WO2021117482A1 - 情報処理装置および方法、プログラム、並びに、情報処理システム - Google Patents

情報処理装置および方法、プログラム、並びに、情報処理システム Download PDF

Info

Publication number
WO2021117482A1
WO2021117482A1 PCT/JP2020/043735 JP2020043735W WO2021117482A1 WO 2021117482 A1 WO2021117482 A1 WO 2021117482A1 JP 2020043735 W JP2020043735 W JP 2020043735W WO 2021117482 A1 WO2021117482 A1 WO 2021117482A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving image
camera
viewpoint
unit
free
Prior art date
Application number
PCT/JP2020/043735
Other languages
English (en)
French (fr)
Inventor
尚子 菅野
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US17/770,525 priority Critical patent/US20220394231A1/en
Priority to DE112020006061.6T priority patent/DE112020006061T5/de
Priority to CN202080083748.6A priority patent/CN114762355B/zh
Priority to JP2021563836A priority patent/JP7552616B2/ja
Publication of WO2021117482A1 publication Critical patent/WO2021117482A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/21Server components or server architectures
    • H04N21/218Source of audio or video content, e.g. local disk arrays
    • H04N21/21805Source of audio or video content, e.g. local disk arrays enabling multiple viewpoints, e.g. using a plurality of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/194Transmission of image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/161Encoding, multiplexing or demultiplexing different image signal components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2404Monitoring of server processing errors or hardware failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0096Synchronisation or controlling aspects

Definitions

  • the present technology relates to information processing devices and methods, programs, and information processing systems, and is capable of providing a better user experience to users who view free-viewpoint moving images. Regarding methods, programs, and information processing systems.
  • Patent Document 1 there is a technique for generating a 3D model by using a method such as Visual Hull that cuts out a three-dimensional shape of a subject based on a plurality of captured images obtained by imaging from different directions.
  • a method such as Visual Hull that cuts out a three-dimensional shape of a subject based on a plurality of captured images obtained by imaging from different directions.
  • the user who appears as the subject in the free-viewpoint moving image and the user who is viewing the free-viewpoint moving image can communicate with each other. Things are also being done.
  • the free viewpoint moving image of the 3D model whose shape has collapsed is displayed or the free viewpoint moving image is displayed on the viewing side. It may not be there. As a result, the user experience of viewing the free-viewpoint moving image is deteriorated.
  • This technology was made in view of such a situation, and makes it possible to provide a better user experience to users who view free-viewpoint moving images.
  • the information processing device on one aspect of the present technology is a moving image with a viewpoint of an arbitrary position and orientation using a transmitter for transmitting a moving image and a plurality of camera moving images generated by a plurality of cameras capturing a subject. Based on the determination result regarding the success or failure of the generation of the free viewpoint moving image, the transmitting unit is made to transmit the free viewpoint moving image, or the camera is generated from the camera moving image generated by imaging the subject. It is an information processing device including a control unit that controls whether to transmit an actual camera viewpoint moving image, which is a moving image with the position and orientation of the camera as a viewpoint.
  • the information processing method of one aspect of the present technology is a free viewpoint, which is a moving image in which an information processing device uses a plurality of camera moving images generated by imaging a subject by a plurality of cameras and uses an arbitrary position and orientation as a viewpoint. Based on the determination result regarding the success or failure of the generation of the moving image, the transmitting unit is made to transmit the free-viewpoint moving image, or the position of the camera generated from the camera moving image generated by the camera capturing the subject and the position of the camera.
  • This is an information processing method for controlling whether to transmit a real camera viewpoint moving image which is a moving image with an orientation as a viewpoint, and transmitting the free viewpoint moving image or the real camera viewpoint moving image according to the control.
  • the program of one aspect of the present technology is to generate a free-viewpoint moving image, which is a moving image with an arbitrary position and orientation as a viewpoint, using a plurality of camera moving images generated by a plurality of cameras capturing a subject on a computer. Based on the determination result regarding the success or failure of the above, the transmission unit is made to transmit the free viewpoint moving image, or the position and orientation of the camera generated from the camera moving image generated by the camera taking an image of the subject are used as the viewpoint. It is a program for controlling whether to transmit a real camera viewpoint moving image which is a moving image to be performed, and to execute a process of transmitting the free viewpoint moving image or the real camera viewpoint moving image according to the control.
  • the information processing system of one aspect of the present technology is an information processing system including an image pickup device and an information processing device, and the image pickup device includes a plurality of image pickup units, each of which captures a subject and generates a camera moving image.
  • the imaging determination unit that determines the success or failure of the generation of the camera moving image by the plurality of imaging units, the plurality of camera moving images generated by the plurality of imaging units, and the determination result by the imaging determination unit are described.
  • the information processing device includes an information transmitting unit for transmitting to the information processing device, and the information processing device includes a plurality of camera moving images transmitted from the imaging device, an information receiving unit for receiving the determination result, and a moving image for transmitting the moving image.
  • the information transmitting unit Based on the image transmitting unit and the determination result received by the information receiving unit, the information transmitting unit has an arbitrary position and an arbitrary position generated by using the plurality of camera moving images received by the information receiving unit.
  • a moving image is transmitted, and an arbitrary position and orientation using a plurality of camera moving images generated by capturing a subject by a plurality of cameras are used as a viewpoint.
  • the transmission unit is made to transmit the free-viewpoint moving image, or the camera captures the subject and generates it from the camera moving image. It is controlled whether or not the actual camera viewpoint moving image, which is a moving image with the position and orientation of the camera as the viewpoint, is transmitted.
  • a camera moving image is generated by imaging a subject, success or failure of generation of the camera moving image by a plurality of imaging units is determined, and the camera moving image is generated by the plurality of imaging units.
  • the plurality of camera moving images and the determination result by the imaging determination unit are transmitted to the information processing apparatus, the plurality of camera moving images and the determination result transmitted from the imaging device are received, and the moving image is transmitted.
  • a real camera viewpoint moving image that is a moving image with the position and orientation of the imaging unit as a viewpoint, which is generated by transmitting the free viewpoint moving image or using the camera moving image received by the information receiving unit. Whether to send the image is controlled.
  • FIG. 1 It is a figure which shows the structural example of the information processing system which concerns on one Embodiment of this technique. It is a figure which shows the process flow of the information processing system which transmits a free viewpoint moving image. It is a figure which shows the example of the arrangement of a camera. It is a figure which shows the example of the delay which occurs in an information processing system. It is a figure which shows the processing flow of an information processing system. It is a figure which shows the example of switching of a moving image. It is a figure which shows the example of the switching condition of the free viewpoint moving image and the real camera viewpoint moving image. It is a figure which shows the example of the flow of information in an information processing system. It is a block diagram which shows the functional configuration example of a capture system.
  • FIG. 1 is a diagram showing a configuration example of an information processing system 1 according to an embodiment of the present technology.
  • the information processing system 1 is composed of a capture system 11, a server 12, and a viewing device 14.
  • the capture system 11 and the server 12 are connected via wired or wireless communication.
