claims description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 3
- 230000001902 propagating effect Effects 0.000 claims description 2
- 238000004886 process control Methods 0.000 claims 1
- 238000009827 uniform distribution Methods 0.000 claims 1
- 230000001678 irradiating effect Effects 0.000 abstract 2
- 238000001914 filtration Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechanical part supplementary adjustable parts
- G01J1/0407—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
Definitions
- the invention relates to the field of weak light detection, in particular to a weak light detection method.
- the sensor When the light energy per unit time is greater than 50nJ, the sensor can give a differentiated response for every change of 1nJ. . Because some photo-generated charges are inevitably lost in the photoelectric conversion process, that is, the detection limit of the sensor is numerically greater than the sensitivity value, so the sensor cannot detect weak light signals below the detection limit.
- the photosensitive surface of the currently used photoelectric sensor has a relatively large photosensitive area, resulting in a relatively large volume of the photoelectric sensor, and correspondingly higher production success.
- the light to be measured may be light of different wavelengths, the detection accuracy is affected.
- the present invention provides a low-light detection method that provides compensation light and adjusts the supplementary light intensity to irradiate the photosensitive surface of the photoelectric sensor, thereby improving the photoelectric sensor's ability to detect low light; adopts a light collection device Convergence of light reduces the photosensitive area of the photoelectric sensor and saves the cost of detection. Combining the filter element and the light collection device enables the photoelectric sensor to respond more accurately to the light in the sensing band with high detection accuracy.
- a method for detecting low light including the following steps:
- the compensation light source emits primary light, and the primary light is attenuated by the attenuation component to become compensation light;
- step S5. Use a light collection device to condense the weak light signal passing through the filter device and irradiate it to the photosensitive surface of the photoelectric sensor.
- the compensation light of the same intensity as in step S3 is also irradiated to the photosensitive surface of the photoelectric sensor to make the photoelectric sensor
- the received light intensity is greater than the light intensity purely from the light to be measured, thereby appropriately increasing the output of the photoelectric sensor, and recording the output electrical signal of the photoelectric sensor at this time;
- the compensation light source includes an adjusting element and a light-emitting element.
- the output power and single output duration of the adjusting element can be adjusted.
- the primary light intensity emitted by the light-emitting element during each detection process is controlled by adjusting the output power and the output duration. In turn, the intensity of the compensation light irradiated to the photoelectric sensor during each detection process is controlled.
- the wavelength range of the primary light emitted by the compensation light source and the response wavelength range of the photoelectric sensor have an overlapping area.
- the compensation light source may be one or a combination of LEDs, xenon lamps, deuterium lamps, and tungsten lamps.
- the interior of the attenuation component is hollow, and part of the surface is covered with a diffuse reflection layer.
- the primary light emitted by the compensation light source is reflected by the diffuse reflection layer when propagating inside the attenuation component to form uniformly distributed scattered light; the surface of the attenuation component is not covered with a diffuse reflection layer.
- the part of the reflective layer is provided with a light incident area and a light exit area.
- the compensation light source, the photoelectric sensor, and the switch are all connected with the control system.
- the condensing device includes a parabolic reflector and a lens or lens combination that refracts weak light to the parabolic reflector.
- the photoelectric sensor is a photodiode, and the photosensitive area of the photosensitive surface of the photodiode is greater than 4 mm 2 .
- the light intensity adjusting element is a light enhancement damper.
- the present invention has the following beneficial effects:
- the present invention provides a weak light detection method.
- the beneficial effects of the present invention are:
- the photoelectric sensor's ability to detect weak light is improved; the measurement result is corrected to eliminate the high measurement result caused by the compensation light Impact.
- the light collection device adopts a parabolic mirror with a parabolic structure coated with a reflective film to effectively converge and collect light, and collect as much light as possible through the light collection device in a small area as possible, reducing
- the photosensitive area of the photoelectric sensor saves the cost of detection.
- FIG. 1 is a flowchart of a low light detection method according to an embodiment of the present invention.
- a method for detecting low light which is characterized in that it comprises the following steps:
- the opening and closing of the light source to be measured is controlled by a switch, and the switch includes an electronic switch or a mechanical switch.
- the switch includes an electronic switch or a mechanical switch.
