WO2021117793A1 - 測量システム及び測量方法 - Google Patents

測量システム及び測量方法 Download PDF

Info

Publication number
WO2021117793A1
WO2021117793A1 PCT/JP2020/045948 JP2020045948W WO2021117793A1 WO 2021117793 A1 WO2021117793 A1 WO 2021117793A1 JP 2020045948 W JP2020045948 W JP 2020045948W WO 2021117793 A1 WO2021117793 A1 WO 2021117793A1
Authority
WO
WIPO (PCT)
Prior art keywords
mark
pattern
control unit
center position
dimensional
Prior art date
Application number
PCT/JP2020/045948
Other languages
English (en)
French (fr)
Inventor
義人 橋村
祥持 藤原
悠太 数原
Original Assignee
計測技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 計測技研株式会社 filed Critical 計測技研株式会社
Priority to CN202080043743.0A priority Critical patent/CN114008482A/zh
Priority to US17/616,354 priority patent/US11475231B2/en
Publication of WO2021117793A1 publication Critical patent/WO2021117793A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/004Reference lines, planes or sectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10712Fixed beam scanning
    • G06K7/10722Photodetector array or CCD scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20164Salient point detection; Corner detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Definitions

  • the present invention relates to a surveying system and a surveying method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-149748
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2016-138802
  • Patent Document 2 discloses a surveying system including a prism and a total station that emits distance measuring light to the prism and measures the distance based on the reflected distance measuring light from the prism.
  • Patent Document 3 discloses a surveying support device including an image acquisition unit, an image analysis processing unit using a designated mark, and a work support unit.
  • Patent Document 4 discloses a target device provided with a spiral pattern display on the surface.
  • Patent Document 5 discloses an automatic collimation device in which a computer compares measurement data with structure design data.
  • Chinese Patent Application Publication No. 1047888488 discloses a two-dimensional bar code attached to a steel structure member.
  • Patent Document 7 includes a measurement program that sounds a warning sound or displays an error on a display screen as appropriate to call attention when a detection mark cannot be detected from image data. It is disclosed.
  • the terminal compares a predetermined measurement scheduled position with the measurement position of the reflection prism measured by the position measuring device, calculates the positional relationship, and calculates the positional relationship of the reflection prism.
  • a measuring device for graphically displaying the positional relationship between the planned measurement position and the actually measured measurement position on the display unit of the terminal is disclosed.
  • a surveyor installs a target sheet (reflection sheet) dedicated to surveying on the survey target of a building such as a building or pillar, and positions it directly in front of the target sheet (opposite position).
  • a surveying instrument is installed, the target sheet is collimated by the telescope of the surveying instrument, and the distance is measured by the surveying instrument to measure the coordinates of the target sheet.
  • the surveying instrument irradiates the laser in the collimation direction of the telescope at the time of distance measurement, and detects the intensity of the reflected light of the laser reflected from the target sheet.
  • the laser light is reflected from the surveying instrument on the target sheet, and the reflected light returns from the target sheet to the surveying instrument. Since the reflected light detected by the surveying instrument reciprocates the distance from the surveying instrument to the target sheet, a delay occurs by the reciprocating distance, and this delay becomes a phase difference.
  • the surveying instrument calculates the distance to the target sheet based on the phase difference and measures the coordinates of the target sheet.
  • the angle of incidence of the laser on the target sheet is, for example, about left and right from the position where the surveying instrument faces the target sheet.
  • the surveying instrument can measure the coordinates of the target sheet within a range of up to 45 degrees, but the larger the incident angle, the weaker the intensity of the reflected light.
  • the intensity of the reflected light detected by the surveying instrument varies depending on the brightness of the environment. For these reasons, it is preferable that the surveying instrument is located at a position facing the target sheet. Therefore, the surveyor installs the surveying instrument at a position facing the target sheet, and there is a problem that it takes time and effort to install the surveying instrument.
  • the surveying instrument is equipped with an automatic collimation function, and when the surveyor instructs the surveyor to perform automatic collimation with the telescope pointed at the target sheet, the surveyor sees the telescope.
  • a laser is irradiated in a quasi-direction, the intensity of the reflected light of the laser is detected, and the center position of the target sheet is determined based on the light amount distribution of the reflected light.
  • the target sheet is a prism for distance measurement. Therefore, in the case of automatic collimation, it is preferable that the surveying instrument detects only the reflected light from a specific light reflecting object.
  • the intensity of the reflected light from the target sheet cannot be detected properly unless the surveying instrument is in the range of 15 degrees to the left and right from the position facing the target sheet, which is specific. There is a problem that the target sheet cannot be collimated. Also, if the building has light reflectors other than the target sheet, or if two or more target sheets are in close proximity, when the surveyor uses the automatic collimation function, the reflected light from multiple light reflectors is the cause. Therefore, the surveying instrument cannot appropriately detect the intensity of the reflected light from the specific target sheet, and there is a problem that the collimation accuracy is lowered.
  • Patent Document 1 enables identification of a mark, there is a problem that information cannot be added to the mark itself.
  • Patent Document 2 it is necessary to provide the setting identification information separately from the prism corresponding to the target sheet, and there is a problem that the information cannot be added to the setting identification information itself.
  • Patent Document 3 since the designated mark is provided on the target, there is a problem that the surveyor needs to install the surveying instrument at a position facing the target in order to improve the accuracy of the measured value. is there.
  • Patent Document 4 it is necessary to provide a spiral pattern display separately from the target, and there is a problem that information cannot be added to the pattern display itself.
  • Patent Documents 5, 7 and 8 have a problem that information cannot be associated with a mark.
  • a QR code registered trademark
  • the two-dimensional bar code since a QR code (registered trademark) having fine squares is adopted as the two-dimensional bar code, there is a problem that the two-dimensional bar code cannot be recognized at the surveying site.
  • the present invention has been made to solve the above-mentioned problems, and is a surveying system capable of reducing the time and labor of surveying, collimating with high accuracy, and accurately associating measured values.
  • the purpose is to provide a surveying method.
  • the surveying system includes a photographing control unit, a recognition control unit, an information display control unit, a calculation control unit, an adjustment control unit, a distance measurement control unit, and an information storage control unit.
  • the shooting control unit uses the telescope of the surveying instrument to shoot a captured image including a two-dimensional mark installed in advance on the survey target of the building.
  • the recognition control unit detects the two-dimensional mark image corresponding to the two-dimensional mark in the captured image, and collates the detected capture pattern with the identification pattern of the two-dimensional mark in the mark information table to perform the capture. Recognize a specific identification pattern that corresponds to the pattern.
  • the information display control unit acquires the survey information including the set value of the survey target associated with the specific identification pattern from the mark information table, and takes the image. Display on the image.
  • the calculation control unit calculates the difference between the mark center position of the two-dimensional mark image in the captured image and the center position of the crosshair of the telescope.
  • the adjustment control unit adjusts the direction of the telescope so that the center position of the crosshair is aligned with the mark center position based on the difference.
  • the distance measuring control unit uses the surveying instrument to measure the distance using the mark center position as a measured value in a state where the center position of the crosshair is aligned with the mark center position.
  • the information storage control unit stores the measured value in the mark information table in association with the two-dimensional mark of the specific identification pattern together with the set value of the survey information.
  • the surveying method includes a photographing control step, a recognition control step, an information display control step, a calculation control step, an adjustment control step, a distance measurement control step, and an information storage control step.
  • Each step of the surveying method corresponds to each control unit of the surveying system.
  • FIG. 4A shows an example of the generation of a two-dimensional mark and a mark information table
  • FIG. 4B shows an example of setting of a two-dimensional mark.
  • FIG. 5A showing an example of measuring the mechanical points of a surveying instrument and taking a captured image including a two-dimensional mark at a surveying site, and a captured image when the surveying instrument is positioned directly opposite the two-dimensional mark.
  • FIG. 5B is a diagram (FIG. 5B) showing an example of a captured image when the surveying instrument is positioned obliquely with respect to the two-dimensional mark.
  • a diagram (FIG. 6A) showing a comparison between a captured image when the surveying instrument is located at a steep slope with respect to the two-dimensional mark, a captured pattern and an identification pattern, an example of error display, and survey information in the captured image. It is a figure (FIG. 6B) which shows an example of the display and the calculation of the difference between the mark center position and the crosshair center position.
  • a diagram (FIG. 6A) showing a comparison between a captured image when the surveying instrument is located at a steep slope with respect to the two-dimensional mark, a captured pattern and an identification pattern, an example of error display, and survey information in the captured image.
  • FIG. 6B shows an example of the display and the calculation of the difference between the mark center position and the crosshair center position.
  • FIG. 7A showing an example of an arrow mark or message guidance display in a captured image and a message display when the center position of the crosshair matches the mark center position, and a measured value within the control value range.
  • FIG. 7B shows an example of the display of the accuracy and the mark information table in which the measured value is reflected.
  • a diagram (FIG. 8A) showing an example of measured values outside the control value range, accuracy, message display, and a mark information table reflecting the measured values, and a plurality of two-dimensional marks appearing in one captured image.
  • FIG. 8B shows an example of the case and the case where a plurality of target sheets are shown in one captured image.
  • FIG. 9A showing an example of shooting a captured image including a two-dimensional mark at a surveying site, a display of measured values and accuracy within the range of controlled values, and a display of measured values and accuracy outside the range of controlled values.
  • FIG. 9B shows an example. It is a figure which shows an example of the display of the survey information when a plurality of 2D marks are projected on one photographed image.
  • a diagram showing an example of an angle, a shooting pattern, a detection rate, and a recognition rate in a 6 ⁇ 6 pattern (FIG. 11A), and a diagram showing an example of an angle, a shooting pattern, a detection rate, and a recognition rate in a 7 ⁇ 7 pattern. (Fig. 11B).
  • FIG. 12A A perspective view and a plan view (FIG. 12A) showing an outline of the experimental site using two-dimensional marks, and a view (FIG. 12B) showing an example of captured images from the installation position "1" to the installation position "3". is there. Evaluation of installation position, size, and measurement results in a diagram (FIG. 13A) showing an example of captured images from the installation position "4" to the installation position "6", and an example (two-dimensional mark) and a comparative example (target sheet). It is a figure (FIG. 13B) which shows an example. It is a perspective view (FIG. 14A) showing the outline of the experiment site using the paper including a plurality of two-dimensional marks and the two-dimensional mark, and a photograph (FIG.
  • FIG. 14B showing the situation of the experiment site. It is a figure which shows an example of recognition of each 2D mark image copied on one photographed image.
  • FIG. 18B shows an example of the case where a two-dimensional mark is a circle.
  • the surveying system 1 (also referred to as a surveying device) according to the embodiment of the present invention basically includes a surveying instrument 10, a terminal device for a surveying instrument 11, a server 12, and a network 13.
  • the surveying instrument 10 and the surveying instrument terminal device 11 are, for example, transported to a surveyor and brought to the surveying site.
  • a two-dimensional mark 15 is installed on a survey target 14a (for example, a stigma) of a building 14 (for example, a pillar).
  • the surveying system 1 may further include an office terminal device 16 and an administrator terminal device 17.
  • the office terminal device 16 is provided at a base such as an office or a factory.
  • the manager terminal device 17 is carried by the manager, for example, and brought to the surveying site.
  • the surveying instrument 10 is generally used at construction sites and civil engineering sites, and enables automatic collimation and automatic tracking.
  • the surveying instrument terminal device 11 is a generally used computer, and includes, for example, a small computer, which is externally connected to the surveying instrument 10 or incorporated in the surveying instrument 10.
  • the surveying instrument terminal device 11 controls the operation of the surveying instrument 10 based on an instruction from the surveyor. Further, the surveying instrument terminal device 11 acquires information from the server 12 and transmits the survey result from the surveying instrument 10 to the server 12 via the network 13.
  • the surveying instrument 10 includes a main body 100 and a (collimation) telescope 101.
  • the main body 100 is configured to be rotatable in the horizontal direction.
  • the telescope 101 is provided so as to be rotatable in the vertical direction with respect to the main body 100. Therefore, the telescope 101 can rotate in the horizontal direction and the vertical direction with respect to the surveying instrument 10.
  • the telescope 101 has a function of a digital camera and can take an image of an object in the observation direction (direction of the optical axis) of the telescope.
  • a digital camera includes a light receiving element (for example, a CCD image element or a CMOS image element) installed parallel to the optical axis of the lens of the telescope 101, and the center of the captured image of the light receiving element coincides with the optical axis of the telescope.
  • the center position of the cross line of the captured image taken by the digital camera coincides with the measurement position on the surface of the object measured by the telescope.
  • the two-dimensional mark 15 has an identification pattern that can be uniquely identified.
  • the configuration of the identification pattern is not particularly limited.
  • the identification pattern divides the vertical length evenly into a predetermined number and sets the horizontal length to a predetermined number. It is a pattern obtained by forming a plurality of squares by dividing the squares and coloring the plurality of squares with white or black, and is configured to be uniquely identifiable.
  • the form of the two-dimensional mark 15 is not particularly limited, and may be, for example, a printed matter, a sticker, a label, or the like, or may be directly printed or 3D printed on the survey target 14a of the building 14. .
  • the shape of the two-dimensional mark 15 is not particularly limited, and examples thereof include a square, a rectangle, a circle, and an ellipse.
  • the surveying instrument 10 When the collimation of the telescope 101 of the surveying instrument 10 is aligned with the center position of the two-dimensional mark 15 and a measurement command is input to the surveying instrument 10, the surveying instrument 10 is directed from the telescope 101 to the center position of the two-dimensional mark 15.
  • the scanning light is irradiated, the scanning light is reflected from the mark center position of the two-dimensional mark 15, and is incident on the telescope 101 again.
  • the incident reflected light is converted into a light receiving signal by the light receiving element of the surveying instrument 10.
  • the surveying instrument 10 detects the horizontal angle and the vertical angle of the telescope 101 with an angle detector.
  • the light wave range finder of the surveying instrument 10 measures the oblique distance from the surveying instrument 10 to the mark center position of the two-dimensional mark 15 by using the received signal.
  • the light wave rangefinder has a predetermined mode in which a reflecting prism and a target sheet are used, and a non-prism mode in which the target sheet and the prism are not used.
  • the non-prism mode is the basis.
  • the main body 100 (measurement side) of the surveying instrument 10 has the coordinates (three-dimensional coordinate values) of the mark center position of the two-dimensional mark 15 based on the detected horizontal and vertical angles of the telescope 101 and the measured oblique distance. ) Is measured as a measured value.
  • the coordinates of the mark center position of the two-dimensional mark 15 are calculated based on, for example, the coordinates of the mechanical point of the surveying instrument 10.
  • the server 12 is a generally used computer, and stores information from the surveying instrument terminal device 11 in a storage medium and outputs information from the storage medium. Further, the server 12 is communicably connected to the office terminal device 16 and the administrator terminal device 17 via the network 13, and is connected to the office terminal device 16 and the administrator terminal device 17. On the other hand, it acquires and outputs information.
  • the network 13 is communicably connected to the surveying instrument terminal device 11, the server 12, the office terminal device 16, and the administrator terminal device 17, respectively.
  • the network 13 includes a LAN (Local Area Network) via a Wifi (registered trademark) access point, a WAN (Wide Area Network) via a wireless base station, a third generation (3G) communication method, and a third such as LTE.
  • LAN Local Area Network
  • Wifi registered trademark
  • WAN Wide Area Network
  • 3G Third Generation
  • LTE Third Generation
  • wireless communication networks such as 4th generation (4G) communication methods, 5th generation (5G) and later communication methods, Bluetooth (registered trademark), and specified low power wireless systems.
  • the office terminal device 16 and the administrator terminal device 17 are commonly used computers. For example, a desktop terminal device, a mobile terminal device with a touch panel, a tablet terminal device, and a wearable terminal device can be used. Including.
  • the office terminal device 16 is operated by a third party such as an office or a factory, accesses the server 12 via the network 13, reads the data of the server 12, and displays the data on the office terminal device 16. The same applies to the administrator terminal device 17.
  • the terminal device 11 for the surveying instrument, the server 12, the terminal device 16 for the office, and the terminal device 17 for the administrator are an input unit for inputting an instruction and a storage unit for accumulating information. It is equipped with a display unit for displaying information.
  • the surveying instrument 10, the surveying instrument terminal device 11, the server 12, the office terminal device 16, and the administrator terminal device 17 have a built-in CPU, ROM, RAM, etc. (not shown), and the CPU is For example, the RAM is used as a work area to execute a program stored in a ROM or the like.
  • the functions of each control unit, which will be described later, are also realized by the CPU executing a program.
  • FIGS. 2 to 10 First, when a user such as a surveyor or an administrator gives an instruction to generate a two-dimensional mark 15 for surveying by using the office terminal device 16 of a base such as an office or a factory, the office terminal The generation control unit 201 of the device 16 generates the two-dimensional mark 15 (FIG. 3: S101).
  • the generation control unit 201 generates the two-dimensional mark 15 having the specific identification pattern P by using the dictionary for the two-dimensional mark 15 based on the instruction of the user.
  • the two-dimensional mark 15 is composed of, for example, a square.
  • the identification pattern P of the two-dimensional mark 15 for example, the vertical length is evenly divided into six, and the horizontal length is divided into six to form a plurality of squares, and the plurality of squares are formed. It is a pattern obtained by coloring white or black, and is configured to be uniquely identifiable.
  • the related control unit 202 of the office terminal device 16 will be charged.
  • the survey information is associated with the generated two-dimensional mark 15 and stored (FIG. 3: S102).
  • the survey information means information necessary for surveying using the two-dimensional mark 15, and includes at least a set value related to the survey result.
  • the survey information may include information related to the pillar such as a site name, a street name, a section, and a control value in addition to the set value. You can. Further, the survey information may include information regarding the manufacture of the pillar 14 (manufacturer, date of manufacture, etc.). If the types of the building 14 and the survey target 14a are different, the survey information is appropriately designed.
  • the related control unit 202 accesses the server 12 via the network 13 and refers to the mark information table 400 of the server 12.
  • the mark information table 400 the two-dimensional mark item 401 and the survey information item 402 are associated and stored as a database.
  • the related control unit 202 stores the two-dimensional mark 15 generated earlier in the two-dimensional mark item 401 of the mark information table 400, and also stores the survey information previously input in the survey information item 402 of the mark information table 400.