  • the server 12 and the viewing device 14 are connected via a network 13 such as the Internet, a wireless LAN (Local Area Network), and a cellular network.
  • the capture system 11 may be connected to the server 12 or the viewing device 14 via the network 13.
  • the capture system 11 is composed of an image pickup device 21 and a transmission device 22.
  • the image pickup device 21 is composed of a plurality of cameras that capture a subject and generate a moving image of the camera.
  • a camera for computer vision a camera different from the camera for computer vision, a smartphone, a network camera, a depth sensor, and the like can be used as a camera constituting the image pickup device 21.
  • the plurality of cameras constituting the image pickup apparatus 21 are arranged so as to surround the subject, and capture the subject from multiple viewpoints.
  • the number of cameras constituting the image pickup apparatus 21 is arbitrary as long as it is plural.
  • the transmission device 22 is composed of, for example, a PC (Personal Computer) or a dedicated device.
  • a PC Personal Computer
  • the transmission device 22 transmits a plurality of camera moving images generated by the image pickup device 21 to the server 12.
  • a multi-view camera moving image obtained by photographing a subject from a plurality of viewpoint positions is transmitted from the transmission device 22 to the server 12.
  • the number of PCs (or dedicated devices) constituting the transmission device 22 is arbitrary. It may be the same number as the number of cameras, or it may be different.
  • the server 12 is, for example, a server device installed on a network.
  • the server 12 may be realized by one server device, or the server 12 may be realized by a plurality of server devices constituting a so-called cloud.
  • the server 12 generates a free viewpoint moving image using a plurality of camera moving images transmitted from the capture system 11.
  • a free-viewpoint moving image is a moving image that can have an arbitrary position and orientation as a viewpoint.
  • the server 12 generates an actual camera viewpoint moving image by using one of the plurality of camera moving images transmitted from the capture system 11.
  • the actual camera viewpoint moving image is a moving image generated by using a camera moving image captured by a specific camera among a plurality of cameras constituting the imaging device 21. That is, the actual camera viewpoint moving image is a moving image with the position and orientation of a specific camera as the viewpoint.
  • the viewpoint of the free viewpoint moving image can be the position and orientation of either camera, or can be a virtual viewpoint that is neither the position or orientation of any camera.
  • the server 12 transmits the free viewpoint moving image or the actual camera viewpoint moving image to the viewing device 14 via the network 13.
  • the viewing device 14 is composed of devices having a display function, such as a PC, a smartphone, a tablet terminal, and a head-mounted display.
  • the viewing device 14 receives the moving image transmitted from the server 12 and displays it in real time.
  • the viewing device 14 displays the moving image of the 3D model of the subject.
  • the user can view the 3D model of the subject in real time from an arbitrary viewpoint.
  • the capture system 11, the server 12, the network 13, and the viewing device 14 are shown one by one, but each of these systems and devices constituting the information processing system 1 is singular. It may be more than one.
  • FIG. 2 is a diagram showing a processing flow of the information processing system 1 that transmits a free-viewpoint moving image.
  • the camera systems 31-1 to 31-n are processed by the image pickup device 21 and the transmission device 22, respectively, to take an image and transmit the camera moving image. Is configured. In the following, when it is not necessary to distinguish each of the camera systems 31-1 to 31-n, they are collectively referred to as the camera system 31. Other configurations provided in plurality will be described together in the same manner.
  • the camera systems 31-1 to 31-n are realized by at least one camera of the imaging device 21 and at least one PC of the transmitting device 22, respectively.
  • the number of these (cameras and PCs) constituting one camera system 31 is arbitrary, and may be singular or plural. Also, the number of cameras and PCs may be the same or different from each other.
  • one camera system 31 will be described as being composed of one camera and one PC.
  • the cameras that perform imaging in each camera system 31 are arranged so as to surround the subject.
  • FIG. 3 is a diagram showing an example of camera arrangement.
  • the camera is arranged at various positions such as a position where the subject is imaged so as to look up from below, a position where the image is imaged from the horizontal direction, and a position where the image is imaged so as to look down from above.
  • One white circle shown in FIG. 3 indicates one camera.
  • a total of 24 cameras, 8 in the upper row, 8 in the middle row, and 8 in the lower row, are arranged as the image pickup apparatus 21. Cameras are placed on the circumference of each stage. By performing imaging by 24 cameras having such an arrangement, camera moving images of 24 viewpoints are generated.
  • each of the camera systems 31-1 to 31-n post-process processing such as brightness adjustment is performed on the camera moving image generated by imaging.
  • the camera moving image that has undergone post-process processing is encoded according to a predetermined standard, and encoded data is generated.
  • the coded data of each camera system 31 generated by the encoding is transmitted to the server 12.
  • the coded data transmitted from each of the camera systems 31-1 to 31-n is decoded, and the camera moving image is restored.
  • the server 12 models the 3D model (tertiary) using the restored plurality of camera moving images. Original reconstruction).
  • the server 12 generates a silhouette image from which the subject area is extracted by extracting the difference between the camera moving image and the background moving image. Further, the server 12 generates a 3D model of the subject by a method such as Visual Hull using a plurality of silhouette images in different directions and camera parameters.
  • the 3D model data includes a plurality of camera moving images as color information.
  • the 3D model data includes geometry information that defines the shape of the 3D model.
  • the geometry information it is possible to use a depth moving image corresponding to a plurality of camera moving images, a point cloud representing the three-dimensional position of the subject as a set of points, and a polygon mesh represented by the connection between vertices.
  • a moving image of the 3D model viewed from the viewpoint position designated by the capture system 11 is generated as a free viewpoint moving image.
  • View Dependent rendering is performed using a plurality of camera moving images to add a texture to the 3D model according to the viewpoint position (virtual viewpoint position) specified in the capture system 11.
  • the CG background acquired from the capture system 11 is combined.
  • the free viewpoint moving image generated by the server 12 in this way is transmitted to the viewing device 14 and displayed.
  • the viewing device 14 is configured by a head-mounted display, a moving image for the right eye and a moving image for the left eye are transmitted to the viewing device 14.
  • the free viewpoint moving image may not be generated.
  • FIG. 4 is a diagram showing an example of a failure that causes a delay that occurs in the information processing system 1.
  • a delay may occur in the transmission of the coded data from any of the camera systems 31 to the server 12 due to insufficient bandwidth or the like.
  • the shape of the 3D model may collapse.
  • the modeling process may be delayed due to the increase in the load of the server 12. Since the modeling process takes longer as the number of camera moving images used for modeling increases, a delay may occur in the modeling process when the number of camera systems 31 is large.
  • the viewing device 14 may be in a state where nothing is displayed on the display or a state in which only the CG background is displayed. .. In this case, the quality of the user experience due to communication may deteriorate.
  • FIG. 5 is a diagram showing a processing flow of the information processing system 1.
  • a camera system 41 which is one camera system having the same configuration as the camera system 31, is provided.
  • the camera moving image is captured in the same manner as in the camera systems 31-1 to 31-n.
  • the camera moving image captured by the camera system 41 is used in the server 12 to generate the actual camera viewpoint moving image.
