WO2020186845A1 - 一种光子注入型弱光检测方法及装置 - Google Patents

一种光子注入型弱光检测方法及装置 Download PDF

Info

Publication number
WO2020186845A1
WO2020186845A1 PCT/CN2019/125395 CN2019125395W WO2020186845A1 WO 2020186845 A1 WO2020186845 A1 WO 2020186845A1 CN 2019125395 W CN2019125395 W CN 2019125395W WO 2020186845 A1 WO2020186845 A1 WO 2020186845A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photons
photoelectric sensor
compensation
measured
Prior art date
Application number
PCT/CN2019/125395
Other languages
English (en)
French (fr)
Inventor
冯旭东
赵振英
Original Assignee
谱诉光电科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谱诉光电科技(苏州)有限公司 filed Critical 谱诉光电科技(苏州)有限公司
Publication of WO2020186845A1 publication Critical patent/WO2020186845A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum

Definitions

  • the invention relates to the field of weak light detection, in particular to a photon injection type weak light detection method and device.
  • Spectral detection is one of the basic and key technologies of many analytical instruments and medical detection instruments, from environmental water quality, food safety monitoring, to petrochemical, pharmaceutical production measurement and control, to body fluid, blood, protein, genome, and even cell analysis.
  • the test is based on spectroscopy, many of which involve low-light or extremely low-light detection; in addition, many electronic devices that people use every day also involve low-light detection, such as mobile phones and cameras taking pictures in the dark. In the end, the detection requires the optical sensor to convert the light signal into an electrical signal for the instrument to perform qualitative or quantitative analysis.
  • Commonly used light sensors include photovoltaic detectors, photoconductive detectors, thermopile detectors, photodiodes, photodiode arrays, CCD image sensors, CMOS image sensors, NMOS image sensors, and InGaAs image sensors.
  • the ability mainly depends on the two parameters of detection limit and sensitivity. Since some photo-generated charges will inevitably be lost in the photoelectric conversion process, the detection limit is numerically greater than the sensitivity value, such as the detection of light energy by a light sensor A limit of 50nJ and a sensitivity of 1nJ indicate that the sensor cannot detect normally when the light energy per unit time is less than 50nJ, and the sensor can give a differentiated response when the light energy per unit time is greater than 50nJ for every change of 1nJ.
  • the detection limit of the sensor is greater than the sensitivity value, so the sensor cannot detect weak light signals below the detection limit, and at the same time, when a part of the light energy is lower than When the detection limit and the other part of the light energy are higher than the detection limit, the output signal will be distorted.
  • the photos taken with mobile phones or cameras except for the brighter ones The other relatively dark places outside this place were photographed in pitch black.
  • the present invention provides a photon injection type weak light detection method. During each detection process, a certain amount of photons are actively injected into the photoelectric sensor through the compensation light source, and the total energy of the compensation photons is adjusted to the photoelectric sensor. Above the detection limit of the sensor, collect the output signal of the photoelectric sensor and subtract the compensated light signal to restore the real measurement signal, thereby eliminating the influence of the photogenerated charge lost in the photoelectric conversion process of the sensor on the measurement result.
  • the present invention provides a photon injection type weak light detection method, including the steps:
  • the photoelectric sensor side actively injects a certain amount of compensated photons, so that the total amount of compensated photons received by the photoelectric sensor is greater than its detection limit;
  • the active compensation is specifically:
  • Compensating photon injection turning off the light to be measured, and injecting a certain amount of compensated photons into the photoelectric sensor, and the total amount of compensated photons received by the photoelectric sensor is greater than its detection limit;
  • Background signal acquisition the electrical signal output by the photoelectric sensor after the compensation photon injection is acquired, and recorded as the background signal.
  • the mixed light detection is specifically:
  • the detection signal is acquired, and the mixed signal output by the photoelectric sensor after the injection of mixed photons is obtained, and the difference between the mixed signal and the background signal is the undistorted detection signal.
  • the light source emits primary photons
  • the primary photons are converted into the compensation photons after attenuating light mixing
  • the compensation photons are uniformly incident on the photoelectric sensor
  • the number of the primary photons is greater than the compensation photons
  • the number of the primary photons is linear with the number of the compensation photons; the primary photons are emitted through the primary photon emitting component, and the spectral wavelength range emitted by the primary photon emitting component is part of the wavelength range of the response of the photoelectric sensor overlapping.
  • a photon injection type weak light detection device includes a compensation light source, a photoelectric sensor, an optical switch and an electric control component; the compensation light source, the photoelectric sensor and the optical switch are electrically connected with the electric control component; wherein,
  • the compensation light source emits primary photons, and the primary photons are converted into compensation photons and then enter the photoelectric sensor,
  • the light to be measured enters the photoelectric sensor after light processing, and the optical switch allows or blocks the light to be measured from entering the photoelectric sensor.
  • the primary photons are converted into compensation photons through a light mixing attenuation component
  • the compensation light source is connected to the light mixing attenuation component
  • the compensation light source emits primary photons into the light mixing attenuation component
  • the mixing light attenuation component turns the primary
  • the photons are transformed into compensation photons uniformly distributed along the cross section, the number of primary photons is greater than the number of compensation photons, and the energy of the compensation photons is greater than the detection limit of the photoelectric sensor.
  • the light mixing attenuation component is a hollow structure composed of a plurality of light guide plates
  • the light guide plate includes a diffuse reflection layer close to its partial surface, and the primary photons enter the light mixing attenuation component through the diffuse reflection layer. After the second reflection, uniformly distributed scattered light is formed, and part of the heat dissipation light in the light mixing attenuation component is directed toward the photoelectric sensor as compensation photons.
  • the optical switch includes an electronic switch and a mechanical switch, the electronic switch is connected to an electrical control component, the electronic switch is connected to an instrument optical component, and the electronic switch allows or blocks the light to be measured from entering the Instrument optical components; the mechanical switch allows or blocks the light to be measured from entering the instrument optical components by moving the shield.
  • the mechanical switch is a pull-out mechanical switch
  • the pull-out mechanical switch includes a first light barrier, a first return spring, a guide rail frame, a first armature and a first electric chuck;
  • a connecting rod extends in a partial area of one end of the first light barrier, the first armature is fixedly arranged at the end of the connecting rod, the first return spring is sleeved on the connecting rod; the guide rail is installed There is a barrier, the barrier is arranged between the first return spring and the first armature;
  • the two ends of the first light blocking plate are matched with the guide rails of the guide rail frame, and the two ends of the first light blocking plate move linearly on the guide rails of the guide rail frame;
  • the first electric chuck is fixedly arranged in the At one end of the rail frame, the first electric chuck is arranged opposite to the first armature and is located on the extension line of the connecting rod;
  • the first light barrier is provided with a light-passing hole.
  • the first return spring pushes the first light-shielding plate to move, so that the light to be measured enters the light-passing hole through the light-passing hole.
  • the first electric chuck When the first electric chuck is energized, the first electric chuck attracts the first armature, the first light blocking plate moves along the guide rail, and the blocking bar hinders the movement of the first return spring and causes it to deform.
  • the first light blocking plate blocks the light to be measured from entering the optical assembly of the instrument.
  • the mechanical switch is a lever type mechanical switch
  • the lever type mechanical switch includes a second light barrier, a fixing frame, a fulcrum cylinder, a second electric chuck and a second return spring; wherein,
  • the fulcrum cylinder is fixed on the fixing frame, the middle part of the second light blocking plate is provided with a through hole matching the fulcrum cylinder; one end of the second light blocking plate is fixedly provided with a second armature, the The second electric chuck is located at the relative position of the second armature and is fixedly arranged on the fixing frame;
  • a fixing block is provided on the fixing frame, the fixing block is arranged adjacent to the second electric chuck, and the fixing block fixes the second return spring on the fixing frame;
  • the second light barrier is provided with a light transmission gap.
  • the second return spring drives the second light barrier to rotate around the fulcrum cylinder, so that the light to be measured passes through the The light transmission gap enters the optical component of the instrument;
  • the second electric chuck When the second electric chuck is energized, the second electric chuck attracts the second armature, and the second return spring drives the second light barrier to rotate around the pivot cylinder, so that the second light barrier blocks the waiting The photometry enters the optical assembly of the instrument.
  • the present invention has the following beneficial effects:
  • the present invention provides a photon injection type weak light detection method.
  • the optical switch Before the measurement starts, the optical switch is turned off to actively emit a certain amount of primary photons through a compensation light source.
  • the primary photons are attenuated by the light mixing attenuation component to become compensation photons, and the compensation photons
  • the total energy of the photoelectric sensor is adjusted above the detection limit of the photoelectric sensor, which receives the compensated photons and collects the output signal, which is recorded as the compensated background signal; after the measurement is started, the optical switch is turned on, and the light to be measured is optically processed by the optical component of the instrument After entering the photoelectric sensor, the compensation light source emits the same amount of primary photons.
