WO2021118287A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2021118287A1
WO2021118287A1 PCT/KR2020/018145 KR2020018145W WO2021118287A1 WO 2021118287 A1 WO2021118287 A1 WO 2021118287A1 KR 2020018145 W KR2020018145 W KR 2020018145W WO 2021118287 A1 WO2021118287 A1 WO 2021118287A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituted
same
unsubstituted
Prior art date
Application number
PCT/KR2020/018145
Other languages
English (en)
French (fr)
Inventor
최민우
전현수
전상영
천민승
이정하
김재은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080069031.6A priority Critical patent/CN114467189A/zh
Priority to US17/764,280 priority patent/US20220376188A1/en
Publication of WO2021118287A1 publication Critical patent/WO2021118287A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present specification includes a first electrode; a second electrode; and one or more organic material layers provided between the first electrode and the second electrode.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon generally has a structure including an anode and a cathode and an organic material layer therebetween.
  • the organic material layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • the present specification includes a first electrode; a second electrode; and one or more organic material layers provided between the first electrode and the second electrode.
  • the present specification includes a first electrode; a second electrode; and at least one organic material layer provided between the first electrode and the second electrode,
  • the organic material layer provides an organic light emitting device comprising a light emitting layer including a compound of Formula 1 and a compound of Formula 2 below.
  • Ar1 to Ar4 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • A1 to A4 and R1 to R8 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted carbazole group, or combined with an adjacent group to form a substituted or unsubstituted ring,
  • Het is a substituted or unsubstituted heterocyclic group having 5 to 20 carbon atoms including N, O or S,
  • L is a trivalent aryl group having 5 to 20 carbon atoms
  • a1 and a4 are each an integer of 1 to 4
  • a2 and a3 are each an integer of 1 to 3
  • n is an integer of 0 or 1
  • the lifespan of the organic light emitting diode is improved.
  • FIG. 1 illustrates an organic light emitting device 10 according to an exemplary embodiment of the present specification.
  • FIG. 2 illustrates an organic light emitting device 11 according to another exemplary embodiment of the present specification.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, a position where the substituent is substitutable, is not limited, and when two or more , two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted alkoxy group; a substituted or unsubstituted aryloxy group; A substituted or unsubstituted alkylthio group; a substituted or unsubstituted arylthioxy group; A substituted or unsubstituted alkylsulfoxy group; a substituted or unsubstituted arylsulfoxy group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted boron group; a substituted or unsubstituted amine group;
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the halogen group may be fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl,
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 30 carbon atoms, and specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, etc., but are limited thereto it is not
  • the alkoxy group may be a straight chain, branched chain or cyclic chain. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C30. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, Isopentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy, etc. may be, but is not limited thereto.
  • the amine group is -NH 2 ; an alkylamine group; N-alkylarylamine group; arylamine group; N-aryl heteroarylamine group; It may be selected from the group consisting of an N-alkylheteroarylamine group and a heteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, an anthracenylamine group, and a 9-methyl-anthracenylamine group.
  • diphenylamine group diphenylamine group, N-phenylnaphthylamine group, ditolylamine group, N-phenyltolylamine group, triphenylamine group, N-phenylbiphenylamine group; N-phenylnaphthylamine group; N-biphenylnaphthylamine group; N-naphthylfluorenylamine group; N-phenylphenanthrenylamine group; N-biphenylphenanthrenylamine group; N-phenylfluorenylamine group; N-phenylterphenylamine group; N-phenanthrenylfluorenylamine group; N-biphenylfluorenylamine group, and the like, but is not limited thereto.
  • the N-alkylarylamine group refers to an amine group in which an alkyl group and an aryl group are substituted with N of the amine group.
  • the N-arylheteroarylamine group refers to an amine group in which an aryl group and a heteroaryl group are substituted with N of the amine group.
  • the N-alkylheteroarylamine group refers to an amine group in which an alkyl group and a heteroarylamine group are substituted with N of the amine group.
  • the alkyl group in the arylalkyl group, the alkylamine group, the N-arylalkylamine group, the alkylthioxy group, the alkylsulfoxy group, and the N-alkylheteroarylamine group is the same as the above-described alkyl group.
  • the alkyl thiooxy group includes a methyl thioxy group, ethyl thiooxy group, tert-butyl thioxy group, hexyl thioxy group, octyl thiooxy group, etc.
  • the alkyl sulfoxy group includes mesyl, ethyl sulfoxy group, propyl sulfoxy group, and butyl sulfoxy group. and the like, but is not limited thereto.
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 30.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but is not limited thereto.
  • arylalkenyl group refers to an alkenyl group substituted with an aryl group.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group may be -BR 100 R 101 , wherein R 100 and R 101 are the same or different, and each independently hydrogen; heavy hydrogen; halogen; nitrile group; a substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 30 carbon atoms; a substituted or unsubstituted C1-C30 linear or branched alkyl group; a substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; And it may be selected from the group consisting of a substituted or unsubstituted monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms.
  • the phosphine oxide group specifically includes, but is not limited to, a diphenylphosphine oxide group, a dinaphthyl phosphine oxide, and the like.
  • the aryl group is not particularly limited, but preferably has 6 to 30 carbon atoms, and the aryl group may be monocyclic or polycyclic.
  • the aryl group is a monocyclic aryl group
  • the number of carbon atoms is not particularly limited, but preferably 6 to 30 carbon atoms.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, and the like, but is not limited thereto.
  • the aryl group is a polycyclic aryl group
  • the number of carbon atoms is not particularly limited. It is preferable that it is C10-30.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a triphenylene group, a pyrenyl group, a phenalenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, etc., but is limited thereto. it is not
  • the fluorenyl group may be substituted, and adjacent groups may combine with each other to form a ring.
  • adjacent group means a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, a substituent sterically closest to the substituent, or another substituent substituted on the atom in which the substituent is substituted.
  • two substituents substituted at an ortho position in a benzene ring and two substituents substituted at the same carbon in an aliphatic ring may be interpreted as "adjacent" groups.
  • the aryl group in the arylalkyl group, arylalkenyl group, aryloxy group, arylthioxy group, arylsulfoxy group, N-arylalkylamine group, N-arylheteroarylamine group and arylphosphine group is a same as example
  • the aryloxy group includes a phenoxy group, p-tolyloxy group, m-tolyloxy group, 3,5-dimethyl-phenoxy group, 2,4,6-trimethylphenoxy group, p-tert-butylphenoxy group, 3- Biphenyloxy group, 4-biphenyloxy group, 1-naphthyloxy group, 2-naphthyloxy group, 4-methyl-1-naphthyloxy group, 5-methyl-2-naphthyloxy group, 1-anthryloxy group , 2-anthryloxy group, 9-anthryloxy group, 1-phenanthryloxy group, 3-phen
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group or a polycyclic aryl group.
  • the arylamine group including two or more aryl groups may include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group at the same time.
  • the aryl group in the arylamine group may be selected from the examples of the aryl group described above.
  • the heteroaryl group includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Se and S, and the like.
  • the number of carbon atoms is not particularly limited, but preferably has 2 to 30 carbon atoms, and the heteroaryl group may be monocyclic or polycyclic.
  • heterocyclic group examples include a thiophene group, a furanyl group, a pyrrole group, an imidazolyl group, a thiazolyl group, an oxazolyl group, an oxadiazolyl group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazinyl group, a triazinyl group Jolyl group, acridyl group, pyridazinyl group, pyrazinyl group, quinolinyl group, quinazolinyl group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group , isoquinolinyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzimidazolyl group
  • examples of the heteroarylamine group include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group.
  • the heteroarylamine group including two or more heteroaryl groups may include a monocyclic heteroaryl group, a polycyclic heteroaryl group, or a monocyclic heteroaryl group and a polycyclic heteroaryl group at the same time.
  • the heteroaryl group in the heteroarylamine group may be selected from the examples of the heteroaryl group described above.
  • heteroaryl group in the N-arylheteroarylamine group and the N-alkylheteroarylamine group are the same as the examples of the heteroaryl group described above.
  • the arylene group means that the aryl group has two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the aryl group described above may be applied.
  • the first electrode and the second electrode may be provided to face each other.
  • the compound of Formula 1 is the following Formula 1-1.
  • Ar1, Ar2, A1 to A4, and a1 to a4 are the same as defined in Formula 1.