  • the generation of the actual camera viewpoint moving image is performed in parallel with the generation of the free viewpoint moving image using, for example, the camera moving images of the camera systems 31-1 to 31-n.
  • coded data is generated by performing post-process processing and encoding on the camera moving image captured by the camera of the camera system 41.
  • the coded data is transmitted to the server 12.
  • the coded data transmitted from the camera system 41 is decoded, and the camera moving image is restored. Further, by performing foreground background subtraction processing on the restored camera moving image, the moving image of the subject area is extracted. After that, the moving image of the subject area and the CG background acquired from the capture system 11 are combined to generate an actual camera viewpoint moving image.
  • the actual camera viewpoint moving image is a moving image including a one-view camera moving image captured by the camera of the camera system 41.
  • the success or failure of the generation of the camera moving image in the capture system 11 the determination of whether or not the reception of the code data is delayed in the server 12, and the coding in the server 12 are performed.
  • the determination of success or failure of data decoding and the determination of whether or not there is a delay in the generation of the free viewpoint moving image on the server 12 are included.
  • either the free viewpoint moving image or the actual camera viewpoint moving image is selected as the moving image to be transmitted to the viewing device 14 based on the determination result regarding the success or failure of the generation of the free viewpoint moving image. ..
  • the actual camera viewpoint moving image may be displayed instead of the free viewpoint moving image.
  • FIG. 6 is a diagram showing an example of switching moving images.
  • the viewing device 14 displays a free-viewpoint moving image.
  • the moving image transmitted to the viewing device 14 is switched to the actual camera viewpoint moving image in the server 12, as shown by the white arrow A1. Be done.
  • Generation of virtual camera work is a process to prevent the user from feeling uncomfortable due to switching the viewpoint position. If the viewpoint is suddenly switched from the predetermined virtual viewpoint position of the free viewpoint moving image to the viewpoint position of the real camera viewpoint moving image, it is unnatural and the user of the viewing device 14 may feel uncomfortable.
  • the server 12 is a virtual camera work that is the shortest route from the virtual viewpoint position before switching to the real camera viewpoint video to the camera position of the camera system 41 (the viewpoint position of the real camera viewpoint video). To generate. As a free viewpoint moving image before switching to the real camera viewpoint moving image, a moving image in which the viewpoint moves so as to approach the viewpoint position of the real camera viewpoint moving image is generated along the virtual camera work and displayed on the viewing device 14. To.
  • Image processing is the process of adding effects such as fade-out and fade-in to each of the free-viewpoint moving image and the actual camera viewpoint moving image.
  • the actual camera viewpoint moving image is displayed on the viewing device 14, as shown at the tip of the white arrow A2.
  • the moving image to be transmitted to the viewing device 14 is displayed on the server 12 as shown by the white arrow A3. You can switch to a free-viewpoint moving image.
  • the free viewpoint moving image is displayed on the viewing device 14 as shown at the tip of the white arrow A4.
  • the moving image can be switched naturally by matching the viewpoint position of the free viewpoint moving image with the viewpoint position of the real camera viewpoint moving image. Therefore, when switching from the real camera viewpoint moving image to the free viewpoint moving image, image processing such as adding an effect to the moving image is not performed.
  • FIG. 7 is a diagram showing an example of switching conditions between the free viewpoint moving image and the actual camera viewpoint moving image.
  • an abnormality such as a synchronization shift or a frame defect may occur in the camera.
  • the number of cameras in which an abnormality has occurred is determined.
  • the server 12 is three-dimensionally reconstructed using the camera moving image generated by a normal camera. To generate a free-viewpoint moving image. In this case, the free viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • the actual camera viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • the server 12 may not be able to receive all the coded data within the specified time.
  • the number of coded data in which the delay has occurred is determined.
  • it is determined whether or not the distribution of the positions of the normal cameras that generated the camera moving images in which the coded data is normally received can guarantee the quality of the 3D model.
  • the server 12 uses the camera moving image generated by a normal camera to perform three dimensions. Reconstruct and generate a free-viewpoint moving image. In this case, the free viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • the actual camera viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • the coded data transmitted from the capture system 11 may not be decoded by the server 12.
  • the coded data transmitted from the capture system 11 may be corrupted.
  • the number of camera moving images that could not be restored is determined.
  • the server 12 performs three-dimensional reconstruction using the restored camera moving images. , Generate a free-viewpoint moving image. In this case, the free viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • the actual camera viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • the time required for the modeling process may exceed the time allowed for displaying the moving image in real time.
  • the actual camera viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • the free viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • the interaction for changing the viewpoint of the free viewpoint moving image may not reach from the viewing device 14.
  • the information processing system 1 it is determined whether or not the autopilot is specified. It is possible to set the autopilot to automatically set the viewpoint position of the free viewpoint moving image.
  • the free viewpoint moving image viewed from the viewpoint position selected by the autopilot is transmitted to the viewing device 14 and displayed.
  • the actual camera viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • problems may frequently occur in the information processing system 1. For example, when a defect occurs more than the threshold number of times in a certain period of time, the actual camera viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • the free viewpoint moving image is transmitted to the viewing device 14 and displayed.
  • the moving image is displayed without interruption, it is possible to provide a better user experience to the user who views the free-viewpoint moving image using the viewing device 14.
  • FIG. 8 is a diagram showing an example of information flow in the information processing system 1.
  • terminal information is supplied from the viewing device 14 to the capture system 11.
  • the terminal information is information including information representing the devices constituting the viewing device 14, band information of the viewing device 14, and the like.
  • the band information is information representing the communication (for example, Wi-Fi, 4G, 5G, etc.) used by the viewing device 14.
  • the terminal information may include information representing a request by a user who views a moving image using the viewing device 14.
  • the capture system 11 determines the number of cameras that perform imaging based on the terminal information supplied from the viewing device 14.
  • the camera moving images generated by the number of cameras determined here are used to generate the free viewpoint moving images.
  • Information indicating the virtual viewpoint position is supplied to the server 12 from the capture system 11. That is, in this example, the virtual viewpoint position is specified by the capture system 11.
  • the server 12 generates a free-viewpoint moving image as if the subject is being viewed from the virtual viewpoint position supplied from the capture system 11.
  • FIG. 9 is a block diagram showing a functional configuration example of the capture system 11.
  • the imaging device 21 constituting the capture system 11 is composed of a terminal information receiving unit 61, a camera system number selection unit 62, an instance generation unit 63, and an imaging unit 64.
  • the terminal information receiving unit 61 controls a communication module or the like corresponding to wireless communication or wired communication, and receives the terminal information transmitted from the viewing device 14.
  • the terminal information received by the terminal information receiving unit 61 is supplied to the camera system number selection unit 62.
  • the camera system number selection unit 62 selects the number of cameras (camera system 31) for imaging based on the terminal information supplied from the terminal information receiving unit 61. For example, when the viewing device 14 is a smartphone, 15 cameras are selected as the number of cameras for imaging. When the viewing device 14 is a high-spec PC, 24 cameras are selected as the number of cameras for imaging.