  • 403 ⁇ Set values (x0, y0, z0) ⁇ are stored. This makes it possible to associate the survey information 403 with the two-dimensional mark 15.
  • the user installs the two-dimensional mark 15 on the survey target 14a (for example, the stigma) of the building 14 (for example, the pillar) (FIG. 3: S103).
  • the installation method of the two-dimensional mark 15 there is no particular limitation on the installation method of the two-dimensional mark 15.
  • the two-dimensional mark 15 when the two-dimensional mark 15 is installed on the stigma 14a of the pillar 14 of the surveying site at the surveying site, the user brings the two-dimensional mark 15 to the surveying site and already exists as shown in FIG. 4B.
  • the two-dimensional mark 15 can be installed by attaching it to the stigma 14a of the pillar 14.
  • the robot 404 for attaching the two-dimensional mark 15 is transferred from the server 12 or the office terminal device 16.
  • the two-dimensional mark 15 can be installed by acquiring the dimension mark 15 and automatically attaching the two-dimensional mark 15 to the pillar head 14a of the pillar 14 manufactured on the production line.
  • the robot 404 can print in 3D with a 3D printer, the two-dimensional mark 15 may be automatically printed in 3D on the stigma 14a of the pillar 14.
  • the user may directly attach the two-dimensional mark 15 to the stigma 14a of the pillar 14.
  • the process returns to S101 and the processes from S101 to S103 are repeated.
  • the two-dimensional mark 15 is installed on the stigma 14a of the pillar 14, or the pillar 14 transported from the manufacturing factory of the pillar 14 to the surveying site is installed at a predetermined position, and two on the stigma 14a of the pillar 14.
  • the survey is ready.
  • the surveyor transports the surveying instrument 10 having the terminal device 11 for the surveying instrument to the surveying site, and as shown in FIG. 5A, the surveying instrument is located at a place where the two-dimensional mark 15 installed on the pillar head 14a of the pillar 14 can be seen. Install 10. Then, when the surveyor operates the surveying instrument 10 to measure the mechanical point of the surveying instrument 10, the surveying instrument 10 measures the coordinates (xm, ym, zm) of the mechanical point M (FIG. 3: S201). ..
  • the measurement method of the coordinates (xm, ym, zm) of the machine point M there is no particular limitation on the measurement method of the coordinates (xm, ym, zm) of the machine point M.
  • the surveyor collimates and measures the two known points, respectively, and the surveying instrument 10 determines the distance and azimuth of each of the two known points centered on the surveying instrument 10.
  • the coordinates (xm, ym, zm) of the machine point M of the surveying instrument 10 are measured based on the angle. Other known methods may be used.
  • the coordinates of the mark center position of the two-dimensional mark 15 described later can be changed to the coordinates of the machine point M of the surveying instrument 10 (xm, ym, zm). ) Can be used as a reference.
  • the surveyor When the measurement of the coordinates (xm, ym, zm) of the machine point M is completed, the surveyor operates the surveying instrument terminal device 11 to transfer the telescope 101 of the surveying instrument 10 to the stigma 14a of the pillar 14 in two dimensions. Aim at the mark 15 automatically or manually, and instruct the terminal device 11 for the surveying instrument to take a picture. Then, the surveying instrument photographing control unit 203 of the surveying instrument terminal device 11 photographs a photographed image including the two-dimensional mark 15 of the column head 14a of the column 14 by using the telescope 101 of the surveying instrument 10 (FIG. 3: S202). ).
  • the shooting method of the shooting control unit 203 for the surveying instrument there is no particular limitation on the shooting method of the shooting control unit 203 for the surveying instrument.
  • a surveyor operates the surveying instrument terminal device 11 while looking at the stigma 14a of the column 14 with the telescope 101 or the surveying instrument terminal device 11, and the stigma including the two-dimensional mark 15. Collimate the vicinity of 14a. Then, the shooting control unit 203 for the surveying instrument takes a picture taken by the telescope 101.
  • the surveyor operates the surveying instrument terminal device 11 while looking at the vicinity of the stigma 14a including the two-dimensional mark 15 with the telescope 101, and in the captured image 500, the center position of the captured image 500.
  • the center position C of the crosshair indicating (optical axis, focus) is moved toward the two-dimensional mark 15.
  • the shooting control unit 203 for the surveying instrument shoots the captured image 500 that can be seen by the telescope 101 as the direction of the telescope 101 moves.
  • the focus process for focusing on the two-dimensional mark 15 appearing in the photographed image 500 may be appropriately performed.
  • the recognition control unit 204 for the surveying instrument of the terminal device 11 for the surveying instrument captures the two-dimensional mark image corresponding to the two-dimensional mark 15 among the captured images.
  • the recognition control unit 204 for the surveying instrument of the terminal device 11 for the surveying instrument captures the two-dimensional mark image corresponding to the two-dimensional mark 15 among the captured images.
  • the pattern By collating the pattern with the identification pattern of the two-dimensional mark 15 in the mark information table 400 (database), a specific identification pattern corresponding to the shooting pattern is recognized (FIG. 3: S203).
  • the recognition method of the surveying instrument recognition control unit 204 there is no particular limitation on the recognition method of the surveying instrument recognition control unit 204.
  • the surveying instrument recognition control unit 204 detects the two-dimensional mark image 501 out of the captured images 500.
  • the recognition control unit 204 for a surveying instrument detects the two-dimensional mark image 501
  • the captured image 500 may be subjected to image processing such as binarization processing to facilitate the detection of the two-dimensional mark image 501.
  • the detection method of the recognition control unit 204 for a surveying instrument is not particularly limited.
  • a shape image corresponding to the shape of the recognition pattern P, and the peripheral end portion has a predetermined color (for example, black).
  • the shape image depends on the shape of the identification pattern P, and is basically a square or a circle, but may be a rhombus or an ellipse depending on the position of the surveying instrument 10 with respect to the two-dimensional mark 15.
  • the two-dimensional mark image 501 can be immediately searched. Further, in the two-dimensional mark image 501, the peripheral portion is used for the search, and the inside other than the peripheral portion is used for the pattern, so that the two-dimensional mark 15 can be given two functions.
  • the surveying instrument recognition control unit 204 causes the captured image 500 to display an error prompting proper imaging of the two-dimensional mark 15 (FIG. 3: S204). This can encourage the surveyor to properly photograph the two-dimensional mark 15 with the telescope 101. In this case, the process returns to S201 and the process is repeated.
  • the recognition control unit 204 for the surveying instrument accesses the server 12, refers to the two-dimensional mark 15 of the two-dimensional mark item 401 of the mark information table 400, and sets the shooting pattern Q of the extracted two-dimensional mark image 501. It is compared with the identification pattern P of the referenced two-dimensional mark 15 to determine whether or not they match.
  • Whether or not the shooting pattern Q and the identification pattern P match is determined by, for example, whether the color arrangement of the squares constituting the shooting pattern Q matches the color arrangement of the squares constituting the identification pattern P. It is done by determining whether or not.
  • the identification pattern P of the two-dimensional mark 15 evenly divides the vertical length into six pieces and divides the horizontal length into six pieces, so that the survey is performed.
  • the machine recognition control unit 204 evenly divides the vertical length of the shooting pattern Q of the two-dimensional mark image 501 into six pieces, divides the horizontal length into six pieces, and forms a plurality of pieces by the division. Classify the color of square q into white or black.
  • the color of the square p may be easily classified by performing image processing such as binarization of the image. Then, the recognition control unit 204 for the surveying instrument compares the color arrangement of the squares q of the shooting pattern Q with the color arrangement of the squares p of the identification pattern P, and matches the color arrangement of the squares q of the shooting pattern Q. The identification pattern P of the color arrangement of the square p is recognized (specified).
  • the surveying instrument recognition control unit 204 matches the mark information table 400 by comparing the photographing pattern Q of the square two-dimensional mark image 501 with the identification pattern P of the two-dimensional mark 15 of the mark information table 400.
  • the identification pattern P is recognized (FIG. 3: S203YES).
  • the two-dimensional mark image 503 corresponding to the two-dimensional mark 15 appears in the captured image 502 by being deformed into a diamond shape.
  • the recognition control unit 204 for the surveying instrument compares the photographing pattern Q of the diamond-shaped two-dimensional mark image 503 with the identification pattern P of the two-dimensional mark 15 of the mark information table 400, so that the identification that matches from the mark information table 400 can be identified. Recognize the pattern P (FIG.
  • the two-dimensional mark image 601 corresponding to the two-dimensional mark 15 appears as a greatly deformed rhombus.
  • the recognition control unit 204 for the surveying instrument can detect the two-dimensional mark image 601
  • the two-dimensional mark image 601 is deformed too much, and the squares q are crushed or overlapped. It is not possible to specify the color arrangement of each square q, and it is not possible to recognize which identification pattern P is the shooting pattern Q of the two-dimensional mark image 601.
  • the recognition control unit 204 for the surveying instrument compares the photographing pattern Q of the greatly deformed diamond-shaped two-dimensional mark image 601 with the identification pattern P of the two-dimensional mark 15 of the mark information table 400, the mark information table 400
  • the matching identification pattern P cannot be recognized (FIG. 3: S203NO).
  • the surveying instrument recognition control unit 204 issues an error 602 (for example, "Error cannot be recognized. Please change the location.") Prompting the photographed image 600 to move the surveying instrument 10. It is displayed (FIG. 3: S204).
  • the surveyor is notified to that effect so that the installation position of the surveying instrument 10 becomes appropriate. It is possible to encourage the re-installation of 10. In this case, the process returns to S201 and the process is repeated.
  • the recognition control unit 204 for a surveying instrument collates the shooting ID number whose shooting pattern Q is converted according to a predetermined rule with the identification ID number whose identification pattern P is converted according to a rule to match the shooting pattern Q with the shooting pattern Q. It may be collated with the identification pattern P.
  • the rule can uniquely determine a specific ID number from, for example, the arrangement of the colors of the squares constituting the photographing pattern Q and the identification pattern P.
  • the identification ID number is obtained by converting the identification pattern P of the two-dimensional mark 15 of the mark information table 400 according to a rule, and is stored in advance in the identification pattern P of the two-dimensional mark 15 of the mark information table 400.
  • the detected shooting pattern Q may be converted into a shooting ID number according to the rules and collated with the previously converted identification ID number, so that the accuracy of the collation can be improved.
  • the surveying instrument information display control unit 205 of the surveying instrument terminal device 11 includes the set value of the stigma 14a of the pillar 14 associated with the specific identification pattern P.
  • the survey information is displayed on the captured image 603 (FIG. 3: S205).
  • the surveying instrument information display control unit 205 accesses the server 12, and among the surveying information items 402 of the mark information table 400, the surveying information 403 associated with the two-dimensional mark 15 having the recognized specific identification pattern P. ⁇ Set values (x0, y0, z0), etc. ⁇ are acquired and displayed on the captured image 603 as shown in FIG. 6B.
  • the surveyor can easily grasp the survey information 403 of the stigma 14a of the pillar 14 on which the two-dimensional mark 15 is installed via the photographing screen 603.
  • the surveyor can reconfirm the survey target, and human error such as a surveyor's mistake or misunderstanding can be prevented.
  • the calculation control unit 206 of the surveying instrument terminal device 11 has the mark center position Cm of the two-dimensional mark image 604 in the captured image 603 and the crosshairs of the captured image 603 of the telescope 101.
  • the difference (dix, dy) from the center position C of the above is calculated (FIG. 3: S206).
  • the calculation control unit 206 acquires the coordinates of the four corners a of the two-dimensional mark image 604 in the captured image 603, and calculates the average value of the coordinates of the four corners a of the two-dimensional mark image 604 to calculate the two-dimensional mark image.
  • the coordinates of the mark center position Cm of 604 are calculated.
  • the average value of the coordinates of the four corners a of the two-dimensional mark image 604 corresponds to the coordinates of the mark center position Cm of the two-dimensional mark image 604, but the calculation control unit 206 has two.
  • the method for calculating the coordinates of the mark center position Cm of the dimension mark image 604 is not particularly limited, and another method may be used depending on the shape of the two-dimensional mark image 604.
  • the calculation control unit 206 corrects the distortion of the two-dimensional mark image 604 by performing ortho-correction processing on the two-dimensional mark image 604 in the captured image 603, and the four corners a of the corrected two-dimensional mark image 604.
  • the coordinates of the mark center position Cm of the two-dimensional mark image 604 may be calculated by acquiring the coordinates of the two-dimensional mark image 604 and calculating the average value of the coordinates of the four corners a of the two-dimensional mark image 604.
  • the calculation control unit 206 acquires the coordinates of the center position C of the cross line of the captured image 603, and subtracts the coordinates of the mark center position Cm of the two-dimensional mark image 604 from the coordinates of the center position C of the cross line. Then, the difference (dix, dy) between the mark center position Cm and the cross line center position C is calculated.
  • the adjustment control unit 207 of the surveying instrument terminal device 11 adjusts the center position C of the crosshair to the mark center position Cm based on the difference (DIX, DIY). As described above, the orientation of the telescope 101 is adjusted (FIG. 3: S207).
  • the adjustment control unit 207 causes the captured image 603 to display a guidance display for aligning the center position C of the crosshairs with the mark center position Cm.
  • the adjustment control unit 207 displays an arrow mark 700 from the center position C of the crosshair to the mark center position Cm on the captured image 603, and aligns the center position C of the crosshair with the mark center position Cm.
  • a message 701 (for example, "Align the center position of the crosshair with the center position of the mark") is displayed.
  • the surveyor can be guided to the direction of the telescope 101 in an appropriate direction.
  • the adjustment control unit 207 displays the difference (dix, DIY) on the captured image 603, and each time the center position C of the crosshair moves with the adjustment of the direction of the telescope 101, the adjustment control unit 207 is the adjustment control unit. 207 calculates and displays the difference (dix, DIY) between the mark center position Cm and the crosshair center position C. As a result, the surveyor can adjust the direction of the telescope 101 to the two-dimensional mark 15 while observing the difference (dix, DIY).
  • the adjustment control unit 207 determines whether or not the difference (dix, DIY) is within a predetermined threshold range.
  • the threshold value is set in advance by, for example, a surveyor, an administrator, or the like.
  • the adjustment control unit 207 can prompt the surveyor to adjust the orientation of the telescope 101 by performing a guidance display such as an arrow mark 700 or a message 701. ..
  • the adjustment control unit 207 determines that the difference di is within the threshold range, and displays a message 702 (for example, "Please measure the distance") prompting the distance measurement as shown in FIG. 7A.
  • a message 702 for example, "Please measure the distance" prompting the distance measurement as shown in FIG. 7A.
  • the adjustment control unit 207 adjusts the orientation of the telescope 101 manually by the surveyor by performing the above-mentioned guidance display, but other configurations may be used.
  • the adjustment control unit 207 operates the telescope 101 in the horizontal direction and the vertical direction based on the difference (dix, DIY), and the orientation of the telescope 101 so that the center position C of the crosshairs is aligned with the mark center position Cm. May be configured to adjust automatically. This eliminates the need for the surveyor to adjust the orientation of the telescope 101, and the surveyor only has to check whether the center position C of the crosshairs matches the mark center position Cm, reducing the labor and time of the surveyor. It becomes possible to do. In addition, depending on the skill of the surveyor, it is possible to make it difficult for human error with respect to collimation to occur.
  • the distance measurement control unit 208 of the surveying instrument terminal device 11 uses the surveying instrument 10 in a state where the center position C of the crosshairs matches the mark center position Cm. The distance is measured using the mark center position Cm as a measured value (FIG. 3: S208).
  • the distance measuring control unit 208 uses the machine point M as the origin, and the horizontal angle H and the vertical angle of the telescope 101. V is measured with an existing angle detector, and then the oblique distance L from the surveying instrument 10 to the mark center position Cm of the two-dimensional mark 15 is measured using the non-prism type light wave distance meter of the surveying instrument 10.
  • the distance measuring control unit 208 determines the mark center position Cm of the two-dimensional mark 15 in the three-dimensional coordinate system based on the horizontal angle H and the vertical angle V of the mark center position Cm of the two-dimensional mark 15 and the oblique distance L. Coordinates (x1, y1, z1) are calculated as measured values.
  • the three-dimensional coordinate system for example, a world coordinate system or an arbitrary coordinate system defined at a surveying site can be mentioned.
  • the horizontal angle H measured by the surveying instrument 10 is, for example, a positive value in the three-dimensional coordinate system in which the X direction (for example, true north) is 0 degree and the direction of rotation in the Y direction (true west) is 0 degree. Is defined as.
  • the vertical angle V measured by the surveying instrument 10 is defined as a positive value in the three-dimensional coordinate system in which the Z direction (for example, directly above) is 0 degree and the direction of rotation from above to downward is a positive value.
  • the information storage control unit 209 of the surveying instrument terminal device 11 identifies the measured values (x1, y1, z1) together with the set values (x0, y0, z0) of the surveying information 403. It is associated with the two-dimensional mark 15 of the pattern P and stored in the mark information table 400 (database) (FIG. 3: S209).
  • the control value may be set in advance by, for example, a surveyor, an administrator, or the like.
  • the information storage control unit 209 measures the measured value 403a together with the survey information 403 in the captured image 603 as shown in FIG. 7B.
  • (X1, y1, z1) and the difference (accuracy) 403b (dx1, dy1, dz1) are displayed.
  • the surveyor can confirm the measured value 403a and the accuracy 403b of the survey result together with the survey information 403.
  • the surveyor determines that the measured value 403a and the accuracy 403b are appropriate, he / she gives a storage command to the surveying instrument terminal device 11, and the information storage control unit 209 accesses the server 12 and shows FIG. 7B.
  • the mark information table 400 the survey information 403 of the survey information item 402 associated with the two-dimensional mark 15 of the specific identification pattern P has the measured value 403a (x1, y1, z1) and the difference (accuracy).
  • 403b (dx1, dy1, dz1) is stored (FIG. 3: S209YES).
  • the measured value 403a and the accuracy 403b of the survey result can be reflected in the survey information 403.
  • the measured value 403a and the accuracy 403b of the survey result are directly associated with the two-dimensional mark 15 corresponding to the survey information 403. It becomes possible.
  • the information storage control unit 209 adds the measured value 403c (x2, y2, z2) and the difference (accuracy) 403d (dx2, dy2, dz2) to the survey information 403 in the captured image 603. Is displayed and a message 800 prompting confirmation (for example, "Out of control value. Please check the mark.”) Is displayed. This makes it possible for the surveyor to reconfirm the two-dimensional mark 15 to be surveyed and give the surveyor an opportunity to redo the survey when the surveyor mistakenly measures a different two-dimensional mark 15. Become.
  • the information storage control unit 209 differs from the measured value 403c (x2, y2, z2) ( Accuracy) 403d (dx2, dy2, dz2) is not stored (FIG. 3: S209NO). Then, for example, the surveyor returns to S207 to adjust the orientation of the telescope 101, or returns to S201 to re-install the surveying instrument 10 at an appropriate place.
  • the storage command is issued to the surveying instrument terminal device 11.
  • the information storage control unit 209 stores the measured value 403c and the accuracy 403d in the survey information 403 associated with the two-dimensional mark 15 of the specific identification pattern P in the mark information table 400 (FIG. FIG. 3: S209 YES).
  • the surveyor can leave the measured value 403c and the accuracy 403d in the mark information table 400 regardless of the value.
  • the measured value 403c and the accuracy 403d are stored in the mark information table 400, but at least the measured value 403c may be stored.