  • the compound of Formula 1 is any one of Formulas 1-1-1 to 1-1-3.
  • Ar1, Ar2 and Ar5 are the same as or different from each other, and each independently represent a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
  • A5 to A11 and A14 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or a substituted or unsubstituted aryl group,
  • A12 and A13 are the same as or different from each other, and each independently represent a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • a5, a6, a8 and a9 are each an integer of 1 to 3
  • a7, a10 and a11 are each an integer of 1 to 4
  • a14 is 1 or 2, and when a14 is 2, structures in parentheses are the same as or different from each other.
  • Ar1 and Ar2 are the same as or different from each other, and each independently a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; a substituted or unsubstituted terphenyl group; a substituted or unsubstituted naphthyl group; or a substituted or unsubstituted phenanthrenyl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently a phenyl group; biphenyl group; terphenyl group; naphthyl group; or a phenanthrenyl group.
  • A1 to A4 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted aryl group; Or a substituted or unsubstituted carbazole group, or combined with an adjacent group to form a substituted or unsubstituted hydrocarbon ring.
  • A1 to A4 are the same as or different from each other, and each independently hydrogen; or deuterium.
  • A1 to A4 are the same as or different from each other, and are each independently hydrogen.
  • A5 to A11 and A14 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or a substituted or unsubstituted aryl group.
  • A5 to A11 and A14 are the same as or different from each other, and each independently hydrogen; or deuterium.
  • A5 to A11 and A14 are the same as or different from each other, and each independently hydrogen.
  • A12 and A13 are the same as or different from each other, and each independently a substituted or unsubstituted alkyl group; or a substituted or unsubstituted aryl group.
  • A12 and A13 are the same as or different from each other, and each independently represent a substituted or unsubstituted alkyl group.
  • A12 and A13 are the same as or different from each other, and are each independently an alkyl group.
  • A12 and A13 are methyl groups.
  • Ar5 is a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; a substituted or unsubstituted terphenyl group; a substituted or unsubstituted naphthyl group; or a substituted or unsubstituted phenanthrenyl group.
  • Ar5 is a phenyl group; biphenyl group; terphenyl group; naphthyl group; or a phenanthrenyl group.
  • Ar5 is a phenyl group.
  • Formula 1 is selected from the following compounds.
  • the compound of Formula 2 is the following Formula 2-1.
  • R1 to R9 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or a substituted or unsubstituted aryl group,
  • r9 is an integer of 1 to 3, and when r9 is an integer of 2 or more, structures in parentheses of 2 or more are the same or different from each other.
  • the compound of Formula 2 is the following Formula 2-2.
  • Ar3, Ar4, Ar6 and Ar7 are the same as or different from each other, and each independently represent a substituted or unsubstituted aryl group,
  • At least one of X1 to X3 is N, the rest is CH,
  • R1 to R9 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or a substituted or unsubstituted aryl group,
  • r9 is an integer of 1 to 3, and when r9 is an integer of 2 or more, structures in parentheses of 2 or more are the same or different from each other.
  • the compound of Formula 2 is any one of Formulas 2-2-1 to 2-2-3.
  • Ar3, Ar4, Ar6 and Ar7 are the same as or different from each other, and each independently represent a substituted or unsubstituted aryl group,
  • At least one of X1 to X3 is N, the rest is CH,
  • R1 to R9 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or a substituted or unsubstituted aryl group,
  • r9 is an integer of 1 to 3, and when r9 is an integer of 2 or more, structures in parentheses of 2 or more are the same or different.
  • At least two of X1 to X3 are N, and the remainder is CH.
  • X1 to X3 are N.
  • Ar3, Ar4, Ar6 and Ar7 are the same as or different from each other, and each independently represent a substituted or unsubstituted C6-C20 aryl group.
  • Ar3, Ar4, Ar6 and Ar7 are the same as or different from each other, and each independently represent an aryl group having 6 to 20 carbon atoms.
  • Ar3, Ar4, Ar6 and Ar7 are phenyl groups.
  • R1 to R8 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or an aryl group.
  • R1 to R8 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; or a phenyl group.
  • R9 is hydrogen; or deuterium.
  • R9 is hydrogen
  • Chemical Formula 2 is selected from the following compounds.
  • the organic material layer of the organic light emitting device of the present specification may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller or larger number of organic layers.
  • the organic light emitting device may have, for example, a stacked structure as follows, but is not limited thereto.
  • the structure of the organic light emitting device of the present specification may have the structure shown in FIGS. 1 and 2 , but is not limited thereto.
  • 1 illustrates a structure of an organic light emitting device 10 in which a first electrode 30 , a light emitting layer 40 , and a second electrode 50 are sequentially stacked on a substrate 20 .
  • 1 is an exemplary structure of an organic light emitting device according to an exemplary embodiment of the present specification, and may further include another organic material layer.
  • 2 shows a first electrode 30, a hole injection layer 60, a hole transport layer 70, a light emitting layer 40, an electron transport layer 80, an electron injection layer 90, and a second electrode ( 50) is exemplified in the structure of the organic light emitting device stacked sequentially.
  • 2 is an exemplary structure according to an embodiment of the present specification, and may further include another organic material layer.
  • the emission layer includes a host and a dopant, and the host includes the compound of Formula 1 and the compound of Formula 2 above.
  • the weight ratio of the compound of Formula 1 and the compound of Formula 2 is preferably 99:1 to 1:99, or 95:5 to 5:95.
  • the light emitting layer may include the compounds of Formulas 1 and 2 as a host, and may include other organic compounds, metals, or metal compounds as dopants.
  • the organic material layer may further include one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer. .
  • the organic light emitting device of the present specification may be manufactured using materials and methods known in the art, except that the light emitting layer includes the heterocyclic compound of Formulas 1 and 2.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present specification may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation, a metal or a metal oxide having conductivity or an alloy thereof is deposited on the substrate. It may be manufactured by forming a first electrode, forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as the second electrode thereon. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing a second electrode material, an organic material layer, and a first electrode material on a substrate.
  • PVD physical vapor deposition
  • the compounds of Formulas 1 and 2 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO:Al or SnO 2 : a combination of a metal such as Sb and an oxide; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; LiF/Al or LiO 2 /Al, and a multi-layered material such as Mg/Ag, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode as a hole injection material, and has an ability to transport holes as a hole injection material, so that it has an excellent hole injection effect with respect to the hole injection effect at the anode, the light emitting layer or the light emitting material.
  • a compound that prevents the movement of excitons generated in the light emitting layer to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer.
  • the hole transport material is a material that can transport holes from the anode or the hole injection layer to the light emitting layer and transfer them to the light emitting layer. material is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.
  • the electron blocking layer is a layer that can improve the lifetime and efficiency of the device by preventing electrons injected from the electron injection layer from entering the hole injection layer through the light emitting layer, and if necessary, using a known material rich in holes It may be formed in an appropriate portion between the light emitting layer and the hole injection layer.
  • the material of the electron blocking layer should be selected in consideration of the overall device structure and the characteristics of the adjacent light emitting layer, and is usually selected from materials that can be used as the hole transport layer material.
  • a compound of EBL1 below for the electron blocking layer adjacent to the light emitting layer including the compound of Formula 1 and the compound of Formula 2.
  • an electron transport layer material in which electrons are well charged to match the material of the light emitting layer, electrons are abundant in the light emitting layer to increase the luminous efficiency, but the abundance of electrons in the light emitting layer enters the hole transport layer and deteriorates the hole transport layer There was a problem making it happen.
  • an electron blocking layer is essential, and by using EBL1, which is a hole-rich material, the electrons flowing in from the light emitting layer are blocked to prevent deterioration of the hole transport layer, so that a long lifespan and high efficiency were achieved. .
  • the light emitting material of the light emitting layer is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • the compound of Formulas 1 and 2 may be included, and an additional light emitting material may be further included.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compounds; compounds of the benzoxazole, benzothiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene, rubrene, and the like, but is not limited thereto.
  • Alq 3 8-hydroxy-quinoline aluminum complex
  • carbazole-based compounds dimerized styryl compounds
  • BAlq 10-hydroxybenzo quinoline-metal compounds
  • compounds of the benzoxazole, benzothiazole and benzimidazole series include Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene, rubrene, and the like, but is not limited thereto.