  • FIG. 10 is a diagram showing an example of the number of cameras.
  • the upper part of FIG. 10 shows the arrangement of cameras when the number of cameras for imaging is 1, 3, 9, 15, and 24, respectively.
  • the colored circles shown in the upper part of FIG. 10 represent cameras that perform imaging.
  • the white circle shown in the upper part of FIG. 10 represents a camera that does not perform imaging.
  • the more cameras that perform imaging the higher the degree of freedom of the viewpoint of the free viewpoint moving image displayed on the viewing device 14. Further, the more cameras that perform imaging, the larger the amount of bandwidth used for transmitting encoded data from the capture system 11 to the server 12.
  • the more cameras that take images the higher the image quality of free-viewpoint moving images.
  • the more cameras that perform imaging the higher the network usage fee borne by the user.
  • the free-viewpoint moving image is composed of a point cloud.
  • ToF Time of Flight
  • the viewing device 14 displays a camera moving image captured by one camera or a moving image in which the subject and the CG background captured in the camera moving image are combined.
  • the motion parallax can be expressed by the free-viewpoint moving image by using the distances from the positions of the three cameras to the subject.
  • a free-viewpoint moving image is generated based on a 3D model with medium shape reproducibility.
  • the image quality of the free-viewpoint moving image is also medium.
  • the cameras that perform imaging are 15 cameras that are mainly arranged in front of the subject
  • a free-viewpoint moving image is generated based on a 3D model that has a high degree of reproduction of the shape in front of the subject.
  • the reproducibility of the shape of the 3D model behind the subject is low, it is necessary to restrict the viewpoint position so that the back side of the subject is not shown.
  • a high-quality free-viewpoint moving image is generated based on a 3D model with high reproducibility of the entire shape of the subject.
  • the resolution of the camera moving image is 4K, a higher quality free viewpoint moving image is generated.
  • the instance generation unit 63 sets camera parameters (internal parameters and external parameters) based on the information supplied from the camera system number selection unit 62, and supplies information indicating the setting contents to the imaging unit 64.
  • the imaging unit 64 selects a camera to perform imaging according to the information supplied from the instance generation unit 63, and performs imaging.
  • the plurality of camera moving images captured by the imaging unit 64 are supplied to the transmission device 22.
  • the transmission device 22 is composed of an image pickup delay determination unit 71, a control signal reception unit 72, a transmission control unit 73, and a transmission unit 74.
  • the imaging delay determination unit 71 determines the success or failure of generation of each camera moving image based on a plurality of camera moving images supplied from the imaging unit 64. Specifically, the imaging delay determination unit 71 determines whether or not an abnormality has occurred in each camera at the time of imaging. The imaging delay determination unit 71 supplies the success / failure determination result of the generation of the camera moving image to the transmitting unit 74 together with the plurality of camera moving images.
  • the control signal receiving unit 72 receives the control signal transmitted from the server 12 and supplies it to the transmission control unit 73.
  • the control signal is a signal that specifies a camera moving image transmitted from the transmission unit 74.
  • the transmission control unit 73 controls the transmission unit 74 to transmit the camera moving image designated by the control signal from the transmission unit 74.
  • the control signal specifies whether to transmit the multi-view camera video or the one-view camera video.
  • the multi-view camera moving image is a camera moving image generated by a plurality of cameras used for generating a free-viewing moving image.
  • the one-viewpoint camera moving image is a specific camera moving image generated by one camera constituting the camera system 41, which is used to generate the actual camera viewpoint moving image.
  • the transmission unit 74 transmits the determination result supplied from the imaging delay determination unit 71 to the server 12.
  • the transmission unit 74 also functions as a coding unit that encodes the camera moving image.
  • the transmission unit 74 encodes the camera moving image supplied from the image pickup delay determination unit 71 and generates encoded data.
  • the transmission unit 74 transmits the coded data together with the CG background, the information representing the virtual viewpoint position, and the information representing the actual camera viewpoint position according to the control by the transmission control unit 73.
  • the actual camera viewpoint position is the viewpoint position of the actual camera viewpoint moving image.
  • the transmission unit 74 transmits the coded data of the multi-view camera moving image together with various information.
  • the transmission unit 74 is a specific camera moving image generated by the camera arranged at the actual camera viewpoint position among the multi-view camera moving images.
  • the image is selected as a one-view camera moving image.
  • the coded data of the selected one-view camera moving image is transmitted together with various information.
  • each camera moving image is associated with the camera parameters of the camera that generated the camera moving image.
  • the camera parameters associated with the camera moving image are also transmitted to the server 12 as encoded data.
  • the camera that captures the camera moving image used to generate the actual camera viewpoint moving image may be provided separately from the camera that captures the camera moving image used to generate the free viewpoint moving image. That is, the camera system 41 may be configured by any of the camera systems 31-1 to 31-n, or may be provided separately from the camera systems 31-1 to 31-n. It may be composed of.
  • the camera for the real camera viewpoint moving image may be a handheld camera such as a video camera or a smartphone.
  • FIG. 11 is a block diagram showing an example of functional configuration of server 12.
  • the server 12 includes a reception unit 91, a reception delay determination unit 92, a free viewpoint video generation unit 93, an actual camera viewpoint video generation unit 94, a generation delay determination unit 95, and a distribution video generation unit 96. , A control signal transmission unit 97, and a distribution video transmission unit 98.
  • the receiving unit 91 controls a communication module or the like corresponding to wireless communication or wired communication, and receives the determination result by the imaging delay determination unit 71 (FIG. 9) transmitted from the capture system 11.
  • the determination result received by the receiving unit 91 is supplied to the distribution moving image generation unit 96.
  • the receiving unit 91 receives the encoded data transmitted from the capture system 11 and decodes it.
  • the camera moving image restored by decoding the coded data is supplied to the reception delay determination unit 92.
  • the receiving unit 91 also functions as a decoding unit that decodes the encoded data and restores the camera moving image.
  • the receiving unit 91 receives the CG background, the information representing the virtual viewpoint position, and the information representing the actual camera viewpoint position transmitted from the capture system 11.
  • the CG background is supplied to the background compositing unit 113 of the free viewpoint moving image generation unit 93 and the background compositing unit 122 of the real camera viewpoint moving image generation unit 94.
  • the information representing the virtual viewpoint position is supplied to the virtual viewpoint moving image generation unit 112 of the free viewpoint moving image generation unit 93.
  • the information representing the actual camera viewpoint position is supplied to the actual camera viewpoint moving image generation unit 121 of the actual camera viewpoint moving image generation unit 94.
  • the reception delay determination unit 92 determines whether or not there is a delay in receiving a plurality of coded data. Further, the reception delay determination unit 92 determines whether or not the camera moving image supplied from the reception unit 91 is broken. That is, it can be said that the reception delay determination unit 92 also functions as a decoding determination unit that determines the success or failure of decoding the encoded data. The reception delay determination unit 92 supplies these determination results to the distribution moving image generation unit 96.