  • the process of returning to S201 and repeating the processes from S201 to S209 may be repeated.
  • the survey information 403 is acquired from the two-dimensional mark 15 and the measured value of the survey result is changed to the two-dimensional mark 15. It becomes possible to directly associate. Further, in the present invention, even if the two-dimensional mark 15 is slightly deformed, the deformed two-dimensional mark 15 can be recognized, so that each of the plurality of two-dimensional marks 15 projected on one captured image is recognized. , It becomes possible to collimate and measure the distance.
  • three two-dimensional marks 15 are projected on one captured image 801.
  • One two-dimensional mark 15a is represented by a square on the front surface, and two two-dimensional marks 15b are displayed.
  • the present invention appropriately recognizes the two-dimensional marks 15a and 15b, respectively.
  • the surveyor specifies a specific two-dimensional mark image by tapping (tapping the screen with a finger) or the like in the captured image 801
  • the calculation control unit 206 controls the specific two. The difference between the mark center position of the two-dimensional mark image and the center position of the crosshair in the image captured by the telescope is calculated.
  • the adjustment control unit 207 automatically adjusts the direction of the telescope 101 so that the center position of the crosshair is aligned with the mark center position based on the difference.
  • the orientation of the telescope 101 can be adjusted to the two-dimensional mark 15 with a simple operation, and the telescope 101 can be collimated with high accuracy.
  • the surveying instrument 10 detects the reflected light from the plurality of target sheets 18a and 18b, which makes it difficult to identify one target. It becomes difficult to collimate with the target sheet 18b on the left and right sides, respectively.
  • the surveying instrument 10 cannot automatically identify and collimate the front target sheet 18a and the left and right target sheets 18b, respectively. In such a case, for example, when the first target sheet 18 is installed on one side surface of the stigma 14a of the pillar 14, and the second target sheet 18 is installed on the other side surface adjacent to one side surface of the stigma 14a. Is.
  • the two-dimensional mark 15 if the two-dimensional mark 15 is recognizable in the captured image, the two-dimensional mark 15 can be appropriately recognized and collimated with high accuracy. In comparison, the number of times the surveying instrument 10 is installed can be reduced, and the labor and time of the surveyor can be reduced. Further, in the present invention, even if a plurality of two-dimensional marks 15 are present in one captured image 801, each two-dimensional mark 15 is appropriately recognized and collimated with high accuracy, and each two-dimensional mark 15 is used. It is possible to associate measurements. On the other hand, when the surveyor measures the distance of the target sheet 18, it may be confused as to which target sheet 18 should be associated with the measured value. However, in the present invention, the identification of the two-dimensional mark 15 and the association of the measured value are made. Since it is performed automatically, such human error can be reliably prevented.
  • the manager can check the survey results for the manager.
  • the administrator directs the camera 17a of the administrator terminal device 17 toward the two-dimensional mark 15 of the stigma 14a of the pillar 14 and instructs the administrator terminal device 17 to take a picture.
  • the terminal photographing control unit 210 of the administrator terminal device 17 photographs a photographed image including the two-dimensional mark 15 of the stigma 14a of the pillar 14 by using the camera 17a of the administrator terminal device 17 (FIG. 3: S301).
  • the terminal shooting control unit 210 starts shooting a shot image
  • the terminal recognition control unit 211 of the administrator terminal device 17 sets a shooting pattern of the two-dimensional mark image corresponding to the two-dimensional mark 15 among the shot images.
  • the identification pattern of the two-dimensional mark 15 in the mark information table 400 (database) By collating the detected and detected shooting pattern with the identification pattern of the two-dimensional mark 15 in the mark information table 400 (database), a specific identification pattern corresponding to the shooting pattern is recognized (FIG. 3: S302).
  • the recognition method of the terminal recognition control unit 211 is not particularly limited and is the same as the recognition method of the surveying instrument recognition control unit 204, so the description thereof will be omitted.
  • the terminal information display control unit 212 of the administrator terminal device 17 captures the survey information (set value, measured value, accuracy, etc.) associated with the specific identification pattern. It is displayed on the image (FIG. 3: S303).
  • the terminal information display control unit 212 may use the survey information 403 ⁇ set values (x0, y0,,) associated with the two-dimensional mark 15 having the recognized specific identification pattern among the survey information items 402 in the mark information table 400.
  • z0 measured values (x1, y1, z1), accuracy (dx1, dy1, dz1), etc. ⁇ are acquired and displayed on the captured image 900.
  • the administrator can check the survey result of the stigma 14a of the pillar 14 on which the two-dimensional mark 15 is installed at a glance simply by checking the captured image 900.
  • the terminal information display control unit 212 sets the control value in the vicinity of the two-dimensional mark image 901 corresponding to the two-dimensional mark 15. A message 902 indicating the range (for example, "within the control value”) is displayed.
  • the terminal information display control unit 212 manages the measurement information 403 in the vicinity of the two-dimensional mark image 901 corresponding to the two-dimensional mark 15. A message 903 indicating that the value is out of the range (for example, "out of control value”) is displayed.
  • the administrator can at a glance confirm whether or not the survey result of the stigma 14a of the pillar 14 on which the two-dimensional mark 15 is installed is appropriate.
  • the terminal information display control unit 212 uses the two-dimensional mark 15 to indicate the pillar 14 within the control value range with a color indicating permission (for example, blue), and the pillar 14 outside the control value range is not displayed.
  • the functions of augmented reality (AR) and mixed reality (MR) may be realized by indicating the permission in a color (for example, red).
  • the terminal recognition control unit 211 detects each of the two-dimensional mark images 1001 corresponding to the two-dimensional marks 15. Then, a specific identification pattern corresponding to the shooting pattern of each two-dimensional mark image 1001 is recognized. Then, the terminal information display control unit 212 causes the captured image 1000 to display the survey information (set value, measured value, accuracy, etc.) associated with the specific identification pattern. As shown in FIG. 10, the terminal information display control unit 212 provides the two-dimensional mark image 1001 of each two-dimensional mark 15 with a blowout line 1002, and provides survey information 1003 (pillar mark, section, street, manufacturer, manufacturing).
  • the terminal recognition control unit 211 needs to be provided as an application on the administrator terminal device 17. Instead, the terminal recognition control unit 211 may be provided on the server of the network 13 accessible to the administrator terminal device 17 and function as a web browser.
  • an administrator terminal device 17 equipped with a surveillance camera is installed at the surveying site, and the two-dimensional mark 15 of the survey target 14a (stigma) of the building 14 (pillar) is marked with the surveillance camera.
  • the two-dimensional mark 15 of the survey target 14a (stigma) of the building 14 (pillar) is marked with the surveillance camera.
  • the surveying instrument recognition control unit 204 is configured to be mounted on the surveying instrument terminal device 11, but the surveying instrument recognition control unit 204 is mounted on the server 12 to mount the surveying instrument.
  • the shooting control unit 203 for the surveying instrument of the terminal device 11 sends the shot image to the server 12, and the recognition control unit 204 for the surveying instrument of the server 12 uses the shot image to specify the shooting pattern of the two-dimensional mark image. Recognizes the identification pattern of, sends the survey information associated with the identification pattern to the surveying instrument terminal device 11, and the surveying instrument information display control unit 205 of the surveying instrument terminal device 11 sends the surveying information to the surveying instrument. It may be configured to be displayed on the captured image of the terminal device 11. Further, in the embodiment of the present invention, the captured image of the surveying instrument imaging control unit 203 is a still image, but a moving image may also be used.
  • a predetermined identification pattern was generated using a dictionary, and the shooting pattern corresponding to the generated identification pattern was horizontally deformed at a predetermined angle (0 degree, 9 degree, 18 degree, 27 degrees). .. This angle simulates, for example, an angle moved to the left or right from a position facing the shooting pattern. Then, the photographed pattern after the deformation was compared with the identification pattern to confirm whether or not the photographed pattern after the deformation was recognized as the identification pattern.
  • the identification pattern is a 6 ⁇ 6 pattern obtained by dividing the vertical length into 6 pieces and dividing the horizontal length into 6 pieces, and the vertical length is evenly divided into 7 pieces.
  • a 7 ⁇ 7 pattern obtained by dividing the horizontal length into 7 pieces was prepared.
  • the detection rate is evaluated as " ⁇ " and even one is evaluated. When it could not be detected, the detection rate was evaluated as "x".
  • the recognition rate is evaluated as " ⁇ " and when even one cannot be recognized, the recognition rate is evaluated as "x”. did.
  • the detection rate means whether or not the shooting pattern itself can be detected, and the recognition rate means whether or not the shooting pattern can be recognized (specified) as a specific identification pattern.
  • the detection rate of the photographing pattern was “ ⁇ ” when the deformation angle was in the range of 0 degrees to 27 degrees. Even more surprisingly, the recognition rate of the photographing pattern was " ⁇ " in the range of the deformation angle from 0 degrees to 27 degrees.
  • the detection rate of the photographing pattern was “ ⁇ ” when the deformation angle was in the range of 0 degrees to 27 degrees. Even more surprisingly, the recognition rate of the photographing pattern was " ⁇ " in the range of the deformation angle from 0 degrees to 27 degrees.
  • a two-dimensional mark having a 6 ⁇ 6 identification pattern is printed in a predetermined size (length 50 mm ⁇ width 50 mm, length 100 mm ⁇ width 100 mm), and as shown in FIG. 12A, a building having a height of 11 m.
  • the two-dimensional mark 15 was placed on the upper portion 14a of 14. Further, the installation positions (“1”, “2”, “3”) of the surveying instrument 10 were set in the order of distance from the lower part 14b of the upper part 14a where the two-dimensional mark 15 was installed in the direction facing the opposite direction.
  • the distance from the lower part 14b of the building 14 to the installation position "3" was set to 11 m.
  • the installation positions ("4", "5", “6") of the surveying instrument 10 were set in the order of distance from the installation position "3" in the direction perpendicular to the facing direction.
  • the distance from the installation position "3" to the installation position “6” was set to 9 m.
  • the surveying instrument 10 is installed at the installation positions "1" to "6", and the two-dimensional mark 15 is photographed by using the surveying system 1 according to the present invention to correspond to the photographing pattern of the two-dimensional mark image.
  • a specific identification pattern was recognized, the difference between the mark center position and the center position of the crosshair of the telescope was calculated, the orientation of the telescope was adjusted, and collimation was attempted.
  • the collimation was performed by visually matching the mark center position calculated by the program with the center position of the crosshairs of the telescope.
  • collimation was possible, it was evaluated as " ⁇ ”, and when collimation was not possible, it was evaluated as "x”.
  • a target sheet 18 was installed instead of the two-dimensional mark 15, and an automatic collimation command was instructed to the surveying instrument 10 to attempt automatic collimation.
  • automatic collimation was possible, it was evaluated as " ⁇ ", and when automatic collimation was not possible, it was evaluated as "x”.
  • the result of collimation of the two-dimensional mark 15 was used as an example, and the result of collimation of the target sheet 18 was used as a comparative example.
  • FIG. 12B it is possible to take a picture of the two-dimensional mark 15 and calculate the difference between the mark center position and the center position of the crosshair of the telescope from the installation position "1" to the installation position "3". It turned out that it was collimable.
  • FIG. 13A it is possible to take a picture of the two-dimensional mark 15 and calculate the difference between the mark center position and the center position of the crosshair of the telescope even from the installation position "4" to the installation position "6". It was found that it was possible to collimate with high accuracy.
  • the surveying instrument 10 can collimate with high accuracy not only at the position facing the two-dimensional mark 15 but also at an oblique position. These results are superior to the surveying instrument's auto-collimable angle (eg, 15 degrees).
  • FIG. 14A a plurality of two-dimensional marks 15 having a 6 ⁇ 6 identification pattern are printed on one sheet of paper 1400 in a predetermined size (length 50 mm ⁇ width 50 mm), and the height is 13.
  • the paper 1400 was installed on the upper portion 14a of the 8 m building 14. Further, a position 12.0 m away from the lower portion 14b of the upper portion 14a on which the paper 1400 including the two-dimensional mark 15 is installed in the facing direction is set as the facing position 1401, and then the facing position is set as the facing position.
  • a position separated by 4.0 m in the direction perpendicular to the direction was set as the installation position 1402.
  • a surveying instrument 10 is installed at the installation position 1402, and the surveying system 1 according to the present invention is used to photograph the two-dimensional mark 15 in the paper 1400 as shown in FIG. 14B, and the two-dimensional mark image is captured.
  • a corresponding specific identification pattern was recognized and collimation was attempted.
  • the result of collimation of the two-dimensional mark 15 was taken as an example.
  • a paper 1600 equivalent to the paper 1400 containing a plurality of two-dimensional marks 15 is prepared, and a plurality of target sheets 18 equivalent to the two-dimensional marks 15 are installed on the paper 1600, and a plurality of target sheets 18 are provided.
  • Paper 1600 including a plurality of target sheets 18 was installed on the upper portion 14a on which the paper 1400 including the two-dimensional mark 15 was installed, and the surveying instrument 10 was instructed to give an automatic collimation command to attempt automatic collimation.
  • the result of collimation of the target sheet 18 was used as a comparative example.
  • the telescope starts the automatic collimation.
  • the center position C of the crosshairs of the telescope 101 was collimated with the center position of the nearest target sheet 18 so as to be aligned with the center position of the nearest target sheet 18 from the center position C of the crosshairs 101, the crosshairs of the telescope 101 It was found that the center position C of the line was slightly deviated from the center position of the nearest target sheet 18, and the collimation accuracy was lowered. It is presumed that this is because the collimation accuracy is lowered due to the presence of the plurality of target sheets 18.
  • the surveying system 1 is configured to include each control unit, but a program for realizing each control unit may be stored in a storage medium and the storage medium may be provided. Absent.
  • the program is read by a predetermined processing device, and the processing device realizes each control unit. In that case, the program itself read from the recording medium exerts the effects of the present invention. Further, it is also possible to provide the steps executed by each control unit as the position measurement method of the present invention.
  • the two-dimensional mark 15 is configured as a square as shown in FIG. 18A, but the two-dimensional mark 15 may be configured as a circle as shown in FIG. 18B.
  • the identification pattern may be a 6 ⁇ 6 pattern or a 7 ⁇ 7 pattern.
  • an odd-numbered x odd-numbered pattern such as a 7 ⁇ 7 pattern
  • one square p0 to be collimated is provided at the center position of the identification pattern, and the square p0 to be collimated is a cross line indicating the center position. It may be divided into four parts and the four divided squares p0 may be colored with a predetermined color (for example, white or black) different from the top, bottom, left and right to facilitate collimation.
  • the identification pattern P is a line extending from the center of the circle by evenly dividing the radius of the circle into a predetermined number by concentric circles.
  • the identification pattern is 3 ⁇ 12 obtained by evenly dividing the radius of a circle into three by concentric circles and evenly dividing the central angle of the circle into twelve by a line extending from the center of the circle.
  • the shape of the two-dimensional mark 15 and the shape of the square p of the identification pattern P may be, for example, a shape using a golden ratio of 1: 1.62 from the viewpoint of ease of collimation.
  • a two-dimensional mark of a simple identification pattern of a 7 ⁇ 7 pattern is used and a two-dimensional bar code of a complicated identification pattern ⁇ for example, equivalent to a QR code (registered trademark) ⁇ are used.
  • the difference in recognition rate between the two is shown in the comparative example when there is.
  • a two-dimensional mark having an identification pattern of a 7 ⁇ 7 pattern (the number of squares is 49) is printed in a size of 50 mm in length ⁇ 50 mm in width, and the two dimensions of the embodiment are printed. It was marked.
  • a collimable surveying sign is added to the center of a predetermined QR code (registered trademark) (pattern of about 40 x 40, number of squares is 1600), and the code is printed in a size of 50 mm in length ⁇ 50 mm in width. Then, the two-dimensional bar code of the comparative example was used.
  • the software capable of decoding the two-dimensional bar code of the comparative example was built into the surveying system in advance.
  • FIG. 19B two marks of the example and the comparative example are installed side by side on the upper part of the building having a height of 11 m, and the survey is performed in the order of distance from the lower part of the upper part in the facing direction.
  • the installation position of the surveying instrument 10 (“1", "2") is set, and the installation position of the surveying instrument 10 ("3") is set in the order of increasing distance from the installation position "2" in the direction perpendicular to the facing direction. , "4") was set.
  • the distance from the installation position "2" to the installation position "4" was set to 19.1 m. Then, the surveying instrument 10 is installed at the installation positions "1" to "4", and the surveying system of the present invention is used to photograph the two marks of the example and the comparative example to determine whether or not they can be recognized. confirmed.
  • the two-dimensional bar code ⁇ equivalent to QR code (registered trademark) ⁇ in the comparative example cannot be recognized by taking a picture with the telescope of the surveying instrument at the surveying site.
  • the reason is that, originally, in the two-dimensional bar code of the comparative example, information is given to a fine black-and-white square pattern, so that information cannot be given unless there are more than a predetermined amount of squares. Because.
  • the square pattern becomes complicated, as described above, when shooting with the telescope of the surveying instrument at the surveying site, the square pattern in the captured image becomes rough and the two-dimensional bar code can be recognized accurately. I can't do it.
  • information is not given to the identification pattern of the two-dimensional mark. Therefore, by adopting the two-dimensional mark having a simple identification pattern, the recognition rate of the shooting pattern of the two-dimensional mark image can be obtained even at the surveying site. Can be accurately recognized without lowering. Therefore, as described above, it is possible to acquire survey information from the mark information table and store the measured values in the mark information table. In addition, since the number of squares is a predetermined amount, the distinctiveness of the identification pattern is given, and even if two-dimensional marks are placed on the survey targets of a plurality of buildings, each of the two-dimensional marks of each survey target is identified. At the same time, it is possible to acquire survey information for each survey target and to associate and store survey values. In this way, it is possible to facilitate the recognition of a specific identification pattern at the surveying site, reduce the time and labor of surveying, and perform collimation with high accuracy.
  • glasses-type devices that support AR (augmented reality) and have shooting and distance measurement functions have appeared, and such glasses-type devices can be used in place of surveying instruments.
  • AR augmented reality
  • the number of squares in the 6x6 pattern is 36
  • the number of squares in the 3x12 pattern is 36, which is 5x. Since the number of squares in the 12 patterns is 60, these patterns have the same number of squares as the 7 ⁇ 7 pattern, and like the 7 ⁇ 7 pattern, they are simple and identifiable at the surveying site. It is an identification pattern and has the same action and effect as described above.
  • the surveying system and surveying method according to the present invention are useful in the fields of measurement, civil engineering, surveying, etc. of general structures, buildings, equipment, ground, roads, vehicles, railways, etc. It is effective as a surveying system and surveying method that can reduce the time and effort of surveying, collimate with high accuracy, and accurately associate the measured values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【解決手段】測量機用撮影制御部203は、建築物の測量対象に予め設置された二次元マークを含む撮影画像を撮影する。測量機用認識制御部204は、二次元マークに対応する二次元マーク画像の撮影パターンと、データベースの二次元マークの識別パターンとを照合することで、特定の識別パターンを認識する。測量機用情報表示制御部205は、特定の識別パターンに関連付けられた、測量対象の設定値を含む測量情報を撮影画像に表示させる。算出制御部206は、撮影画像内の二次元マーク画像のマーク中心位置と、望遠鏡の十字線の中心位置との差分を算出する。調整制御部207は、十字線の中心位置をマーク中心位置に合わせるように、望遠鏡の向きを調整する。測距制御部208は、測量機を用いて、十字線の中心位置がマーク中心位置に合った状態で、当該マーク中心位置を測定値として測距する。情報記憶制御部209は、測定値をデータベースに記憶させる。

