WO2021119911A1 - 电芯 - Google Patents

电芯 Download PDF

Info

Publication number
WO2021119911A1
WO2021119911A1 PCT/CN2019/125628 CN2019125628W WO2021119911A1 WO 2021119911 A1 WO2021119911 A1 WO 2021119911A1 CN 2019125628 W CN2019125628 W CN 2019125628W WO 2021119911 A1 WO2021119911 A1 WO 2021119911A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
packaging bag
adhesive layer
battery cell
maximum distance
Prior art date
Application number
PCT/CN2019/125628
Other languages
English (en)
French (fr)
Inventor
肖良针
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2019/125628 priority Critical patent/WO2021119911A1/zh
Priority to EP19939053.5A priority patent/EP3866248A4/en
Priority to CN201980039672.4A priority patent/CN113348580B/zh
Publication of WO2021119911A1 publication Critical patent/WO2021119911A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the technical field of lithium-ion batteries, in particular to a battery cell.
  • the soft-packaged lithium-ion battery uses a packaging bag (such as aluminum-plastic film) to seal the electrode assembly.
  • a packaging bag such as aluminum-plastic film
  • double-sided tape and hot melt adhesive are generally attached to the electrode assembly surface to bond the electrode assembly and the packaging bag. Due to the excessive strength of the bonding force between the electrode assembly and the packaging bag, stress is concentrated at the glue position after the fall, and the electrode assembly is torn, resulting in failure of the fall.
  • the present application provides a battery cell, which can reduce the risk of the electrode assembly tearing or the electrode assembly punching the packaging bag after the battery core is dropped, and the occurrence rate of battery damage is reduced.
  • the application provides an electric core, which includes an electrode assembly, a packaging bag, an adhesive layer, and an electrolyte.
  • the electrode assembly is packaged in the packaging bag and is bonded to the packaging bag through the adhesive layer.
  • the maximum bonding force f(N), the maximum distance x (mm) of the bonding layer in the width direction of the electrode assembly, and the maximum distance of the bonding layer in the length direction of the electrode assembly y(mm) satisfies the following relationship: 0.098m/a ⁇ f ⁇ F, where a is the smaller value of x and y.
  • the cross-sectional shape of the adhesive layer is annular.
  • the electrode assembly includes a first surface and a second surface that are opposed to each other, the first surface and/or the second surface is provided with the adhesive layer, and the adhesive layer surrounds the The area of the first surface is greater than 1/3 of the area of the first surface, or the area of the adhesive layer surrounding the second surface is greater than 1/3 of the area of the second surface.
  • the battery cell further includes a substrate disposed on the electrode assembly, and the adhesive layer is disposed around the periphery of the substrate.
  • the maximum distance x (mm) of the bonding layer in the width direction of the electrode assembly, the width X (mm) of the electrode assembly, and the bonding layer in the length direction of the electrode assembly satisfy the following relationship: 1/2X ⁇ x ⁇ X, 1/3Y ⁇ y ⁇ Y.
  • the maximum distance x (mm) of the bonding layer in the width direction of the electrode assembly and the maximum distance y (mm) of the bonding layer in the length direction of the electrode assembly satisfy the following relationship : 0.5 ⁇ x/y ⁇ 2.
  • the thickness of the battery core in the region where the adhesive layer is located is less than the maximum thickness of the battery core.
  • the minimum distance of the adhesive layer is greater than 2 mm.
  • the packaging bag includes a first groove and a second groove that are opposed to each other, the depth of the first groove is greater than that of the second groove, and the electrode assembly is accommodated in the first groove In the accommodating space formed with the second groove, the adhesive layer is located between the electrode assembly and the first groove or between the electrode assembly and the second groove.
  • the maximum adhesive force f of the adhesive layer is 0.05N-2N.
  • the battery cell provided by the present application, wherein the total weight m of the electrode assembly, the packaging bag and the electrolyte, the minimum top seal strength F, the maximum bonding force f of the bonding layer, and the bonding layer
  • the maximum distance x in the width direction of the electrode assembly and the maximum distance y of the adhesive layer in the length direction of the electrode assembly satisfy the following relationship: 0.098m/a ⁇ f ⁇ F, where a is x and y
  • the smaller value makes the adhesive force of the adhesive layer in an appropriate range, which can balance the risks of electrode assembly tearing and the top seal punching of the packaging bag, that is, it can reduce the electrode assembly tearing or electrode assembly The risk of breaking open the bag.
  • FIG. 1 is a schematic diagram of the structure of an electrode assembly provided by an embodiment of the application.
  • Fig. 2 is a schematic structural diagram of a packaging bag provided by an embodiment of the application.
  • FIG. 3 is a front view of an electrode assembly provided by another embodiment of the application.
  • FIG. 4 is a front view of an electrode assembly provided by another embodiment of this application.
  • Fig. 5 is a schematic structural diagram of a packaging bag provided by another embodiment of the application.
  • FIG. 6 is a schematic diagram of the structure of adhesive tape provided by an embodiment of the application.
  • the battery cell provided by an embodiment of the present application includes an electrode assembly 20, a packaging bag 40, an adhesive 60, and an electrolyte (not shown).
  • the electrode assembly 20 is packaged in the packaging bag 40 and is bonded to the packaging bag 40 through the adhesive 60.
  • the electrolyte is contained in the packaging bag 40.
  • the electrode assembly 20 includes a positive pole piece, a negative pole piece, an isolation membrane and a tab 24.
  • the isolation film is arranged between the positive pole piece and the negative pole piece.
  • the tab 24 is arranged on the positive pole piece and the negative pole piece, and is used to extract electrons from the positive pole piece and the negative pole piece.
  • the tab 24 extends beyond the positive pole piece and the negative pole piece.