  • the emission layer may include a host material and a dopant material.
  • the host material includes the compounds of Formulas 1 and 2, and may further include an additional light emitting material.
  • Additional light-emitting materials include condensed aromatic ring derivatives or heterocyclic compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like, and heterocyclic compound containing carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the dopant material examples include an aromatic amine derivative, a styrylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is a substituted or unsubstituted derivative.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.
  • the light emitting layer further includes a phosphorescent dopant.
  • the phosphorescent dopant may be a metal complex.
  • the phosphorescent dopant includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the phosphorescent dopant may be any one of the following compounds, but is not limited thereto.
  • the hole blocking layer is a layer capable of improving the lifespan and efficiency of the device by preventing holes injected from the hole injection layer from entering the electron injection layer through the emission layer. It may be formed in an appropriate portion between the injection layers.
  • the electron transport material of the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transport material is a material that can receive electrons well from the cathode and transfer them to the light emitting layer. This large material is suitable. Specific examples include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer may be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically, they are cesium, barium, calcium, ytterbium and samarium, followed by an aluminum layer or a silver layer in each case.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer.
  • a compound which prevents movement to a layer and is excellent in the ability to form a thin film is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metals complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • the metal complex compound examples include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc.
  • the present invention is not limited thereto.
  • the capping layer is convexly deposited on the transparent cathode and serves to collect light emitted from the cathode.
  • the electrical characteristics of the organic material forming the capping layer are not considered, and the refractive index of the formed thin film is important.
  • the refractive index required for the capping layer may be 1.96 or more and 1.93 or less at a wavelength of 520 nm, and preferably 1.94.
  • the organic material forming the capping layer is not particularly limited, and for example, may be selected from the following compounds.
  • the organic light emitting device may be a top emission type, a back emission type, or a double side emission type depending on the material used.
  • the compounds of Formulas 1 and 2 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • Compound 1-9 was synthesized in the same manner as in Synthesis Example 1, except that 1-9-A was used instead of 1-1-A in Synthesis Example 1, and 1-9-B was used instead of 1-1-B. did.
  • Compound 2-3 was synthesized in the same manner as in Synthesis Example 6, except that in Synthesis Example 6, 2-3-A was used instead of 2-4-A, and 2-3-B was used instead of 2-4-B. did.
  • a substrate on which Ag/ITO was deposited at 100 nm/5 nm as an anode was cut into a size of 100 mm ⁇ 100 mm ⁇ 0.5 mm, placed in distilled water in which the dispersant was dissolved, and washed with ultrasonic waves.
  • the detergent used was a product of Fischer Co., and distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water. After washing ITO for 30 minutes, ultrasonic washing was performed for 10 minutes by repeating twice with distilled water. After washing with distilled water, ultrasonic washing was performed in the order of isopropyl alcohol, acetone, and methanol, followed by drying.
  • HTL1 was thermally vacuum-deposited to a thickness of 100 ⁇ on the prepared anode, but co-deposited with PD1 (2wt%) to form a hole injection layer (HIL1).
  • HIL1 hole injection layer
  • HTL1 was vacuum-deposited to a thickness of 1100 ⁇ to form a first hole transport layer (HTL1)
  • the following HT-A was vacuum-deposited to a thickness of 300 ⁇ to form a second hole transport layer (HTL2).
  • HTL2 first hole transport layer
  • HTL2 second hole transport layer
  • EBL1 electron blocking layer
  • the compound P-Host A which is a P-type host
  • the compound N-Host A which is an N-type host
  • EML emission layer
  • HBL1 was vacuum deposited to a thickness of 30 ⁇ to form a hole blocking layer (HBL), and ETL1 and Liq were vacuum deposited at a weight ratio of 2:1 to form an electron transport layer (ETL).
  • ETL1 and Liq were vacuum deposited at a weight ratio of 2:1 to form an electron transport layer (ETL).
  • ytterbium (Yb) and lithium fluoride (LiF) are formed as an electron injection layer (EIL), and magnesium and silver (1:4) are formed as a cathode to a 120 ⁇ thickness, and then a capping layer is performed with the following CPL. was deposited to a thickness of 600 ⁇ to complete the device. (Deposition rate: 0.3 ⁇ /sec (Yb, LiF), 1 ⁇ /sec (Ag), 0.1 ⁇ /sec (Mg))
  • Comparative Example 1 the devices of Examples 1 to 9 and Comparative Examples 2 to 7 were prepared in the same manner as in Comparative Example 1, except that the compounds shown in Table 1 were used for the P-type host and the N-type host, respectively. .
  • the experiment was conducted by evaporating the OLED organic compound in a vacuum chamber of 1.0E -7 or higher. After completion of the encapsulation process, baking is performed in an oven at 110° C. for 40 minutes. At this time, the aging effect of the organic thin film can be seen through baking, so that a stable top light emitting organic EL device can be obtained.
  • Example 1 through the combination of the host of the present specification, although the driving voltage was increased by 0.3V, it can be confirmed that the lifespan of Comparative Examples 1 to 3 was significantly extended from 100 hours to 500 hours.
  • Compound 3-2 is a material having a certain amount of holes, such as dibenzofuran or dibenzothiophene. Triazine with many electrons is attached to the to control the flow of electrons to increase the lifetime, but it can be seen that the voltage rises because the electrons do not flow smoothly.
  • Compounds 3-1 and 3-2 have a higher molecular weight and larger volume than Compound 2-3, and the sublimability of the material causes problems in mass production. Specifically, preferred materials are melted or maintained in powder form when heated, but compounds 3-1 and 3-2 harden at the top of the crucible like hard cotton, so that the material does not sublimate.
  • Example 7 the P-type host, the N-type host, the electron blocking layer, and the capping layer were prepared in the same manner as in Example 7 except that the compounds shown in Table 2 were used, respectively, in Examples 10, 11, and Comparative Examples. Devices of 8 and Comparative Example 9 were prepared, respectively.
  • the experiment was conducted by evaporating the OLED organic compound in a vacuum chamber of 1.0E -7 or higher. After completion of the encapsulation process, baking is performed in an oven at 110° C. for 40 minutes. At this time, the aging effect of the organic thin film can be seen through baking, so that a stable top light emitting organic EL device can be obtained.
  • Example 7 balanced with EBL1 showed better performance than Comparative Example 8 using compound 3-3 having one triazine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 제1 전극; 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층은 화학식 1의 화합물 및 화학식 2의 화합물을 포함하는 발광층을 포함하는 것인 유기 발광 소자에 관한 것이다.

Description

유기 발광 소자
본 명세서는 2019년 12월 11일 한국특허청에 제출된 한국 특허 출원 제10-2019-0164734호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 제1 전극; 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.
본 명세서는 제1 전극; 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자를 제공하고자 한다.
본 명세서는 제1 전극; 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서,
상기 유기물층은 하기 화학식 1의 화합물 및 하기 화학식 2의 화합물을 포함하는 발광층을 포함하는 것인 유기 발광 소자를 제공한다.
[화학식 1]
Figure PCTKR2020018145-appb-img-000001
[화학식 2]
Figure PCTKR2020018145-appb-img-000002
상기 화학식 1 및 2에 있어서,
Ar1 내지 Ar4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
A1 내지 A4 및 R1 내지 R8은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 카바졸기이거나, 또는 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
Het은 N, O 또는 S를 포함하는 치환 또는 비치환의 탄소수 5 내지 20의 헤테로고리기이며,
L은 탄소수 5 내지 20의 3가의 아릴기이고,
a1 및 a4는 각각 1 내지 4의 정수이고, a2 및 a3은 각각 1 내지 3의 정수이며,
a1 내지 a4가 각각 2 이상의 정수인 경우, 각각의 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하고,
n은 0 또는 1의 정수이며,
n이 0인 경우, 카바졸의 N은 트리아진에 직접결합한다.
본 명세서의 일 실시상태에 따른 화학식 1 및 2의 화합물을 포함하는 발광층을 포함하는 경우, 유기 발광 소자의 수명이 향상된다.
본 명세서의 일 실시상태에 따른 화학식 1 및 2의 화합물을 포함하는 발광층을 포함하는 경우, 유기 발광 소자의 구동전압이 낮은 장점이 있다.
도 1은 본 명세서의 일 실시상태에 따르는 유기 발광 소자(10)를 도시한 것이다.