- electronic switches are preferred, that is, when the signal of the compensated light source is collected, the main instrument is shut down by the control system.
- the light source reduces the light to be measured to zero; for biofluorescence, atomic emission spectroscopy and other self-luminous detection application scenarios that do not require a light source to illuminate the sample, a physical shielding mechanical optical switch is generally used, that is, the light blocking element is controlled when the signal of the compensated light source is collected
- the mechanical displacement is used to physically block the light to be measured.
- the compensation light source can be one or a combination of LEDs, xenon lamps, deuterium lamps, and tungsten lamps.
- the wavelength range of the primary light emitted by the compensation light source and the response wavelength range of the photoelectric sensor have an overlapping area.
- the compensation light source and the switch are all connected with the control system.
- the compensation light source includes an adjusting element and a light-emitting element.
- the output power and single output duration of the adjusting element are adjustable.
- the output power and output duration are controlled by the control system.
- the output power and output duration are controlled to control each detection process.
- the primary light intensity emitted by the light-emitting element controls the intensity of the compensation light irradiated to the photoelectric sensor during each detection process.
- the compensation light source emits primary light, and the primary light is attenuated by the attenuation component to become compensation light;
- the attenuation component is an element with an internal hollow cavity surrounded by a light guide material.
- Part of the surface of the light guide material of the attenuation component is covered with a diffuse reflection layer to compensate for the primary light emitted by the light source when it propagates inside the cavity of the attenuation component.
- the diffuse reflection layer After being reflected multiple times by the diffuse reflection layer, uniformly distributed scattered light is formed; the part of the surface of the attenuation component that is not covered with the diffuse reflection layer is provided with a light incident area and a light exit area. Both the entrance area and the exit area belong to the light-transmitting area, and the size of the light-transmitting area and the diffuse reflection area of the hollow cavity can be adjusted according to specific needs.
- the primary light emitted by the compensating light source enters the attenuation component through the light incident area and becomes compensating light uniformly distributed along the cross-section, and the compensating light is uniformly emitted from one side of the photosensitive window of the photoelectric sensor.
- photoelectric sensors can be selected according to specific needs. Suitable photoelectric sensors can be selected according to the wavelength of the light to be measured. Common ones include the use of internal photoelectric effects such as photoconductive, photovoltaic, photoelectromagnetic, photon traction, etc.
- a photodiode with a photosensitive surface area greater than 4mm 2 is used.
- a photodiode whose photosensitive surface material is silicon or silicon carbide is selected.
- For the visible light band For photons, choose silicon photodiodes.
- near-infrared bands choose indium gallium arsenide photodiodes.
- the transmission speed of electrons in indium gallium arsenide is several times that of silicon. For far-infrared bands, choose cadmium telluride.
- the mercury-based photodiode realizes the detection. It can be understood that in other embodiments, photodiodes of other materials can also be selected, as long as the required light can be detected.
- the light intensity adjusting element can adopt a light intensity adjuster, the light intensity adjuster and the photoelectric sensor are all connected with the control system, and the supplementary light intensity emitted by the attenuation component is adjusted by the light intensity adjuster, so that the supplementary light intensity is injected into the photoelectric sensor.
- the light intensity of the photosensitive surface is above the detection limit of the photoelectric sensor, thereby improving the detection ability of the photoelectric sensor for weak light; the output electrical signal of the photoelectric sensor at this time is recorded.
- the filter element can be a filter, and the filter can be selected to filter out the light waves other than the required parameters according to the light wave parameters of the specific wavelength that need to be measured.
- the filter can be a conductive filter, a band-stop filter, a long-wave pass filter, and a short-wave pass filter, as long as it can achieve effective detection of the specified light.
- step S5. Use a light collection device to condense the weak light signal passing through the filter device and irradiate it to the photosensitive surface of the photoelectric sensor.
- the compensation light of the same intensity as in step S3 is also irradiated to the photosensitive surface of the photoelectric sensor to make the photoelectric sensor
- the received light intensity is greater than the light intensity purely from the light to be measured, thereby appropriately increasing the output of the photoelectric sensor, and recording the output electrical signal of the photoelectric sensor at this time;
- the light collection device includes a parabolic reflector and a lens or lens combination that refracts weak light to the parabolic reflector.