  • the positive pole piece and the negative pole piece are stacked or wound to form the electrode assembly 20.
  • the electrode assembly 20 includes a first surface 21 and a second surface 23 opposite to each other. The tab 24 and the packaging bag 40 are packaged together.
  • the packaging bag 40 is used to contain the electrolyte and package the electrode assembly 20.
  • the packaging bag 40 may be made of aluminum plastic film, steel plastic film, or the like.
  • the packaging bag 40 includes a first surface 41 and a second surface 42 opposite to each other.
  • the first surface 41 of the packaging bag 40 is opposite to the first surface 21 of the electrode assembly 20, and the second surface 42 of the packaging bag 40 is opposite to the second surface 42 of the electrode assembly 20.
  • the first surface 41 is provided with a first groove 412
  • the second surface 42 is provided with a second groove 422.
  • the depth of the first groove 412 is greater than the depth of the second groove 422.
  • the first groove 412 and the second groove 422 jointly form an accommodating space 44.
  • the electrode assembly 20 is accommodated in the accommodation space 44.
  • the bonding member 60 is located between the first groove 412 and the first surface 21.
  • the adhesive member 60 includes an adhesive layer 62, and the shape of the adhesive layer 62 along a cross section parallel to the plane where the first surface 21 is located is substantially annular.
  • the adhesive layer 62 may be a glue layer or an adhesive tape.
  • the area of the annular adhesive layer 62 surrounding the first surface 21 of the electrode assembly 20 is greater than 1/3 of the area of the first surface 21.
  • the adhesive layer 62 can be located anywhere on the first surface 21.
  • the thickness of the electrode assembly 20 in the area where the adhesive layer 62 is located is less than the maximum thickness of the electrode assembly 20, for example, the adhesive layer 62 avoids
  • the electrode assembly 20 is provided with a positive pole piece, a negative pole piece, an isolation membrane, and an area of the tab 24 at the same time, so as to facilitate the thinning of the battery core.
  • the ring is a square ring, that is, the inner ring and the outer ring of the ring are both square in shape.
  • the shape of the cross-section of the bonding layer 62 along the direction parallel to the plane where the first surface 21 is located can also be a circular ring (see FIG. 3), an elliptical ring, or a polygonal ring (see FIG. 4). Wait.
  • the torus refers to the shape of the inner ring and the outer ring are circular
  • the elliptical ring refers to the shape of the inner ring and the outer ring are both elliptical
  • the polygonal ring refers to the shape of the inner ring and/or the outer ring.
  • the shape is polygonal. Compared with the whole piece of (plate-shaped) double-sided tape, the inner and outer rings of the ring-shaped adhesive layer can play a buffering role. After the battery core falls, it can better disperse the stress, avoid stress concentration, and affect the electrode assembly. It has a better cushioning effect, which helps to avoid the electrode assembly tearing or the electrode assembly punching out of the packaging bag.
  • the shape of the cross section of the bonding layer 62 along the direction parallel to the plane of the first surface 21 is a circular ring or an elliptical ring, which can more effectively disperse stress.
  • the adhesive layer 62 is located between the second groove 422 and the second surface of the electrode assembly.
  • the area of the annular adhesive layer 62 surrounding the second surface of the electrode assembly is greater than 1/3 of the area of the second surface.
  • the adhesive member 60 is located between the second groove 422 of the packaging bag 40 and the electrode assembly 20, after falling, the electrode assembly 20 is connected to the adhesive member 60.
  • the bonded parts are more likely to be torn.
  • the adhesive member 60 is located between the first groove 412 of the packaging bag 40 and the electrode assembly 20, after falling, the packaging position of the packaging bag 40 is more likely to be affected by the electrode assembly 20. Rush away.
  • the bonding member 60 further includes a substrate 64 disposed on the electrode assembly 20.
  • the substrate 64 is approximately plate-shaped.
  • the substrate 64 is selected from polyethylene terephthalate.
  • the adhesive layer 62 is an adhesive layer, which is arranged around the periphery of the substrate 64.
  • the material of the bonding layer 62 is selected from hot melt adhesives.
  • the hot melt adhesive is selected from polyolefin hot melt adhesives, polyurethane hot melt adhesives, ethylene and its copolymers hot melt adhesives, polyester hot melt adhesives, polyamide hot melt adhesives, styrene and One or more of its block copolymer hot melt adhesives.
  • the adhesive layer 62 may be extruded and formed by hot pressing a hot melt adhesive.
  • a tape 80 is provided, and the tape 80 is a single-sided adhesive.
  • the adhesive paper 80 includes a substrate 82 and an adhesive layer 84 disposed on the substrate 82, and the adhesive is selected from hot melt adhesives. Stick the structural adhesive paper 80 on the first surface 21 or the second surface 22 of the electrode assembly 20, and package the electrode assembly 20 in the packaging bag 40, corresponding to the packaging bag 40 The area of the structural adhesive paper 80 is hot-pressed, and the adhesive layer 84 is extruded around the substrate 82 to form an annular adhesive layer 62.
  • the adhesive layer 62 when the adhesive layer 62 is an adhesive layer, it can also be prepared and formed by other methods, for example, directly coating an adhesive on the electrode assembly 20 to form it. It can be understood that, when the adhesive layer 62 is an adhesive tape, it is formed by directly attaching a ring-shaped adhesive tape to the electrode assembly 20.
  • the adhesive paper 80 can also be a double-sided adhesive, that is, the adhesive layer is provided on both sides of the substrate. When hot pressing is performed, the adhesive on both sides The adhesive layers are all extruded around the substrate to form the adhesive layer 62 together.
  • the maximum adhesive force f of the adhesive layer 62 is 0.05N-2N.
  • the width X (mm) of the electrode assembly 20, and the maximum distance x (mm) of the adhesive layer 62 in the width direction of the electrode assembly 20 satisfies 1/2X ⁇ x ⁇ X (the value of each parameter Calculation).