  • the photoelectric sensor receives the compensated photons and collects the output signal, which is recorded as the detection output signal; the detection output signal minus the compensation background signal is no distortion
  • the light signal to be measured is used to eliminate the influence of the photo-generated charge lost in the photoelectric conversion process of the sensor on the measurement result, that is, the detection limit of the photoelectric sensor is equivalently reduced, and the detection ability of the detector for weak light and extremely weak light is improved. Solve the problem of weak light quantization proportional distortion in the range near the original detection limit of the proximity sensor.
  • Figure 1 is a flow chart of a photon injection type weak light detection method of the present invention
  • FIG. 2 is a specific flow chart of a photon injection type weak light detection method of the present invention
  • FIG. 3 is a schematic diagram of the overall structure of a photon injection type weak light detection device of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the compensation light source of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the optical mixing attenuation component of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the pull-out mechanical switch according to the present invention.
  • FIG. 7 is a schematic diagram of the structure of the lever type mechanical switch of the present invention.
  • a photon injection type weak light detection method as shown in Figure 1 and Figure 2, includes the steps:
  • Active compensation the photoelectric sensor side actively injects a certain amount of compensated photons, so that the total amount of compensated photons received by the photoelectric sensor is greater than its detection limit; actively injects a certain amount of compensated photons into one end of the photoelectric sensor, specifically Also includes:
  • Compensate photon injection turn off the light to be measured, and inject a certain amount of compensated photons into the photoelectric sensor, and the total amount of compensated photons received by the photoelectric sensor is greater than its detection limit;
  • photoelectric compensation is performed for the ability lost in the photoelectric conversion process by actively injecting compensating photons, and a certain number of compensated photons are injected into the photoelectric sensor; the energy of the compensated photons received by the photoelectric sensor is greater than Its detection limit, this method can equivalently reduce the detection limit of the photoelectric sensor, and improve the detection ability of the detector for weak light and extremely weak light.
  • step S22 Obtain the detection signal, and obtain the mixed signal output by the photoelectric sensor after the mixed photon is injected, and the difference between the mixed signal and the background signal is the undistorted detection signal.
  • the compensation photons and the light to be measured are injected into the photoelectric sensor at the same time as in step S1, and the photon energy received by the photoelectric sensor is raised above the detection limit of the photoelectric sensor, and the mixed signal and The difference of the background signal is the undistorted detection signal; in this way, the influence of the photo-generated charge lost in the photoelectric conversion process of the photoelectric sensor on the measurement result is eliminated, that is, the detection limit of the photoelectric sensor is equivalently reduced, and the detection limit of the detector is increased.
  • the detection ability of low light and extremely low light solves the problem of weak light quantization proportional distortion in the range near the original detection limit of the sensor.
  • the light source emits primary photons, and the primary photons are converted into the compensation photons after attenuating and mixing.
  • the compensation photons are uniformly injected into the photoelectric sensor, and the number of the primary photons is greater than the number of the primary photons.
  • the number of compensation photons, the number of primary photons and the number of compensation photons have a linear relationship.
  • the attenuated light mixing process is mainly to reduce the number of primary photons, and make the primary photons uniform and shoot them as compensation photons into the photoelectric sensor.
  • the energy of the compensation photons is greater than the detection limit of the photoelectric sensor.
  • the diffuse reflection material can make the photons uniform.
  • the attenuation and mixing processing also needs to make the number of primary photons have a linear relationship with the number of compensation photons, namely The ratio of the number of primary photons to the number of compensation photons is a constant.
  • step S2 further includes: firstly subjecting the light to be measured to optical processing and then entering the photoelectric sensor.
  • optical processing includes convergence, light filtering, diffraction, interference, dispersion, light splitting, and the like.
  • the primary photon is emitted through the primary photon emitting component, and the spectral wavelength range emitted by the primary photon emitting component partially overlaps the wavelength range of the photoelectric sensor response.
  • a photon injection type weak light detection device as shown in Figs. 3-7, includes a compensation light source 101, a photoelectric sensor 103, an optical switch 104 and an electric control component 106; among them,
  • the compensation light source 101 emits primary photons, and the primary photons are converted into compensation photons and then incident on the photoelectric sensor 103,
  • the light to be measured enters the photoelectric sensor 103 after light processing, and the optical switch 104 allows or blocks the light to be measured from entering the photoelectric sensor 103.
  • the primary photons are transformed into compensation photons through the light mixing attenuation component 102, the compensation light source 101 is connected to the light mixing attenuation component 102, the compensation light source 101 emits primary photons into the light mixing attenuation component 102, the light mixing attenuation component 102 converts primary photons into compensation photons uniformly distributed along its cross-section, the number of primary photons is greater than the number of compensation photons, and the energy of the compensation photons is greater than the detection limit of the photoelectric sensor 103.
  • the light mixing attenuation component 102 is a hollow structure composed of a plurality of light guide plates 301.
  • the light guide plate 301 includes a diffuse reflection layer 302 close to its partial surface.
  • the primary photons enter the light mixing attenuation component 102 through the diffuse reflection layer. After multiple reflections, uniformly distributed scattered light is formed, and part of the heat dissipation light in the light mixing attenuation component 102 is directed toward the photoelectric sensor 103 as compensation photons.
  • the output signal after the compensated photon and the light to be measured enter the photoelectric sensor 103 at the same time is collected, and the output signal of the same amount of the compensated photon separately injected into the photoelectric sensor 103 is subtracted to obtain an undistorted standby photon.
  • Metering signal The primary photons emitted by the compensation light source 101 after passing through the light mixing attenuation component 103 become compensated photons with energy slightly higher than the detection limit of the photoelectric sensor 103 and uniformly distributed along the cross section.
  • the light to be measured passes through the optical switch and enters the instrument optical assembly 105, and after optical processing, it illuminates the photosensitive assembly of the photoelectric sensor 103 from the front of the photosensitive window of the photoelectric sensor 103;
  • Optical processing includes convergence, light filtering, diffraction, interference, dispersion, light splitting, etc.
  • the optical switch 104 is turned on and off to cut off the light to be measured by the electronic control component 106, and at the same time, the compensation light source is controlled to inject a certain amount of compensation photons into the photoelectric sensor 103 and collect the output signal of the photoelectric sensor 103 , Recorded as the compensated background signal; in the subsequent formal testing process, the optical switch 104 is turned on by the electronic control component 106, and the light to be measured enters the optical component 105 of the instrument.
  • the electronic control component 106 controls the compensation light source to inject the same amount of compensation photons to the photoelectric sensor 103, and then collects the output signal of the photoelectric sensor 103 and subtracts the compensation background signal to obtain the Distorted light signal to be measured.
  • the obtained real light signal to be measured is used to eliminate the influence of the photo-generated charge lost in the photoelectric conversion process of the sensor on the measurement result, that is, the detection limit of the photoelectric sensor 103 is equivalently reduced, and the detector's resistance to low light and extremely low light is improved. Detection capability, to solve the problem of weak light quantization proportional distortion near the original detection limit of the sensor.
  • the primary photons become compensation photons after passing through the light mixing attenuation component 102.
  • the number of primary photons is greater than that of the compensation photons.
  • the compensation photons are more uniformly distributed in space than the primary photons after being diffusely reflected by the light mixing attenuation component. There are only two differences.
  • the photoelectric sensor 103 includes a photosensitive window and a photosensitive component; the compensation photons are irradiated onto the photosensitive component through one side of the photosensitive window; the light to be measured is irradiated onto the photosensitive component through the other side of the photosensitive window.
  • the photosensitive component of the photoelectric sensor 031 is a small plane or a small curved surface, which is also the surface of the photosensitive material of the sensor; the light to be measured is irradiated onto the photosensitive component through the front of the photosensitive window, and
  • the compensation photons irradiate the photosensitive component through one side of the photosensitive window, mainly to avoid the compensation light blocking the light to be measured.
  • the compensation light source 101 includes a power adjustment circuit 201 and a light-emitting assembly 202.
  • the power adjustment circuit 201 is connected to the electronic control assembly 106. By adjusting the output power and output duration of the power adjustment circuit 201, the light-emitting assembly 202 emits light. Different numbers of primary photons.