도 2는 본 명세서의 또 하나의 실시상태에 따르는 유기 발광 소자(11)를 도시한 것이다.
<부호의 설명>
10, 11: 유기 발광 소자
20: 기판
30: 제1 전극
40: 발광층
50: 제2 전극
60: 정공주입층
70: 정공수송층
80: 전자수송층
90: 전자주입층
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에 있어서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에 있어서,
Figure PCTKR2020018145-appb-img-000003
는 다른 치환기 또는 결합부에 결합되는 부위를 의미한다.
본 명세서에 있어서, 할로겐기는 불소, 염소, 브롬 또는 요오드가 될 수 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 30인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 30인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 -NH 2; 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 바이페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, N-페닐나프틸아민기, 디톨릴아민기, N-페닐톨릴아민기, 트리페닐아민기, N-페닐바이페닐아민기; N-페닐나프틸아민기; N-바이페닐나프틸아민기; N-나프틸플루오레닐아민기; N-페닐페난트레닐아민기; N-바이페닐페난트레닐아민기; N-페닐플루오레닐아민기; N-페닐터페닐아민기; N-페난트레닐플루오레닐아민기; N-바이페닐플루오레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, N-알킬아릴아민기는 아민기의 N에 알킬기 및 아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-아릴헤테로아릴아민기는 아민기의 N에 아릴기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-알킬헤테로아릴아민기는 아민기의 N에 알킬기 및 헤테로아릴아민기가 치환된 아민기를 의미한다.
본 명세서에 있어서, 아릴알킬기, 알킬아민기, N-아릴알킬아민기, 알킬티옥시기, 알킬술폭시기, N-알킬헤테로아릴아민기 중의 알킬기는 전술한 알킬기의 예시와 같다. 구체적으로 알킬티옥시기로는 메틸티옥시기, 에틸티옥시기, tert-부틸티옥시기, 헥실티옥시기, 옥틸티옥시기 등이 있고, 알킬술폭시기로는 메실, 에틸술폭시기, 프로필술폭시기, 부틸술폭시기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 30인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴알케닐기는 아릴기로 치환된 알케닐기를 의미한다.
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 붕소기는 -BR 100R 101일 수 있으며, 상기 R 100 및 R 101은 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 니트릴기; 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기로 이루어진 군으로부터 선택될 수 있다.
본 명세서에 있어서, 포스핀옥사이드기는 구체적으로 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하며, 상기 아릴기는 단환식 또는 다환식일 수 있다.
상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 30인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 트리페닐렌기, 파이레닐기, 페날레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020018145-appb-img-000004
,
Figure PCTKR2020018145-appb-img-000005
Figure PCTKR2020018145-appb-img-000006
Figure PCTKR2020018145-appb-img-000007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오르토(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한" 기로 해석될 수 있다.
본 명세서에 있어서, 아릴알킬기, 아릴알케닐기, 아릴옥시기, 아릴티옥시기, 아릴술폭시기, N-아릴알킬아민기, N-아릴헤테로아릴아민기 및 아릴포스핀기 중의 아릴기는 전술한 아릴기의 예시와 같다. 구체적으로 아릴옥시기로는 페녹시기, p-토릴옥시기, m-토릴옥시기, 3,5-디메틸-페녹시기, 2,4,6-트리메틸페녹시기, p-tert-부틸페녹시기, 3-바이페닐옥시기, 4-바이페닐옥시기, 1-나프틸옥시기, 2-나프틸옥시기, 4-메틸-1-나프틸옥시기, 5-메틸-2-나프틸옥시기, 1-안트릴옥시기, 2-안트릴옥시기, 9-안트릴옥시기, 1-페난트릴옥시기, 3-페난트릴옥시기, 9-페난트릴옥시기 등이 있고, 아릴티옥시기로는 페닐티옥시기, 2-메틸페닐티옥시기, 4-tert-부틸페닐티옥시기 등이 있으며, 아릴술폭시기로는 벤젠술폭시기, p-톨루엔술폭시기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 아릴기가 2 이상을 포함하는 아릴아민기는 단환식 아릴기, 다환식 아릴기, 또는 단환식 아릴기와 다환식 아릴기를 동시에 포함할 수 있다. 예컨대, 상기 아릴아민기 중의 아릴기는 전술한 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 헤테로아릴기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 30인 것이 바람직하며, 상기 헤테로아릴기는 단환식 또는 다환식일 수 있다. 헤테로고리기의 예로는 티오펜기, 퓨라닐기, 피롤기, 이미다졸릴기, 티아졸릴기, 옥사졸릴기, 옥사디아졸릴기, 피리딜기, 바이피리딜기, 피리미딜기, 트리아지닐기, 트리아졸릴기, 아크리딜기, 피리다지닐기, 피라지닐기, 퀴놀리닐기, 퀴나졸리닐기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미딜기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀리닐기, 인돌릴기, 카바졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티아졸릴기, 벤조카바졸릴기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤리닐기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기, 페녹사지닐기 및 디벤조퓨라닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴아민기의 예로는 치환 또는 비치환된 모노헤테로아릴아민기, 치환 또는 비치환된 디헤테로아릴아민기, 또는 치환 또는 비치환된 트리헤테로아릴아민기가 있다. 상기 헤테로아릴기가 2 이상을 포함하는 헤테로아릴아민기는 단환식 헤테로아릴기, 다환식 헤테로아릴기, 또는 단환식 헤테로아릴기와 다환식 헤테로아릴기를 동시에 포함할 수 있다. 예컨대, 상기 헤테로아릴아민기 중의 헤테로아릴기는 전술한 헤테로아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, N-아릴헤테로아릴아민기 및 N-알킬헤테로아릴아민기 중의 헤테로아릴기의 예시는 전술한 헤테로아릴기의 예시와 같다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 제1 전극; 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 화합물 및 상기 화학식 2의 화합물을 포함하는 것인 유기 발광 소자를 제공한다. 이때, 제1 전극과 제2 전극은 서로 대향하여 구비될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 화합물은 하기 화학식 1-1이다.
[화학식 1-1]
Figure PCTKR2020018145-appb-img-000008
상기 화학식 1-1에서, Ar1, Ar2, A1 내지 A4 및 a1 내지 a4는 화학식 1의 정의와 같다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 화합물은 하기 화학식 1-1-1 내지 1-1-3 중 어느 하나이다.
[화학식 1-1-1]
Figure PCTKR2020018145-appb-img-000009
[화학식 1-1-2]
Figure PCTKR2020018145-appb-img-000010
[화학식 1-1-3]
Figure PCTKR2020018145-appb-img-000011
상기 화학식 1-1-1 내지 1-1-3에서,
Ar1, Ar2 및 Ar5는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이고,
A5 내지 A11 및 A14는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이며,
A12 및 A13은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
a5, a6, a8 및 a9는 각각 1 내지 3의 정수이고, a7, a10 및 a11은 각각 1 내지 4의 정수이며,
a5 내지 a11이 각각 2 이상의 정수인 경우, 각각의 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하고,
a14는 1 또는 2이며, a14가 2인 경우, 괄호 내의 구조는 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 또는 치환 또는 비치환된 페난트레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 페닐기; 비페닐기; 터페닐기; 나프틸기; 또는 페난트레닐기이다.
본 명세서의 일 실시상태에 따르면, A1 내지 A4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 카바졸기이거나, 또는 인접한 기와 서로 결합하여 치환 또는 비치환된 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, A1 내지 A4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 따르면, A1 내지 A4는 서로 동일하거나 상이하고, 각각 독립적으로 수소이다.
본 명세서의 일 실시상태에 따르면, A5 내지 A11 및 A14는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, A5 내지 A11 및 A14는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 따르면, A5 내지 A11 및 A14는 서로 동일하거나 상이하고, 각각 독립적으로 수소이다.
본 명세서의 일 실시상태에 따르면, A12 및 A13은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, A12 및 A13은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 따르면, A12 및 A13은 서로 동일하거나 상이하고, 각각 독립적으로 알킬기이다.
본 명세서의 일 실시상태에 따르면, A12 및 A13은 메틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar5는 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 또는 치환 또는 비치환된 페난트레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar5는 페닐기; 비페닐기; 터페닐기; 나프틸기; 또는 페난트레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar5는 페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화합물 중에서 선택된다.