  • the length Y (mm) of the electrode assembly 20 and the maximum distance y (mm) of the adhesive layer 62 in the length direction of the electrode assembly 20 satisfy 1/3Y ⁇ y ⁇ Y.
  • the maximum distance x (mm) of the adhesive layer 62 in the width direction of the electrode assembly 20 and the maximum distance y (mm) of the adhesive layer 62 in the length direction of the electrode assembly 20 satisfy the following relationship : 0.5 ⁇ x/y ⁇ 2.
  • the minimum distance of the adhesive layer 62 in the length direction of the electrode assembly 20 is greater than 2 mm.
  • the minimum packaging strength F(N) between the tab 24 and the packaging bag 40, the total weight of the electrode assembly 20, the packaging bag 40 and the electrolyte is m(g), and the adhesive
  • the maximum distance y (mm) in the length direction satisfies the following relationship: 0.098m/a ⁇ f ⁇ F (calculated based on the value of each parameter), where a is the smaller value of x and y.
  • the size of the adhesive force of the annular adhesive layer 62 has an important influence on the tearing of the electrode assembly or the punching of the top seal of the packaging bag. If the adhesive force is too small, the adhesive layer will not be able to buffer the electrode assembly during the drop process, which will more easily cause the electrode assembly to punch out the top seal position of the packaging bag. If the adhesive force is too large, the adhesive layer will tear the electrode assembly severely during the drop process, resulting in tearing of the electrode assembly.
  • the battery cell provided in the present application, wherein the total weight m (g) of the electrode assembly 20, the packaging bag 40 and the electrolyte, the minimum top seal strength F (N), and the maximum bonding of the adhesive layer 62
  • the force f (N), the maximum distance of the adhesive layer 62 in the width direction of the electrode assembly 20 is x (mm) and the maximum distance of the adhesive layer 62 in the length direction of the electrode assembly 20 y(mm) satisfies the following relationship: 0.098m/a ⁇ f ⁇ F, where a is the smaller value of x and y, so that the bonding force of the bonding layer is in an appropriate range and can balance the electrode
  • the risk of component tearing and the top seal punching of the packaging bag can reduce the risk of the electrode assembly tearing or the electrode assembly punching the packaging bag.
  • the adhesive layer 62 has a ring shape, and its inner and outer rings can play a buffering role, which is beneficial to disperse stress, and further reduces the risk of electrode assembly tearing or the electrode assembly punching out of the packaging bag.
  • the width X (mm) and length Y (mm) of the electrode assembly, the maximum distance x (mm) of the adhesive layer in the width direction of the electrode assembly, and the distance between the adhesive layer and the electrode assembly The maximum distance y (mm) in the length direction satisfies the following relationship: 1/2X ⁇ x ⁇ X, 1/3Y ⁇ y ⁇ Y, balance the stress of the bonding layer in the width direction and the length direction of the electrode assembly , To further reduce the risk of electrode assembly tearing or electrode assembly punching out of the packaging bag.
  • the area of the adhesive layer 62 surrounding the first surface 21 of the electrode assembly 20 is greater than 1/3 of the area of the first surface 21, or the adhesive layer 62 surrounds the second surface of the electrode assembly 20
  • the area of 22 is greater than 1/3 of the area of the second surface 22, that is, the annular adhesive layer 62 has a larger area, which is beneficial to dispersing stress, avoiding stress concentration, and further reducing electrode assembly tearing or electrode assembly The risk of breaking open the bag.
  • the adhesive force of the adhesive layer described in the present application is measured by the universal tensile machine to test the tensile force of the peeling electrode assembly and the packaging bag.
  • the total weight m of the electrode assembly, the packaging bag and the electrolyte is 52.3g
  • the packaging strength F of the packaging bag at the position of the tab is 2.51N
  • the ring-shaped adhesive layer The maximum bonding force f is 0.3N
  • the length Y of the electrode assembly is 81mm
  • the width X of the electrode assembly is 61mm
  • the maximum distance y of the bonding layer in the length direction of the electrode assembly is 40mm
  • the bonding layer is in the electrode assembly
  • the maximum distance x in the width direction is 45mm.
  • the total weight m of the electrode assembly, the packaging bag and the electrolyte is 52.2g
  • the packaging strength F of the packaging bag at the position of the tab is 2.55N
  • the ring-shaped adhesive layer The maximum bonding force f is 1N
  • the length Y of the electrode assembly is 81mm
  • the width X of the electrode assembly is 61mm
  • the maximum distance y of the bonding layer in the length direction of the electrode assembly is 40mm
  • the bonding layer is on the electrode assembly.
  • the maximum distance x in the width direction is 45 mm.
  • the total weight m of the electrode assembly, the packaging bag and the electrolyte is 52.2g
  • the packaging strength F of the packaging bag at the position of the tab is 2.55N
  • the ring-shaped adhesive layer The maximum bonding force f is 2N
  • the length Y of the electrode assembly is 81mm
  • the width X of the electrode assembly is 61mm
  • the maximum distance y of the bonding layer in the length direction of the electrode assembly is 40mm.
  • the maximum distance x in the width direction is 45 mm.
  • the total weight m of the electrode assembly, the packaging bag and the electrolyte is 52.3g
  • the packaging strength F of the packaging bag at the position of the tab is 2.6N
  • the ring-shaped adhesive layer The maximum bonding force f is 0.1N
  • the length Y of the electrode assembly is 81mm
  • the width X of the electrode assembly is 61mm
  • the maximum distance y of the bonding layer in the length direction of the electrode assembly is 40mm
  • the bonding layer is in the electrode assembly
  • the maximum distance x in the width direction is 45mm.
  • the total weight m of the electrode assembly, the packaging bag and the electrolyte is 52.3g
  • the packaging strength F of the packaging bag at the position of the tab is 2.45N