  • the luminous intensity of the light-emitting component 202 is proportional to the output power of the power adjusting circuit 201.
  • the light emitting component 202 includes a single light emitter or a combination of multiple light emitters, and the spectral wavelength range emitted by the light emitter partially overlaps the wavelength range of the photoelectric sensor response. In one embodiment, as shown in FIG.
  • the power adjustment circuit 201 provides electrical energy to the light-emitting component 202, and its output power and single output duration, that is, the output pulse width, can be adjusted, and the power size and output duration are controlled by the electronic control component 106 , By adjusting the output power and output duration to control the number of photons emitted by the light-emitting component 202 during each detection process, and then control the number of compensation photons injected into the photoelectric sensor 103 during each detection process.
  • the light-emitting device can be any form of light-emitting elements such as LED, xenon lamp, deuterium lamp, tungsten lamp, black body, etc.
  • the luminous intensity is proportional to the driving power and the emission spectrum wavelength range and the photoelectric sensor response wavelength range have an overlapping area or one of the light-emitting elements Multiple combinations.
  • the light mixing attenuation component 102 is a hollow structure composed of a plurality of light guide plates 301.
  • the light guide plate 301 includes a diffuse reflection layer 302 close to its partial surface.
  • the primary photons enter the light mixing attenuation component 102 through the diffuse reflection layer. After multiple reflections, uniformly distributed scattered light is formed, and part of the heat dissipation light in the light mixing attenuation component 102 is directed toward the photoelectric sensor 103 as compensation photons.
  • the light mixing attenuation component 102 includes several light-transmitting areas.
  • the primary photons enter from the light-transmitting area on one side of the light mixing attenuating component 102, and the compensation photons are emitted from the light-transmitting area on the other side of the light mixing attenuating component 102.
  • the compensation photons entering the light mixing attenuation component 102 have a linear relationship with the amount of compensation light emitted therefrom. In one embodiment, as shown in FIG.
  • the light mixing attenuation component 102 is composed of a light guide plate 301 and a diffuse reflection layer 302 formed by a diffuse reflection material close to the surface of the light guide plate; a side of the light guide plate 301 is close to the side
  • the light-transmitting incident area 303 is formed without being covered by the diffuse reflection material. The photons emitted by the compensation light source enter the light guide plate 301 through this area, and are closely attached to the diffuse reflection material on the surface of the light guide plate 301 when propagating inside the light guide plate 301.
  • the other side of the light guide plate 301 is left with a light-emitting transmissive area 304, which is not covered by diffuse reflective material, and the lines propagating in the light guide plate are uniformly mixed and pass through the light-transmitting area 304
  • a part of the photons are emitted to the photosensitive part of the photoelectric sensor 103 as compensation photons.
  • the diffuse reflection material 303 and the light guide plate 301 closely adhere to the surface of the light guide plate 301 to form an integrated element that does not change with time, the mixed and attenuated emission
  • the light intensity is in a fixed proportion to the incident light entering the light mixing attenuation component.
  • both the incident area 303 and the exit area 304 belong to the light-transmitting area, and the size of the light-transmitting area and the diffuse reflection area of the hollow structure can be adjusted according to specific needs.
  • the optical switch 104 includes an electronic switch and a mechanical switch.
  • the electronic switch is connected to the electronic control component 106.
  • the electronic switch allows or blocks the light to be measured from entering the instrument optical component 105 through an electronic control method; the mechanical switch passes The way of moving the shield allows or blocks the light to be measured from entering the instrument optical assembly 105.
  • the electronic switch is preferred, that is, the main light source of the instrument is electronically shut down when the background signal is collected and compensated
  • the light to be measured will be zero;
  • a physical shielding mechanical optical switch is generally used, that is, the mechanical displacement of the light blocking element is controlled when collecting and compensating the background signal To physically block the metering.
  • the mechanical switch is a pull-out mechanical switch
  • the pull-out mechanical switch includes a first light barrier 401, a first return spring 402, a rail frame 403, a first armature 404, and a first electric chuck 405; wherein a connecting rod 409 extends in a partial area of one end of the first light barrier 401, the first armature 404 is fixedly arranged at the end of the connecting rod 409, and the first return spring 402 is sleeved on the connecting rod On the rod 409; the guide rail frame 403 is provided with a barrier 408, the barrier 408 is arranged between the first return spring 402 and the first armature 404; both ends of the first light barrier 401 Matching with the guide rail of the guide rail frame 403, the two ends of the first light barrier 401 move linearly on the guide rail of the guide rail frame 403; the first electric chuck 405 is fixedly arranged on the guide rail frame 403 At one end, the first electric chuck 405 is opposite to the first
  • a hollow light through hole 406 is opened in the middle of the first light barrier 401, and one end of the connecting rod 409 passes through the first return spring 402 and the fixed rail frame 403 is connected to the armature 404;
  • the guide rail frame 403 guides the moving track of the movable first light barrier 401 through the guide rails on both sides and the hole in the middle, so that the first light barrier 401 can only move linearly in one direction.
  • the rail frame 403 has positioning holes 407 is used to install and fix the entire optical switch on the instrument optical assembly 105; the first electric chuck 405 is installed on the other end of the rail frame 403, and is on the same axis as the first armature 404, and its power-on and power-off control is controlled by the instrument Electronic control component 106; when the first electric chuck 405 is not energized, there is no attraction to the first armature 404.
  • the first return spring 402 pushes the movable first light barrier 401 to the left end, so that the first light barrier 401 is on
  • the hollow through light hole 406 is aligned with the incident position of the light to be measured, and the light to be measured can pass through the light hole 406 and enter the optical component 105 of the instrument; when the first electric chuck 405 is energized, electromagnetic attraction is generated on the first armature 404, The electromagnetic attraction force is greater than the elastic force of the first return spring 402, so that the first armature 404 moves to the right with the movable first light barrier 401, the light hole 406 deviates from the incident position of the light to be measured, and the first stop on the left side of the light hole
  • the light plate 401 is displaced to the incident position of the light to be measured to shield the light to be measured from the optical assembly 105 of the instrument.
  • the mechanical switch is a lever-type mechanical switch
  • the lever-type mechanical switch includes a second light barrier 501, a fixing frame 502, a fulcrum cylinder 503, a second electric chuck 504, and a second return spring 506;
  • the fulcrum cylinder 503 is fixed on the fixing frame 502
  • the middle part of the second light barrier 501 is provided with a through hole matching the fulcrum cylinder 503
  • one end of the second light barrier 501 is fixedly provided
  • There is a second armature 505, the second electric chuck 504 is located at the relative position of the second armature 505 and is fixedly arranged on the fixing frame 502
  • the fixing frame 502 is provided with a fixing block 509, the fixing block 509 is arranged adjacent to the second electric chuck 504, the fixing block 509 fixes the second return spring 506 to the fixing frame 502;
  • the second light blocking plate 501 is provided with a light transmission notch 507, When the second electric chuck 504 is not
  • one end of the connecting rod type light barrier is the second light barrier 501, and the other end is a rigid rotating rod.
  • One side of the second light barrier 501 is provided with a hollow light opening 507.
  • a round hole in the middle is penetrated by the fulcrum cylinder 503, and the second armature 505 at the other end is connected with one end of the second return spring 506;
  • the fixing frame 502 has a fixing block 509 for fixing the bottom end of the spring, and a second positioning is reserved on it.
  • the hole 508 is used for the installation and fixation of the entire optical switch on the instrument optical assembly 105; the second electric chuck 504 is installed on the side of the other end of the fixing frame 502 corresponding to the second armature 505, and its power-on and power-off control is controlled by the instrument Electronic control assembly 106; when the second electric chuck 504 is not energized, there is no attraction to the second armature 505.
  • the second return spring 506 pushes one end of the rigid rotating rod (right side in the figure) to the top, and the other end (
  • the second light barrier 501 on the left side of the figure is limited by the adjacent steps on the fixing frame 502 on the lower side, so that the hollow light-passing gap 507 on the upper side of the second light barrier 501 is aligned with the light incident position of the instrument to be measured.
  • Light can pass through the light gap 507 and enter the instrument optical assembly 105; when the second electric chuck 504 is energized, an electromagnetic attraction force is generated to the second armature 505, which is greater than the elastic force of the return spring, making the second armature 505 rotate with rigidity
  • the rod rotates clockwise around the fulcrum cylinder 503, the second light blocking plate 501 at one end of the rigid rotating rod moves upward, the light gap 507 deviates from the incident position of the light to be measured, and the baffle below the light gap moves to the incident position of the light to be measured. The light is blocked out of the optical components of the instrument.
  • the physical shielding mechanical switch is not limited to the above-mentioned lever-type mechanical switch and the pull-out mechanical switch, and other methods for physically shielding the light to be measured are also applicable.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种光子注入型弱光检测方法,采用主动注入光子的方式来补偿光电转换过程中损失的光生电荷,包括步骤:主动补偿,光电传感器(103)侧主动注入一定量的补偿光子,以使得光电传感器(103)接受到的补偿光子的总量大于其检测限(S1);混光检测,等量的补偿光子与待测光同时输入至光电传感器(103),以获得不失真的检测信号(S2)。该方法用来消除光电传感器(103)光电转换过程中损耗的光生电荷对测量结果的影响,即等效地降低光电传感器(103)的检测限、提高探测器对弱光的检测能力、解决光电传感器(103)原检测限附近范围的弱光量化比例失真的问题。