  • the reception delay determination unit 92 When the multi-view camera video is supplied from the reception unit 91, the reception delay determination unit 92 generates the multi-view camera video with the three-dimensional reconstruction unit 111 of the free-view camera video generation unit 93 and the actual camera viewpoint video generation. It is supplied to the actual camera viewpoint moving image generation unit 121 of the unit 94.
  • the reception delay determination unit 92 supplies the one-view camera moving image only to the actual camera viewpoint moving image generation unit 121.
  • the free viewpoint moving image generation unit 93 is composed of a three-dimensional reconstruction unit 111, a virtual viewpoint moving image generation unit 112, and a background composition unit 113.
  • the three-dimensional reconstruction unit 111 generates a 3D model of the subject based on the multi-view camera moving image supplied from the reception delay determination unit 92, and supplies it to the virtual viewpoint moving image generation unit 112.
  • the virtual viewpoint moving image generation unit 112 generates a free viewpoint moving image of the virtual viewpoint specified by the information supplied from the receiving unit 91 under the control of the distribution moving image generating unit 96. Specifically, the virtual viewpoint moving image generation unit 112 generates a moving image of the 3D model viewed from the designated virtual viewpoint as a free viewpoint moving image by the rendering process.
  • the virtual viewpoint moving image generation unit 112 When the virtual camera work is supplied from the distribution moving image generation unit 96, the virtual viewpoint moving image generation unit 112 generates a free viewpoint moving image in which the viewpoint moves so as to approach the actual camera viewpoint position based on the virtual camera work. To do.
  • the free viewpoint moving image generated by the virtual viewpoint moving image generation unit 112 is supplied to the background synthesis unit 113.
  • the background synthesizing unit 113 synthesizes the CG background supplied from the receiving unit 91 with the free viewpoint moving image supplied from the virtual viewpoint moving image generating unit 112.
  • the free-viewpoint moving image in which the CG background is combined is supplied to the generation delay determination unit 95.
  • the real camera viewpoint moving image generation unit 94 is composed of the real camera viewpoint moving image generation unit 121 and the background composition unit 122.
  • the real camera viewpoint moving image generation unit 121 generates the real camera viewpoint moving image according to the control by the distribution moving image generation unit 96. Specifically, the real camera viewpoint moving image generation unit 121 extracts the moving image of the subject area from the one-view camera moving image as the real camera viewpoint moving image by the foreground background subtraction processing.
  • the real camera viewpoint moving image generation unit 121 determines a specific camera moving image of the multi-view camera moving images based on the information representing the actual camera viewpoint position. Select the image as a one-view camera moving image. The one-view camera moving image selected by the real camera viewpoint moving image generation unit 121 is used to generate the real camera viewpoint moving image.
  • the real camera viewpoint moving image generation unit 121 when the one-viewpoint camera moving image is supplied from the reception delay determination unit 92, the real camera viewpoint moving image generation unit 121 generates the real camera viewpoint moving image using the camera moving image.
  • the real camera viewpoint moving image generated by the real camera viewpoint moving image generation unit 121 is supplied to the background composition unit 122.
  • the background synthesizing unit 122 synthesizes the CG background supplied from the receiving unit 91 with the actual camera viewpoint moving image supplied from the real camera viewpoint moving image generation unit 121.
  • the actual camera viewpoint moving image in which the CG background is combined is supplied to the generation delay determination unit 95.
  • the generation delay determination unit 95 determines whether or not there is a delay in the generation of the free viewpoint moving image, and supplies the determination result to the distribution moving image generation unit 96. For example, when the frame rate of the moving image displayed on the viewing device 14 is 60 fps, the free viewpoint moving image needs to be generated within 16 msec. Therefore, when the free viewpoint moving image is generated within 16 msec, it is determined that there is no delay in the generation of the free viewpoint moving image.
  • the generation delay determination unit 95 supplies the free viewpoint moving image supplied from the background composition unit 113 and the actual camera viewpoint moving image supplied from the background composition unit 122 to the distribution moving image generation unit 96.
  • the distribution moving image generation unit 96 sets each configuration provided in the information processing system 1 based on the judgment result regarding the success or failure of the generation of the free viewpoint moving image supplied from various judgment units provided in the information processing system 1. It functions as a control unit to control.
  • the distribution moving image generation unit 96 causes the capture system 11 to transmit the multi-view camera moving image based on the determination result by the imaging delay determination unit 71 supplied from the receiving unit 91, or 1 Select whether to send the viewpoint camera moving image.
  • the distribution video generation unit 96 generates a control signal that specifies the camera video to be transmitted in the capture system 11.
  • the control signal generated by the distribution moving image generation unit 96 is supplied to the control signal transmission unit 97.
  • the control signal supplied from the distribution moving image generation unit 96 is transmitted to the capture system 11.
  • the distribution moving image generation unit 96 determines whether or not the number and position of normal cameras can guarantee the quality of the shape of the 3D model based on the determination result by the reception delay determination unit 92.
  • the distribution moving image generation unit 96 selects whether or not to cause the virtual viewpoint moving image generation unit 112 to generate a free viewpoint moving image based on the determination result by itself.
  • the distribution video generation unit 96 controls the virtual viewpoint video generation unit 112 and the real camera viewpoint video generation unit 121 according to the selection result.
  • the distribution moving image generation unit 96 selects whether to transmit the free viewpoint moving image or the actual camera viewpoint moving image based on the determination result by the generation delay determination unit 95.
  • the distribution moving image generation unit 96 When the moving image transmitted to the viewing device 14 is switched from the free viewpoint moving image to the real camera viewpoint moving image, the distribution moving image generation unit 96 generates virtual camera work, and the virtual viewpoint moving image generation unit 112. Supply to.
  • the distribution video transmission unit 98 transmits the free viewpoint video or the actual camera viewpoint video supplied from the distribution video generation unit 96 to the viewing device 14.
  • FIG. 12 is a block diagram showing a functional configuration example of the viewing device 14.
  • the viewing device 14 is composed of a terminal information transmitting unit 141, a moving image receiving unit 142, and a display unit 143.
  • the terminal information transmission unit 141 controls a communication module or the like corresponding to wireless communication or wired communication, and transmits terminal information to the capture system 11.
  • the moving image receiving unit 142 receives the free viewpoint moving image or the actual camera viewpoint moving image transmitted from the server 12 and supplies the moving image receiving unit 142 to the display unit 143.
  • the display unit 143 displays the moving image supplied from the moving image receiving unit 142 on the display.
  • FIG. 13 is a sequence diagram showing a flow of processing performed by the capture system 11, the server 12, and the viewing device 14.
  • step S41 the terminal information transmission unit 141 of the viewing device 14 transmits the terminal information of the viewing device 14 to the capture system 11.
  • step S1 the terminal information receiving unit 61 of the capture system 11 receives the terminal information transmitted from the viewing device 14.
  • step S2 the camera system number selection unit 62 of the capture system 11 selects the number of cameras to be imaged based on the terminal information.
  • step S3 the instance generation unit 63 of the capture system 11 sets the camera parameters and generates an instance.