Description

測量システム及び測量方法
 本発明は、測量システム及び測量方法に関する。
 従来より、特徴的なマーク(標識)を用いた測量関連技術が存在する。例えば、特開平5-149748号公報(特許文献1)では、同一平面上に設けた4個のマークと、これとは別の平面上に設けた1個のマークとによって構成され、マークに特徴量を持たせた相対位置姿勢計測用ターゲットマークが開示されている。特開2016-138802号公報(特許文献2)では、プリズムと、プリズムに測距光を出射しプリズムからの反射測距光に基づき測距を行うトータルステーションとを備える測量システムが開示されている。特開2017-151013号公報(特許文献3)では、画像取得部と、指定マークを利用する画像解析処理部と、作業支援部とを備える測量支援装置が開示されている。特開2019-113491号公報(特許文献4)には、螺旋状の模様表示を表面に備えたターゲット装置が開示されている。
 又、特開2017-201281号公報(特許文献5)には、計算機が、測定データと構造物の設計データを比較する自動視準装置が開示されている。中国特許出願公開第104778488号明細書(特許文献6)には、鋼構造体部材に貼られる二次元バーコードが開示されている。特開2017-15445号公報(特許文献7)には、画像データから検出マークが検出できない場合などに、適宜注意喚起のために警告音を発したり、表示画面にエラー表示したりする計測プログラムが開示されている。特開2017-72442号公報(特許文献8)には、端末が、予め定めた測定予定位置と位置測定装置が測定した反射プリズムの測定位置とを比較し、その位置関係を算出し、反射プリズムの測定予定位置と実際に測定した測定位置との位置関係を端末の表示部にグラフィカルに表示する測定装置が開示されている。
特開平5-149748号公報 特開2016-138802号公報 特開2017-151013号公報 特開2019-113491号公報 特開2017-201281号公報 中国特許出願公開第104778488号明細書 特開2017-15445号公報 特開2017-72442号公報
 通常の測量では、測量者が、建物や柱等の建築物の測量対象に測量専用のターゲットシート(反射シート)を設置して、ターゲットシートに対して真正面に向き合う位置(正対の位置)に測量機を設置し、測量機の望遠鏡でターゲットシートを視準し、測量機で測距することで、ターゲットシートの座標を測定している。
 測量機は、測距の際に、望遠鏡の視準方向にレーザーを照射し、ターゲットシートから反射されたレーザーの反射光の強度を検出する。レーザーの光は、測量機からターゲットシートで反射し、その反射光が、ターゲットシートから測量機に戻ってくる。測量機で検出される反射光は、測量機からターゲットシートまでの距離を往復するため、往復距離の分だけ、遅れが生じ、この遅れが位相差となる。測量機は、位相差に基づいて、ターゲットシートまでの距離を算出し、ターゲットシートの座標を測定する。
 ターゲットシートの座標の測定は、反射光が一定の強度で返ってくることが必要であるため、ターゲットシートに対するレーザーの入射角が、例えば、測量機がターゲットシートに正対した位置から左右に約45度までの範囲であれば、測量機は、ターゲットシートの座標を測定することが可能であるが、入射角が大きくなる程、反射光の強度が弱まる。又、環境の明暗によって、測量機が検出する反射光の強度が変動する。これらの理由から、測量機は、ターゲットシートに正対する位置に存在している方が好ましい。そのため、測量者は、ターゲットシートに正対する位置に測量機を設置しており、測量機の設置に時間と手間が掛かるという課題がある。又、測量者が、測量機の望遠鏡を見て、手動でターゲットシートに視準する場合、測量者の技量により、ターゲットシートに対する視準精度が左右され、視準に対する人的誤差が生じ易いという課題がある。
 現在、測量機には、自動視準の機能が搭載されており、測量者が、望遠鏡をターゲットシートに向けた状態で測量機に自動視準の命令を指示すると、測量機は、望遠鏡の視準方向にレーザーを照射し、そのレーザーの反射光の強度を検出し、反射光の光量分布に基づいてターゲットシートの中心位置を決定する。ターゲットシートが、測距用のプリズムであっても同様である。そのため、自動視準の場合、測量機が特定の光反射物からの反射光のみを検出する方が好ましい。一方、自動視準の場合、測量機がターゲットシートに正対した位置から左右に15度までの範囲でなければ、ターゲットシートからの反射光の強度を適切に検出することが出来ず、特定のターゲットシートを視準することが出来ないという課題がある。又、建築物にターゲットシート以外の光反射物がある場合や二つ以上のターゲットシートが近接する場合、測量者が自動視準の機能を利用すると、複数の光反射物からの反射光が原因となって、測量機が、特定のターゲットシートからの反射光の強度を適切に検出することが出来ず、視準精度が低下するという課題がある。
 又、建築物に二つ以上のターゲットシートが近接する場合、測量者が望遠鏡でターゲットシートを視準すると、どのターゲットシートを視準したか混同するおそれがあり、測定したターゲットシートの測定値を異なるターゲットシートに誤って関連付ける可能性があるという課題がある。
 特許文献1に記載の技術では、マークの同定を可能とするものの、マークそのものに情報を付加することは出来ないという課題がある。特許文献2に記載の技術では、ターゲットシートに対応するプリズムとは別に設定識別情報を設ける必要があり、設定識別情報そのものに情報を付加することは出来ないという課題がある。特許文献3に記載の技術では、指定マークがターゲットに設けられているため、測量者が、測定値の精度を上げるために、ターゲットに正対する位置に測量機を設置する必要があるという課題がある。特許文献4に記載の技術では、ターゲットとは別に螺旋状の模様表示を設ける必要があり、模様表示そのものに情報を付加することが出来ないという課題がある。
 特許文献5、7、8に記載の技術では、マークに情報を関連付けることが出来ないという課題がある。特許文献6に記載の技術では、二次元バーコードとして升目の細かいQRコード(登録商標)を採用しているため、測量現場では、二次元バーコードを認識することが出来ないという課題がある。
 そこで、本発明は、前記課題を解決するためになされたものであり、測量の時間や手間を軽減するとともに、精度高く視準し、測定値の関連付けを正確に行うことが可能な測量システム及び測量方法を提供することを目的とする。
 本発明に係る測量システムは、撮影制御部と、認識制御部と、情報表示制御部と、算出制御部と、調整制御部と、測距制御部と、情報記憶制御部と、を備える。撮影制御部は、測量機の望遠鏡を用いて、建築物の測量対象に予め設置された二次元マークを含む撮影画像を撮影する。認識制御部は、前記撮影画像のうち、二次元マークに対応する二次元マーク画像を検出し、検出した撮影パターンと、マーク情報テーブルの二次元マークの識別パターンとを照合することで、当該撮影パターンに対応する特定の識別パターンを認識する。情報表示制御部は、前記特定の識別パターンの認識が完了すると、前記マーク情報テーブルのうち、前記特定の識別パターンに関連付けられた、前記測量対象の設定値を含む測量情報を取得し、前記撮影画像に表示させる。算出制御部は、前記撮影画像内の二次元マーク画像のマーク中心位置と、前記望遠鏡の十字線の中心位置との差分を算出する。調整制御部は、前記差分に基づいて、前記十字線の中心位置を前記マーク中心位置に合わせるように、前記望遠鏡の向きを調整する。測距制御部は、前記測量機を用いて、前記十字線の中心位置が前記マーク中心位置に合った状態で、当該マーク中心位置を測定値として測距する。情報記憶制御部は、前記測距が完了すると、前記測定値を、前記測量情報の設定値とともに前記特定の識別パターンの二次元マークに関連付けて、前記マーク情報テーブルに記憶させる。
 本発明に係る測量方法は、撮影制御ステップと、認識制御ステップと、情報表示制御ステップと、算出制御ステップと、調整制御ステップと、測距制御ステップと、情報記憶制御ステップと、を備える。測量方法の各ステップは、測量システムの各制御部に対応する。
 本発明によれば、測量の時間や手間を軽減するとともに、精度高く視準し、測定値の関連付けを正確に行うことが可能となる。
本発明の実施形態に係る自動測量システムの概略図である。 本発明の実施形態に係る自動測量システムの機能ブロック図である。 本発明の実施形態に係る器械点測定の実行手順を示すためのフローチャートである。 二次元マークの生成とマーク情報テーブルの一例を示す図(図4A)と、二次元マークの設置の一例を示す図(図4B)と、である。 測量現場において測量機の機械点の測定と二次元マークを含む撮影画像の撮影の一例を示す図(図5A)と、二次元マークに対して測量機が正対に位置する場合の撮影画像と二次元マークに対して測量機が斜めに位置する場合の撮影画像との一例を示す図(図5B)と、である。 二次元マークに対して測量機が急傾斜に位置する場合の撮影画像と、撮影パターンと識別パターンとの比較と、エラー表示の一例を示す図(図6A)と、撮影画像内の測量情報の表示と、マーク中心位置と十字線の中心位置との差分の算出の一例を示す図(図6B)と、である。 撮影画像内の矢印マークやメッセージの誘導表示と、十字線の中心位置がマーク中心位置に合った場合のメッセージの表示との一例を示す図(図7A)と、管理値の範囲内の測定値と精度の表示と測定値が反映されたマーク情報テーブルとの一例を示す図(図7B)と、である。 管理値の範囲外の測定値と精度とメッセージの表示と測定値が反映されたマーク情報テーブルとの一例を示す図(図8A)と、一つの撮影画像に複数の二次元マークが写っている場合と一つの撮影画像に複数のターゲットシートが写っている場合の一例を示す図(図8B)と、である。 測量現場において二次元マークを含む撮影画像の撮影の一例を示す図(図9A)と、管理値の範囲内の測定値と精度の表示と管理値の範囲外の測定値と精度の表示との一例を示す図(図9B)と、である。 一つの撮影画像に複数の二次元マークが写し出された場合の測量情報の表示の一例を示す図である。 6×6のパターンにおける角度と撮影パターンと検出率と認識率との一例を示す図(図11A)と、7×7のパターンにおける角度と撮影パターンと検出率と認識率との一例を示す図(図11B)と、である。 二次元マークを用いた実験現場の概要を示す斜視図と平面図(図12A)と、設置位置「1」から設置位置「3」までの撮影画像の一例を示す図(図12B)と、である。 設置位置「4」から設置位置「6」までの撮影画像の一例を示す図(図13A)と、実施例(二次元マーク)と比較例(ターゲットシート)における設置位置とサイズと測定結果の評価の一例を示す図(図13B)と、である。 複数の二次元マークを含む用紙と二次元マークを用いた実験現場の概要を示す斜視図(図14A)と、実験現場の状況を示す写真(図14B)と、である。 一つの撮影画像に写された各二次元マーク画像の認識の一例を示す図である。 複数のターゲットシートを含む用紙を示す斜視図(図16A)と、複数のターゲットシートを含む用紙に対する自動視準の結果を示す写真(図16B)と、である。 複数のターゲットシートを含む用紙に対する自動視準の他の結果を示す写真(図17A)と、複数のターゲットシートを含む用紙に対する自動視準の他の結果を示す写真(図17B)と、である。 二次元マークが正方形である場合の一例を示す図(図18A)と、二次元マークが円形である場合の一例を示す図(図18B)と、である。 簡易的な識別パターンの二次元マークの実施例と複雑な識別パターンの二次元バーコードの比較例の一例を示す図(図19A)と、実施例と比較例のマークを用いた実験現場の概要を示す斜視図と平面図(図19B)と、である。 実施例の二次元マークで識別パターンの認識結果を示す各設置位置事の写真である。 比較例の二次元バーコードで識別パターンの不認識結果を示す画面である。
 以下に、添付図面を参照して、本発明の実施形態について説明し、本発明の理解に供する。尚、以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
 本発明の実施形態に係る測量システム1(測量装置とも称する)は、基本的に、測量機10と、測量機用端末装置11と、サーバ12と、ネットワーク13と、を備える。測量機10と、測量機用端末装置11とは、例えば、測量者に搬送され、測量現場に持ち込まれる。測量現場には、建築物14(例えば、柱)の測量対象14a(例えば、柱頭)に二次元マーク15が設置される。
 又、測量システム1は、更に、事務所用端末装置16と、管理者用端末装置17とを備えても良い。事務所用端末装置16は、事務所、工場等の拠点に設けられる。管理者用端末装置17は、例えば、管理者に携帯され、測量現場に持ち込まれる。
 測量機10は、一般に建設現場や土木現場で使用され、自動視準と自動追尾とを可能とする。測量機用端末装置11は、一般に使用されるコンピュータであり、例えば、小型コンピュータを含み、測量機10に外付けで接続されたり、測量機10に組み込まれて内蔵されたりする。測量機用端末装置11は、測量者からの指示に基づいて測量機10の動作を制御する。又、測量機用端末装置11は、ネットワーク13を介して、サーバ12からの情報を取得したり、測量機10からの測量結果をサーバ12に送信したりする。
 測量機10は、本体部100と、(視準)望遠鏡101とを備えている。本体部100は、水平方向に回転可能に構成される。望遠鏡101は、本体部100に対して鉛直方向に回転可能に設けられる。そのため、望遠鏡101は、測量機10に対して水平方向及び鉛直方向に回転可能である。
 望遠鏡101は、デジタルカメラの機能を有し、望遠鏡の観測方向(光軸の方向)にある対象物の画像を撮影することが出来る。デジタルカメラは、望遠鏡101のレンズの光軸に平行に設置された受光素子(例えば、CCDイメージ素子、CMOSイメージ素子)を備え、受光素子の撮影画像の中心は、望遠鏡の光軸と一致するため、デジタルカメラで撮影した撮影画像の十字線の中心位置は、望遠鏡が視準して測距した対象物の表面の測定位置と一致する。
 二次元マーク15は、一意に識別可能な識別パターンを有している。識別パターンの構成に特に限定は無いが、例えば、二次元マーク15が正方形である場合、識別パターンは、縦の長さを所定の数に均等に分割し、横の長さを所定の数に分割することで複数の升目を形成し、当該複数の升目を白又は黒で着色することで得られたパターンであり、一意に識別可能に構成している。尚、二次元マーク15の形態に特に限定は無く、例えば、印刷物、シール、ラベル等であっても良いし、建築物14の測量対象14aに直接印刷されたり3D印刷されたりしても構わない。又、二次元マーク15の形状に特に限定は無く、例えば、正方形、長方形、円形、楕円形等を挙げることが出来る。
 測量機10の望遠鏡101の視準が二次元マーク15の中心位置に合わされ、測定命令が測量機10に入力されると、測量機10は、望遠鏡101から二次元マーク15の中心位置に対して走査光を照射し、その走査光が二次元マーク15のマーク中心位置から反射され、再び望遠鏡101に入射される。入射された反射光は、測量機10の受光素子により受光信号に変換される。測量機10は、望遠鏡101の水平角度及び鉛直角度を角度検出器で検出する。そして、測量機10の光波距離計は、受光信号を用いて、測量機10から二次元マーク15のマーク中心位置までの斜距離を計測する。光波距離計は、反射プリズム及びターゲットシートを用いる所定のモードと、ターゲットシート及びプリズムを用いないノンプリズムモードとを有するが、本発明では、ノンプリズムモードを基本とする。測量機10の本体部100(計側部)は、検出した望遠鏡101の水平角度及び鉛直角度と、計測した斜距離とに基づいて、二次元マーク15のマーク中心位置の座標(3次元座標値)を測定値として計測する。この二次元マーク15のマーク中心位置の座標は、例えば、測量機10の機械点の座標を基準として算出される。
 サーバ12は、一般に使用されるコンピュータであり、測量機用端末装置11からの情報を記憶媒体に蓄積したり、記憶媒体から情報を出力したりする。又、サーバ12は、ネットワーク13を介して、事務所用端末装置16と、管理者用端末装置17とに通信可能に接続され、事務所用端末装置16と、管理者用端末装置17とに対して情報の取得や出力を行う。
 ネットワーク13は、測量機用端末装置11と、サーバ12と、事務所用端末装置16と、管理者用端末装置17とのそれぞれに通信可能に接続される。ネットワーク13は、Wifi(登録商標)アクセスポイントを介したLAN(Local Area Network)の他、無線基地局を介したWAN(Wide Area Network)、第3世代(3G)の通信方式、LTEなどの第4世代(4G)の通信方式、第5世代(5G)以降の通信方式、Bluetooth(登録商標)、特定小電力無線方式等の無線通信ネットワークを含む。