Description

一种光子注入型弱光检测方法及装置 技术领域
本发明涉及弱光检测领域,尤其涉及一种光子注入型弱光检测方法及装置。
背景技术
光谱检测是众多分析仪器与医疗检测仪器的基础和关键技术之一,从环境水质、食品安全监测,到石油化工、医药生产测控,再到体液、血液、蛋白质、基因组乃至细胞分析,有上千项检测基于光谱法,其中有很多涉及到弱光或极弱光的检测;此外,人们日常使用的一些电子设备也有不少涉及到弱光检测,例如手机和照相机在夜色下的拍照功能,这些检测最终都需要通过光传感器将光信号转化为电信号来供仪器进行定性或定量分析。
常用的光传感有光伏探测器、光电导探测器、热电堆探测器、光电二极管、光电二极管阵列、CCD图像传感器、CMOS图像传感器、NMOS图像传感器、以及InGaAs图像传感器,其对弱光探测的能力主要取决于检测限和灵敏度这两个参数,由于在光电转换的过程中不可避免地会丢失一些光生电荷,因此检测限在数值上大于灵敏度的取值,例如一个光传感器对光能量的检测限为50nJ、灵敏度为1nJ表明在单位时间内光能低于50nJ时传感器无法正常检测、单位时间内光能量大于50nJ时每变化1nJ时传感器都能给出差异化的响应。由于在光电转换的过程中不可避免地会丢失一些光生电荷,即传感器的检测限在数值上大于灵敏度的取值,因而传感器无法检测低于检测限的弱光信号,同时当一部分光能低于检测限、另一部分光能高于检测限时会出现输出信号 比例失真的情况,例如在夜晚或黄昏的时候人眼能看清的弱光环境,用手机或照相机拍摄出来的照片除了较亮的几个地方外其余相对暗一些的地方被拍成一团漆黑。
发明内容
为了克服现有技术的不足,本发明提供一种光子注入型弱光检测方法,每次检测的过程中通过补偿光源主动将一定量的光子注入光电传感器,并将补偿光子的总能量调节到光电传感器的检测限以上,采集光电传感器的输出信号减去补偿光信号来还原真实的测量信号,以此来消除传感器光电转换过程中损耗的光生电荷对测量结果的影响。
本发明提供一种光子注入型弱光检测方法,包括步骤:
主动补偿,光电传感器侧主动注入一定量的补偿光子,以使得所述光电传感器接受到的补偿光子的总量大于其检测限;
混光检测,等量的补偿光子与待测光同时输入至所述光电传感器,以获得不失真的检测信号。
优选地,主动补偿中具体为:
补偿光子注入,关闭待测光,将一定量的补偿光子注入到所述光电传感器,所述光电传感器接收到的补偿光子的总量大于其检测限;
背景信号获取,获取补偿光子注入后所述光电传感器输出的电信号,记为背景信号。
优选地,混光检测中具体为:
混合光子注入,开启待测光,将等量的补偿光子与待测光一并注入所述光电传感器;
检测信号获取,获取混合光子注入后所述光电传感器输出的混合信号,所述混合信号与所述背景信号的差值即为不失真的检测信号。
优选地,光源发出初级光子,将所述初级光子进行衰减混光处理后变成所述补偿光子,所述补偿光子均匀地射入所述光电传感器,所述初级光子的数量大于所述补偿光子的数量,所述初级光子的数量与所述补偿光子的数量成线性关系;通过初级光子发射组件发射初级光子,所述初级光子发射组件发射的光谱波长范围与所述光电传感器响应的波长范围部分重叠。
一种光子注入型弱光检测装置,包括补偿光源、光电传感器、光开关和电控组件;所述补偿光源、光电传感器和光开关与所述电控组件电性连接;其中,
所述补偿光源发出初级光子,初级光子转变成补偿光子后射入所述光电传感器,
待测光经过光处理后进入所述光电传感器,所述光开关容许或阻挡待测光进入所述光电传感器。
优选地,初级光子通过混光衰减组件变成补偿光子,所述补偿光源连接所述混光衰减组件,所述补偿光源发出初级光子进入所述混光衰减组件,所述混光衰减组件将初级光子转变为沿其截面均匀分布的补偿光子,初级光子的数量大于补偿光子的数量,补偿光子的能量大于所述光电传感器的检测限。
优选地,所述混光衰减组件为由若干个导光板组成的中空结构,所述导光板包括紧贴其局部表面的漫反射层,初级光子进入所述混光衰减组件经漫反射层的多次反射后形成均匀分布的散射光,所述混光衰减组件中的部分散热光作为补偿光子射向所述光电传感器。
优选地,所述光开关包括电子开关、机械开关,所述电子开关连接电控组件,所述电子开关连接仪器光学组件,所述电子开关通过电控的方式容许或阻挡待测光进入所述仪器光学组件;所述机械开关通过移动遮挡物的方式容许或阻挡待测光进入所述仪器光学组件。
优选地,所述机械开关为抽拉式机械开关,所述抽拉式机械开关包括第一挡光板、第一复位弹簧、导轨架、第一衔铁和第一电吸盘;其中,
所述第一挡光板一端的局部区域延伸有一连杆,所述第一衔铁固定设置于所述连杆的末端,所述第一复位弹簧套于所述连杆上;所述导轨架上设有一挡条,所述挡条设置于所述第一复位弹簧与所述第一衔铁之间;
所述第一挡光板的两端与所述导轨架的导轨相匹配,所述第一挡光板的两端在所述导轨架的导轨上沿直线运动;所述第一电吸盘固定设置于所述导轨架的一端,所述第一电吸盘与所述第一衔铁相对设置并位于所述连杆的延长线上;
所述第一挡光板上设有通光孔,当所述第一电吸盘未通电,所述第一复位弹簧推动所述第一挡光板移动,使得待测光通过所述通光孔进入所述仪器光学组件内;
当所述第一电吸盘通电后,所述第一电吸盘吸引第一衔铁,所述第一挡光板沿导轨运动,所述挡条阻碍所述第一复位弹簧运动并使其发生形变,所述第一挡光板遮挡待测光进入所述仪器光学组件内。
优选地,所述机械开关为杠杆式机械开关,所述杠杆式机械开关包括第二挡光板、固定架、支点圆柱、第二电吸盘和第二复位弹簧;其中,
所述支点圆柱固定于所述固定架上,所述第二挡光板的中部设有与所述支点圆柱相匹配的通孔;所述第二挡光板的一端固定设有第二衔铁,所述第二电吸盘位于所述第二衔铁的相对位置并固定设置于所述固定架上;
所述固定架上设有一固定块,所述固定块与所述第二电吸盘相邻设置,所述固定块将所述第二复位弹簧固定于所述固定架上;
所述第二挡光板上设有透光缺口,当所述第二电吸盘未通电,所述第二复位弹簧带动所述第二挡光板绕所述支点圆柱旋转,使得待测光通过所述透光缺口进入所述仪器光学组件内;
当所述第二电吸盘通电后,所述第二电吸盘吸引第二衔铁,所述第二复位弹簧带动所述第二挡光板绕所述支点圆柱旋转,使得所述第二挡光板遮挡待测光进入所述仪器光学组件内。
相比现有技术,本发明的有益效果在于:
本发明提供一种光子注入型弱光检测方法,测量开始前,关闭光开关通过补偿光源主动发出一定量的初级光子,初级光子经过所述混光衰减组件衰减变成补偿光子,并将补偿光子的总能量调节到光电传感器的检测限以上,所述光电传感器接收补偿光子并采集输出信号,记为补偿背景信号;开始测量后,开启光开关,待测光经所述仪器光学组件进行光学处理后进入所述光电传感器,同时所述补偿光源发出上述等量的初级光子,所述光电传感器接收补偿光子并采集输出信号,记为检测输出信号;检测输出信号减去补偿背景信号即为不失真的待测光信号,以此来消除传感器光电转换过程中损耗的光生电荷对测量结果的影响,即等效地降低光电传感器的检测限、提高探测器对弱光和极弱光的检测能力、解决接近传感器原检测限附近范围的弱光量化比例失真的问题。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的一种光子注入型弱光检测方法的流程图;
图2为本发明的一种光子注入型弱光检测方法的具体流程图;
图3为本发明的一种光子注入型弱光检测装置的整体结构示意图;
图4为本发明所述补偿光源的结构示意图;
图5为本发明所述混光衰减组件的结构示意图;
图6为本发明所述抽拉式机械开关的结构示意图;
图7为本发明所述杠杆式机械开关的结构示意图;