Figure PCTKR2020018145-appb-img-000012
Figure PCTKR2020018145-appb-img-000013
본 명세서의 일 실시상태에 따르면, 상기 화학식 2의 화합물은 하기 화학식 2-1이다.
[화학식 2-1]
Figure PCTKR2020018145-appb-img-000014
상기 화학식 2-1에서, Ar3, Ar4 및 Het은 화학식 1의 정의와 같고,
R1 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이고,
r9는 1 내지 3의 정수이고, r9이 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2의 화합물은 하기 화학식 2-2이다.
[화학식 2-2]
Figure PCTKR2020018145-appb-img-000015
상기 화학식 2-2에서,
Ar3, Ar4, Ar6 및 Ar7은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이며,
X1 내지 X3 중 적어도 하나는 N이고, 나머지는 CH이며,
R1 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이고,
r9는 1 내지 3의 정수이고, r9이 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2의 화합물은 하기 화학식 2-2-1 내지 2-2-3 중 어느 하나이다.
[화학식 2-2-1]
Figure PCTKR2020018145-appb-img-000016
[화학식 2-2-2]
Figure PCTKR2020018145-appb-img-000017
[화학식 2-2-3]
Figure PCTKR2020018145-appb-img-000018
상기 화학식 2-2-1 내지 2-2-3에서,
Ar3, Ar4, Ar6 및 Ar7은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이며,
X1 내지 X3 중 적어도 하나는 N이고, 나머지는 CH이며,
R1 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이고,
r9는 1 내지 3의 정수이고, r9이 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 따르면, X1 내지 X3 중 적어도 둘은 N이고, 나머지는 CH이다.
본 명세서의 일 실시상태에 따르면, X1 내지 X3은 N이다.
본 명세서의 일 실시상태에 따르면, Ar3, Ar4, Ar6 및 Ar7은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이다.
본 명세서의 일 실시상태에 따르면, Ar3, Ar4, Ar6 및 Ar7은 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 6 내지 20의 아릴기이다.
본 명세서의 일 실시상태에 따르면, Ar3, Ar4, Ar6 및 Ar7은 페닐기이다.
본 명세서의 일 실시상태에 따르면, R1 내지 R8은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 아릴기이다.
본 명세서의 일 실시상태에 따르면, R1 내지 R8은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 페닐기이다.
본 명세서의 일 실시상태에 따르면, R9는 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 따르면, R9는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2는 하기 화합물 중에서 선택된다.
Figure PCTKR2020018145-appb-img-000019
본 명세서의 일 실시상태에 따르면, 본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 전자차단층, 발광층, 정공차단층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적거나 많은 수의 유기층을 포함할 수 있다.
상기 유기발광소자는 예컨대 하기와 같은 적층 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
(1) 양극/정공수송층/발광층/음극
(2) 양극/정공주입층/정공수송층/발광층/음극
(3) 양극/정공수송층/발광층/전자수송층/음극
(4) 양극/정공수송층/발광층/전자수송층/전자주입층/음극
(5) 양극/정공주입층/정공수송층/발광층/전자수송층/음극
(6) 양극/정공주입층/정공수송층/발광층/전자수송층/전자주입층/음극
(7) 양극/정공수송층/전자차단층/발광층/전자수송층/음극
(8) 양극/ 정공수송층/전자차단층/발광층/전자수송층/전자주입층/음극
(9) 양극/정공주입층/정공수송층/전자차단층/발광층/전자수송층/음극
(10) 양극/정공주입층/정공수송층/전자차단층/발광층/전자수송층/전자주입 층/음극
(11) 양극/정공수송층/발광층/정공차단층/전자수송층/음극
(12) 양극/정공수송층/발광층/정공차단층/전자수송층/전자주입층/음극
(13) 양극/정공주입층/정공수송층/발광층/정공차단층/전자수송층/음극
(14) 양극/정공주입층/정공수송층/발광층/정공차단층/전자수송층/전자주입 층/음극
(15) 양극/ 정공주입층/정공수송층/전자차단층/발광층/정공차단층/전자수송층/전자주입 층/음극
(16) 양극/ 정공주입층/정공수송층/전자차단층/발광층/정공차단층/전자수송 및 주입층/음극
(17) 양극/ 정공주입층/제1 정공수송층/제2 정공수송층/전자차단층/발광층/정공차단층/전자수송 및 주입층/음극
(18) 양극/ 정공주입층/제1 정공수송층/제2 정공수송층/전자차단층/발광층/정공차단층/전자수송층/전자주입층/음극
(19) 양극/ 정공주입층/제1 정공수송층/제2 정공수송층/전자차단층/발광층/정공차단층/전자수송층/전자주입층/음극/캡핑층
예컨대, 본 명세서의 유기 발광 소자의 구조는 도 1 및 도 2에 나타난 것과 같은 구조를 가질 수 있으나 이에만 한정되는 것은 아니다.
도 1에는 기판(20) 위에 제1 전극(30), 발광층(40) 및 제2 전극(50)이 순차적으로 적층된 유기 발광 소자(10)의 구조가 예시 되어 있다. 상기 도 1은 본 명세서의 일 실시상태에 따른 유기 발광 소자의 예시적인 구조이며, 다른 유기물층을 더 포함할 수 있다.
도 2에는 기판(20) 위에 제1 전극(30), 정공주입층(60), 정공수송층(70), 발광층(40), 전자수송층(80), 전자주입층(90) 및 제2 전극(50)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 상기 도 2는 본 명세서의 실시상태에 따른 예시적인 구조이며, 다른 유기물층을 더 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 발광층은 호스트 및 도펀트를 포함하며, 상기 호스트는 상기 화학식 1의 화합물 및 상기 화학식 2의 화합물을 포함한다.
상기 발광층에서 상기 화학식 1의 화합물 및 상기 화학식 2의 화합물의 중량비는 99:1 내지 1:99, 또는 95:5 내지 5:95가 바람직하다.
본 명세서의 일 실시상태에 있어서, 상기 발광층은 상기 화학식 1 및 2의 화합물을 호스트로서 포함하고, 다른 유기화합물, 금속 또는 금속화합물을 도펀트로 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 정공주입층, 정공수송층, 전자차단층, 발광층, 정공차단층, 전자수송층 및 전자주입층으로 이루어진 군으로부터 선택되는 1층 이상을 더 포함할 수 있다.
본 명세서의 유기 발광 소자는 발광층이 상기 화학식 1 및 2의 헤테로고리 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 물리 증착 방법(PVD: physical Vapor Deposition)을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 제1 전극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 제2 전극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 제2 전극 물질부터 유기물층, 제1 전극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1 및 2의 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al, Mg/Ag과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 정공 주입 물질로는 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 전자차단층은 전자 주입층으로부터 주입된 전자가 발광층을 지나 정공 주입층으로 진입하는 것을 방지하여 소자의 수명과 효율을 향상시킬 수 있는 층이고, 필요한 경우에 정공이 풍부한 공지의 재료를 사용하여 발광층과 정공 주입층의 사이에 적절한 부분에 형성될 수 있다. 상기 전자차단층의 재료는 전체 소자 구조와 인접한 발광층의 특성을 고려하여 선택해야 하며, 보통 정공 수송층 재료로 사용될 수 있는 물질 중에서 선택하는 경우가 많다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 화합물 및 상기 화학식 2의 화합물을 포함하는 발광층에 인접하는 전자차단층에는 하기 EBL1의 화합물을 선택하는 것이 바람직하다. 상기 발광층의 재료와 맞도록 전자가 잘 전하되는 전자수송층 재료를 사용하여 발광층에 전자가 풍부하게 되어 발광 효율을 올리는 발명의 효과를 나타내었으나, 발광층의 풍부한 전자가 정공 수송층까지 진입하여 정공 수송층을 열화시키는 문제점이 발생했다. 이에, 본 명세서의 소자 구조에서는 전자차단층이 필수적으로 필요하며, 정공이 풍부한 재료인 하기 EBL1을 사용하여 발광층으로부터 유입되는 전자를 막아주어 정공 수송층의 열화를 방지하여 장수명, 고효율을 달성할 수 있었다.