  • the ring-shaped adhesive layer The maximum bonding force f is 5N
  • the length Y of the electrode assembly is 81mm
  • the width X of the electrode assembly is 61mm
  • the maximum distance y of the bonding layer in the length direction of the electrode assembly is 40mm.
  • the maximum distance x in the width direction is 45 mm.
  • the total weight m of the electrode assembly, the packaging bag and the electrolyte is 52.1g
  • the packaging strength F of the packaging bag at the position of the tab is 2.65N
  • the ring-shaped adhesive layer The maximum bonding force f is 20N
  • the length Y of the electrode assembly is 81mm
  • the width X of the electrode assembly is 61mm
  • the maximum distance y of the bonding layer in the length direction of the electrode assembly is 40mm
  • the bonding layer is on the electrode assembly.
  • the maximum distance x in the width direction is 45 mm.
  • the total weight m of the electrode assembly, the packaging bag and the electrolyte is 52.2g
  • the packaging strength F of the packaging bag at the position of the tab is 2.55N
  • the ring-shaped adhesive layer The maximum bonding force f is 0.3N
  • the length Y of the electrode assembly is 81mm
  • the width X of the electrode assembly is 61mm
  • the maximum distance y of the bonding layer in the length direction of the electrode assembly is 40mm
  • the bonding layer is in the electrode assembly
  • the maximum distance x in the width direction is 15mm.
  • the total weight m of the electrode assembly, the packaging bag and the electrolyte is 52.2g
  • the packaging strength F of the packaging bag at the position of the tab is 2.53N
  • the ring-shaped adhesive layer The maximum bonding force f is 2N
  • the length Y of the electrode assembly is 81mm
  • the width X of the electrode assembly is 61mm
  • the maximum distance y of the bonding layer in the length direction of the electrode assembly is 40mm.
  • the maximum distance x in the width direction is 15 mm.
  • the total weight m of the electrode assembly, the packaging bag and the electrolyte is 52.1g
  • the packaging strength F of the packaging bag at the tab position is 2.46N
  • the ring-shaped adhesive layer The maximum bonding force f is 1N
  • the length Y of the electrode assembly is 81mm
  • the width X of the electrode assembly is 61mm
  • the maximum distance y of the bonding layer in the length direction of the electrode assembly is 20mm.
  • the maximum distance x in the width direction is 45 mm.
  • the battery cell parameters provided in Examples 1-3 satisfy the following relationship: 0.098m/a ⁇ f ⁇ F, 1/3Y ⁇ y ⁇ Y, 1/2X ⁇ x ⁇ X, after falling, its The electrode assembly is not torn, and the top packaging position of the cell is not punched out by the electrode assembly. It can be seen from Examples 4-6 and Examples 8, 9 that with the increase of the maximum adhesion force f, the drop pass rate of the cell will decrease, the electrode assembly will be torn and the packaging position on the top of the cell will be punched out. The probability will increase.
  • Example 4 The cell parameters provided in Example 4 did not satisfy the following relationship: 0.098m/a ⁇ f ⁇ F, and the top packaging position of the cell was punched out by the electrode assembly twice in the 10 drop tests.
  • the bonding force of the bonding layer is relatively weak (f is 0.1N, and its ratio to F is 0.038), which has limited bonding and cushioning effects, resulting in part of the top seal of the battery core being punched out.
  • Example 5 The cell parameters provided in Example 5 did not satisfy the following relationship: 0.098m/a ⁇ f ⁇ F.
  • the top packaging position of the cell was punched by the electrode assembly 2 times, and the electrode assembly was torn 3 times.
  • the bonding force of the bonding layer is relatively strong (f is 5N, and its ratio to F is 2.04), which is likely to cause the electrode assembly to be torn, and subsequently lead to part of the top seal of the battery core.
  • Example 6 The cell parameters provided in Example 6 did not satisfy the following relationship: 0.098m/a ⁇ f ⁇ F, 8 times out of 10 drop tests, the top packaging position of the cell was punched by the electrode assembly, but the electrode assembly was not torn.
  • the adhesive force of the adhesive layer is too strong (f is 20N, and its ratio to F is 7.55), which easily causes the electrode assembly to be torn, and subsequently causes most of the top seals of the cells to be punched out.
  • the cell parameters provided in Example 7 do not satisfy the following relationship: 0.098m/a ⁇ f ⁇ F, 1/3Y ⁇ y ⁇ Y, 1/2X ⁇ x ⁇ X, 6 times of the top encapsulation of the cell in 10 drop tests
  • the position was punched out by the electrode assembly, and the electrode assembly was not torn 8 times.
  • the local stress on the adhesive layer in the width direction is relatively large (the ratio of x to X is 0.25, and the ratio of y to Y is 0.49), which easily causes the electrode assembly to be torn, and subsequently leads to the top seal of most of the cells. Rush away.
  • the cell parameters provided in Example 8 do not satisfy the following relationship: 1/3Y ⁇ y ⁇ Y, 1/2X ⁇ x ⁇ X, 7 times out of 10 drop tests, the top packaging position of the cell was punched out by the electrode assembly, and 8
  • the secondary electrode assembly is not torn.
  • the local stress on the adhesive layer in the width direction is relatively large (the ratio of x to X is 0.25, and the ratio of y to Y is 0.49), which easily causes the electrode assembly to be torn, and subsequently leads to the top seal of most of the cells. Rush away.
  • the cell parameters provided in Example 9 do not satisfy the following relationship: 1/3Y ⁇ y ⁇ Y, 1/2X ⁇ x ⁇ X, 5 times out of 10 drop tests, the top packaging position of the cell was punched out by the electrode assembly, and 7
  • the secondary electrode assembly is not torn.
  • the local stress on the bonding layer in the length direction is relatively large (the ratio of x to X is 0.74, and the ratio of y to Y is 0.25), which easily causes the electrode assembly to be torn, and subsequently leads to the top seal of most of the cells. Rush away.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种电芯,包括电极组件、包装袋、粘结层及电解液,所述电极组件封装在所述包装袋内并通过所述粘结层与所述包装袋相粘接。所述电极组件、所述包装袋和所述电解液的总重量m(g),所述电极组件的极耳与所述包装袋之间的最小封装强度F(N),所述粘结层的最大粘结力f(N),所述粘结层在所述电极组件的宽度方向上的最大距离x(mm),以及所述粘结层在所述电极组件的长度方向上的最大距离y(mm)满足以下关系:0.098m/a≤f<F,其中a为x和y中较小的值,其在跌落后,电极组件撕裂或电极组件冲开包装袋的风险较小。