附图标记:101、补偿光源,102、混光衰减组件,103、光电传感器,104、光开关,105、仪器光学组件,106、电控组件,201、功率调节电路,202、发光组件,301、导光板,302、漫反射层,303、入射区域,304、射出区域,401、第一挡光板,402、第一复位弹簧,403、导轨架,404、第一衔铁,405、第一电吸盘,406、通光孔,407、第一定位孔,408、挡条,409、连杆,501、第二挡光板,502、固定架,503、支点圆柱,504、第二电吸盘,505、第二衔铁,506、第二复位弹簧,507、透光缺口,508、第二定位孔,509、固定块。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
一种光子注入型弱光检测方法,如图1、图2所示,包括步骤:
S1、主动补偿,光电传感器侧主动注入一定量的补偿光子,以使得所述光电传感器接受到的补偿光子的总量大于其检测限;将一定量的补偿光子主动注入光电传感器的一端,具体地还包括:
S11、补偿光子注入,关闭待测光,将一定量的补偿光子注入到所述光电传感器,所述光电传感器接收到的补偿光子的总量大于其检测限;
S12、背景信号获取,获取补偿光子注入后所述光电传感器输出的电信号,记为背景信号。
在一个实施例中,在检测之前通过主动注入补偿光子的方式来对光电转换过程中损失的能力进行光电补偿,将一定数量的补偿光子注入光电传感器;所述光电传感器接收到的补偿光子能量大于其检测限,该方法可以等效地降低光电传感器的检测限、提高探测器对弱光和极弱光的检测能力。
S2、混光检测,等量的补偿光子与待测光同时输入至所述光电传感器,以获得不失真的检测信号。具体还包括:
S21、混合光子注入,开启待测光,将等量的补偿光子与待测光一并注入所述光电传感器;
S22、检测信号获取,获取混合光子注入后所述光电传感器输出的混合信号,所述混合信号与所述背景信号的差值即为不失真的检测信号。在一个实施例中,检测时将注入与步骤S1中等量的补偿光子和待测光一并注入光电传感器,并且将光电传感器接收的光子能量抬高到光电传感器的检测限以上,所述混合信号与所述背景信号的差值即为不失真的检测信号;以此来消除光电传感器光电转换过程中损耗的光生电荷对测量结果的影响,即等效地降低光电传感器的检测限、提高探测器对弱光和极弱光的检测能力、解决解决传感器原检测限附近范围的弱光量化比例失真的问题。
在一个实施例中,光源发出初级光子,将所述初级光子进行衰减混光处理后变成所述补偿光子,所述补偿光子均匀地射入所述光电传感器,所述初级光子的数量大于所述补偿光子的数量,所述初级光子的数量与所述补偿光子的数量成线性关系。在本实施例中,衰减混光处理主要是将初级光子的数量减少,且将初级光子变得均匀后作为补偿光子射入所述光电传感器,补偿光子的能量大于光电传感器的检测限。在一个优选实施中,通过将初级光子通过漫反射材料并将部分初级光子射出,漫反射材料可以使得光子变得均匀。
需要说明的是,将初级光子进行衰减混光处理可以有多种方式,比如漫反射材料、光过滤器等,衰减混光处理还需要使得初级光子的数量与补偿光子的数量成线性关系,即初级光子的数量与补偿光子的数量的比值为一个常数。
在一个实施例中,在步骤S2中还包括,先将待测光进行光学处理后再射入所述光电传感器内。在本实施例中,一般地,光学处理包括汇聚、滤光、衍射、干涉、色散、分光等。
在一个实施例中,通过初级光子发射组件发射初级光子,所述初级光子发射组件发射的光谱波长范围与所述光电传感器响应的波长范围部分重叠。
一种光子注入型弱光检测装置,如图3-7所示,包括补偿光源101、光电传感器103、光开关104和电控组件106;其中,
所述补偿光源101发出初级光子,初级光子转变成补偿光子后射入所述光电传感器103,
待测光经过光处理后进入所述光电传感器103,所述光开关104容许或阻挡待测光进入所述光电传感器103。
初级光子通过混光衰减组件102变成补偿光子,所述补偿光源101连接所述混光衰减组件102,所述补偿光源101发出初级光子进入所述混光衰减组件102,所述混光衰减组件102将初级光子转变为沿其截面均匀分布的补偿光子,初级光子的数量大于补偿光子的数量,补偿光子的能量大于所述光电传感器103的检测限。
所述混光衰减组件102为由若干个导光板301组成的中空结构,所述导光板301包括紧贴其局部表面的漫反射层302,初级光子进入所述混光衰减组件102经漫反射层的多次反射后形成均匀分布的散射光,所述混光衰减组件102中的部分散热光作为补偿光子射向所述光电传感器103。
在一个实施例中,采集补偿光子与待测光同时射入所述光电传感器103后的输出信号,减去等量的补偿光子单独射入所述光电传感器103的输出信号,得到不失真的待测光信号。补偿光源101发出的初级光子经由混光衰减组件103之后变为能量略高于光电传感器103的检测限且沿截面均匀分布的补偿光子,从光电传感器103的感光窗口的一侧倾斜均匀照射到光电传感器103的感光组件上;与此同时,待测光穿过光开关进入仪器光学组件105,经光学处理之后从光电传感器103的感光窗口的正面照射到光电传感器103的感光组件上;一般地,光学处理包括汇聚、滤光、衍射、干涉、色散、分光等。
在本实施例中,在正式测量开始前,通过电控组件106将光开关104开闭切断待测光,同时控制补偿光源向光电传感器103注入一定量的补偿光子并采集光电传感器103的输出信号,记为补偿背景信号;在随后的正式测试过程中,通过电控组件106将光开关104打开,待测光进入仪器光学组件105内,经过仪器光学组件105进行光学处理后,待测光照射到光电传感器103的感光组件上,与此同时,电控组件106控制补偿光源向光电传感器103注入与上述等量的补偿光子,随即采集光电传感器103的输出信号并减掉补偿背景信号从而得到不失真的待测光信号。得到的真实的待测光信号以此来消除传感器光电转换过程中损耗的光生电荷对测量结果的影响,即等效地降低光电传感器103的检测限、提高探测器对弱光和极弱光的检测能力、解决接近传感器原检测限附近范围的弱光量化比例失真的问题。
需要说明的是,初级光子通过混光衰减组件102之后变成补偿光子,初级光子的数量大于补偿光子,补偿光子通过混光衰减组件的漫反射后比初级光子在空间上分布更加均匀,二者仅有上述两种区别。
所述光电传感器103包括感光窗口和感光组件;补偿光子通过所述感光窗口的一侧照射到所述感光组件上;待测光通过所述感光窗口的另一侧照射到所述感光组件上。在一个实施例中,一般地,光电传感器031的感光组件为一个小平面或一个小曲面,也是传感器感光材料的表面;待测光通过所述感光窗口的正面照射到所述感光组件上,而补偿光子通过所述感光窗口的一侧照射到所述感光组件上,主要是避免补偿光遮挡待测光。
所述补偿光源101包括功率调节电路201和发光组件202,所述功率调节电路201连接所述电控组件106,通过调节所述功率调节电路201的输出功率和输出时长使得所述发光组件202发出不同数量的初级光子。所述发光组件202的发光强度与所述功率调节电路201的输出功率成正比。所述发光组件202包括单个发光器或多个发光器的组合,所述发光器发射的光谱波长范围与所述光电传感器响应的波长范围部分重叠。在一个实施例中,如图4 所示,功率调节电路201向发光组件202提供电能,其输出功率和单次输出时长即输出脉冲宽度可调节,功率大小和输出时长受控于电控组件106,通过调节输出功率和输出时长来控制每次检测过程中发光组件202发出的光子数量,进而控制每次检测过程中向光电传感器103注入的补偿光子的数量。