- a parabolic reflector with a parabolic structure coated with a reflective film is used to achieve effective light collection and collection by converging light. Collect as much light as possible through the light collecting device in a small area as much as possible, and the photosensitive surface of the photoelectric sensor only needs the size of the area after the light is converged, thereby greatly reducing the amount of material used to make the photoelectric sensor.
- the light collection device can also use a single convex lens.
- the convex lens has the function of condensing light, and the focal length of the convex lens is fixed.
- the single convex lens is used to achieve the collimated light focusing, which is convenient to collect the light to be measured and project it on the photosensitive surface of the photoelectric sensor. .
- a single convex lens can further simplify the structure of the device and save costs.
- the applied convex lens can be a spherical lens or a multi-faceted aspheric lens.
- step S6 Process the electrical signals measured in step S3 and step S5, and subtract the output electrical signal of the photoelectric sensor measured in step S3 from the output electrical signal of the photoelectric sensor measured in step S3 to correct the measurement result to eliminate Compensate the effect of high measurement results caused by light.
- the compensation light is used to irradiate the photoelectric sensor, and the supplementary light intensity is adjusted so that the light intensity irradiated on the photosensitive surface of the photoelectric sensor is above the detection limit of the photoelectric sensor.
- the light collection device adopts a reflective film
- the parabolic mirror with the parabolic structure realizes the effective concentration and collection of light, and collects as much light as possible through the light collection device in a small area as possible, reducing the photosensitive area of the photoelectric sensor and saving the detection cost;
- the combination of the component and the light collection device realizes the selection of light in the required waveband, so that the photoelectric sensor can more accurately respond to the light in the sensing waveband, and the detection accuracy is improved.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