Figure PCTKR2020018145-appb-img-000020
상기 발광층의 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 본 명세서에서는 상기 화학식 1 및 2의 화합물을 포함하며, 그외 추가의 발광 물질을 더 포함할 수 있다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq 3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤즈옥사졸, 벤조티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 상기 화학식 1 및 2의 화합물을 포함하며, 그외 추가의 발광 물질을 더 포함할 수 있다. 추가의 발광 물질로는 축합 방향족환 유도체 또는 헤테로 고리 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로 고리 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
상기 도펀트 재료로는 방향족 아민 유도체, 스티릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 시클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 따르면, 상기 발광층은 인광 도펀트를 더 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 인광 도펀트는 금속 착체일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 인광 도펀트는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 인광 도펀트는 하기 화합물 중 어느 하나일 수 있으나, 이에만 한정되는 것은 아니다.
Figure PCTKR2020018145-appb-img-000021
Figure PCTKR2020018145-appb-img-000022
상기 정공 차단층은 정공 주입층으로부터 주입된 정공이 발광층을 지나 전자 주입층으로 진입하는 것을 방지하여 소자의 수명과 효율을 향상시킬 수 있는 층이고, 필요한 경우에 공지의 재료를 사용하여 발광층과 전자 주입층의 사이에 적절한 부분에 형성될 수 있다.
상기 전자수송층의 전자 수송 물질로는 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 캡핑층은 투명한 캐소드 위에 볼록하게 증착되어 캐소로부터 방출되는 빛을 모아주는 역할을 한다. 상기 캡핑층을 형성하는 유기물의 전기적특성은 고려사항이 아니며, 형성된 박막의 굴절률이 중요하다. 상기 캡핑층으로 요구되는 굴절률은 파장 520nm 조건에서 1.96 이상 1.93 이하일 수 있으며, 1.94가 바람직하다.
상기 캡핑층을 형성하는 유기물은 특별히 한정하지 않으나, 예를 들면, 하기 화합물 중에서 선택할 수 있다.
Figure PCTKR2020018145-appb-img-000023
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1 및 2의 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
[합성예 1]
Figure PCTKR2020018145-appb-img-000024
화합물 1-1-A (46.6 mmol), 화합물 1-1-B (51.3 mmol), Potassium carbonate (139.8mmol)와 Tetrakis(triphenylphosphine)palladium(0) (0.9 mmol)을 Tetrahydrofuran에 넣고 12시간 동안 환류시켰다. 반응이 종료된 후 물 층을 제거한 뒤 유기층을 Magnesium sulfate로 건조시킨 후 여과한 액체를 감압 증류하였다. 얻은 고체를 Chloroform(500 ml)에 녹인 뒤 Ethyl acetate (100 ml)을 넣고 재결정한 뒤 건조하여 화합물 1-1 (수율 86 %)을 얻었다.
[합성예 2]
Figure PCTKR2020018145-appb-img-000025
상기 합성예 1에서 1-1-A 대신 1-2-A를 사용하고, 1-1-B(51.3 mmol) 대신 1-2-B(102.6 mmol)를 사용한 것을 제외하고, 합성예 1과 동일한 방법으로 화합물 1-2를 합성하였다.
[합성예 3]
Figure PCTKR2020018145-appb-img-000026
상기 합성예 1에서 1-1-A 대신 1-4-A를 사용하고, 1-1-B 대신 1-4-B를 사용한 것을 제외하고, 합성예 1과 동일한 방법으로 화합물 1-4를 합성하였다.
[합성예 4]
Figure PCTKR2020018145-appb-img-000027
상기 합성예 1에서 1-1-A 대신 1-9-A를 사용하고, 1-1-B 대신 1-9-B를 사용한 것을 제외하고, 합성예 1과 동일한 방법으로 화합물 1-9를 합성하였다.
[합성예 5]
Figure PCTKR2020018145-appb-img-000028
상기 합성예 1에서 1-1-A 대신 1-11-A를 사용하고, 1-1-B 대신 1-11-B를 사용한 것을 제외하고, 합성예 1과 동일한 방법으로 화합물 1-11을 합성하였다.
[합성예 6]
Figure PCTKR2020018145-appb-img-000029
K 2CO 3(4.91 mmol)과 2-4-B(3.93 mmol)을 NMP((N-methyl pyrrolidone)에 넣고, 상온에서 1시간 동안 교반했다. 여기에 2-4-A(0.655 mmol)을 첨가했다. 이 혼합물을 180℃에서 18시간 동안 교반했다. 다시 195℃에서 11시간 동안 교반했다. 반응 혼합물을 H 2O로 퀀칭(quenching)하고 침전된 생성물을 여과한 다음 이를 메탄올(MeOH)로 세척했다. 다시 실리카 겔 컬럼 크로마토 그래피 (헥산: 톨루엔 = 1: 1)로 정제하여 화합물 2-4 (0.422 mmol)을 64% 수율의 백색 분말로 수득하였다.
[합성예 7]
Figure PCTKR2020018145-appb-img-000030
상기 합성예 6에서 2-4-A 대신 2-3-A를 사용하고, 2-4-B 대신 2-3-B를 사용한 것을 제외하고, 합성예 6과 동일한 방법으로 화합물 2-3을 합성하였다.
[합성예 8]
Figure PCTKR2020018145-appb-img-000031
상기 합성예 6에서 2-4-A 대신 2-5-A를 사용하고, 2-4-B 대신 2-5-B를 사용한 것을 제외하고, 합성예 6과 동일한 방법으로 화합물 2-5를 합성하였다.
[합성예 9]
Figure PCTKR2020018145-appb-img-000032
상기 합성예 6에서 2-4-A 대신 2-6-A를 사용하고, 2-4-B 대신 2-6-B를 사용한 것을 제외하고, 합성예 6과 동일한 방법으로 화합물 2-6을 합성하였다.
[합성예 10]
Figure PCTKR2020018145-appb-img-000033
9-([1,1'-비페닐]-3-일)-3-브로모-9H-카바졸 (9-([1,1'-biphenyl]-3-yl)-3-bromo-9H-carbazole) (20.0 g, 50.4 mmol)과 (9-([1,1'-비페닐]-3-일)-9H-카바졸-3-일)보로닉산 ((9-([1,1'-biphenyl]-3-yl)-9H-carbazol-3-yl)boronic acid) (18.3 g, 50.4 mmol)을 테트라하이드로퓨란(250 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K 2CO 3)(50.4 ml, 100.7 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh 3) 4](1.7 g, 3 mol%)을 넣은 후 4시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 1-12(21.5 g, 수율 67 %; MS:[M+H] +=637)를 제조하였다.
[비교예 1]
애노드로서 Ag/ITO가 100nm/5nm 증착된 기판을 100mm × 100mm × 0.5mm크기로 잘라서 분산제를 녹인 증류수에 넣고 초음파로 세척하였다. 세제는 피셔사(Fischer Co.)의 제품을 사용하였으며, 증류수는 밀리포어 사(Millipore Co.) 제품의 필터(Filter)로 2차 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후, 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후 이소프로필알콜, 아세톤, 메탄올 용제 순서로 초음파 세척을 하고 건조시켰다.
이렇게 준비된 애노드 위에 HTL1을 100Å의 두께로 열 진공 증착하되 PD1(2wt%)과 함께 공증착하여 정공주입층(HIL1)을 형성하였다. (증착속도: 1 Å/sec(HTL1), 0.3 Å/sec(PD1))
Figure PCTKR2020018145-appb-img-000034
그 위에 상기 HTL1만을 두께 1100Å으로 진공증착하여 제1 정공수송층(HTL1)을 형성하고, 하기 HT-A를 두께 300Å으로 진공증착하여 제2 정공수송층(HTL2)을 형성하였다. (증착속도: 2 Å/sec)
Figure PCTKR2020018145-appb-img-000035
그 다음에 하기 EBL1을 두께 150Å으로 진공증착하여 전자차단층(EBL)을 형성하였다. (증착속도: 1 Å/sec)
Figure PCTKR2020018145-appb-img-000036
그 위에, 호스트로서 P형 호스트인 화합물 P-Host A와 N형 호스트인 화합물 N-Host A(P-Host:N-Host A의 중량비=6:4), 및 도판트로서 하기 이리듐 화합물(GD)(6wt%)을 360Å의 두께로 진공 증착하여 발광층(EML)을 형성하였다. (증착속도: 1.2 Å/sec(P-Host), 0.8 Å/sec(N-Host A) 0.6 Å/sec(GD))
Figure PCTKR2020018145-appb-img-000037
그 후, HBL1을 30Å의 두께로 진공 증착하여 정공차단층(HBL)을 형성하고, ETL1과 Liq를 2:1의 중량비로 진공 증착하여 전자수송층(ETL)을 형성하였다. (증착속도: 1 Å/sec(HBL1), 1.2 Å/sec(ETL1), 0.6 Å/sec(Liq))
Figure PCTKR2020018145-appb-img-000038
순차적으로 20Å두께의 이터븀(Yb)과 리튬 플루오라이드(LiF)를 전자주입층(EIL)으로 성막한 후 캐소드로 마그네슘과 은(1:4)을 120Å두께로 형성시킨 후 하기 CPL로 캡핑층을 600 Å두께로 증착하여 소자를 완성하였다. (증착속도: 0.3 Å/sec(Yb, LiF), 1 Å/sec(Ag), 0.1 Å/sec(Mg))
Figure PCTKR2020018145-appb-img-000039
[실시예 1 내지 9 및 비교예 2 내지 7]
상기 비교예 1에서, P형 호스트와 N형 호스트를 각각 표 1에 표시된 화합물을 사용한 것을 제외하고 비교예 1과 동일한 방법으로, 실시예 1 내지 9 및 비교예 2 내지 7의 소자를 각각 제조하였다.