一般地,发光器可以为LED、氙灯、氘灯、钨灯、黑体等任何形式的发光强度正比于驱动功率且发射光谱波长范围与光电传感器响应波长范围具有重叠区域的发光元件中的一种或多种组合。
所述混光衰减组件102为由若干个导光板301组成的中空结构,所述导光板301包括紧贴其局部表面的漫反射层302,初级光子进入所述混光衰减组件102经漫反射层的多次反射后形成均匀分布的散射光,所述混光衰减组件102中的部分散热光作为补偿光子射向所述光电传感器103。所述混光衰减组件102包括若干个透光区域,初级光子从所述混光衰减组件102的一侧透光区域进入,补偿光子从所述混光衰减组件102的另一侧透光区域射向所述光电传感器103,进入所述混光衰减组件102中的补偿光子与从其射出的补偿光强的数量成线性关系。在一个实施例中,如图5所示,混光衰减组件102,由导光板301和紧贴在导光板表面的漫反射材料形成的漫反射层302组成;导光板301的一面靠近侧面的地方未被漫反射材料覆盖形成可以透光的入射区域303,补偿光源发出光子通过该区域进入导光板301的内部,在导光板301内部传播时被紧贴在导光板301表面的漫反射材料多次反射后形成均匀分布的散射光;导光板301的另一侧面留有出射透光区域304,该区域亦未被漫反射材料覆盖,在导光板内传播的线混合均匀后经由出射透光区域304沿不同的方向射出,一部分光子作为补偿光子射向光电传感器103的感光部位,由于漫反射材料303与导光板301表面紧密贴合形成了不随时间而改变的一体化元件,因而混合衰减后的出射光强于进入混光衰减组件的入射光呈固定比例关系。
需要说明的是,入射区域303与射出区域304都属于透光区域,中空结 构的透光区域与漫反射区域的大小可根据具体需要进行调节。
所述光开关104包括电子开关、机械开关,所述电子开关连接电控组件106,所述电子开关通过电控的方式容许或阻挡待测光进入所述仪器光学组件105;所述机械开关通过移动遮挡物的方式容许或阻挡待测光进入所述仪器光学组件105。一般地,对于分子吸收光谱、激光拉曼光谱、荧光激发光谱等存在可即时启停主光源照射样品的检测应用场景,优先采用电子开关,即采集补偿背景信号时通过电控关停仪器主光源将待测光将为零;对于生物荧光、原子发射光谱等不需要光源照射样品的自发光检测应用场景,一般采用物理遮挡式机械光开关,即采集补偿背景信号时通过控制挡光元件机械位移来对待测光进行物理遮挡。
在一个实施例中,所述机械开关为抽拉式机械开关,所述抽拉式机械开关包括第一挡光板401、第一复位弹簧402、导轨架403、第一衔铁404和第一电吸盘405;其中,所述第一挡光板401一端的局部区域延伸有一连杆409,所述第一衔铁404固定设置于所述连杆409的末端,所述第一复位弹簧402套于所述连杆409上;所述导轨架403上设有一挡条408,所述挡条408设置于所述第一复位弹簧402与所述第一衔铁404之间;所述第一挡光板401的两端与所述导轨架403的导轨相匹配,所述第一挡光板401的两端在所述导轨架403的导轨上沿直线运动;所述第一电吸盘405固定设置于所述导轨架403的一端,所述第一电吸盘405与所述第一衔铁404相对设置并位于所述连杆409的延长线上;所述第一挡光板401上设有通光孔406,当所述第一电吸盘405未通电,所述第一复位弹簧402推动所述第一挡光板401移动,使得待测光通过所述通光孔406进入所述仪器光学组件105内;当所述第一电吸盘405通电后,所述第一电吸盘405吸引第一衔铁404,所述第一挡光板401沿导轨运动,所述挡条408阻碍所述第一复位弹簧402运动并使其发生形变,所述第一挡光板401遮挡待测光进入所述仪器光学组件105内。
具体地,如图6所示,第一挡光板401的中部开有镂空通光孔406,其一 端有一连杆409穿过第一复位弹簧402以及固定式导轨架403与衔铁404相连接;固定式导轨架403通过两侧的导轨以及中部的孔洞来导引可动第一挡光板401的运行轨迹,使得第一挡光板401仅能沿一个方向做直线运动,导轨架403上开有定位孔407用于整个光开关在仪器光学组件105上的安装固定;第一电吸盘405安装在导轨架403的另一端,与第一衔铁404处于同一轴线上,其通电、断电控制受控于仪器电控组件106;当第一电吸盘405未通电时对第一衔铁404无吸引力,此时第一复位弹簧402将可动第一挡光板401推向最左端,使得第一挡光板401上的镂空通光孔406对准仪器的待测光入射位置,待测光可以穿过通光孔406进入仪器光学组件105;当第一电吸盘405通电时对第一衔铁404产生电磁吸引力,电磁吸引力大于第一复位弹簧402的弹力,使得第一衔铁404连带着可动第一挡光板401向右运动、通光孔406偏离待测光入射位置、通光孔左侧的第一挡光板401位移到待测光入射位置将待测光遮挡在仪器光学组件105之外。
在另一个实施例中,所述机械开关为杠杆式机械开关,所述杠杆式机械开关包括第二挡光板501、固定架502、支点圆柱503、第二电吸盘504和第二复位弹簧506;其中,所述支点圆柱503固定于所述固定架502上,所述第二挡光板501的中部设有与所述支点圆柱503相匹配的通孔;所述第二挡光板501的一端固定设有第二衔铁505,所述第二电吸盘504位于所述第二衔铁505的相对位置并固定设置于所述固定架502上;所述固定架502上设有一固定块509,所述固定块509与所述第二电吸盘504相邻设置,所述固定块509将所述第二复位弹簧506固定于所述固定架502上;所述第二挡光板501上设有透光缺口507,当所述第二电吸盘504未通电,所述第二复位弹簧506带动所述第二挡光板501绕所述支点圆柱503旋转,使得待测光通过所述透光缺口507进入所述仪器光学组件105内;当所述第二电吸盘504通电后,所述第二电吸盘504吸引第二衔铁505,所述第二复位弹簧506带动所述第二挡光板501绕所述支点圆柱503旋转,使得所述第二挡光板501 遮挡待测光进入所述仪器光学组件105内。
具体地,如图7所示,连杆式挡光板的一端为第二挡光板501、另一端为刚性转动杆,第二挡光板501的一侧开有镂空通光缺口507,刚性转动杆的中部有一圆孔被支点圆柱503所贯穿、另一端第二衔铁505以及第二复位弹簧506的一端相连;固定架502上有固定块509用于固定弹簧的底端,其上留有第二定位孔508用于整个光开关在仪器光学组件105上的安装固定;第二电吸盘504安装在固定架502另一端侧面和第二衔铁505相对应的地方,其通电、断电控制受控于仪器电控组件106;当第二电吸盘504未通电时对第二衔铁505无吸引力,此时第二复位弹簧506将刚性转动杆的一端(图中右侧)推至最上方,另一端(图中左侧)的第二挡光板501被固定架502上临近的台阶限位在下侧,使得第二挡光板501上侧的镂空通光缺口507对准仪器的待测光入射位置,待测光可以穿过通光缺口507进入仪器光学组件105;当第二电吸盘504通电时对第二衔铁505产生电磁吸引力,电磁吸引力大于复位弹簧的弹力,使得第二衔铁505连带着刚性转动杆绕支点圆柱503顺时针转动,刚性转动杆一端的第二挡光板501向上位移、通光缺口507偏离待测光入射位置、通光缺口下方的挡板位移到待测光入射位置将待测光遮挡在仪器光学组件之外。
需要说明的是,物理遮挡式的机械开关不仅仅局限于上述杠杆式机械开关和抽拉式机械开关这两种,其他用于对待测光进行物理遮挡的方式同样适用。
以上,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书附图所示和以上而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