一种弱光检测方法,包括以下步骤:S1.关闭待测光光源开关,打开补偿光光源;S2.补偿光光源发出初级光,将初级光通过衰减组件进行衰减处理后变成补偿光;S3.调整补偿光的光强,使得射向光电传感器的补偿光强进入与之对应的光电传感器的检测限,记录此时光电传感器的输出电信号;S4.打开待测光光源开关,通过滤光元件依据待测光的光波参数将所需参数之外的光波滤除;S5.采用光采集装置将通过滤光装置的弱光信号聚光后照射至光电传感器的感光面,同时使与步骤S3中相同光强的补偿光也照射至光电传感器的感光面,记录此时光电传感器的输出电信号;S6.对步骤S3与步骤S5测得的电信号进行修正处理,其提高了光电传感器对弱光的检测能力。
Description
本发明涉及弱光检测领域,尤其涉及一种弱光检测方法。
对微弱光信号的检测,在各领域均有很多的需求。为此发展了很多新型的光电传感器,例如:光伏探测器、光电导探测器、热电堆探测器、光电二极管、光电二极管阵列、CCD图像传感器、CMOS图像传感器、NMOS图像传感器、以及InGaAs图像传感器,其对弱光探测的能力主要取决于检测限和灵敏度这两个参数,由于在光电转换的过程中不可避免地会丢失一些光生电荷,因此检测限在数值上大于灵敏度的取值,例如一个光传感器对光能量的检测限为50nJ、灵敏度为1nJ表明在单位时间内光能低于50nJ时传感器无法正常检测、单位时间内光能量大于50nJ时每变化1nJ时传感器都能给出差异化的响应。由于在光电转换的过程中不可避免地会丢失一些光生电荷,即传感器的检测限在数值上大于灵敏度的取值,因而传感器无法检测低于检测限的弱光信号。且目前采用的光电传感器的感光面的感光面积较大,导致光电传感器的体积较大,相应制作成功较高。另外,由于待测光可能是不同波段的光,影响检测精度。
如上所述,需要设计一种可以提高弱光检测能力、成本低且检测精度高的弱光检测方法。
发明内容
为了克服现有技术的不足,本发明提供一种弱光检测方法,提供补偿光并调整补充光强使其照射到光电传感器的感光面,提高光电传感器对弱光的检测能力;采用光采集装置对光线汇聚,减小了光电传感器的感光面积,节约检测成本,将滤光元件与光采集装置相结合,使得光电传感器更能精准地对感应波段的光线响应,检测精度高。
本发明的技术方案如下:
一种弱光检测方法,包括以下步骤:
S1、关闭待测光光源开关,打开补偿光光源;
S2、补偿光光源发出初级光,将初级光通过衰减组件进行衰减处理后变成补偿光;
S3、调整补偿光的光强,通过光强调节元件控制光的强度,使得射向光电传感器的补偿光强进入与之对应的光电传感器的检测限,提高光电传感器对弱光的检测能力,记录此时光电传感器的输出电信号;
S4、打开待测光光源开关,通过滤光元件依据待测光的光波参数将所需参数之外的光波滤除,从而在检测过程中滤去杂散光,提高检测精度;
S5、采用光采集装置将通过滤光装置的弱光信号聚光后照射至光电传感器的感光面,同时使与步骤S3中相同光强的补偿光也照射至光电传感器的感光面,使光电传感器接收到的光强度大于单纯来自待测光的光强度,从而适度地提高光电传感器的输出,记录此时光电传感器的输出电信号;
S6、对步骤S3与步骤S5测得的电信号进行处理,将步骤S5中测得的光电传感器的输出电信号减掉步骤S3中测得的光电传感器的输出电信号,以修正测量结果以消除补偿光造成的测量结果偏高的影响。
进一步地,所述补偿光光源包括调节元件和发光元件,调节元件的输出功率和单次输出时长可调节,通过调节输出功率和输出时长来控制每次检测过程中发光元件发出的初级光强,进而控制每次检测过程中照射至光电传感器的补偿光的光强。
进一步地,补偿光光源发射的初级光波长范围与光电传感器的响应波长范围具有重叠区域。
优选地,补偿光光源可以是LED、氙灯、氘灯、钨灯中的一种或者多种组合。
进一步地,衰减组件内部中空,部分表面覆盖有漫反射层,补偿光光源发出的初级光在衰减组件内部传播时被漫反射层多次反射后形成均匀分布的散射光;衰减组件表面未覆盖漫反射层的部分设有光入射区和光出射区。
进一步地,补偿光光源、光电传感器、开关均与控制系统相连接。
进一步地,所述聚光装置包括抛物面反射镜及将弱光折射到抛物面反射镜的透镜或透镜组合。
进一步地,所述光电传感器为光电二极管,光电二极管的感光面的感光面积大于4mm
2。
进一步地,所述光强调节元件为光强调制器。
相比现有技术,本发明的有益效果在于:
本发明提供一种弱光检测方法,本发明的有益效果是:
1、通过调整补充光强使其照射到光电传感器的感光面的光强在光电传感器的检测限以上,提高光电传感器对弱光的检测能力;修正测量结果以消除补偿光造成的测量结果偏高的影响。
2、所述光采集装置采用用镀有反射膜的抛物面结构的抛物面反射镜实现对光有效的汇聚收集,把尽可能多的光通过光采集装置聚集在一个尽可能小的区域,减小了光电传感器的感光面积,节约检测成本。
3、将滤光元件与光采集装置相结合,可实现对所需波段光线的选择,使得光电传感器更能精准地对感应波段的光线响应,提高了检测精度。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给 出。
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
在附图中:
图1为本发明的一种实施方式的弱光检测方法的流程图。