Description

电芯 技术领域
本申请涉及锂离子电池技术领域,尤其涉及一种电芯。
背景技术
软包装锂离子电池采用包装袋(例如铝塑膜)对电极组件进行密封包装。为避免电极组件相对包装袋发生移动,一般在电极组件表面贴双面胶和热熔胶以粘接电极组件与包装袋。由于电极组件和包装袋之间的粘结力强度过大,导致跌落后贴胶位置应力集中,使电极组件撕裂,导致跌落失效。
发明内容
基于以上现有技术的不足,本申请提供一种电芯,在电芯跌落后,可降低电极组件撕裂或电极组件冲开包装袋的风险,降低了电芯损坏的发生率。
本申请提供一种电芯,包括电极组件、包装袋、粘结层及电解液,所述电极组件封装在所述包装袋内并通过所述粘结层与所述包装袋相粘接。所述电极组件、所述包装袋和所述电解液的总重量m(g),所述电极组件的极耳与所述包装袋之间的最小封装强度F(N),所述粘结层的最大粘结力f(N),所述粘结层在所述电极组件的宽度方向上的最大距离x(mm),以及所述粘结层在所述电极组件的长度方向上的最大距离y(mm)满足以下关系:0.098m/a≤f<F,其中a为x和y中较小的值。
可选的,所述粘结层的横截面形状为环形。
可选的,所述电极组件包括相对设置的第一表面及第二表面,所述第一表面及/或所述第二表面上设置有所述粘结层,所述粘结层围绕所述第一表面的面积大于所述第一表面面积的1/3,或者所述粘结层围绕所述第二表面的面积大于所述第二表面面积的1/3。
可选的,所述电芯还包括设置于所述电极组件上的基材,所述粘结层环绕所述基材的周缘设置。
可选的,所述粘结层在所述电极组件的宽度方向上的最大距离x(mm),所述电极组件的宽度X(mm),所述粘结层在所述电极组件的长度方向上的最大距离y(mm),以及所述电极组件的长度为Y(mm)满足以下关系:1/2X<x<X,1/3Y<y<Y。
可选的,所述粘结层在所述电极组件的宽度方向上的最大距离x(mm)和所述粘结层在所述电极组件的长度方向上的最大距离y(mm)满足以下关系:0.5<x/y<2。
可选的,在所述电芯的厚度方向上,所述电芯在所述粘结层所在区域的厚度小于所述电芯的最大厚度。
可选的,在所述电极组件的长度方向上,所述粘结层的最小距离大于2mm。
可选的,所述包装袋包括相对设置的第一凹槽及第二凹槽,所述第一凹槽的深度大于所述第二凹槽,所述电极组件收容在所述第一凹槽与所述第二凹槽形成的容纳空间中,所述粘结层位于所述电极组件与所述第一凹槽之间或位于所述电极组件与所述第二凹槽之间。
可选的,所述粘结层的最大粘结力f为0.05N~2N。
本申请提供的电芯,其中,所述电极组件、所述包装袋和电解液的总重量m、最小顶封强度F、所述粘结层的最大粘结 力f、所述粘结层在所述电极组件的宽度方向上的最大距离x以及所述粘结层在所述电极组件的长度方向上的最大距离y满足以下关系:0.098m/a≤f<F,其中a为x和y中较小的值,使得所述粘结层的粘结力大小在一个合适的范围中,能够平衡电极组件撕裂和包装袋顶封冲开的风险,即能够降低电极组件撕裂或电极组件冲开包装袋的风险。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的电极组件的结构示意图。
图2为本申请一实施方式提供的包装袋的结构示意图。
图3为本申请另一实施方式提供的电极组件的正视图。
图4为本申请又一实施方式提供的电极组件的正视图。
图5为本申请另一实施方式提供的包装袋的结构示意图。
图6为本申请一实施方式提供的胶纸的结构示意图。
主要元件符号说明
电极组件                20
包装袋                  40
粘接件                  60
极耳                    24
第一表面                21、41
第二表面                22、42
第一凹槽                412
第二凹槽                422
容纳空间                44
粘结层                  62
基材                    64、82
胶纸                    80
胶黏剂层                84
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅是本申请的一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
需要说明的是,除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请实施方式中使用的术语是仅仅出于描述特定实施方式的目的,而非旨在限制本申请。
请一并参阅图1及图2,本申请一实施方式提供的电芯包括电极组件20、包装袋40、粘接件60及电解液(未图示)。所述电极组件20封装在所述包装袋40内并通过所述粘接件60与所述包装袋40相粘接。所述电解液容纳于所述包装袋40内。
所述电极组件20包括正极极片、负极极片、隔离膜以及极耳24。所述隔离膜设置于所述正极极片和所述负极极片之间。 所述极耳24设置于所述正极极片及所述负极极片上,用于导出所述正极极片和所述负极极片的电子。所述极耳24延伸超出所述正极极片和负极极片。所述正极极片和所述负极极片堆叠或卷绕形成所述电极组件20。所述电极组件20包括相对设置的第一表面21及第二表面23。所述极耳24与所述包装袋40封装在一起。
所述包装袋40用于容纳所述电解液并封装所述电极组件20。所述包装袋40可由铝塑膜、钢塑膜等制成。所述包装袋40包括相对设置的第一表面41及第二表面42。本实施方式中,所述包装袋40的第一表面41与所述电极组件20的第一表面21相对,所述包装袋40的第二表面42与所述电极组件20的第二表面42相对。所述第一表面41设置有第一凹槽412,所述第二表面42设置有第二凹槽422,所述第一凹槽412的深度大于所述第二凹槽422的深度。所述第一凹槽412与所述第二凹槽422共同形成一容纳空间44。所述电极组件20收容在所述容纳空间44中。
所述粘接件60位于所述第一凹槽412与所述第一表面21之间。所述粘接件60包括粘结层62,所述粘结层62沿平行于所述第一表面21所在平面方向的横截面的形状大致为环形。所述粘结层62可以为胶层或胶带。所述环形粘结层62围绕所述电极组件20的第一表面21的面积大于所述第一表面21面积的1/3。所述粘结层62可位于所述第一表面21的任意位置。优选的,在所述电极组件20的厚度方向上,所述电极组件20在所述粘结层62所在区域的厚度小于所述电极组件20的最大厚度,例如,所述粘结层62避开所述电极组件20上同时设置有正极极片、负极极片、隔离膜以及极耳24的区域,以利于所述电芯的薄型化。
本实施方式中,所述环形为方环状,即所述环形的内圈及外圈的形状均为方形。可以理解的是,所述粘结层62沿平行于所述第一表面21所在平面方向的横截面的形状还可为圆环形(参图3)、椭圆环形、多边环形(参图4)等。其中,圆环形指的是内圈及外圈的形状均为圆形,椭圆环形指的是内圈及外圈的形状均为椭圆形,多边环形指的是内圈及/或外圈的形状为多边形。相较整片(板状)双面胶,环形粘结层的内外圈周围都能起到缓冲作用,在电芯跌落后,能更好的分散应力,避免应力集中,且对所述电极组件具有更好的缓冲作用,从而有助于避免电极组件撕裂或电极组件冲开包装袋。优选的,所述粘结层62沿平行于所述第一表面21所在平面方向的横截面的形状为圆环形或椭圆环形,其能更有效的分散应力。