Claims (10)

  1. 一种光子注入型弱光检测方法,其特征在于,包括步骤:
    主动补偿,光电传感器侧主动注入一定量的补偿光子,以使得所述光电传感器接受到的补偿光子的总量大于其检测限;
    混光检测,等量的补偿光子与待测光同时输入至所述光电传感器,以获得不失真的检测信号。
  2. 如权利要求1所述的一种光子注入型弱光检测方法,其特征在于,主动补偿中具体为:
    补偿光子注入,关闭待测光,将一定量的补偿光子注入到所述光电传感器,所述光电传感器接收到的补偿光子的总量大于其检测限;
    背景信号获取,获取补偿光子注入后所述光电传感器输出的电信号,记为背景信号。
  3. 如权利要求1所述的一种光子注入型弱光检测方法,其特征在于,混光检测中具体为:
    混合光子注入,开启待测光,将等量的补偿光子与待测光一并注入所述光电传感器;
    检测信号获取,获取混合光子注入后所述光电传感器输出的混合信号,所述混合信号与所述背景信号的差值即为不失真的检测信号。
  4. 如权利要求1或2所述的一种光子注入型弱光检测方法,其特征在于,光源发出初级光子,将初级光子进行衰减混光处理后变成补偿光子,补偿光子均匀地射入所述光电传感器,初级光子的数量大于补偿光子的数量,初级光子的数量与补偿光子的数量成线性关系;通过初级光子发射组件发射初级光子,初级光子发射组件发射的光谱波长范围与所述光电传感器响应的波长范围部分重叠。
  5. 一种光子注入型弱光检测装置,其特征在于,包括补偿光源、光电传 感器、光开关和电控组件;所述补偿光源、光电传感器和光开关与所述电控组件电性连接;其中,
    所述补偿光源发出初级光子,初级光子转变成补偿光子后射入所述光电传感器,
    待测光经过光处理后进入所述光电传感器,所述光开关容许或阻挡待测光进入所述光电传感器。
  6. 如权利要求5所述的一种光子注入型弱光检测装置,其特征在于,初级光子通过混光衰减组件变成补偿光子,所述补偿光源连接所述混光衰减组件,所述补偿光源发出初级光子进入所述混光衰减组件,所述混光衰减组件将初级光子转变为沿其截面均匀分布的补偿光子,初级光子的数量大于补偿光子的数量,补偿光子的总能量大于所述光电传感器的检测限。
  7. 如权利要求6所述的一种光子注入型弱光检测装置,其特征在于,所述混光衰减组件为由若干个导光板组成的中空结构,所述导光板包括紧贴其局部表面的漫反射层,初级光子进入所述混光衰减组件经漫反射层的多次反射后形成均匀分布的散射光,所述混光衰减组件中的部分散射光作为补偿光子射向所述光电传感器。
  8. 如权利要求5所述的一种光子注入型弱光检测装置,其特征在于,所述光开关包括电子开关、机械开关,所述电子开关连接电控组件,所述电子开关连接仪器光学组件,所述电子开关通过电控的方式容许或阻挡待测光进入所述仪器光学组件;所述机械开关通过移动遮挡物的方式容许或阻挡待测光进入所述仪器光学组件。
  9. 如权利要求8所述的一种光子注入型弱光检测装置,其特征在于,所述机械开关为抽拉式机械开关,所述抽拉式机械开关包括第一挡光板、第一复位弹簧、导轨架、第一衔铁和第一电吸盘;其中,
    所述第一挡光板一端的局部区域延伸有一连杆,所述第一衔铁固定设置于所述连杆的末端,所述第一复位弹簧套于所述连杆上;所述导轨架上设有 一挡条,所述挡条设置于所述第一复位弹簧与所述第一衔铁之间;
    所述第一挡光板的两端与所述导轨架的导轨相匹配,所述第一挡光板的两端在所述导轨架的导轨上沿直线运动;所述第一电吸盘固定设置于所述导轨架的一端,所述第一电吸盘与所述第一衔铁相对设置并位于所述连杆的延长线上;
    所述第一挡光板上设有通光孔,当所述第一电吸盘未通电,所述第一复位弹簧推动所述第一挡光板移动,使得待测光通过所述通光孔进入所述仪器光学组件内;
    当所述第一电吸盘通电后,所述第一电吸盘吸引第一衔铁,所述第一挡光板沿导轨运动,所述挡条阻碍所述第一复位弹簧运动并使其发生形变,所述第一挡光板遮挡待测光进入所述仪器光学组件内。
  10. 如权利要求8所述的一种光子注入型弱光检测装置,其特征在于,所述机械开关为杠杆式机械开关,所述杠杆式机械开关包括第二挡光板、固定架、支点圆柱、第二电吸盘和第二复位弹簧;其中,
    所述支点圆柱固定于所述固定架上,所述第二挡光板的中部设有与所述支点圆柱相匹配的通孔;所述第二挡光板的一端固定设有第二衔铁,所述第二电吸盘位于所述第二衔铁的相对位置并固定设置于所述固定架上;
    所述固定架上设有一固定块,所述固定块与所述第二电吸盘相邻设置,所述固定块将所述第二复位弹簧固定于所述固定架上;
    所述第二挡光板上设有透光缺口,当所述第二电吸盘未通电,所述第二复位弹簧带动所述第二挡光板绕所述支点圆柱旋转,使得待测光通过所述透光缺口进入所述仪器光学组件内;
    当所述第二电吸盘通电后,所述第二电吸盘吸引第二衔铁,所述第二复位弹簧带动所述第二挡光板绕所述支点圆柱旋转,使得所述第二挡光板遮挡待测光进入所述仪器光学组件内。
PCT/CN2019/125395 2019-03-19 2019-12-13 一种光子注入型弱光检测方法及装置 WO2020186845A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910206757.9A CN109916514A (zh) 2019-03-19 2019-03-19 一种光子注入型弱光检测方法及装置
CN201910206757.9 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020186845A1 true WO2020186845A1 (zh) 2020-09-24