下面,结合具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各技术特征之间可以任意组合形成新的实施例。
一种弱光检测方法,其特征在于,包括以下步骤:
S1、关闭待测光光源开关,打开补偿光光源;
所述待测光光源的开闭采用开关控制,所述开关包括电子开关或机械开关。一般地,对于分子吸收光谱、激光拉曼光谱、荧光激发光谱等存在可即时启停主光源照射样品的检测应用场景,优先采用电子开关,即采集补偿光光源信号时通过控制系统关停仪器主光源将待测光降为零;对于生物荧光、原子发射光谱等不需要光源照射样品的自发光检测应用场景,一般采用物理遮挡式机械光开关,即采集补偿光光源信号时通过控制挡光元件机械位移来对待测光进行物理遮挡。补偿光光源可以是LED、氙灯、氘灯、钨灯中的一种或者多种组合。补偿光光源发射的初级光波长范围与光电传感器的响应波长范围具有重叠区域。
补偿光光源、开关均与控制系统相连接。所述补偿光光源包括调节元件和发光元件,调节元件的输出功率和单次输出时长可调节,输出功率和输出 时长由控制系统控制,通过控制调节输出功率和输出时长来控制每次检测过程中发光元件发出的初级光强,进而控制每次检测过程中照射至光电传感器的补偿光的光强。
S2、补偿光光源发出初级光,将初级光通过衰减组件进行衰减处理后变成补偿光;
衰减组件为由导光材料围成的具有内部中空的空腔的元件,衰减组件的导光材料的部分表面覆盖有漫反射层,补偿光光源发出的初级光在衰减组件的空腔内部传播时被漫反射层多次反射后形成均匀分布的散射光;衰减组件表面未覆盖漫反射层的部分设有光入射区和光出射区。入射区与出射区都属于透光区域,中空空腔的透光区域与漫反射区域的大小可根据具体需要进行调节。补偿光光源发出的初级光经光入射区进入衰减组件之后变为沿截面分布均匀的补偿光,该补偿光从光电传感器的感光窗口的一侧均匀射出。
S3、调整补偿光的光强,通过光强调节元件控制光的强度,使得射向光电传感器的补偿光强进入与之对应的光电传感器的检测限,提高光电传感器对弱光的检测能力,记录此时光电传感器的输出电信号;
采用的光电传感器的具体种类根据具体需要进行具体选择,可以根据待测光波长选用与其相适应的合适的光电传感器,常见的包括利用内光电效应如光电导、光生伏特、光电磁、光子牵引等的传感器,在采用光电二极管的情况下,采用感光面的感光面积大于4mm
2的光电二极管,其中对于不可见光的波段的光,则选择感光面材料为硅或碳化硅的光电二极管,对于可见光波段的光子,则选择硅材料的光电二极管,对于近红外波段,选择铟砷化镓的光电二极管,电子在铟砷化镓中的传输速度是硅的数倍,对于远红外波段,则选择碲镉汞为材料的光电二极管实现探测。可以理解为在其它的实施方式中,还可以选择其它材质的光电二极管,只要能够满足能够探测到需要的光即可。
光强调节元件可以采用光强调整器,光强调整器、光电传感器均与控制系统相连接,通过光强调整器调整由衰减组件出射的补充光强,使得该补充 光强射入光电传感器的感光面时其光强在光电传感器的检测限以上,从而提高光电传感器对弱光的检测能力;记录此时光电传感器的输出电信号。
S4、打开待测光光源开关,通过滤光元件依据待测光的光波参数将所需参数之外的光波滤除,从而在检测过程中滤去杂散光,提高检测精度;
为实现对取得对特定波段光波的待测光的响应,滤光元件可以采用滤光片,滤光片可以依据需要测定的特定波长的光波参数,选择能够将所需参数之外的光波滤除的滤光材料制作。具体地,滤光片可以采用导通滤光片,带阻滤光片,长波通、短波通滤光片,只要能够实现对指定的光实现有效的探测。
S5、采用光采集装置将通过滤光装置的弱光信号聚光后照射至光电传感器的感光面,同时使与步骤S3中相同光强的补偿光也照射至光电传感器的感光面,使光电传感器接收到的光强度大于单纯来自待测光的光强度,从而适度地提高光电传感器的输出,记录此时光电传感器的输出电信号;
所述光采集装置包括抛物面反射镜及将弱光折射到抛物面反射镜的透镜或透镜组合,采用用镀有反射膜的抛物面结构的抛物面反射镜实现对光有效的汇聚收集,通过汇聚光线的方式把尽可能多的光通过光采集装置聚集在一个尽可能小的区域,光电传感器的感光面仅需光线汇聚后面积的大小即可,从而大幅减少了制作光电传感器的材料用量。
光采集装置也可以采用单个凸透镜,凸透镜有聚集光线的作用,且凸透镜的焦距固定,利用单一凸透镜实现的对准直光聚焦,方便收集待测光的光线将其投射在光电传感器的感光面上。此外,单个凸透镜还可进一步精简装置的结构和节约成本。应用的凸透镜可以是球面透镜,也可以是多次面元的非球面透镜。
S6、对步骤S3与步骤S5测得的电信号进行处理,将步骤S5中测得的光电传感器的输出电信号减掉步骤S3中测得的光电传感器的输出电信号,以修正测量结果以消除补偿光造成的测量结果偏高的影响。
如上所述,在待测光通过光电传感器前,先采用补偿光照射至光电传感器,调整补充光强使其照射到光电传感器的感光面的光强在光电传感器的检测限以上,提高光电传感器对弱光的检测能力;然后再将待测光和补偿光一起照射至光电传感器,并对测量结果进行修正以消除补偿光造成的测量结果偏高的影响;光采集装置采用用镀有反射膜的抛物面结构的抛物面反射镜实现对光有效的汇聚收集,把尽可能多的光通过光采集装置聚集在一个尽可能小的区域,减小了光电传感器的感光面积,节约了检测成本;将滤光元件与光采集装置相结合,实现对所需波段光线的选择,使得光电传感器更能精准地对感应波段的光线响应,提高了检测精度。