 事務所用端末装置16と、管理者用端末装置17とは、一般に使用されるコンピュータであり、例えば、ディスクトップ型端末装置、タッチパネル付きの携帯端末装置、タブレット型端末装置、ウェアラブル型端末装置を含む。事務所用端末装置16は、事務所や工場等の第三者が操作し、ネットワーク13を介してサーバ12にアクセスし、サーバ12のデータを読み取り、事務所用端末装置16で表示する。管理者用端末装置17も同様である。
 尚、測量機用端末装置11と、サーバ12と、事務所用端末装置16と、管理者用端末装置17とは、指示を入力するための入力部と、情報を蓄積するための記憶部と、情報を表示するための表示部と、を備えている。測量機10と、測量機用端末装置11と、サーバ12と、事務所用端末装置16と、管理者用端末装置17とは、図示しないCPU、ROM、RAM等を内蔵しており、CPUは、例えば、RAMを作業領域として利用し、ROM等に記憶されているプログラムを実行する。後述する各制御部についても、CPUがプログラムを実行することで各制御部の機能を実現する。
 次に、図2-図10を参照しながら、本発明の実施形態に係る構成及び実行手順について説明する。先ず、測量者、管理者等の使用者は、事務所、工場等の拠点の事務所用端末装置16を用いて、測量用の二次元マーク15の生成の命令を指示すると、事務所用端末装置16の生成制御部201は、二次元マーク15を生成させる(図3:S101)。
 生成制御部201の生成方法に特に限定は無い。例えば、図4Aに示すように、生成制御部201は、使用者の指示に基づいて、二次元マーク15用の辞書を用いて、特定の識別パターンPを有する二次元マーク15を生成させる。二次元マーク15は、例えば、正方形で構成される。又、二次元マーク15の識別パターンPは、例えば、縦の長さを6個に均等に分割し、横の長さを6個に分割することで複数の升目を形成し、当該複数の升目を白又は黒で着色することで得られたパターンであり、一意に識別可能に構成している。
 さて、二次元マーク15の生成が完了し、使用者は、所定の測量情報{例えば、設定値(x0、y0、z0)}を入力すると、事務所用端末装置16の関連制御部202は、生成された二次元マーク15に当該測量情報を関連付けて記憶させる(図3:S102)。
 測量情報とは、二次元マーク15を用いて測量する場合に必要な情報を意味し、少なくとも測量結果に関係する設定値を含む。例えば、二次元マーク15が柱14の柱頭14aに設置される場合は、測量情報は、設定値の他に、現場名、通り名、節、管理値等の柱に関係する情報を挙げることが出来る。又、測量情報は、柱14の製造に関する情報(製造者、製造年月日等)を含んでも良い。建築物14や測量対象14aの種類が異なれば、測量情報は適宜設計される。
 関連制御部202の関連付け方法に特に限定は無い。例えば、図4Aに示すように、関連制御部202は、ネットワーク13を介して、サーバ12にアクセスし、サーバ12のマーク情報テーブル400を参照する。マーク情報テーブル400には、二次元マーク項目401と、測量情報項目402とが関連付けてデータベースとして記憶されている。
 そこで、関連制御部202は、マーク情報テーブル400の二次元マーク項目401に、先ほど生成された二次元マーク15を記憶させるとともに、マーク情報テーブル400の測量情報項目402に、先ほど入力された測量情報403{設定値(x0、y0、z0)}を記憶させる。これにより、二次元マーク15に測量情報403を関連付けることが可能となる。
 さて、測量情報403の関連付けが完了し、使用者は、二次元マーク15を建築物14(例えば、柱)の測量対象14a(例えば、柱頭)に設置する(図3:S103)。
 二次元マーク15の設置方法に特に限定は無い。例えば、測量現場において、二次元マーク15を測量現場の柱14の柱頭14aに設置する場合、図4Bに示すように、使用者が、二次元マーク15を測量現場に持って行き、既に存在する柱14の柱頭14aに貼り付けることで、二次元マーク15を設置することが出来る。又、例えば、柱14の製造工場において、二次元マーク15を柱14の柱頭14aに設置する場合、二次元マーク15を貼付するためのロボット404が、サーバ12又は事務所用端末装置16から二次元マーク15を取得し、製造ラインで製造された柱14の柱頭14aに二次元マーク15を自動的に貼付することで、二次元マーク15を設置することが出来る。その他に、ロボット404が、3Dプリンタで3D印刷可能な場合は、柱14の柱頭14aに二次元マーク15を自動的に3D印刷しても構わない。もちろん、柱14の製造工場において、使用者が、柱14の柱頭14aに二次元マーク15を直接貼付しても構わない。
 尚、測量対象が複数存在する場合は、S101に戻って、S101からS103までの処理を繰り返す。
 さて、測量現場において、柱14の柱頭14aに二次元マーク15が設置されたり、柱14の製造工場から測量現場に搬送された柱14が所定の位置に設置され、柱14の柱頭14aに二次元マーク15が設置されたりすると、測量の準備が整う。
 そこで、測量者は、測量機用端末装置11を有する測量機10を測量現場に搬送し、図5Aに示すように、柱14の柱頭14aに設置された二次元マーク15が見える場所に測量機10を設置する。そして、測量者は、測量機10の機械点の測定のために測量機10を操作すると、測量機10は、機械点Mの座標(xm、ym、zm)を測定する(図3:S201)。
 機械点Mの座標(xm、ym、zm)の測定方法に特に限定は無い。例えば、測量機10の設置場所において、測量者が、2つの既知点をそれぞれ視準、測距し、測量機10が、測量機10を中心とする2点の既知点のそれぞれの距離と方位角とに基づいて、測量機10の機械点Mの座標(xm、ym、zm)を測定する。他の公知の方法を用いても良い。測量機10の機械点Mの座標(xm、ym、zm)を測定することにより、後述する二次元マーク15のマーク中心位置の座標を測量機10の機械点Mの座標(xm、ym、zm)を基準として算出することが出来る。
 さて、機械点Mの座標(xm、ym、zm)の測定が完了すると、測量者は、測量機用端末装置11を操作して、測量機10の望遠鏡101を柱14の柱頭14aの二次元マーク15に自動又は手動で向け、撮影の命令を測量機用端末装置11に指示する。すると、測量機用端末装置11の測量機用撮影制御部203は、測量機10の望遠鏡101を用いて、柱14の柱頭14aの二次元マーク15を含む撮影画像を撮影する(図3:S202)。
 測量機用撮影制御部203の撮影方法に特に限定は無い。例えば、図5Aに示すように、測量者が、望遠鏡101又は測量機用端末装置11で柱14の柱頭14aを見ながら、測量機用端末装置11を操作して、二次元マーク15を含む柱頭14aの近傍を視準する。すると、測量機用撮影制御部203は、望遠鏡101で見える撮影画像を撮影する。
 測量者は、望遠鏡101で二次元マーク15を含む柱頭14aの近傍を見ながら、図5Bに示すように、測量機用端末装置11を操作して、撮影画像500において、撮影画像500の中心位置(光軸、焦点)を示す十字線の中心位置Cを二次元マーク15に向けて移動させる。すると、測量機用撮影制御部203は、望遠鏡101の向きの移動に伴い、望遠鏡101で見える撮影画像500を撮影する。尚、撮影画像500の撮影の際に、撮影画像500内に写る二次元マーク15にピントを合わせるフォーカス処理を適宜行っても構わない。
 測量機用撮影制御部203が撮影画像の撮影を開始すると、測量機用端末装置11の測量機用認識制御部204は、撮影画像のうち、二次元マーク15に対応する二次元マーク画像の撮影パターンと、マーク情報テーブル400(データベース)の二次元マーク15の識別パターンとを照合することで、撮影パターンに対応する特定の識別パターンを認識する(図3:S203)。
 測量機用認識制御部204の認識方法に特に限定は無い。例えば、図5Bに示すように、測量機用認識制御部204は、撮影画像500のうち、二次元マーク画像501を検出する。測量機用認識制御部204が二次元マーク画像501を検出する際に、撮影画像500に、二値化処理等の画像処理を行って、二次元マーク画像501の検出を容易にしても良い。
 測量機用認識制御部204の検出方法に特に限定は無いが、例えば、撮影画像500のうち、認識パターンPの形状に対応する形状画像であって、周端部が所定の色(例えば、黒)で着色された形状画像を二次元マーク画像501として検索し、検索した二次元マーク画像501のうち、前記周縁部以外の内部のパターンを撮影パターンQとして検出する。形状画像は、識別パターンPの形状に依存し、例えば、正方形や円形を基本とするが、二次元マーク15に対する測量機10の位置に応じて、ひし形や楕円形であっても構わない。これにより、周縁部が所定の色で着色された形状画像は、測量現場では、珍しいため、直ぐに二次元マーク画像501を検索することが出来る。又、二次元マーク画像501のうち、周縁部を検索に用い、周縁部以外の内部をパターンに用いることで、二次元マーク15に二つの機能を付与することが出来る。
 尚、測量機用認識制御部204が、撮影画像500のうち、二次元マーク画像501を検索することが出来ない場合や検索した二次元マーク画像501から撮影パターンQを検出することが出来ない場合(図3:S203NO)、測量機用認識制御部204は、撮影画像500に、二次元マーク15の適切な撮影を促すエラーを表示させる(図3:S204)。これにより、測量者に望遠鏡101で二次元マーク15を適切に撮影させるように促すことが出来る。この場合は、S201に戻って、処理をやり直す。
 次に、測量機用認識制御部204は、サーバ12にアクセスし、マーク情報テーブル400の二次元マーク項目401の二次元マーク15を参照し、抽出した二次元マーク画像501の撮影パターンQと、参照した二次元マーク15の識別パターンPとを比較して、両者が一致しているか否かを判定する。
 撮影パターンQと識別パターンPとが一致しているか否かの判定は、例えば、撮影パターンQを構成する升目の色の配置が、識別パターンPを構成する升目の色の配置と一致しているか否かを判定することでなされる。具体的には、図5Bに示すように、二次元マーク15の識別パターンPが、縦の長さを6個に均等に分割し、横の長さを6個に分割しているため、測量機用認識制御部204は、二次元マーク画像501の撮影パターンQの縦の長さを6個に均等に分割し、横の長さを6個に分割し、当該分割により形成される複数の升目qの色を白又は黒に分類する。升目pの色の分類は、例えば、画像の二値化処理等の画像処理を施すことで、分類し易くしても構わない。そして、測量機用認識制御部204は、撮影パターンQの升目qの色の配置を、識別パターンPの升目pの色の配置と比較して、撮影パターンQの升目qの色の配置と一致する升目pの色の配置の識別パターンPを認識(特定)する。
 又、二次元マーク15に対して測量機10が正対に位置する場合は、二次元マーク15に対応する二次元マーク画像501は正方形に表れる。この場合、測量機用認識制御部204は、正方形の二次元マーク画像501の撮影パターンQをマーク情報テーブル400の二次元マーク15の識別パターンPと比較することで、マーク情報テーブル400から一致する識別パターンPを認識する(図3:S203YES)。
 又、二次元マーク15に対して測量機10が斜めに位置する場合は、撮影画像502のうち、二次元マーク15に対応する二次元マーク画像503はひし形に変形して表れる。この場合、二次元マーク画像503が多少変形しているものの、各升目qの色の配置を特定し、二次元マーク画像601の撮影パターンQが、どの識別パターンPであるか認識することが出来る。そのため、測量機用認識制御部204は、ひし形の二次元マーク画像503の撮影パターンQをマーク情報テーブル400の二次元マーク15の識別パターンPと比較することで、マーク情報テーブル400から一致する識別パターンPを認識する(図3:S203YES)。このように、測量機10が二次元マーク15に対して斜めの位置に存在する場合であっても、二次元マーク15を検出して認識することが出来る。又、柱14の柱頭14aの近傍に光反射物が存在したとしても、反射光に基づいて二次元マーク15を特定する訳では無いため、二次元マーク15を適切に認識することが出来る。
 一方、図6Aに示すように、二次元マーク15に対して測量機10が急傾斜に位置する場合は、二次元マーク15に対応する二次元マーク画像601は大きく変形したひし形として表れる。この場合、測量機用認識制御部204は、二次元マーク画像601を検出することが出来たとしても、二次元マーク画像601が変形し過ぎており、各升目qが潰れたり重なったりして、各升目qの色の配置を特定することが出来ず、二次元マーク画像601の撮影パターンQが、どの識別パターンPであるか認識することが出来ない。つまり、測量機用認識制御部204は、大きく変形したひし形の二次元マーク画像601の撮影パターンQをマーク情報テーブル400の二次元マーク15の識別パターンPと比較したとしても、マーク情報テーブル400から一致する識別パターンPを認識することは出来ない(図3:S203NO)。この場合、測量機用認識制御部204は、図6Aに示すように、撮影画像600に、測量機10の移動を促すエラー602(例えば、「エラー 認識できません。場所を変えてください。」)を表示させる(図3:S204)。これにより、二次元マーク15を認識出来ないような測量機10の設置位置が不適切である場合は、測量者にその旨を伝えて、測量機10の設置位置が適切になるように測量機10の再設置を促すことが出来る。この場合は、S201に戻って、処理をやり直す。
 又、測量機用認識制御部204の他の照合方法として、下記を挙げることが出来る。例えば、測量機用認識制御部204は、撮影パターンQが所定の規則により変換された撮影ID番号と、識別パターンPが規則により変換された識別ID番号とを照合することで、撮影パターンQと識別パターンPとを照合しても良い。規則は、例えば、撮影パターンQと識別パターンPを構成する升目の色の配置から特定のID番号を一義的に決定することが出来る。識別ID番号は、マーク情報テーブル400の二次元マーク15の識別パターンPを規則により変換することにより得られ、マーク情報テーブル400の二次元マーク15の識別パターンPに予め記憶される。これにより、測量現場では、検出された撮影パターンQを規則により撮影ID番号に変換して、予め変換された識別ID番号と照合すれば良いため、照合の正確性を向上させることが出来る。
 さて、特定の識別パターンPの認識が完了すると、測量機用端末装置11の測量機用情報表示制御部205は、特定の識別パターンPに関連付けられた、柱14の柱頭14aの設定値を含む測量情報を撮影画像603に表示させる(図3:S205)。
 測量機用情報表示制御部205の表示方法に特に限定は無い。例えば、測量機用情報表示制御部205は、サーバ12にアクセスし、マーク情報テーブル400の測量情報項目402のうち、認識した特定の識別パターンPを有する二次元マーク15に関連付けられた測量情報403{設定値(x0、y0、z0)等}を取得し、図6Bに示すように、撮影画像603に表示させる。これにより、測量者は、撮影画面603を介して、二次元マーク15が設置された柱14の柱頭14aの測量情報403を容易に把握することが可能となる。又、測量情報403が撮影画面603に表示されることで、測量者が、測量対象を再度確認することが可能となり、測量者の間違いや勘違い等の人的ミスを防止することが出来る。
 さて、測量情報403の表示が完了すると、測量機用端末装置11の算出制御部206は、撮影画像603内の二次元マーク画像604のマーク中心位置Cmと、望遠鏡101の撮影画像603の十字線の中心位置Cとの差分(dix、diy)を算出する(図3:S206)。
 算出制御部206の算出方法に特に限定は無い。例えば、図6Bに示すように、撮影画像603は、撮影画像603の所定の位置(例えば、左下の隅)を原点とし、縦方向をy軸とし、横方向をx軸とするカメラ座標系(二次元座標系)を構成している。そこで、算出制御部206は、撮影画像603における二次元マーク画像604の四隅aの座標をそれぞれ取得し、二次元マーク画像604の四隅aの座標の平均値を算出することによって、二次元マーク画像604のマーク中心位置Cmの座標を算出する。二次元マーク画像604が正方形等の四角形の場合、二次元マーク画像604の四隅aの座標の平均値が二次元マーク画像604のマーク中心位置Cmの座標に対応するが、算出制御部206が二次元マーク画像604のマーク中心位置Cmの座標を算出する方法に特に限定は無く、二次元マーク画像604の形状に応じて、他の方法を用いても構わない。