Figure PCTKR2020018145-appb-img-000040
Figure PCTKR2020018145-appb-img-000041
[실험예]
1.0E -7 이상의 진공 chamber에 OLED 유기 화합물을 Evaporation 하여 실험을 진행했다. 봉지 공정까지 완료 후, 110℃ Oven에서 40분 동안 베이킹(baking)을 진행한다. 이때, 베이킹(baking)을 통해 유기박막의 에이징(aging) 효과를 볼 수 있어 안정적인 상부발광 유기EL소자를 얻어낼 수 있었다.
베이킹이 완료된 유기EL 소자를 Photo Research社 PR-670 IVL 계측기를 활용하여 IVL 특성을 측정하고, McScience社 M6000 제품을 통하여 20000nit 기준 상부 발광 유기EL소자의 Photo Diode 방식으로 Life Time(LT)을 측정하여 휘도가 초기 휘도에서 95%로 감소되는데 소요되는 시간을 T95로 표시했다.
P형 호스트 N형 호스트 V cd/A LT@20000nit/cm 2
(T95)
비교예 1 P-Host A N-Host A 4.30 122.3 163.5
비교예 2 1-1 N-Host A 4.34 138.5 151.5
비교예 3 P-Host A 2-3 4.21 129.6 187.2
실시예 1 1-9 2-3 4.66 135.9 555.5
실시예 2 1-9 2-4 4.09 137.1 534.2
실시예 3 1-1 2-5 4.18 136.4 371.4
실시예 4 1-2 2-6 4.29 138.3 379.8
비교예 4 1-4 3-1 4.42 128.1 353.2
비교예 5 1-11 3-2 4.55 129.6 468.0
실시예 5 1-11 2-3 4.19 130 190.2
실시예 6 1-12 2-3 4.45 137.2 556.3
실시예 7 1-12 2-4 3.87 140.2 564.8
실시예 8 1-12 2-5 3.87 156.9 392.1
실시예 9 1-12 2-6 4.06 128.9 400.3
비교예 6 1-12 3-1 4.22 158.7 348.1
비교예 7 1-12 3-2 4.32 136.8 356.5
* V: 구동전압
* cd/A: 효율
표 1의 결과를 통해, 실시예 1 내지 4는 비교예 1 내지 5와 비교하여 낮은 전압, 높은 효율 또는 장수명을 만족하는 것을 확인할 수 있다.
실시예 1의 경우, 본원 명세서의 호스트의 조합을 통해, 비록 구동전압은 0.3V 상승했으나, 비교예 1 내지 3의 100시간대의 수명을 500시간대로 수명을 획기적으로 연장시킨 것을 확인할 수 있다.
실시예 1 내지 4의 효율은 비교예들과 유사한 정도를 유지하나, 구동전압이 낮아지고 수명이 크게 개선된 것을 확인할 수 있다.
비교예 5와 같이 본원 명세서의 화학식 2와 유사한 N형 호스트를 사용한 조합을 통해 수명은 길어졌으나, 전압은 높아지고 효율은 낮아진 것을 확인할 수 있다.
N형 호스트로서, 화합물 2-3을 사용한 실시예 5와, 화합물 3-2를 사용한 비교예 5를 비교하면, 화합물 3-2는 디벤조퓨란 또는 디벤조티오펜과 같은 정공량이 어느 정도 있는 재료에 전자가 많은 트리아진을 붙여 전자의 흐름을 통제하여 수명은 상승하였지만 전자가 원할하게 흐르지 못하여 전압이 상승함을 확인할 수 있다.
화합물 3-1과 3-2는 화합물 2-3에 비하여 분자량이 높아 부피가 크며, 패널 양산시 재료의 승화성이 양산에 문제가 발생하게 된다. 구체적으로, 바람직한 재료는 가열을 하면 멜팅(melting)되거나, 파우더 형태를 유지해야 하나, 화합물 3-1과 3-2는 딱딱한 솜처럼 도가니(crucible)의 상단에 굳어버려 재료가 승화되지 않는다.
[실시예 10, 실시예 11, 비교예 8 및 비교예 9]
상기 실시예 7에서, P형 호스트, N형 호스트, 전자차단층 및 캡핑층을 각각 표 2에 표시된 화합물을 사용한 것을 제외하고 실시예 7과 동일한 방법으로, 실시예 10, 실시예 11, 비교예 8 및 비교예 9의 소자를 각각 제조하였다.
Figure PCTKR2020018145-appb-img-000042
1.0E -7 이상의 진공 chamber에 OLED 유기 화합물을 Evaporation 하여 실험을 진행했다. 봉지 공정까지 완료 후, 110℃ Oven에서 40분 동안 베이킹(baking)을 진행한다. 이때, 베이킹(baking)을 통해 유기박막의 에이징(aging) 효과를 볼 수 있어 안정적인 상부발광 유기EL소자를 얻어낼 수 있었다.
베이킹이 완료된 유기EL 소자를 Photo Research社 PR-670 IVL 계측기를 활용하여 IVL 특성을 측정하고, McScience社 M6000 제품을 통하여 20000nit 기준 상부 발광 유기EL소자의 Photo Diode 방식으로 Life Time(LT)을 측정하여 휘도가 초기 휘도에서 95%로 감소되는데 소요되는 시간을 T95로 표시했다.
P형 호스트 N형 호스트 EBL 캡핑층 V cd/A LT@20000nit/cm 2
(T95)
실시예 7 1-12 2-4 EBL1 CPL 3.87 140.2 564.8
실시예 10 1-12 2-4 3-5 CPL 3.95 136.4 478.2
실시예 11 1-12 2-4 3-6 CPL 4.58 116.7 382.2
비교예 8 1-12 3-3 3-6 - 4.1 120.6 465.7
비교예 9 3-5 3-4 3-5 - 4.82 105.8 220.4
정공차단층으로서, EBL1을 사용한 실시예 7에 비하여, 화합물 3-6 및 3-5를 각각 사용한 실시예 10 및 11은 수명이 낮은 것을 확인했다. 이는 EBL1보다 정공수송 특성이 낮은 화합물 3-5 또는 화합물 3-6을 사용하여 정공 수송층의 열화가 진행되어 수명이 다소 짧아진 것으로 판단된다.
본원 N형 호스트는 트리아진이 2개로 이루어지게 되면서 전자의 양이 상대적으로 정공보다 너무 우세한 수준으로 변하여 발광층에서 전자, 정공의 에너지 밸런스가 맞지 않으나, 발광층에 인접한 EBL층에 정공한 풍부한 EBL1을 사용하여 발광층에서 무너진 밸런스를 맞추었다. 그 결과, 트리아진이 1개인 화합물 3-3을 사용한 비교예 8보다 EBL1으로 밸런스를 맞춘 실시예 7이 더 좋은 성능을 나타냈다.