以上,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书附图所示和以上而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护。
Claims (9)
- 一种弱光检测方法,其特征在于,包括以下步骤:S1、关闭待测光光源开关,打开补偿光光源;S2、补偿光光源发出初级光,将初级光通过衰减组件进行衰减处理后变成补偿光;S3、调整所述补充光的光强,通过光强调节元件控制光的强度,使得射向光电传感器的补偿光强进入与之对应的光电传感器的检测限,提高光电传感器对弱光的检测能力,记录此时光电传感器的输出电信号;S4、打开待测光光源开关,通过滤光元件依据待测光的光波参数将所需参数之外的光波滤除,从而在检测过程中滤去杂散光,提高检测精度;S5、采用光采集装置将通过滤光装置的弱光信号聚光后照射至光电传感器的感光面,同时使与步骤S3中相同光强的补偿光也照射至光电传感器的感光面,使光电传感器接收到的光强度大于单纯来自待测光的光强度,从而适度地提高光电传感器的输出,记录此时光电传感器的输出电信号;S6、对步骤S3与步骤S5测得的电信号进行处理,将步骤S5中测得的光电传感器的输出电信号减掉步骤S3中测得的光电传感器的输出电信号,以修正测量结果以消除补偿光造成的测量结果偏高的影响。
- 如权利要求1所述的方法,其特征在于:所述补偿光光源包括调节元件和发光元件,调节元件的输出功率和单次输出时长可调节,通过调节输出功率和输出时长来控制每次检测过程中发光元件发出的初级光强,进而控制每次检测过程中照射至光电传感器的补偿光的光强。
- 如权利要求1所述的方法,其特征在于:补偿光光源发射的初级光波长范围与光电传感器的响应波长范围具有重叠区域。
- 如权利要求1所述的方法,其特征在于:补偿光光源可以是LED、氙灯、氘灯、钨灯中的一种或者多种组合。
- 如权利要求1所述的方法,其特征在于:衰减组件内部中空,部分表面覆盖有漫反射层,补偿光光源发出的初级光在衰减组件内部传播时被漫反射层多次反射后形成均匀分布的散射光;衰减组件表面未覆盖漫反射层的部分设有光入射区和光出射区。
- 如权利要求1所述的方法,其特征在于:补偿光光源、光电传感器、开关均与控制系统相连接。
- 如权利要求1所述的方法,其特征在于:所述聚光装置包括抛物面反射镜及将弱光折射到抛物面反射镜的透镜或透镜组合。
- 如权利要求1所述的方法,其特征在于:所述光电传感器为光电二极管,光电二极管的感光面的感光面积大于4mm 2。
- 如权利要求1所述的方法,其特征在于:所述光强调节元件为光强调制器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/125768 WO2021119954A1 (zh) | 2019-12-16 | 2019-12-16 | 一种弱光检测方法 |
CN201980003139.2A CN111164392A (zh) | 2019-12-16 | 2019-12-16 | 一种弱光检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/125768 WO2021119954A1 (zh) | 2019-12-16 | 2019-12-16 | 一种弱光检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021119954A1 true WO2021119954A1 (zh) | 2021-06-24 |
Family
ID=70562378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/125768 WO2021119954A1 (zh) | 2019-12-16 | 2019-12-16 | 一种弱光检测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111164392A (zh) |
WO (1) | WO2021119954A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140332666A1 (en) * | 2013-05-13 | 2014-11-13 | Canon Kabushiki Kaisha | Imaging apparatus |
CN106053344A (zh) * | 2016-05-10 | 2016-10-26 | 南京高恳特科技有限公司 | 带有照明补偿的高光谱图像检测舱、检测器及检测方法 |
CN108169135A (zh) * | 2018-03-20 | 2018-06-15 | 谱诉光电科技(苏州)有限公司 | 光谱检测仪 |
CN108444917A (zh) * | 2018-06-05 | 2018-08-24 | 深圳迎凯生物科技有限公司 | 自校准的弱光检测装置 |
CN109916514A (zh) * | 2019-03-19 | 2019-06-21 | 谱诉光电科技(苏州)有限公司 | 一种光子注入型弱光检测方法及装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9927555D0 (en) * | 1999-11-23 | 2000-01-19 | Bede Scient Instr Ltd | X-ray fluorescence apparatus |