  • step S4 the imaging unit 64 of the capture system 11 captures a subject using the number of cameras selected in step S2, and acquires a camera moving image.
  • step S5 the imaging delay determination unit 71 of the capture system 11 determines the success or failure of the camera moving image generation by the imaging unit 64.
  • step S6 the transmission unit 74 of the capture system 11 transmits the determination result to the server 12.
  • step S21 the receiving unit 91 of the server 12 receives the determination result by the imaging delay determination unit 71 transmitted from the capture system 11.
  • step S22 the distribution moving image generation unit 96 of the server 12 performs the moving image switching process # 1.
  • the moving image switching process # 1 generates a control signal based on the determination result by the imaging delay determination unit 71 of the capture system 11.
  • the moving image switching process # 1 will be described later with reference to the flowchart of FIG.
  • step S23 the control signal transmission unit 97 of the server 12 transmits the control signal to the capture system 11.
  • step 7 the control signal receiving unit 72 of the capture system 11 receives the control signal transmitted from the server 12.
  • step S8 the transmission unit 74 of the capture system 11 generates encoded data by encoding the camera moving image generated in step S4.
  • the transmission unit 74 transmits the coded data to the server 12 together with the CG background, the information representing the virtual viewpoint position, and the information representing the actual camera viewpoint position according to the control signal.
  • step S24 the receiving unit 91 of the server 12 receives the coded data, the CG background, the information representing the virtual viewpoint position, and the information representing the actual camera viewpoint position transmitted from the capture system 11.
  • the receiving unit 91 decodes the encoded data and restores the camera moving image.
  • step S25 the reception delay determination unit 92 of the server 12 determines whether or not there is a delay in receiving the encoded data and whether or not the restoration of the camera moving image is successful.
  • step S26 the distribution moving image generation unit 96 of the server 12 performs the moving image switching process # 2.
  • the moving image switching process # 2 controls the generation of the free viewpoint moving image based on the determination result by the reception delay determination unit 92.
  • the moving image switching process # 2 will be described later with reference to the flowchart of FIG.
  • step S27 the free viewpoint moving image generation unit 93 of the server 12 generates a free viewpoint moving image under the control of the distribution moving image generation unit 96. Further, the real camera viewpoint moving image generation unit 94 of the server 12 generates the real camera viewpoint moving image under the control of the distribution moving image generation unit 96.
  • step S28 the generation delay determination unit 95 of the server 12 determines whether or not there is a delay in the generation of the free viewpoint moving image performed in step S27.
  • step S29 the distribution moving image generation unit 96 of the server 12 performs the moving image switching process # 3.
  • the moving image switching process # 3 controls whether to transmit the free viewpoint moving image or the actual camera viewpoint moving image based on the determination result by the generation delay determination unit 95.
  • the moving image switching process # 3 will be described later with reference to the flowchart of FIG.
  • step S30 the distribution video transmission unit 98 of the server 12 transmits the free viewpoint video or the actual camera viewpoint video to the viewing device 14 under the control of the distribution video generation unit 96.
  • step S42 the moving image receiving unit 142 of the viewing device 14 receives the moving image transmitted from the server 12.
  • step S43 the display unit 143 of the viewing device 14 displays the moving image transmitted from the server 12 on the display.
  • step S61 when the determination is made according to the determination result by the imaging delay determination unit 71 in step S5 of FIG. 13 and the imaging delay determination unit 71 determines that no abnormality has occurred in the imaging unit 64, the process is performed. The process proceeds to step S62.
  • step S62 the distribution video generation unit 96 of the server 12 generates a control signal for transmitting the multi-view camera video. After that, the process returns to step S22 of FIG. 13 and the subsequent processing is performed.
  • step S61 if the image pickup delay determination unit 71 determines that an abnormality has occurred in the image pickup unit 64, the process proceeds to step S63.
  • step S63 the distribution video generation unit 96 of the server 12 determines whether or not the number and distribution of normal cameras can guarantee the quality of the shape of the 3D model.
  • the distribution moving image generation unit 96 confirms the distribution of the normal camera by using the camera parameters of the normal camera.
  • the capture system 11 may specify a camera that is indispensable for generating a 3D model.
  • a camera that is indispensable for generating a 3D model if an abnormality occurs in the designated essential cameras, it is determined that the number and distribution of normal cameras cannot guarantee the quality of the shape of the 3D model.
  • an indispensable camera for generating a 3D model for example, a zoom camera provided in front of the subject is designated.
  • step S63 If it is determined in step S63 that the number and distribution of normal cameras can guarantee the quality of the shape of the 3D model, the process proceeds to step S62.
  • step S63 determines whether the number and distribution of normal cameras cannot guarantee the quality of the shape of the 3D model. If it is determined in step S63 that the number and distribution of normal cameras cannot guarantee the quality of the shape of the 3D model, the process proceeds to step S64.
  • step S64 the distribution video generation unit 96 of the server 12 generates a control signal for transmitting the one-view camera video. After that, the process returns to step S22 of FIG. 13 and the subsequent processing is performed.
  • step S71 when the determination is made according to the determination result by the reception delay determination unit 92 in step S25 of FIG. 13 and the reception delay determination unit 92 determines that the reception of the encoded data is not delayed. The process proceeds to step S72.
  • step S72 the distribution video generation unit 96 of the server 12 determines whether or not the number and distribution of normal cameras can guarantee the quality of the shape of the 3D model.
  • the distribution moving image generation unit 96 confirms the distribution of the normal camera by using the camera parameters of the normal camera.
  • step S72 If it is determined in step S72 that the number and distribution of normal cameras cannot guarantee the quality of the shape of the 3D model, the process proceeds to step S73.
  • step S73 the distribution moving image generation unit 96 of the server 12 controls the virtual viewpoint moving image generation unit 112 so as not to generate the free viewpoint moving image. Further, the distribution moving image generation unit 96 controls the real camera viewpoint moving image generation unit 121 so as to generate the real camera viewpoint moving image. After that, the process returns to step S26 of FIG. 13 and the subsequent processing is performed.
  • step S72 determines whether the number and distribution of normal cameras can guarantee the quality of the shape of the 3D model. If it is determined in step S72 that the number and distribution of normal cameras can guarantee the quality of the shape of the 3D model, the process proceeds to step S74. Similarly, in step S71, when the reception delay determination unit 92 determines that there is no delay in receiving the coded data, the process proceeds to step S72.
  • step S74 when a determination is made according to the determination result by the reception delay determination unit 92 in step S25 of FIG. 13 and the reception delay determination unit 92 determines that the restored camera moving image has collapsed, the process is performed. The process proceeds to step S75.
  • step S75 the distribution video generation unit 96 of the server 12 determines whether or not the number and distribution of normal cameras can guarantee the quality of the shape of the 3D model.
  • the distribution moving image generation unit 96 confirms the distribution of the normal camera by using the camera parameters of the normal camera.
  • step S75 If it is determined in step S75 that the number and distribution of normal cameras cannot guarantee the quality of the shape of the 3D model, the process proceeds to step S73.