请参阅图5,本申请另一实施方式提供的包装袋40,所述粘结层62位于所述第二凹槽422与所述电极组件的第二表面之间。所述环形粘结层62围绕所述电极组件的第二表面的面积大于所述第二表面面积的1/3。
经测试发现,当所述粘接件60位于所述包装袋40的第二凹槽422与所述电极组件20之间时,在跌落后,所述电极组件20上与所述粘接件60相粘接的部位更容易被撕裂。当所述粘接件60位于所述包装袋40的第一凹槽412与所述电极组件20之间时,在跌落后,所述包装袋40的封装位置处更容易被所述电极组件20冲开。
请再次参阅图1,所述粘接件60还包括设置于所述电极组件20上的基材64。所述基材64大致为板状。优选的,所述基材64选自聚对苯二甲酸乙二醇酯。所述粘结层62为胶层,其环绕所述基材64的周缘设置。优选的,所述粘结层62的材料选自热熔型胶黏剂。所述热熔型胶黏剂选自聚烯类热熔胶、 聚氨酯类热熔胶、乙烯及其共聚物类热熔胶、聚酯类热熔胶、聚酰胺类热熔胶、苯乙烯及其嵌段共聚物类热熔胶中的一种或几种。
当所述粘结层62为胶层时,所述粘结层62可通过热压热熔型胶黏剂后挤出成型。具体的,请参阅图6,提供一种胶纸80,所述胶纸80为单面胶。所述胶纸80包括基材82及设置于所述基材82上的胶黏剂层84,所述胶黏剂选自热熔型胶黏剂。将所述结构胶纸80贴在所述电极组件20的第一表面21或第二表面22上,将所述电极组件20封装于所述包装袋40中,对所述包装袋40对应所述结构胶纸80的区域进行热压,所述胶黏剂层84被挤出所述基材82周围形成环形粘结层62。在可选的实施方式中,当所述粘结层62为胶层时,还可通过其他方法制备形成,例如直接将胶黏剂涂覆于所述电极组件20上形成。可以理解的是,当所述粘结层62为胶带时,其直接将环形胶带贴于所述电极组件20上形成。在可选的实施方式中,所述胶纸80还可为双面胶,即在所述基材的两侧均设置有所述胶黏剂层,当进行热压时,位于两侧的胶黏剂层均被挤出所述基材周围,共同形成所述粘结层62。
可选的,所述粘结层62的最大粘结力f为0.05N~2N。
所述电极组件20的宽度X(mm),以及所述粘结层62在所述电极组件20的宽度方向上的最大距离x(mm)满足1/2X<x<X(以各参数的数值进行计算)。
所述电极组件20的长度Y(mm),所述粘结层62在所述电极组件20的长度方向上的最大距离y(mm)满足1/3Y<y<Y。所述粘结层62在所述电极组件20的宽度方向上的最大距离x(mm)和所述粘结层62在所述电极组件20的长度方向上的最大距离y(mm)满足以下关系:0.5<x/y<2。所述粘结层62 在所述电极组件20的长度方向上的最小距离大于2mm。
所述极耳24与所述包装袋40之间的最小封装强度F(N),所述电极组件20、所述包装袋40和所述电解液的总重量为m(g),所述粘结层62的最大粘结力f(N),所述粘结层62在所述电极组件20的宽度方向上的最大距离x(mm)和所述粘结层62在所述电极组件20的长度方向上的最大距离y(mm)满足以下关系:0.098m/a≤f<F(以各参数的数值进行计算),其中a为x和y中较小的值。
所述环形粘结层62的粘结力的大小,对电极组件撕裂或包装袋顶封冲开有重要影响。若粘结力太小,粘结层无法让所述电极组件在跌落过程中得到缓冲,就更容易导致电极组件冲开所述包装袋的顶封位置。若粘结力过大,粘结层在跌落过程中对电极组件的撕扯就会很严重,导致电极组件撕裂。
本申请提供的电芯,其中,所述电极组件20、所述包装袋40和电解液的总重量m(g)、最小顶封强度F(N)、所述粘结层62的最大粘结力f(N)、所述粘结层62在所述电极组件20的宽度方向上的最大距离为x(mm)以及所述粘结层62在所述电极组件20的长度方向上的最大距离y(mm)满足以下关系:0.098m/a≤f<F,其中a为x和y中较小的值,使得所述粘结层的粘结力大小在一个合适的范围中,能够平衡电极组件撕裂和包装袋顶封冲开的风险,即能够降低电极组件撕裂或电极组件冲开包装袋的风险。
另外,所述粘结层62为环形,其内外圈都能起到缓冲作用,有利于分散应力,进一步降低电极组件撕裂或电极组件冲开包装袋的风险。所述电极组件的宽度X(mm)、长度Y(mm),所述粘结层在所述电极组件的宽度方向上的最大距离x(mm)以及所述粘结层在所述电极组件的长度方向上的最大距离y (mm)满足以下关系:1/2X<x<X,1/3Y<y<Y,平衡所述粘结层在所述电极组件的宽度方向和长度方向上的应力,进一步降低电极组件撕裂或电极组件冲开包装袋的风险。所述粘结层62围绕所述电极组件20的第一表面21的面积大于所述第一表面21的面积的1/3,或者所述粘结层62围绕所述电极组件20的第二表面22的面积大于所述第二表面22的面积的1/3,即所述环形粘结层62具有较大的面积,其有利于分散应力,避免应力集中,进一步降低电极组件撕裂或电极组件冲开包装袋的风险。
下面通过实施例对本申请进行具体说明。本申请中所述粘结层的粘结力通过万能拉力机测试剥离电极组件及包装袋的拉力测得。
实施例1
提供一种电芯,所述电极组件、所述包装袋及所述电解液的总重量m为52.3g,所述包装袋在极耳位置处的封装强度F为2.51N,环形粘结层的最大粘结力f为0.3N,电极组件的长度Y为81mm,电极组件的宽度X为61mm,粘结层在所述电极组件的长度方向上的最大距离y为40mm,粘结层在电极组件的宽度方向上的最大距离x为45mm。
实施例2
提供一种电芯,所述电极组件、所述包装袋及所述电解液的总重量m为52.2g,所述包装袋在极耳位置处的封装强度F为2.55N,环形粘结层的最大粘结力f为1N,电极组件的长度Y为81mm,电极组件的宽度X为61mm,粘结层在所述电极组件的长度方向上的最大距离y为40mm,粘结层在电极组件的宽度方向上的最大距离x为45mm。
实施例3
提供一种电芯,所述电极组件、所述包装袋及所述电解液的总重量m为52.2g,所述包装袋在极耳位置处的封装强度F为2.55N,环形粘结层的最大粘结力f为2N,电极组件的长度Y为81mm,电极组件的宽度X为61mm,粘结层在所述电极组件的长度方向上的最大距离y为40mm,粘结层在电极组件的宽度方向上的最大距离x为45mm。
实施例4
提供一种电芯,所述电极组件、所述包装袋及所述电解液的总重量m为52.3g,所述包装袋在极耳位置处的封装强度F为2.6N,环形粘结层的最大粘结力f为0.1N,电极组件的长度Y为81mm,电极组件的宽度X为61mm,粘结层在所述电极组件的长度方向上的最大距离y为40mm,粘结层在电极组件的宽度方向上的最大距离x为45mm。
实施例5
提供一种电芯,所述电极组件、所述包装袋及所述电解液的总重量m为52.3g,所述包装袋在极耳位置处的封装强度F为2.45N,环形粘结层的最大粘结力f为5N,电极组件的长度Y为81mm,电极组件的宽度X为61mm,粘结层在所述电极组件的长度方向上的最大距离y为40mm,粘结层在电极组件的宽度方向上的最大距离x为45mm。
实施例6
提供一种电芯,所述电极组件、所述包装袋及所述电解液的总重量m为52.1g,所述包装袋在极耳位置处的封装强度F为2.65N,环形粘结层的最大粘结力f为20N,电极组件的长度Y为81mm,电极组件的宽度X为61mm,粘结层在所述电极组件的长度方向上的最大距离y为40mm,粘结层在电极组件的宽度方向上的最大距离x为45mm。
实施例7