CN110567578A (zh) * | 2019-09-30 | 2019-12-13 | 长江大学 | 一种适用于弱光检测的光电传感装置 |
-
2019
- 2019-12-16 CN CN201980003139.2A patent/CN111164392A/zh active Pending
- 2019-12-16 WO PCT/CN2019/125768 patent/WO2021119954A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140332666A1 (en) * | 2013-05-13 | 2014-11-13 | Canon Kabushiki Kaisha | Imaging apparatus |
CN106053344A (zh) * | 2016-05-10 | 2016-10-26 | 南京高恳特科技有限公司 | 带有照明补偿的高光谱图像检测舱、检测器及检测方法 |
CN108169135A (zh) * | 2018-03-20 | 2018-06-15 | 谱诉光电科技(苏州)有限公司 | 光谱检测仪 |
CN108444917A (zh) * | 2018-06-05 | 2018-08-24 | 深圳迎凯生物科技有限公司 | 自校准的弱光检测装置 |
CN109916514A (zh) * | 2019-03-19 | 2019-06-21 | 谱诉光电科技(苏州)有限公司 | 一种光子注入型弱光检测方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111164392A (zh) | 2020-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111465828B (zh) | 光谱仪设备及系统 | |
CN111465829B (zh) | 光谱仪设备及系统 | |
CN111465827B (zh) | 光谱仪设备及系统 | |
CN111060289B (zh) | 一种高灵敏度日冕仪杂光检测装置 | |
JPH06205768A (ja) | X線検査装置 | |
JP2021523384A (ja) | 分光計装置 | |
JPH03503454A (ja) | 免疫試験法のための光学式読取装置 | |
JPH07229840A (ja) | 光学的測定方法及びその装置 | |
WO2021119954A1 (zh) | 一种弱光检测方法 | |
CN110553735A (zh) | 一种太阳光谱辐照度监测仪的稳定性测试系统 | |
WO2020186845A1 (zh) | 一种光子注入型弱光检测方法及装置 | |
CA2084789A1 (en) | Light detector | |
CN209706954U (zh) | 一种光子注入型弱光检测装置 | |
JPS57101709A (en) | Film thickness gauge with infrared ray | |
CN109856090A (zh) | 一种γ辐射光学玻璃透射率在线测量装置和方法 | |
KR101760031B1 (ko) | 감도와 신뢰성 향상을 위한 광학적 가스 센서 | |
CN211553068U (zh) | 一种硅光电二极管的光谱响应测量装置 | |
Dafu et al. | Multi-band infrared detector assemblies and performances for 2nd-generation GEO meteorological satellite | |
SU1458700A1 (ru) | Способ определения толщины листового полупрозрачного материала | |
SU1723504A1 (ru) | Люминесцентный датчик ультрафиолетового излучени | |
SU591047A1 (ru) | Спектрометр дл аэрозолей | |
SU693126A1 (ru) | Спектрофотометр | |
JPH1090419A (ja) | 光ファイバ応用型放射線検出器 | |
TWM378379U (en) | Photoelectric detection system for numerical aperture of near infrared optical fiber | |
JPS5570726A (en) | Infrared spectrchemical analysis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19956809 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19956809 Country of ref document: EP Kind code of ref document: A1 |