 又、柱14が角柱である場合は、撮影画像603における二次元マーク画像604に歪は生じにくいが、柱14が円柱である場合は、二次元マーク画像604に歪が生じやすい。その場合、算出制御部206は、撮影画像603における二次元マーク画像604にオルソ補正処理を行うことで、当該二次元マーク画像604の歪を補正し、補正後の二次元マーク画像604の四隅aの座標をそれぞれ取得し、二次元マーク画像604の四隅aの座標の平均値を算出することによって、二次元マーク画像604のマーク中心位置Cmの座標を算出すれば良い。
 そして、算出制御部206は、撮影画像603の十字線の中心位置Cの座標を取得し、二次元マーク画像604のマーク中心位置Cmの座標を、十字線の中心位置Cの座標を減算することで、マーク中心位置Cmと十字線の中心位置Cとの差分(dix、diy)を算出する。
 さて、差分(dix、diy)の算出が完了すると、測量機用端末装置11の調整制御部207は、差分(dix、diy)に基づいて、十字線の中心位置Cをマーク中心位置Cmに合わせるように、望遠鏡101の向きを調整する(図3:S207)。
 調整制御部207の調整方法に特に限定は無い。例えば、図7Aに示すように、調整制御部207は、撮影画像603に、十字線の中心位置Cからマーク中心位置Cmに合わせるための誘導表示を表示させる。具体的には、調整制御部207は、撮影画像603に、十字線の中心位置Cからマーク中心位置Cmに向かう矢印マーク700を表示するとともに、十字線の中心位置Cをマーク中心位置Cmに合わせることを促すメッセージ701(例えば、「十字線の中心位置をマーク中心位置に合わせてください。」)を表示させる。これにより、測量者に、望遠鏡101の向きを適切な方向に誘導することが出来る。
 又、調整制御部207は、撮影画像603に、差分(dix、diy)を表示させるとともに、望遠鏡101の向きの調整に伴い、十字線の中心位置Cが移動すると、その度に、調整制御部207は、マーク中心位置Cmと十字線の中心位置Cとの差分(dix、diy)を算出させて表示させる。これにより、測量者に、差分(dix、diy)を見ながら望遠鏡101の向きを二次元マーク15に合わせることが可能となる。
 測量者が望遠鏡101の向きを移動させる度に、調整制御部207は、差分(dix、diy)が所定の閾値の範囲内であるか否かを判定する。閾値は、例えば、測量者、管理者等により予め設定されている。差分(dix、diy)が閾値の範囲外である場合、調整制御部207は、矢印マーク700やメッセージ701等の誘導表示を行うことで、測量者に望遠鏡101の向きの調整を促すことが出来る。
 一方、測量者が望遠鏡101の向きを調整して、十字線の中心位置Cがマーク中心位置Cmに近接し、差分(dix、diy)が閾値の範囲内になったとする。すると、調整制御部207は、差分diが閾値の範囲内であると判定し、図7Aに示すように、測距を促すメッセージ702(例えば、「測距してください。」)を表示させる。これにより、二次元マーク15への視準を容易に行い、且つ、精度高く視準を行うことが可能となる。又、測量者に測距のタイミングを適切に知らせることが可能となる。
 尚、上述では、調整制御部207が、上述の誘導表示を行うことで、測量者の手動により望遠鏡101の向きを調整したが、他の構成であっても構わない。例えば、調整制御部207が、差分(dix、diy)に基づいて、望遠鏡101を水平方向及び鉛直方向に操作し、十字線の中心位置Cをマーク中心位置Cmに合わせるように、望遠鏡101の向きを自動的に調整するよう構成しても良い。これにより、測量者による望遠鏡101の向き調整を不要とし、測量者は、十字線の中心位置Cがマーク中心位置Cmに一致するかどうかを確認するだけで済み、測量者の手間や時間を削減することが可能となる。又、測量者の技量により、視準に対する人的誤差が生じ難くすることが可能となる。
 さて、望遠鏡101の向きの調整が完了すると、測量機用端末装置11の測距制御部208は、測量機10を用いて、十字線の中心位置Cがマーク中心位置Cmに合った状態で、当該マーク中心位置Cmを測定値として測距する(図3:S208)。
 測距制御部208の測距方法に特に限定は無い。例えば、測量者が、測量機用端末装置11を介して、測量の命令を測量機10に指示すると、測距制御部208は、機械点Mを原点として、望遠鏡101の水平角度H及び鉛直角度Vを既設の角度検出器で測定し、次に、測量機10のノンプリズム型光波距離計を用いて、測量機10から二次元マーク15のマーク中心位置Cmまでの斜距離Lを測定する。そして、測距制御部208は、二次元マーク15のマーク中心位置Cmの水平角度H及び鉛直角度Vと、斜距離Lとに基づいて、三次元座標系における二次元マーク15のマーク中心位置Cmの座標(x1、y1、z1)を測定値として算出する。三次元座標系は、例えば、世界座標系や測量現場で定義される任意の座標系を挙げることが出来る。
 尚、測量機10により測定される水平角度Hは、例えば、三次元座標系のうち、X方向(例えば、真北)を0度とし、Y方向(真西)へ回転する方向を正の値として定義される。測量機10により測定される鉛直角度Vは、三次元座標系のうち、Z方向(例えば、真上)を0度とし、上方から下方へ回転する方向を正の値として定義される。
 さて、測距が完了すると、測量機用端末装置11の情報記憶制御部209は、測定値(x1、y1、z1)を、測量情報403の設定値(x0、y0、z0)とともに特定の識別パターンPの二次元マーク15に関連付けて、マーク情報テーブル400(データベース)に記憶させる(図3:S209)。
 情報記憶制御部209の記憶方法に特に限定は無い。例えば、情報記憶制御部209は、測定値(x1、y1、z1)と設定値(x0、y0、z0)との差分(精度){dx1(=x1-x0)、dy1(=y1-y0)、dz1(=z1-z0)}を算出し、算出した差分(dx1、dy1、dz1)が測量情報403の管理値の範囲内であるか否かを判定する。管理値は、例えば、測量者、管理者等により予め設定されても良い。
 判定の結果、差分(dx1、dy1、dz1)が管理値の範囲内である場合、情報記憶制御部209は、図7Bに示すように、撮影画像603のうち、測量情報403とともに、測定値403a(x1、y1、z1)と差分(精度)403b(dx1、dy1、dz1)とを表示させる。これにより、測量者は、測量結果の測定値403aと精度403bを測量情報403とともに確認することが可能となる。
 測量者が、測定値403aや精度403bが適切であると判断した場合は、記憶の命令を測量機用端末装置11に指示すると、情報記憶制御部209は、サーバ12にアクセスし、図7Bに示すように、マーク情報テーブル400のうち、特定の識別パターンPの二次元マーク15に関連付けられた測量情報項目402の測量情報403に、測定値403a(x1、y1、z1)と差分(精度)403b(dx1、dy1、dz1)とを記憶させる(図3:S209YES)。これにより、測量結果の測定値403aと精度403bを測量情報403に反映させることが可能となり、言い換えれば、測量情報403に対応する二次元マーク15に測量結果の測定値403aと精度403bを直接関連付けることが可能となる。
 一方、判定の結果、差分(dx2、dy2、dz2)が管理値の範囲外である場合、測量者が、二次元マーク15のマーク中心位置Cmの座標(x2、y2、z2)を誤って測距している可能性がある。そこで、情報記憶制御部209は、図8Aに示すように、撮影画像603のうち、測量情報403に、測定値403c(x2、y2、z2)と差分(精度)403d(dx2、dy2、dz2)とを表示させるとともに、確認を促すメッセージ800(例えば、「管理値外です。マークを確認してください。」)を表示させる。これにより、測量者が異なる二次元マーク15を誤って測距している場合は、測量者に、測量対象の二次元マーク15を再度確認させて、測量のやり直しの機会を与えることが可能となる。
 測量者が、再度、測量をやり直す場合は、測量者が不記憶の命令を測量機用端末装置11に指示すると、情報記憶制御部209は、測定値403c(x2、y2、z2)と差分(精度)403d(dx2、dy2、dz2)とを記憶しない(図3:S209NO)。そして、測量者は、例えば、S207まで戻って、望遠鏡101の向きを調整したり、S201まで戻って、測量機10を適切な場所に再設置させたりする。
 一方、測量者が、差分(dx2、dy2、dz2)が管理値の範囲外であっても、測定値403cや精度403dを記憶させると判断した場合は、記憶の命令を測量機用端末装置11に指示することで、情報記憶制御部209は、マーク情報テーブル400のうち、特定の識別パターンPの二次元マーク15に関連付けられた測量情報403に、測定値403cや精度403dを記憶させる(図3:S209YES)。これにより、測定値403cや精度403dがどのような値であっても、測量者はマーク情報テーブル400に残すことが可能となる。尚、上述では、マーク情報テーブル400に測定値403cや精度403dを記憶させたが、少なくとも測定値403cを記憶させるように構成しても構わない。
 又、建築物14の測量対象14aが複数存在する場合は、S201に戻って、S201からS209までの処理を繰り返せば良い。
 本発明では、ターゲットシールに代えて二次元マーク15を認識し、視準し、測距するため、二次元マーク15から測量情報403を取得するとともに、測量結果の測定値を二次元マーク15に直接関連付けることが可能となる。又、本発明では、二次元マーク15が多少変形したとしても、変形後の二次元マーク15を認識することが出来るため、一つの撮影画像に映し出された複数の二次元マーク15をそれぞれ認識し、視準し、測距することが可能となる。
 例えば、図8Bに示すように、一つの撮影画像801に3つの二次元マーク15が写し出されており、一つの二次元マーク15aは、正面に正方形に表され、二つの二次元マーク15bは、左右側にひし形に表されている場合、本発明では、それぞれの二次元マーク15a、15bを適切に認識する。この場合、例えば、測量者が、撮影画像801のうち、タップ(指で画面を軽く叩く操作)等の操作をして特定の二次元マーク画像を指定すると、算出制御部206は、特定の二次元マーク画像のマーク中心位置と、望遠鏡の撮影画像の十字線の中心位置との差分を算出する。そして、調整制御部207は、差分に基づいて、十字線の中心位置をマーク中心位置に合わせるように、望遠鏡101の向きを自動的に調整する。これにより、簡単な操作で、二次元マーク15に望遠鏡101の向きを調整し、精度高く視準することが可能となる。
 一方、ターゲットシートの場合、一つの撮影画像802に3つのターゲットシート18が写し出されているが、正面のターゲットシート18aと左右側のターゲットシート18bは、測量機10のレーザー光をそれぞれ反射する。そのため、測量機10の方で、複数のターゲットシート18a、18bからの反射光を検出することとなり、一つのターゲットを特定することが困難となることから、測量機10で正面のターゲットシート18aと左右側のターゲットシート18bとにそれぞれ視準することが困難となる。もちろん、測量機10の自動視準の機能を利用したとしても、測量機10で正面のターゲットシート18aと左右側のターゲットシート18bとをそれぞれ自動的に識別して視準することが出来ない。このような場合は、例えば、柱14の柱頭14aの一側面に第一のターゲットシート18が設置され、当該柱頭14aの一側面に隣接する他側面に第二のターゲットシート18が設置される場合である。
 このように、本発明では、二次元マーク15が撮影画像内に認識可能に映っていれば、当該二次元マーク15を適切に認識し、精度高く視準することが出来るため、ターゲットシート18と比較して、測量機10の設置回数を減らし、測量者の手間や時間を削減することが出来る。又、本発明では、一つの撮影画像801に複数の二次元マーク15が存在したとしても、それぞれの二次元マーク15を適切に認識して、精度高く視準し、それぞれの二次元マーク15に測定値を関連付けることが可能である。一方、測量者が、ターゲットシート18を測距した際に、どのターゲットシート18に測定値を関連付けるべきか混同するおそれがあるが、本発明では、二次元マーク15の識別と測定値の関連付けを自動的に行うことから、そのような人的ミスを確実に防止することが出来る。
 さて、測量現場において、柱14の柱頭14aに設置された二次元マーク15に対して測量値等の測量結果が関連付けて記憶された後、管理者が測量結果を確認するために、管理者用端末装置17を携帯して測量現場に訪れる。そして、図9Aに示すように、管理者が、管理者用端末装置17のカメラ17aを柱14の柱頭14aの二次元マーク15に向けて、撮影の命令を管理者用端末装置17に指示すると、管理者用端末装置17の端末用撮影制御部210は、管理者用端末装置17のカメラ17aを用いて、柱14の柱頭14aの二次元マーク15を含む撮影画像を撮影する(図3:S301)。
 端末用撮影制御部210が撮影画像の撮影を開始すると、管理者用端末装置17の端末用認識制御部211は、撮影画像のうち、二次元マーク15に対応する二次元マーク画像の撮影パターンを検出し、検出した撮影パターンと、マーク情報テーブル400(データベース)の二次元マーク15の識別パターンとを照合することで、撮影パターンに対応する特定の識別パターンを認識する(図3:S302)。
 端末用認識制御部211の認識方法に特に限定は無く、測量機用認識制御部204の認識方法と同様であるため、その説明を省略する。
 そして、特定の識別パターンの認識が完了すると、管理者用端末装置17の端末用情報表示制御部212は、特定の識別パターンに関連付けられた測量情報(設定値、測定値、精度等)を撮影画像に表示させる(図3:S303)。
 端末用情報表示制御部212の表示方法に特に限定は無い。例えば、端末用情報表示制御部212は、マーク情報テーブル400の測量情報項目402のうち、認識した特定の識別パターンを有する二次元マーク15に関連付けられた測量情報403{設定値(x0、y0、z0)、測定値(x1、y1、z1)、精度(dx1、dy1、dz1)等}を取得し、撮影画像900に表示させる。これにより、管理者は、撮影画像900を確認するだけで、二次元マーク15が設置された柱14の柱頭14aの測量結果を一見して確認することが可能となる。
 測定情報403の精度(dx1、dy1、dz1)が管理値の範囲内である場合、端末用情報表示制御部212は、二次元マーク15に対応する二次元マーク画像901の近傍に、管理値の範囲内を示すメッセージ902(例えば、「管理値内」)を表示させる。一方、測定情報403の精度(dx2、dy2、dz2)が管理値の範囲外である場合、端末用情報表示制御部212は、二次元マーク15に対応する二次元マーク画像901の近傍に、管理値の範囲外を示すメッセージ903(例えば、「管理値外」)を表示させる。これにより、管理者は、二次元マーク15が設置された柱14の柱頭14aの測量結果が適切か否かを一見して確認することが出来る。
 端末用情報表示制御部212は、二次元マーク15を用いて、管理値の範囲内の柱14を、許可を示す色(例えば、青色)で示し、管理値の範囲外の柱14を、不許可を示す色(例えば、赤色)で示すようにして、拡張現実(AR)や複合現実(MR)の機能を実現しても良い。
 又、図10に示すように、一つの撮影画像1000に複数の二次元マーク15が写し出された場合、端末用認識制御部211は、二次元マーク15に対応する二次元マーク画像1001をそれぞれ検出して、それぞれの二次元マーク画像1001の撮影パターンに対応する特定の識別パターンを認識する。そして、端末用情報表示制御部212は、特定の識別パターンに関連付けられた測量情報(設定値、測定値、精度等)を撮影画像1000に表示させる。端末用情報表示制御部212は、図10に示すように、それぞれの二次元マーク15の二次元マーク画像1001に吹き出し線1002を設けて測量情報1003(柱マーク、節、通り、製造者、製造年月日、建ち精度の状況(本締め完了後等)、測定値、管理値内外の適否等)を表示させることで、管理者が確認し易くなり、管理者の利便性を向上させることが出来る。
 尚、測量情報を有するデータベースは、他の測量システム(例えば、3次元出来形システム、施工管理システム等)と連動させることで、測量現場における管理者の現地での出来高の確認を容易にすることが出来る。又、近年、二次元マーク15の認識は、ウェブのブラウザで行うことが可能となっていることから、端末用認識制御部211は、管理者用端末装置17にアプリとして設けられている必要は無く、管理者用端末装置17がアクセス可能なネットワーク13のサーバに設けられ、端末用認識制御部211が、ウェブのブラウザで機能しても構わない。