  • step S75 determines whether the number and distribution of normal cameras can guarantee the quality of the shape of the 3D model. If it is determined in step S75 that the number and distribution of normal cameras can guarantee the quality of the shape of the 3D model, the process proceeds to step S76. Further, in step S74, when the reception delay determination unit 92 determines that the restored camera moving image is not broken, the process proceeds to step S76 in the same manner.
  • step S76 the distribution moving image generation unit 96 of the server 12 controls the virtual viewpoint moving image generation unit 112 so as to generate the free viewpoint moving image. Further, the distribution moving image generation unit 96 controls the real camera viewpoint moving image generation unit 121 so as to generate the real camera viewpoint moving image. After that, the process returns to step S22 of FIG. 13 and the subsequent processing is performed.
  • step S81 a determination is made according to the determination result by the generation delay determination unit 95 in step S28 of FIG. 13, and the generation delay determination unit 95 determines that the process of generating the free viewpoint moving image is completed within the designated time. If so, the process proceeds to step S82.
  • step S82 the distribution video generation unit 96 of the server 12 controls the distribution video transmission unit 98 to transmit the free viewpoint video. After that, the process returns to step S29 in FIG. 13 and the subsequent processing is performed.
  • step S81 if the generation delay determination unit 95 determines that the process of generating the free viewpoint moving image has not been completed within the designated time, the process proceeds to step S83.
  • step S83 the distribution video generation unit 96 of the server 12 controls the distribution video transmission unit 98 to transmit the actual camera viewpoint video. After that, the process returns to step S29 in FIG. 13 and the subsequent processing is performed.
  • the server 12 can display the moving image on the viewing device 14 without interruption even when the free-viewpoint moving image is not generated due to an abnormality in the camera or the like.
  • the amount of the band used for transmitting the camera moving image can be suppressed.
  • the generation of the free viewpoint moving image is controlled based on the determination result by the reception delay determination unit 92, the load of the processing performed on the server 12 can be suppressed.
  • FIG. 17 is a diagram showing another example of the flow of information in the information processing system 1.
  • the terminal information may be supplied from the viewing device 14 to the capture system 11, and the information representing the virtual viewpoint position designated by the viewing device 14 may be supplied to the server 12.
  • FIG. 18 is a block diagram showing a second functional configuration example of the capture system 11.
  • FIG. 18 the same components as those of the capture system 11 in FIG. 9 are designated by the same reference numerals. Duplicate explanations will be omitted as appropriate.
  • the configuration of the capture system 11 shown in FIG. 18 is different from the configuration described with reference to FIG. 9 in that the transmission unit 74 does not acquire the CG background.
  • the transmission unit 74 transmits the coded data to the server 12 together with the information representing the CG background and the actual camera viewpoint position according to the control by the transmission control unit 73.
  • FIG. 19 is a block diagram showing a second functional configuration example of the server 12.
  • FIG. 19 the same components as those of the server 12 in FIG. 11 are designated by the same reference numerals. Duplicate explanations will be omitted as appropriate.
  • the configuration of the server 12 shown in FIG. 19 is different from the configuration described with reference to FIG. 11 in that the virtual viewpoint position receiving unit 201 is provided in front of the virtual viewpoint moving image generation unit 112.
  • the virtual viewpoint position receiving unit 201 controls a communication module or the like corresponding to wireless communication or wired communication, and receives information representing the virtual viewpoint position transmitted from the viewing device 14.
  • the information representing the virtual viewpoint position received by the virtual viewpoint position receiving unit 201 is supplied to the virtual viewpoint moving image generation unit 112.
  • the virtual viewpoint moving image generation unit 112 generates a free viewpoint moving image based on the information representing the virtual viewpoint position supplied from the virtual viewpoint position receiving unit 201 under the control of the distribution moving image generating unit 96.
  • the distribution moving image generation unit 96 generates the real camera viewpoint moving image by using the camera moving image captured by the camera arranged at the position closest to the virtual viewpoint position designated by the viewing device 14. It is also possible to control the viewpoint moving image generation unit 121.
  • the reception delay determination is made if there is a delay in receiving at least one or more of the coded data of the multi-view camera moving image, or at least one or more of the multi-view camera moving images is broken.
  • the determination is made by the unit 92, the free viewpoint moving image viewed from the virtual viewpoint position designated by the viewing device 14 is not generated.
  • the distribution video generation unit 96 may cause the distribution video transmission unit 98 to transmit information indicating that the viewpoint of the video cannot be changed to the viewing device 14. In such a case, information indicating that the viewpoint of the moving image cannot be changed is displayed on the display of the viewing device 14.
  • FIG. 20 is a block diagram showing a second functional configuration example of the viewing device 14.
  • FIG. 20 the same components as those of the viewing device 14 in FIG. 12 are designated by the same reference numerals. Duplicate explanations will be omitted as appropriate.
  • the configuration of the viewing device 14 shown in FIG. 20 is different from the configuration described with reference to FIG. 12 in that a virtual viewpoint position transmitting unit 221 is provided.
  • information representing the virtual viewpoint position is input according to the operation of the user.
  • the virtual viewpoint position transmission unit 221 transmits information indicating the virtual viewpoint position to the server 12.
  • the processing flow executed by the information processing system 1 is basically the same as the processing flow shown in the sequence diagram of FIG.
  • the process of transmitting the information representing the virtual viewpoint position to the server 12 from the viewing device 14 is appropriately performed.
  • the user of the viewing device 14 can specify the viewpoint for viewing the subject in the free viewpoint moving image by using the viewing device 14.
  • the information representing the lighting and shadow synthesized in the free viewpoint moving image is sent to the server 12 together with the encoded data. It may be sent.
  • FIG. 21 is a block diagram showing a second other functional configuration example of the capture system 11.
  • FIG. 21 the same components as those of the capture system 11 in FIG. 18 are designated by the same reference numerals. Duplicate explanations will be omitted as appropriate. The same applies to FIG. 23, which will be described later.
  • the configuration of the capture system 11 shown in FIG. 21 will be described with reference to FIG. 18 in that the transmission unit 74 acquires a high-polygon CG background, information representing lighting, information representing shadows, and a low-polygon CG background. It is different from the configuration.
  • the high polygon CG background is a CG background drawn finely using a large number of polygons.
  • the high-polygon CG background is used as the background of the free-viewpoint moving image.
  • the low polygon CC background is a CG background drawn using a smaller amount of polygons than the high polygon CG background.
  • the low-polygon CG background is used as the background of the moving image from the viewpoint of the actual camera.
  • the information representing lighting and shadow is information representing the lighting applied to the 3D model of the subject in the free-viewpoint moving image and the shadow of the 3D model generated by the lighting.
  • the transmission unit 74 transmits the coded data together with the high-polygon CG background, the information representing the lighting, the information representing the shadow, the information representing the actual camera viewpoint position, and the low-polygon CG background. It sends to the server 12.