提供一种电芯,所述电极组件、所述包装袋及所述电解液的总重量m为52.2g,所述包装袋在极耳位置处的封装强度F为2.55N,环形粘结层的最大粘结力f为0.3N,电极组件的长度Y为81mm,电极组件的宽度X为61mm,粘结层在所述电极组件的长度方向上的最大距离y为40mm,粘结层在电极组件的宽度方向上的最大距离x为15mm。
实施例8
提供一种电芯,所述电极组件、所述包装袋及所述电解液的总重量m为52.2g,所述包装袋在极耳位置处的封装强度F为2.53N,环形粘结层的最大粘结力f为2N,电极组件的长度Y为81mm,电极组件的宽度X为61mm,粘结层在所述电极组件的长度方向上的最大距离y为40mm,粘结层在电极组件的宽度方向上的最大距离x为15mm。
实施例9
提供一种电芯,所述电极组件、所述包装袋及所述电解液的总重量m为52.1g,所述包装袋在极耳位置处的封装强度F为2.46N,环形粘结层的最大粘结力f为1N,电极组件的长度Y为81mm,电极组件的宽度X为61mm,粘结层在所述电极组件的长度方向上的最大距离y为20mm,粘结层在电极组件的宽度方向上的最大距离x为45mm。
将实施例1-9提供的电芯进行跌落测试:将电芯固定在手机壳中,在1m~1.8m高度进行多次跌落测试,测试电极组件是否被撕裂,测试电芯顶部封装位置是否被电极组件冲开。实施例1-9中各电芯的参数关系及测试结果如表1。
表1 实施例1-9中各电芯的参数关系及测试结果
Figure PCTCN2019125628-appb-000001
从表1可看出,实施例1-3提供的电芯参数满足以下关系:0.098m/a≤f<F,1/3Y<y<Y,1/2X<x<X,跌落后,其电极组件未被撕裂,电芯顶部封装位置未被电极组件冲开。从实施例4-6以及实施例8、9可以看出,随着最大粘结力f的增加,电芯的跌落通过率会降低,电极组件被撕裂以及电芯顶部的封装位置被冲开的概率会增加。
实施例4提供的电芯参数不满足以下关系:0.098m/a≤f<F,10次跌落测试中有2次电芯顶部封装位置被电极组件冲开。其中,所述粘结层的粘结力较弱(f为0.1N,其与F的比值为0.038),起到粘接和缓冲效果有限,导致部分电芯的顶封被冲开。
实施例5提供的电芯参数不满足以下关系:0.098m/a≤f<F,10次跌落测试中有2次电芯顶部封装位置被电极组件冲开,有3次电极组件被撕裂。其中,所述粘结层的粘结力较强(f 为5N,其与F的比值为2.04),容易导致电极组件被撕裂,后续导致部分电芯的顶封冲开。
实施例6提供的电芯参数不满足以下关系:0.098m/a≤f<F,10次跌落测试中有8次电芯顶部封装位置被电极组件冲开,但电极组件未被撕裂。其中,所述粘结层的粘结力太强(f为20N,其与F的比值为7.55),容易导致电极组件被撕裂,后续导致大部分电芯的顶封冲开。
实施例7提供的电芯参数不满足以下关系:0.098m/a≤f<F,1/3Y<y<Y,1/2X<x<X,10次跌落测试中有6次电芯顶部封装位置被电极组件冲开,有8次电极组件未被撕裂。其中,粘结层在宽度方向上所受局部应力较大(x与X的比值为0.25,y与Y的比值为0.49),容易导致电极组件被撕裂,后续导致大部分电芯的顶封冲开。
实施例8提供的电芯参数不满足以下关系:1/3Y<y<Y,1/2X<x<X,10次跌落测试中有7次电芯顶部封装位置被电极组件冲开,有8次电极组件未被撕裂。其中,粘结层在宽度方向上所受局部应力较大(x与X的比值为0.25,y与Y的比值为0.49),容易导致电极组件被撕裂,后续导致大部分电芯的顶封冲开。
实施例9提供的电芯参数不满足以下关系:1/3Y<y<Y,1/2X<x<X,10次跌落测试中有5次电芯顶部封装位置被电极组件冲开,有7次电极组件未被撕裂。其中,粘结层在长度方向上所受局部应力较大(x与X的比值为0.74,y与Y的比值为0.25),容易导致电极组件被撕裂,后续导致大部分电芯的顶封冲开。
以上所揭露的仅为本申请较佳实施方式而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等 同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种电芯,包括电极组件、包装袋、粘结层及电解液,所述电极组件封装在所述包装袋内并通过所述粘结层与所述包装袋相粘接,其特征在于,所述电极组件、所述包装袋和所述电解液的总重量m(g),所述电极组件的极耳与所述包装袋之间的最小封装强度F(N),所述粘结层的最大粘结力f(N),所述粘结层在所述电极组件的宽度方向上的最大距离x(mm),以及所述粘结层在所述电极组件的长度方向上的最大距离y(mm)满足以下关系:0.098m/a≤f<F,其中a为x和y中较小的值。
  2. 如权利要求1所述的电芯,其特征在于,所述粘结层的横截面形状为环形。
  3. 如权利要求2所述的电芯,其特征在于,所述电极组件包括相对设置的第一表面及第二表面,所述第一表面及/或所述第二表面上设置有所述粘结层,所述粘结层围绕所述第一表面的面积大于所述第一表面面积的1/3,或者所述粘结层围绕所述第二表面的面积大于所述第二表面面积的1/3。
  4. 如权利要求2所述的电芯,其特征在于,所述电芯还包括设置于所述电极组件上的基材,所述粘结层环绕所述基材的周缘设置。
  5. 如权利要求1所述的电芯,其特征在于,所述粘结层在所述电极组件的宽度方向上的最大距离x(mm),所述电极组件的宽度X(mm),所述粘结层在所述电极组件的长度方向上的最大距离y(mm),以及所述电极组件的长度Y(mm)满足以下关系:1/2X<x<X,1/3Y<y<Y。
  6. 如权利要求1所述的电芯,其特征在于,所述粘结层在所述电极组件的宽度方向上的最大距离x(mm)和所述粘结 层在所述电极组件的长度方向上的最大距离y(mm)满足以下关系:0.5<x/y<2。
  7. 如权利要求1所述的电芯,其特征在于,在所述电芯的厚度方向上,所述电芯在所述粘结层所在区域的厚度小于所述电芯的最大厚度。
  8. 如权利要求1所述的电芯,其特征在于,在所述电极组件的长度方向上,所述粘结层的最小距离大于2mm。
  9. 如权利要求1所述的电芯,其特征在于,所述包装袋包括相对设置的第一凹槽及第二凹槽,所述第一凹槽的深度大于所述第二凹槽,所述电极组件收容在所述第一凹槽与所述第二凹槽形成的容纳空间中,所述粘结层位于所述电极组件与所述第一凹槽之间或位于所述电极组件与所述第二凹槽之间。
  10. 如权利要求1所述的电芯,其特征在于,所述粘结层的最大粘结力f为0.05N~2N。
PCT/CN2019/125628 2019-12-16 2019-12-16 电芯 WO2021119911A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/125628 WO2021119911A1 (zh) 2019-12-16 2019-12-16 电芯
EP19939053.5A EP3866248A4 (en) 2019-12-16 2019-12-16 BATTERY CELL
CN201980039672.4A CN113348580B (zh) 2019-12-16 2019-12-16 电芯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125628 WO2021119911A1 (zh) 2019-12-16 2019-12-16 电芯