 一方、他の利用方法として、例えば、監視カメラを備えた管理者用端末装置17を測量現場に設置し、監視カメラで建築物14(柱)の測量対象14a(柱頭)の二次元マーク15を継続的に撮影して、二次元マーク15を認識するとともに、二次元マーク15に関連付けられた測量情報を事務所内の事務所用端末装置16で確認させることで、建築物14の出来高進捗を事務所で確認出来るようにしても良い。
 又、本発明の実施形態では、測量機用認識制御部204が測量機用端末装置11に搭載するよう構成しているが、測量機用認識制御部204をサーバ12に搭載して、測量機用端末装置11の測量機用撮影制御部203が、撮影画像をサーバ12に送り、サーバ12の測量機用認識制御部204が撮影画像を用いて、二次元マーク画像の撮影パターンに対応する特定の識別パターンを認識して、当該識別パターンに関連付けられた測量情報を測量機用端末装置11に送り、測量機用端末装置11の測量機用情報表示制御部205が、測量情報を、測量機用端末装置11の撮影画像に表示させるよう構成しても良い。又、本発明の実施形態では、測量機用撮影制御部203の撮影画像を静止画としているが、動画でも構わない。
 以下、実施例、比較例によって本発明を具体的に説明するが、本発明はこれにより限定されるものではない。
 先ず、変形後の撮影パターンの認識率を確認した。具体的には、辞書を用いて所定の識別パターンを生成し、生成した識別パターンに対応する撮影パターンを所定の角度(0度、9度、18度、27度)で水平方向に変形させた。この角度は、例えば、撮影パターンに正対した位置から左右に移動した角度を模擬している。そして、変形後の撮影パターンと識別パターンとを照合して、変形後の撮影パターンが識別パターンと認識するかどうかを確認した。識別パターンは、縦の長さを6個に均等に分割し、横の長さを6個に分割することで得られる6×6のパターンと、縦の長さを7個に均等に分割し、横の長さを7個に分割することで得られる7×7のパターンとを用意した。そして、識別パターンを5000個生成し、5000個の撮影パターンを変形して照合した結果、全ての撮影パターンに対して漏れなく検出した場合は、検出率を「〇」と評価し、1個でも検出することが出来なかった場合は、検出率を「×」と評価した。又、全ての撮影パターンに対して特定の識別パターンを認識した場合は、認識率を「〇」と評価し、1個でも認識することが出来なかった場合は、認識率を「×」と評価した。尚、検出率は、撮影パターン自体を検出することが出来たかどうかを意味し、認識率は、撮影パターンを特定の識別パターンに認識(特定)することが出来たかどうかを意味する。
 その結果、図11Aに示すように、6×6のパターンにおいて、変形の角度が0度から27度の範囲内では、撮影パターンの検出率は、「〇」であった。更に驚くべきことに、変形の角度が0度から27度の範囲内において、撮影パターンの認識率は、「〇」であった。
 又、図11Bに示すように、7×7のパターンにおいて、変形の角度が0度から27度の範囲内では、撮影パターンの検出率は、「〇」であった。更に驚くべきことに、変形の角度が0度から27度の範囲内において、撮影パターンの認識率は、「〇」であった。
 このように、撮影パターンが変形したとしても、検出率、認識率ともに良好であり、撮影パターンを特定の識別パターンに認識することが可能であることが分かった。
 次に、実際に、二次元マークを用いて撮影し、視準し、視準の可否を確認した。具体的には、6×6の識別パターンを有する二次元マークを所定のサイズ(縦50mm×横50mm、縦100mm×横100mm)で印刷し、図12Aに示すように、高さ11mの建築物14の上部14aに、その二次元マーク15を設置した。又、二次元マーク15を設置した上部14aの下部14bから正対の方向に遠くなる順番に測量機10の設置位置(「1」、「2」、「3」)を設定した。建築物14の下部14bから設置位置「3」までの距離を11mに設定した。次に、設置位置「3」から、正対の方向に対して直角の方向に遠くなる順番に測量機10の設置位置(「4」、「5」、「6」)を設定した。設置位置「3」から設置位置「6」までの距離を9mに設定した。そして、設置位置「1」から「6」までに測量機10を設置して、本発明に係る測量システム1を用いて、二次元マーク15を撮影し、二次元マーク画像の撮影パターンに対応する特定の識別パターンを認識し、マーク中心位置と望遠鏡の十字線の中心位置との差分を算出し、望遠鏡の向きを調整して、視準を試みた。視準は、プログラムにより算出したマーク中心位置と望遠鏡の十字線の中心位置とを目視により一致させることで行った。視準が出来た場合は、「〇」と評価し、視準が出来なかった場合は、「×」と評価した。又、二次元マーク15の代わりにターゲットシート18を設置して、測量機10に自動視準の命令を指示し、自動視準を試みた。自動視準が出来た場合は、「〇」と評価し、自動視準が出来なかった場合は、「×」と評価した。二次元マーク15の視準の結果を実施例とし、ターゲットシート18の視準の結果を比較例とした。
 その結果、図12Bに示すように、設置位置「1」から設置位置「3」までにおいて、二次元マーク15の撮影と、マーク中心位置と望遠鏡の十字線の中心位置との差分の算出が可能であり、視準可能であることが分かった。又、図13Aに示すように、設置位置「4」から設置位置「6」までにおいても、二次元マーク15の撮影と、マーク中心位置と望遠鏡の十字線の中心位置との差分の算出が可能であり、精度高く視準可能であることが分かった。
 そして、図13Bに示すように、実施例では、設置位置「1」から設置位置「6」までのいずれの視準の結果でも、評価が「〇」であり、精度高く視準出来ることが分かった。一方、比較例では、正対の位置に対応する設置位置「1」から設置位置「3」までの視準の結果では、評価が「〇」であったが、斜めの位置に対応する設置位置「4」や更に斜めの位置に対応する設置位置「5」と「6」の自動視準の結果では、評価が「×」であり、自動視準することが出来なかった。
 このように、本発明では、二次元マーク15に対して測量機10が正対の位置に限らず、斜めの位置であっても、精度高く視準することが出来ることが分かった。これらの結果は、測量機の自動視準可能な角度(例えば、15度)より優れている。
 次に、互いに近接する複数の二次元マークを用いて撮影し、視準し、視準の可否を確認した。具体的には、図14Aに示すように、一つの用紙1400に、6×6の識別パターンを有する二次元マーク15を所定のサイズ(縦50mm×横50mm)で複数印刷し、高さ13.8mの建築物14の上部14aに、その用紙1400を設置した。又、二次元マーク15を含む用紙1400を設置した上部14aの下部14bから正対の方向に12.0m離れた位置を正対位置1401として設定し、次に、正対位置から、正対の方向に対して直角の方向に4.0m離れた位置を設置位置1402として設定した。設置位置1402に測量機10を設置して、本発明に係る測量システム1を用いて、図14Bに示すように、用紙1400内の二次元マーク15を撮影し、二次元マーク画像の撮影パターンに対応する特定の識別パターンの認識し、視準を試みた。二次元マーク15の視準の結果を実施例とした。
 その結果、図15に示すように、一つの撮影画像1500に写された各二次元マーク画像1501の撮影パターンに対して特定の識別パターンを認識することが可能であり、識別パターンに関連付けたIDを表示させることが可能であった。更に、各二次元マーク画像1501のマーク中心位置Cmと望遠鏡101の十字線の中心位置Cとの差分の算出が可能であり、精度高く視準可能であることが分かった。
 一方、図16Aに示すように、複数の二次元マーク15を含む用紙1400と同等の用紙1600を用意し、その用紙1600に、二次元マーク15と同等のターゲットシート18を複数設置し、複数の二次元マーク15を含む用紙1400を設置した上部14aに複数のターゲットシート18を含む用紙1600を設置して、測量機10に自動視準の命令を指示し、自動視準を試みた。ターゲットシート18の視準の結果を比較例とした。
 その結果、図16Bに示すように、二つのターゲットシート18が近接する所定の位置に望遠鏡101の十字線の中心位置Cが存在する場合に自動視準を行うと、自動視準開始時、望遠鏡101の十字線の中心位置Cから直近のターゲットシート18の中心位置に合わせるように、望遠鏡101の十字線の中心位置Cを直近のターゲットシート18の中心位置に視準したものの、望遠鏡101の十字線の中心位置Cが直近のターゲットシート18の中心位置から若干ずれて、視準精度が低下していることが分かった。これは、複数のターゲットシート18の存在により、視準精度が低下したためと推定される。又、図17A、図17Bに示すように、二つのターゲットシート18が近接する他の位置に望遠鏡101の十字線の中心位置Cが存在する場合に自動視準を行うと、二つのターゲットシート18の真ん中に望遠鏡101の十字線の中心位置Cを合わせるように視準し、一つのターゲットシート18に視準不能であることが分かった。これは、測量機10が、二つのターゲットシート18からの反射光を検出することで、二つのターゲットシート18の反射光の光量分布を、一つのターゲットシート18の反射光の光量分布と誤認したためと推定される。
 このように、本発明では、一つの撮影画像に複数の二次元マーク15が存在したとしても、それぞれを適切に視準し、精度高く視準することが出来ることが分かった。
 尚、本発明の実施形態では、測量システム1が各制御部を備えるよう構成したが、当該各制御部を実現するプログラムを記憶媒体に記憶させ、当該記憶媒体を提供するよう構成しても構わない。当該構成では、プログラムを所定の処理装置に読み出させ、当該処理装置が各制御部を実現する。その場合、記録媒体から読み出されたプログラム自体が本発明の作用効果を奏する。更に、各制御部が実行するステップを本発明の位置計測方法として提供することも可能である。
 又、本発明の実施形態では、図18Aに示すように、二次元マーク15を正方形として構成したが、図18Bに示すように、二次元マーク15を円形として構成しても構わない。二次元マーク15が正方形である場合、例えば、識別パターンは、6×6のパターンや7×7のパターンを挙げることが出来る。又、7×7のパターン等、奇数×奇数のパターンにおいて、識別パターンの中心位置に、視準対象となる一つの升目p0が設けられ、視準対象の升目p0は、中心位置を示す十字線で4つに分割して、4つの分割升目p0を上下左右に異なる所定の色(例えば、白又は黒)で着色して構成され、視準し易くしても良い。
 又、図18Bに示すように、二次元マーク15が円形である場合、例えば、識別パターンPは、円形の同心円で円形の半径を所定の数に均等に分割し、円形の中心から延びた線で円形の中心角を所定の数に均等に分割することで複数の升目pを形成し、当該複数の升目pを白又は黒で着色することで得られたパターンであり、一意に識別可能に構成している。例えば、識別パターンは、円形の同心円で円形の半径を3個に均等に分割し、円形の中心から延びた線で円形の中心角を12個に均等に分割することで得られる3×12のパターンや円形の同心円で円形の半径を5個に均等に分割し、円形の中心から延びた線で円形の中心角を12個に均等に分割することで得られる5×12のパターンを挙げることが出来る。又、円形の二次元マーク15であっても、正方形の二次元マーク15と同様に、識別パターンの中心位置に、視準対象となる升目p0が設けられ、視準対象の升目p0は、中心位置を示す十字線で4つに分割して、4つの分割升目p0を上下左右に異なる所定の色(例えば、白又は黒)で着色して構成され、視準し易くしても良い。
 尚、二次元マーク15の形状や識別パターンPの升目pの形状は、視準容易性の点から、例えば、1:1.62の黄金比を利用した形状を採用しても良い。
 本発明では、7×7のパターンの簡易的な識別パターンの二次元マークを用いた場合の実施例と、複雑な識別パターンの二次元バーコード{例えば、QRコード(登録商標)相当}を用いた場合の比較例とで、両者の認識率の違いを示す。具体的には、図19Aに示すように、7×7のパターン(升目の数が49個)の識別パターンを有する二次元マークを縦50mm×横50mmのサイズで印刷し、実施例の二次元マークとした。一方、所定のQRコード(登録商標)(約40×40のパターン、升目の数が1600個)の中心に視準可能な測量標識を追加し、そのコードを縦50mm×横50mmのサイズで印刷し、比較例の二次元バーコードとした。比較例の二次元バーコードをデコード可能なソフトウェアは、測量システムに予め内蔵させた。
 次に、図19Bに示すように、高さ11mの建築物の上部に、実施例と比較例との二つのマークを並べて設置し、その上部の下部から正対の方向に遠くなる順番に測量機10の設置位置(「1」、「2」)を設定し、設置位置「2」から、正対の方向に対して直角の方向に遠くなる順番に測量機10の設置位置(「3」、「4」)を設定した。建築物の下部から設置位置「1」までの距離を6mに設定し、建築物の下部から設置位置「2」までの距離を11mに設定し、設置位置「2」から設置位置「3」までの距離を8mに設定し、設置位置「2」から設置位置「4」までの距離を19.1mに設定した。そして、設置位置「1」から「4」までに測量機10を設置して、本発明の測量システムを用いて、実施例と比較例との二つのマークを撮影し、認識可能か否かを確認した。
 その結果、図20に示すように、実施例のマークでは、いずれの設置位置でもマークの識別パターンを認識することが出来た。具体的には、所定の規則を用いて、撮影パターンから撮影ID番号(id=5000)に変換することが出来たとともに、マークの中心位置を算出することが出来た。一方、図21に示すように、比較例のマークでは、測量機の望遠鏡で撮影した画像では、マークを認識することが出来なかった(デコード失敗)。
 このように、比較例の二次元バーコード{QRコード(登録商標)相当}では、測量現場で、測量機の望遠鏡で撮影して認識することが出来ない。その理由は、元来、比較例の二次元バーコードでは、細かい白黒の升目のパターンに情報を付与するものであるため、所定量以上の升目が存在しないと、情報を付与することが出来ないからである。一方、升目のパターンが複雑になれば、上述のように、測量現場で、測量機の望遠鏡で撮影すると、撮影画像内の升目のパターンが粗くなり、正確に二次元バーコードを認識することが出来なくなる。
 実施例では、二次元マークの識別パターンに情報を付与するものでは無いため、簡易的な識別パターンを有する二次元マークを採用することで、測量現場でも、二次元マーク画像の撮影パターンの認識率を低下させること無く、正確に認識することが出来る。そのため、上述のように、マーク情報テーブルから測量情報を取得したり、測定値をマーク情報テーブルに記憶させたりすることが出来る。又、升目の数が所定量あるため、識別パターンの識別性を付与し、複数の建築物の測量対象に二次元マークを設置したとしても、各測量対象の二次元マークのそれぞれを識別することが出来るとともに、各測量対象毎に測量情報を取得したり、測量値を関連付けて記憶させたりすることが出来る。このように、測量現場における特定の識別パターンの認識を容易にし、測量の時間や手間を軽減し、精度高く視準することが可能となる。
 近年、AR(拡張現実)対応で、撮影機能や測距機能を有するメガネ型デバイスが登場してきているが、このようなメガネ型デバイスを測量機に代えて利用することが出来る。
 二次元マークの識別パターンのうち、7×7のパターンの他に、6×6のパターンの升目の数は36個であり、3×12のパターンの升目の数は36個であり、5×12のパターンの升目の数は60個であるため、これらのパターンは、7×7のパターンと同等の升目の数であり、7×7のパターンと同様に、測量現場において識別可能な簡易的な識別パターンであり、上述と同様の作用効果を有する。
 以上のように、本発明に係る測量システム及び測量方法は、一般的な構造物、建築物、機器装置、地盤、道路、車輌、鉄道等の計測分野、土木分野、測量分野等に有用であり、測量の時間や手間を軽減するとともに、精度高く視準し、測定値の関連付けを正確に行うことが可能な測量システム及び測量方法として有効である。
  1  測量システム
  10 測量機
  11 測量機用端末装置
  12 サーバ
  13 ネットワーク
  201 生成制御部
  202 関連制御部
  203 測量機用撮影制御部
  204 測量機用認識制御部
  205 測量機用情報表示制御部
  206 算出制御部
  207 調整制御部
  208 測距制御部
  209 情報記憶制御部
  210 端末用撮影制御部
  211 端末用認識制御部
  212 端末用情報表示制御部