Claims (12)

  1. 제1 전극; 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서,
    상기 유기물층은 하기 화학식 1의 화합물 및 하기 화학식 2의 화합물을 포함하는 발광층을 포함하는 것인 유기 발광 소자:
    [화학식 1]
    Figure PCTKR2020018145-appb-img-000043
    [화학식 2]
    Figure PCTKR2020018145-appb-img-000044
    상기 화학식 1 및 2에 있어서,
    Ar1 내지 Ar4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
    A1 내지 A4 및 R1 내지 R8은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 카바졸기이거나, 또는 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
    Het은 N, O 또는 S를 포함하는 치환 또는 비치환의 탄소수 5 내지 20의 헤테로고리기이며,
    L은 탄소수 5 내지 20의 3가의 아릴기이고,
    a1 및 a4는 각각 1 내지 4의 정수이고, a2 및 a3은 각각 1 내지 3의 정수이며,
    a1 내지 a4가 각각 2 이상의 정수인 경우, 각각의 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하고,
    n은 0 또는 1의 정수이며,
    n이 0인 경우, 카바졸의 N은 트리아진에 직접결합한다.
  2. 청구항 1에 있어서, 상기 화학식 1의 화합물은 하기 화학식 1-1인 것인 유기 발광 소자:
    [화학식 1-1]
    Figure PCTKR2020018145-appb-img-000045
    상기 화학식 1-1에서, Ar1, Ar2, A1 내지 A4 및 a1 내지 a4는 화학식 1의 정의와 같다.
  3. 청구항 1에 있어서, 상기 화학식 1의 화합물은 하기 화학식 1-1-1 내지 1-1-3 중 어느 하나인 것인 유기 발광 소자:
    [화학식 1-1-1]
    Figure PCTKR2020018145-appb-img-000046
    [화학식 1-1-2]
    Figure PCTKR2020018145-appb-img-000047
    [화학식 1-1-3]
    Figure PCTKR2020018145-appb-img-000048
    상기 화학식 1-1-1 내지 1-1-3에서,
    Ar1, Ar2 및 Ar5는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이고,
    A5 내지 A11 및 A14는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이며,
    A12 및 A13은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    a5, a6, a8 및 a9는 각각 1 내지 3의 정수이고, a7, a10 및 a11은 각각 1 내지 4의 정수이며,
    a5 내지 a11이 각각 2 이상의 정수인 경우, 각각의 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하고,
    a14는 1 또는 2이며, a14가 2인 경우, 괄호 내의 구조는 서로 동일하거나 상이하다.
  4. 청구항 1에 있어서, 상기 Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 또는 치환 또는 비치환된 페난트레닐기인 것인 유기 발광 소자.
  5. 청구항 1에 있어서, 상기 화학식 2의 화합물은 하기 화학식 2-1인 것인 유기 발광 소자:
    [화학식 2-1]
    Figure PCTKR2020018145-appb-img-000049
    상기 화학식 2-1에서, Ar3, Ar4 및 Het은 화학식 1의 정의와 같고,
    R1 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이고,
    r9는 1 내지 3의 정수이고, r9이 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하다.
  6. 청구항 1에 있어서, 상기 화학식 2의 화합물은 하기 화학식 2-2인 것인 유기 발광 소자:
    [화학식 2-2]
    Figure PCTKR2020018145-appb-img-000050
    상기 화학식 2-2에서,
    Ar3, Ar4, Ar6 및 Ar7은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이며,
    X1 내지 X3 중 적어도 하나는 N이고, 나머지는 CH이며,
    R1 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이고,
    r9는 1 내지 3의 정수이고, r9이 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하다.
  7. 청구항 6에 있어서, 상기 X1 내지 X3은 N인 것인 유기 발광 소자.
  8. 청구항 1에 있어서, 상기 화학식 2의 화합물은 하기 화학식 2-2-1 내지 2-2-3 중 어느 하나인 것인 유기 발광 소자:
    [화학식 2-2-1]
    Figure PCTKR2020018145-appb-img-000051
    [화학식 2-2-2]
    Figure PCTKR2020018145-appb-img-000052
    [화학식 2-2-3]
    Figure PCTKR2020018145-appb-img-000053
    상기 화학식 2-2-1 내지 2-2-3에서,
    Ar3, Ar4, Ar6 및 Ar7은 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이며,
    X1 내지 X3 중 적어도 하나는 N이고, 나머지는 CH이며,
    R1 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 아릴기이고,
    r9는 1 내지 3의 정수이고, r9이 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하다.
  9. 청구항 1에 있어서, 상기 화학식 1의 화합물은 하기 화합물 중 어느 하나인 것인 유기 발광 소자:
    Figure PCTKR2020018145-appb-img-000054
    Figure PCTKR2020018145-appb-img-000055
    .
  10. 청구항 1에 있어서, 상기 화학식 2의 화합물은 하기 화합물 중 어느 하나인 것인 유기 발광 소자:
    Figure PCTKR2020018145-appb-img-000056
    .
  11. 청구항 1에 있어서, 상기 발광층은 호스트 및 도펀트를 포함하며,
    상기 호스트는 상기 화학식 1의 화합물 및 상기 화학식 2의 화합물을 포함하고,
    상기 도펀트는 인광 도펀트인 것인 유기 발광 소자.
  12. 청구항 11에 있어서, 상기 인광 도펀트는 하기 화합물 중 어느 하나인 것인 유기 발광 소자:
    Figure PCTKR2020018145-appb-img-000057
    Figure PCTKR2020018145-appb-img-000058
    .
PCT/KR2020/018145 2019-12-11 2020-12-11 유기 발광 소자 WO2021118287A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080069031.6A CN114467189A (zh) 2019-12-11 2020-12-11 有机发光器件
US17/764,280 US20220376188A1 (en) 2019-12-11 2020-12-11 Organic light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0164734 2019-12-11
KR20190164734 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021118287A1 true WO2021118287A1 (ko) 2021-06-17

Family

ID=76330531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018145 WO2021118287A1 (ko) 2019-12-11 2020-12-11 유기 발광 소자

Country Status (4)

Country Link
US (1) US20220376188A1 (ko)
KR (1) KR102489771B1 (ko)
CN (1) CN114467189A (ko)
WO (1) WO2021118287A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150021457A (ko) * 2013-08-20 2015-03-02 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
US20170077418A1 (en) * 2014-03-13 2017-03-16 Merck Patent Gmbh Organic electroluminescent device
KR20180030081A (ko) * 2015-07-08 2018-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 장치, 및 조명 장치
KR20190008129A (ko) * 2017-07-14 2019-01-23 시노라 게엠베하 유기 분자, 특히 광전자 디바이스에 사용하기 위한 유기 분자
US20190292210A1 (en) * 2016-09-21 2019-09-26 Merck Patent Gmbh Binuclear metal complexes for use as emitters in organic electroluminescent devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135513B4 (de) 2001-07-20 2005-02-24 Novaled Gmbh Lichtemittierendes Bauelement mit organischen Schichten
KR102288347B1 (ko) * 2014-05-02 2021-08-11 삼성디스플레이 주식회사 유기 발광 소자
US11342513B2 (en) * 2018-05-04 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150021457A (ko) * 2013-08-20 2015-03-02 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 디바이스
US20170077418A1 (en) * 2014-03-13 2017-03-16 Merck Patent Gmbh Organic electroluminescent device
KR20180030081A (ko) * 2015-07-08 2018-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 장치, 및 조명 장치
US20190292210A1 (en) * 2016-09-21 2019-09-26 Merck Patent Gmbh Binuclear metal complexes for use as emitters in organic electroluminescent devices
KR20190008129A (ko) * 2017-07-14 2019-01-23 시노라 게엠베하 유기 분자, 특히 광전자 디바이스에 사용하기 위한 유기 분자

Also Published As

Publication number Publication date
CN114467189A (zh) 2022-05-10
US20220376188A1 (en) 2022-11-24
KR20210074229A (ko) 2021-06-21
KR102489771B1 (ko) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2019164331A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017043887A1 (ko) 유기전계발광소자
WO2015016498A1 (ko) 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017131380A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2015152650A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2016195406A2 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017061779A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2021080368A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021049840A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019160315A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019172649A1 (ko) 다중고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019164301A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2018030786A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2019088751A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020149596A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020130528A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019177393A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019194616A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2021066351A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020153792A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020149609A1 (ko) 유기 발광 소자
WO2020111586A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2019168378A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022060047A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031028A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900584

Country of ref document: EP

Kind code of ref document: A1