Publications (1)

Publication Number Publication Date
WO2021119911A1 true WO2021119911A1 (zh) 2021-06-24

Family

ID=76476926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125628 WO2021119911A1 (zh) 2019-12-16 2019-12-16 电芯

Country Status (3)

Country Link
EP (1) EP3866248A4 (zh)
CN (1) CN113348580B (zh)
WO (1) WO2021119911A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335664B (zh) * 2021-12-21 2024-06-14 宁德新能源科技有限公司 电化学装置以及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457113A (zh) * 2003-06-18 2003-11-19 福建南平南孚電池有限公司 袋式锂离子电池的制备方法及由该方法制得的电池
CN103887556A (zh) * 2014-03-13 2014-06-25 深圳格林德能源有限公司 一种动力储能聚合物锂离子电池及制备方法
CN104143642A (zh) * 2014-08-06 2014-11-12 武汉美格科技有限公司 一种透明的锂电池及其制造方法
JP2017010809A (ja) * 2015-06-23 2017-01-12 住友電気工業株式会社 レドックスフロー電池、及びレドックスフロー電池用電極
CN206293555U (zh) * 2016-12-06 2017-06-30 齐齐哈尔工程学院 一种软包装石墨烯锂离子电池
CN109449322A (zh) * 2018-12-21 2019-03-08 河南鼎能电子科技有限公司 一种具有超薄金属外壳的新型锂电池
CN110416443A (zh) * 2019-07-31 2019-11-05 安徽相源新能源有限公司 一种不易折损的锂电芯及其生产方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249269A (ja) * 2010-05-31 2011-12-08 Panasonic Corp ラミネート電池
CN203690420U (zh) * 2014-01-23 2014-07-02 东莞新能源科技有限公司 锂离子电池
CN105449255B (zh) * 2014-08-05 2019-01-08 东莞新能源科技有限公司 电化学储能装置
CN105742712A (zh) * 2014-12-08 2016-07-06 东莞新能源科技有限公司 电化学储能装置
CN211017287U (zh) * 2019-12-16 2020-07-14 宁德新能源科技有限公司 电芯

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457113A (zh) * 2003-06-18 2003-11-19 福建南平南孚電池有限公司 袋式锂离子电池的制备方法及由该方法制得的电池
CN103887556A (zh) * 2014-03-13 2014-06-25 深圳格林德能源有限公司 一种动力储能聚合物锂离子电池及制备方法
CN104143642A (zh) * 2014-08-06 2014-11-12 武汉美格科技有限公司 一种透明的锂电池及其制造方法
JP2017010809A (ja) * 2015-06-23 2017-01-12 住友電気工業株式会社 レドックスフロー電池、及びレドックスフロー電池用電極
CN206293555U (zh) * 2016-12-06 2017-06-30 齐齐哈尔工程学院 一种软包装石墨烯锂离子电池
CN109449322A (zh) * 2018-12-21 2019-03-08 河南鼎能电子科技有限公司 一种具有超薄金属外壳的新型锂电池
CN110416443A (zh) * 2019-07-31 2019-11-05 安徽相源新能源有限公司 一种不易折损的锂电芯及其生产方法

Also Published As

Publication number Publication date
EP3866248A1 (en) 2021-08-18
CN113348580B (zh) 2024-03-12
EP3866248A4 (en) 2021-09-29
CN113348580A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
CN211017287U (zh) 电芯
KR101979956B1 (ko) 전지용 감압 점착 테이프 및 감압 점착 테이프를 사용한 전지
US10283739B2 (en) Packaging material for electrical storage devices, electrical storage device, and method for producing embossed packaging material
JP2016091939A (ja) 端子用樹脂フィルム、それを用いたタブ及び蓄電デバイス
US20150037639A1 (en) Pressure-sensitive adhesive tape or sheet
TW201441335A (zh) 電化學裝置用黏著帶
WO2021003780A1 (zh) 二次电池
CN110190319B (zh) 电极组件和二次电池
WO2021119911A1 (zh) 电芯
WO2021134599A1 (zh) 电池及电子装置
JP2023161045A (ja) リチウム二次電池
JPWO2018180405A1 (ja) 電極構成体固定用接着剤及び電気化学素子
KR20100005810A (ko) 접착력이 향상된 파우치, 이의 제조방법, 및 이를 포함하는이차전지
CN109428108A (zh) 二次电池用电极组件及二次电池用电极组件的制造方法
JP2016129113A (ja) 熱溶着絶縁樹脂フィルム及び蓄電装置
CN116826258A (zh) 二次电池及包含其的电子装置
JP7041805B2 (ja) バッテリーパック
JP2005285526A (ja) ラミネート素電池
KR102422921B1 (ko) 경화 방지 테이프가 부착되어 있는 젤리-롤형 전극조립체를 포함하는 원통형 전지셀
KR20200008877A (ko) 이차 전지
US20210198529A1 (en) Pressure sensitive adhesive sheet for batteries and lithium-ion battery
JPWO2017110062A1 (ja) 電池外装用フィルム材料およびこれを有するフレキシブル電池
CN113451631A (zh) 电池结构及应用所述电池结构的电子装置
KR20210081609A (ko) 멀티 탭의 용접 강도 측정방법
WO2024060145A1 (zh) 二次电池及包含其的电子装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019939053

Country of ref document: EP

Effective date: 20210202

NENP Non-entry into the national phase

Ref country code: DE