Family

ID=66965574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125395 WO2020186845A1 (zh) 2019-03-19 2019-12-13 一种光子注入型弱光检测方法及装置

Country Status (2)

Country Link
CN (1) CN109916514A (zh)
WO (1) WO2020186845A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916514A (zh) * 2019-03-19 2019-06-21 谱诉光电科技(苏州)有限公司 一种光子注入型弱光检测方法及装置
WO2021119954A1 (zh) * 2019-12-16 2021-06-24 谱诉光电科技(苏州)有限公司 一种弱光检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370407B1 (en) * 1999-07-27 2002-04-09 Tecmed, Incorporated System for improving the sensitivity and stability of optical polarimetric measurements
CN108444917A (zh) * 2018-06-05 2018-08-24 深圳迎凯生物科技有限公司 自校准的弱光检测装置
CN108982440A (zh) * 2018-06-10 2018-12-11 福建医科大学 上转换微弱光检测器的构建及其用于谷胱甘肽的检测
CN109916514A (zh) * 2019-03-19 2019-06-21 谱诉光电科技(苏州)有限公司 一种光子注入型弱光检测方法及装置
CN209706954U (zh) * 2019-03-19 2019-11-29 谱诉光电科技(苏州)有限公司 一种光子注入型弱光检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370407B1 (en) * 1999-07-27 2002-04-09 Tecmed, Incorporated System for improving the sensitivity and stability of optical polarimetric measurements
CN108444917A (zh) * 2018-06-05 2018-08-24 深圳迎凯生物科技有限公司 自校准的弱光检测装置
CN108982440A (zh) * 2018-06-10 2018-12-11 福建医科大学 上转换微弱光检测器的构建及其用于谷胱甘肽的检测
CN109916514A (zh) * 2019-03-19 2019-06-21 谱诉光电科技(苏州)有限公司 一种光子注入型弱光检测方法及装置
CN209706954U (zh) * 2019-03-19 2019-11-29 谱诉光电科技(苏州)有限公司 一种光子注入型弱光检测装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONG, YANJI ET AL., NON-OFFICIAL TRANSLATION: AIR-BREATHING PULSE LASER PROPULSION INTRODUCTION, 30 April 2012 (2012-04-30), DOI: 20200219120813Y *
PU, ZHAOBANG ET AL., NON-OFFICIAL TRANSLATION: OPTOELECTRONIC TEST TECHNOLOGY, 31 March 2010 (2010-03-31), DOI: 20200219120709X *
PU, ZHAOBANG ET AL., NON-OFFICIAL TRANSLATION: OPTOELECTRONIC TEST TECHNOLOGY, 31 March 2010 (2010-03-31), DOI: 20200219120719Y *

Also Published As

Publication number Publication date
CN109916514A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2020186845A1 (zh) 一种光子注入型弱光检测方法及装置
CN104483104B (zh) 一种光电探测器光谱响应分析系统
KR101690073B1 (ko) 컴팩트한 구조를 갖는 분광분석장치
US20100012850A1 (en) Ultraviolet radiation detector and apparatus for evaluating ultraviolet radiation protection effect
TW200839227A (en) Automatic inspection system for flat panel substrate
CN102778455B (zh) 一种胶体金免疫层析试纸用的检测系统
WO1998022802A1 (de) Verfahren und vorrichtung zur kombinierten absorptions- und reflektanzspektroskopie
DE102012020457A1 (de) Optische Abstandsmess- oder Ortungseinrichtung und elektronisches Gerät, welches mit demselben ausgebildet ist
TWI764062B (zh) 光偵測裝置及生理特徵偵測識別方法
JP3056037B2 (ja) 光学的測定方法及びその装置
DE602004002571T2 (de) Spektrophotometer und dessen baugruppen
CN209706954U (zh) 一种光子注入型弱光检测装置
CN207964840U (zh) 可实现荧光免疫层析定量检查的食品安全综合分析装置
CN106415241A (zh) Atr红外线光谱仪
CN107167448B (zh) 一种基于复合抛物面聚光器的小型近红外光谱仪光学系统
CN106885761B (zh) 一种烟羽排放检测激光雷达系统
US7531775B1 (en) Photometer for tracking a moving light source
US6020961A (en) Nephelometer
CN109998481B (zh) 基于光电倍增管的微弱光检测装置
US6734957B2 (en) Visible light sensor mechanism for constant brightness projection systems
CN103620375A (zh) 高通量准直照射器和均匀场照射的方法
CN106979955A (zh) 光学传感器
CN202661388U (zh) 一种胶体金免疫层析试纸用的检测系统
WO2021119954A1 (zh) 一种弱光检测方法
US7626697B2 (en) Grating photometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919605

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19919605

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19919605

Country of ref document: EP

Kind code of ref document: A1