Claims (10)

  1.  測量機の望遠鏡を用いて、建築物の測量対象に予め設置された二次元マークを含む撮影画像を撮影する撮影制御部と、
     前記撮影画像のうち、二次元マークに対応する二次元マーク画像の撮影パターンを検出し、検出した撮影パターンと、マーク情報テーブルの二次元マークの識別パターンとを照合することで、当該撮影パターンに対応する特定の識別パターンを認識する認識制御部と、
     前記特定の識別パターンの認識が完了すると、前記マーク情報テーブルのうち、前記特定の識別パターンに関連付けられた、前記測量対象の設定値を含む測量情報を取得し、前記撮影画像に表示させる情報表示制御部と、
     前記撮影画像内の二次元マーク画像のマーク中心位置と、前記望遠鏡の十字線の中心位置との差分を算出する算出制御部と、
     前記差分に基づいて、前記十字線の中心位置を前記マーク中心位置に合わせるように、前記望遠鏡の向きを調整する調整制御部と、
     前記測量機を用いて、前記十字線の中心位置が前記マーク中心位置に合った状態で、当該マーク中心位置を測定値として測距する測距制御部と、
     前記測距が完了すると、前記測定値を、前記測量情報の設定値とともに前記特定の識別パターンの二次元マークに関連付けて、前記マーク情報テーブルに記憶させる情報記憶制御部と、
     を備え、
     前記識別パターンは、正方形で、縦の長さを6個に均等に分割し、横の長さを6個に分割することで得られる6×6のパターンと、正方形で、縦の長さを7個に均等に分割し、横の長さを7個に分割することで得られる7×7のパターンと、円形で、円形の同心円で円形の半径を3個に均等に分割し、円形の中心から延びた線で円形の中心角を12個に均等に分割することで得られる3×12のパターンと、円形で、円形の同心円で円形の半径を5個に均等に分割し、円形の中心から延びた線で円形の中心角を12個に均等に分割することで得られる5×12のパターンのいずれかである、
     測量システム。
  2.  前記認識制御部は、前記撮影画像のうち、前記認識パターンの形状に対応する形状画像であって、周端部が所定の色で着色された形状画像を前記二次元マーク画像として検索し、検索した二次元マーク画像のうち、前記周縁部以外の内部のパターンを前記撮影パターンとして検出する、
     請求項1に記載の測量システム。
  3.  前記認識制御部は、前記撮影パターンを検出することが出来ない場合、又は、検出した撮影パターンと、前記識別パターンとを照合することが出来ない場合、前記撮影画像に、前記測量機の移動を促すエラーを表示させる、
     請求項1に記載の測量システム。
  4.  前記認識制御部は、前記撮影パターンを構成する升目の色の配置が、前記識別パターンを構成する升目の色の配置と一致しているか否かを判定することで、前記撮影パターンと前記識別パターンとを照合する、
     請求項1に記載の測量システム。
  5.  前記認識制御部は、前記撮影パターンが所定の規則により変換された撮影ID番号と、前記識別パターンが前記規則により変換された識別ID番号とを照合することで、前記撮影パターンと前記識別パターンとを照合する、
     請求項1に記載の測量システム。
  6.  前記算出制御部は、前記撮影画像における前記二次元マーク画像の四隅の座標をそれぞれ取得し、前記二次元マーク画像の四隅の座標の平均値を算出することによって、前記二次元マーク画像のマーク中心位置の座標を算出する、
     請求項1に記載の測量システム。
  7.  前記調整制御部は、前記差分が所定の閾値の範囲内であるか否かを判定し、前記差分が所定の閾値の範囲外である場合、前記撮影画像に、前記十字線の中心位置を前記マーク中心位置に合わせるための誘導表示を表示させ、前記差分が所定の閾値の範囲内である場合、測距を促すメッセージを表示させる、
     請求項1に記載の測量システム。
  8.  前記識別パターンの中心位置に、視準対象となる升目が設けられ、当該視準対象の升目は、中心位置を示す十字線で4つに分割して、4つの分割升目を上下左右に異なる所定の色で着色して構成される、
     請求項1に記載の測量システム。
  9.  前記マーク情報テーブルは、サーバに設けられ、
     前記認識制御部は、前記サーバにアクセスして、前記撮影パターンと、当該サーバのマーク情報テーブルの二次元マークの識別パターンとを照合し、
     前記情報表示制御部は、前記サーバにアクセスして、前記マーク情報テーブルから前記測量情報を取得し、
     前記情報記憶制御部は、前記サーバにアクセスして、前記マーク情報テーブルに前記測定値を記憶させる、
     請求項1に記載の測量システム。
  10.  測量機の望遠鏡を用いて、建築物の測量対象に予め設置された二次元マークを含む撮影画像を撮影する撮影制御ステップと、
     前記撮影画像のうち、二次元マークに対応する二次元マーク画像の撮影パターンを検出し、検出した撮影パターンと、マーク情報テーブルの二次元マークの識別パターンとを照合することで、当該撮影パターンに対応する特定の識別パターンを認識する認識制御ステップと、
     前記特定の識別パターンの認識が完了すると、前記マーク情報テーブルのうち、前記特定の識別パターンに関連付けられた、前記測量対象の設定値を含む測量情報を取得し、前記撮影画像に表示させる情報表示制御ステップと、
     前記撮影画像内の二次元マーク画像のマーク中心位置と、前記望遠鏡の十字線の中心位置との差分を算出する算出制御ステップと、
     前記差分に基づいて、前記十字線の中心位置を前記マーク中心位置に合わせるように、前記望遠鏡の向きを調整する調整制御ステップと、
     前記測量機を用いて、前記十字線の中心位置が前記マーク中心位置に合った状態で、当該マーク中心位置を測定値として測距する測距制御ステップと、
     前記測距が完了すると、前記測定値を、前記測量情報の設定値とともに前記特定の識別パターンの二次元マークに関連付けて、前記マーク情報テーブルに記憶させる情報記憶制御ステップと、
     を備え、
     前記識別パターンは、正方形で、縦の長さを6個に均等に分割し、横の長さを6個に分割することで得られる6×6のパターンと、正方形で、縦の長さを7個に均等に分割し、横の長さを7個に分割することで得られる7×7のパターンと、円形で、円形の同心円で円形の半径を3個に均等に分割し、円形の中心から延びた線で円形の中心角を12個に均等に分割することで得られる3×12のパターンと、円形で、円形の同心円で円形の半径を5個に均等に分割し、円形の中心から延びた線で円形の中心角を12個に均等に分割することで得られる5×12のパターンのいずれかである、
     測量方法。
PCT/JP2020/045948 2019-12-11 2020-12-10 測量システム及び測量方法 WO2021117793A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080043743.0A CN114008482A (zh) 2019-12-11 2020-12-10 测量系统及测量方法
US17/616,354 US11475231B2 (en) 2019-12-11 2020-12-10 Survey system and survey method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-224078 2019-12-11
JP2019224078A JP6693616B1 (ja) 2019-12-11 2019-12-11 測量システム及び測量方法

Publications (1)

Publication Number Publication Date
WO2021117793A1 true WO2021117793A1 (ja) 2021-06-17

Family

ID=70549771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045948 WO2021117793A1 (ja) 2019-12-11 2020-12-10 測量システム及び測量方法

Country Status (5)

Country Link
US (1) US11475231B2 (ja)
JP (1) JP6693616B1 (ja)
CN (1) CN114008482A (ja)
TW (1) TWI741904B (ja)
WO (1) WO2021117793A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021131652A (ja) * 2020-02-19 2021-09-09 株式会社トプコン データ構造、記録媒体、プログラム、及びシステム
KR102507543B1 (ko) * 2021-06-29 2023-03-07 디엘이앤씨 주식회사 파일 관입량 및 리바운드량 측정 시스템
JP2023073151A (ja) * 2021-11-15 2023-05-25 株式会社トプコン 測量方法、測量システム及び測量プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257872A (ja) * 2003-02-26 2004-09-16 Seiko Epson Corp 位置情報取得システム、位置情報取得装置、位置情報取得方法、及びプログラム
CN104778488A (zh) * 2014-11-28 2015-07-15 华北水利水电大学 基于bim的钢结构建筑定位贴片
JP2017015445A (ja) * 2015-06-29 2017-01-19 成隆 柾 画像処理による計測方法及び計測プログラム
JP2017072442A (ja) * 2015-10-06 2017-04-13 株式会社トプコン 電磁波の測定装置、電磁波の測定方法およびプログラム
JP2017201281A (ja) * 2016-05-06 2017-11-09 計測ネットサービス株式会社 測量機器による自動視準方法及び自動視準装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5988862A (en) * 1996-04-24 1999-11-23 Cyra Technologies, Inc. Integrated system for quickly and accurately imaging and modeling three dimensional objects
DE10359415A1 (de) * 2003-12-16 2005-07-14 Trimble Jena Gmbh Verfahren zur Kalibrierung eines Vermessungsgeräts
JP5196725B2 (ja) * 2006-02-09 2013-05-15 株式会社 ソキア・トプコン 測量機の自動視準装置
EP2405236B1 (de) * 2010-07-07 2012-10-31 Leica Geosystems AG Geodätisches Vermessungsgerät mit automatischer hochpräziser Zielpunkt-Anzielfunktionalität
EP2620746A1 (de) * 2012-01-30 2013-07-31 Hexagon Technology Center GmbH Vermessungsgerät mit Scanfunktionalität und Einzelpunktmessmodus
GB201314642D0 (en) * 2013-08-15 2013-10-02 Summerfield Gideon Image Identification System and Method
US9881378B2 (en) * 2016-02-12 2018-01-30 Vortex Intellectual Property Holding LLC Position determining techniques using image analysis of marks with encoded or associated position data
WO2017149526A2 (en) * 2016-03-04 2017-09-08 May Patents Ltd. A method and apparatus for cooperative usage of multiple distance meters
JP2019102047A (ja) * 2017-11-28 2019-06-24 Thk株式会社 画像処理装置、移動ロボットの制御システム、移動ロボットの制御方法
CN109285198B (zh) * 2018-08-22 2020-09-11 大连理工大学 一种环形编码标记点的编码及识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257872A (ja) * 2003-02-26 2004-09-16 Seiko Epson Corp 位置情報取得システム、位置情報取得装置、位置情報取得方法、及びプログラム
CN104778488A (zh) * 2014-11-28 2015-07-15 华北水利水电大学 基于bim的钢结构建筑定位贴片
JP2017015445A (ja) * 2015-06-29 2017-01-19 成隆 柾 画像処理による計測方法及び計測プログラム
JP2017072442A (ja) * 2015-10-06 2017-04-13 株式会社トプコン 電磁波の測定装置、電磁波の測定方法およびプログラム
JP2017201281A (ja) * 2016-05-06 2017-11-09 計測ネットサービス株式会社 測量機器による自動視準方法及び自動視準装置

Also Published As

Publication number Publication date
CN114008482A (zh) 2022-02-01
US11475231B2 (en) 2022-10-18
TW202130971A (zh) 2021-08-16
US20220207255A1 (en) 2022-06-30
TWI741904B (zh) 2021-10-01
JP6693616B1 (ja) 2020-05-13
JP2021092482A (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
WO2021117793A1 (ja) 測量システム及び測量方法
US9222771B2 (en) Acquisition of information for a construction site
JP4607095B2 (ja) 測量機器において画像処理を行う方法と装置
US9720087B2 (en) Method and device for determining an orientation of an object
US20160371855A1 (en) Image based measurement system
US20070091174A1 (en) Projection device for three-dimensional measurement, and three-dimensional measurement system
KR101455726B1 (ko) 측량 방법 및 측량 기계
EP2631740A2 (en) System for reproducing virtual objects
US9046361B2 (en) Target point recognition method and surveying instrument
US9449433B2 (en) System for reproducing virtual objects
US9671217B2 (en) Structure measuring unit for tracking, measuring and marking edges and corners of adjacent surfaces
US20130113897A1 (en) Process and arrangement for determining the position of a measuring point in geometrical space
CN111397586B (zh) 测量系统及利用其来验证预配置目标属性的方法
JP2015147517A (ja) 整備支援システムおよび整備支援方法
JPH1019562A (ja) 測量装置および測量方法
JP6722000B2 (ja) 測量支援装置
CN110081861A (zh) 一种基于图像识别的激光快速测绘系统及测绘方法
US20230027236A1 (en) Dimensional calibration of the field-of-view of a single camera
JP2023130558A (ja) 測量支援システム、情報表示端末、測量支援方法、及び測量支援プログラム
AU2011275724B2 (en) Target point recognition method and surveying instrument
CN117930195A (zh) 组合式测地勘测仪器的点云辅助校准
CN111581424A (zh) 基于图像识别的地图坐标定位方法
WO2013189259A1 (en) System for reproducing virtual objects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899451

Country of ref document: EP

Kind code of ref document: A1