  • the transmission unit 74 When transmitting encoded data of a multi-view camera moving image, the transmission unit 74 transmits a high-polygon CG background, information representing lighting, information representing shadows, information representing the actual camera viewpoint position, and a low-polygon CG background. It sends to the server 12. On the other hand, when transmitting the coded data of the one-viewpoint camera moving image, the information representing the actual camera viewpoint position and the low polygon CG background are transmitted to the server 12.
  • the configuration of the server 12 when the information representing the lighting and shadows synthesized in the free viewpoint moving image is transmitted to the server 12 together with the encoded data is the same as the configuration described with reference to FIG.
  • the receiving unit 91 receives the high-polygon CG background, the information representing lighting, the information representing shadows, the information representing the actual camera viewpoint position, and the low-polygon CG background transmitted from the capture system 11. ..
  • the high polygon CG background, information representing lighting, and information representing shadows are supplied to the background compositing unit 113 of the free viewpoint moving image generation unit 93.
  • the information representing the low polygon is supplied to the background compositing unit 122 of the real camera viewpoint moving image generation unit 94.
  • the background synthesizing unit 113 synthesizes the high polygon CG background, lighting, and shadow supplied from the receiving unit 91 with the free viewpoint moving image supplied from the virtual viewpoint moving image generation unit 112.
  • the free-viewpoint moving image in which the CG background and the like are combined is supplied to the generation delay determination unit 95.
  • the background synthesizing unit 122 synthesizes a low-polygon CG background supplied from the receiving unit 91 with the actual camera viewpoint moving image supplied from the real camera viewpoint moving image generation unit 121.
  • the actual camera viewpoint moving image in which the CG background is combined is supplied to the generation delay determination unit 95.
  • the free-viewpoint moving image in which lighting and shadows are combined is displayed on the viewing device 14, it is possible to improve the quality of the user experience.
  • the high polygon CG background is combined with the free viewpoint moving image, it is possible to provide the user with a free viewpoint moving image having a finer image quality.
  • FIG. 22 is a diagram showing still another example of the flow of information in the information processing system 1.
  • the terminal information is supplied from the viewing device 14 to the capture system 11, and the information representing the virtual viewpoint position designated by the viewing device 14 is supplied to the capture system 11 and the server 12, respectively. It may be.
  • FIG. 23 is a diagram showing a third functional configuration example of the capture system 11.
  • the configuration of the capture system 11 shown in FIG. 23 is different from the configuration described with reference to FIG. 18 in that the actual camera viewpoint position selection unit 251 is provided after the terminal information receiving unit 61.
  • the terminal information receiving unit 61 receives the information representing the virtual viewpoint position transmitted from the viewing device 14 and supplies it to the actual camera viewpoint position selection unit 251.
  • Information representing the setting contents is supplied from the instance generation unit 63 to the actual camera viewpoint position selection unit 251.
  • the actual camera viewpoint position selection unit 251 selects the camera arranged closest to the virtual viewpoint position designated by the viewing device 14 based on the information supplied from the instance generation unit 63.
  • the actual camera viewpoint position selection unit 251 supplies information representing the position of the selected camera to the transmission unit 74 as information representing the actual camera viewpoint position.
  • the configuration of the viewing device 14 when the information representing the virtual viewpoint position designated by the viewing device 14 is supplied to each of the capture system 11 and the server 12 is the same as the configuration described with reference to FIG.
  • the virtual viewpoint position transmission unit 221 (FIG. 20) transmits information representing the virtual viewpoint position to each of the capture system 11 and the server 12.
  • FIG. 24 is a sequence diagram showing the flow of other processing performed by the capture system 11, the server 12, and the viewing device 14.
  • step S141 in the viewing device 14 is the same as the process of step S41 of FIG. Further, the processing of steps S101 to S103 in the capture system 11 is the same as the processing of steps S1 to S3 of FIG.
  • step S142 the virtual viewpoint position transmission unit 221 of the viewing device 14 transmits information representing the virtual viewpoint position to the capture system 11.
  • step S104 the terminal information receiving unit 61 of the capture system 11 receives the information representing the virtual viewpoint position transmitted from the viewing device 14.
  • step S105 the real camera viewpoint position selection unit 251 sets the position of the camera arranged closest to the virtual viewpoint position designated by the viewing device 14 as the actual camera viewpoint position based on the camera parameters set in step S103. Select as.
  • steps S106 to S110 in the capture system 11 is the same as the processing of steps S4 to S8 of FIG.
  • the processing of steps S121 to S130 in the server 12 is the same as the processing of steps S21 to S30 of FIG.
  • the processing of steps S143 and S144 in the viewing device 14 is the same as the processing of steps S42 and S43 of FIG.
  • the camera moving image generated by the camera closest to the virtual viewpoint position in the free viewpoint moving image is used.
  • a real camera viewpoint moving image is generated.
  • FIG. 25 is a block diagram showing a configuration example of computer hardware that programmatically executes the respective processes of the capture system 11, the server 12, and the viewing device 14 described above.
  • the CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 1005 is further connected to the bus 1004.
  • An input unit 1006 including a keyboard and a mouse, and an output unit 1007 including a display and a speaker are connected to the input / output interface 1005.
  • the input / output interface 1005 is connected to a storage unit 1008 including a hard disk and a non-volatile memory, a communication unit 1009 including a network interface, and a drive 1010 for driving the removable media 1011.
  • the CPU 1001 loads and executes the program stored in the storage unit 1008 into the RAM 1003 via the input / output interface 1005 and the bus 1004, thereby executing the above-mentioned series of processes. Is done.
  • the program executed by the CPU 1001 is recorded on the removable media 1011 or provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital broadcasting, and is installed in the storage unit 1008.
  • a wired or wireless transmission medium such as a local area network, the Internet, or digital broadcasting
  • the program executed by the computer may be a program that is processed in chronological order according to the order described in this specification, or may be a program that is processed in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a device in which a plurality of modules are housed in one housing are both systems. ..
  • this technology can have a cloud computing configuration in which one function is shared by a plurality of devices via a network and jointly processed.
  • each step described in the above flowchart can be executed by one device or shared by a plurality of devices.
  • one step includes a plurality of processes
  • the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
  • the present technology can also have the following configurations.
  • a transmitter that sends moving images and The transmitter is based on a determination result regarding the success or failure of generation of a free-viewpoint moving image, which is a moving image with an arbitrary position and orientation as a viewpoint using a plurality of camera moving images generated by a plurality of cameras capturing a subject.
  • a free viewpoint moving image which is a moving image with an arbitrary position and orientation as a viewpoint using a plurality of camera moving images generated by a plurality of cameras capturing a subject.
  • An information processing device including a control unit that controls whether to transmit.
  • the control unit As a result of the determination, when it is determined that there is no delay in the generation of the free viewpoint moving image, the transmitting unit is made to transmit the free viewpoint moving image.
  • the information processing device wherein when it is determined as a result of the determination that the generation of the free viewpoint moving image is delayed, the transmitting unit transmits the actual camera viewpoint moving image.
  • a generation determination unit for determining whether or not there is a delay in the generation of the free viewpoint moving image is provided.
  • the control unit When the generation determination unit determines that there is no delay in the generation of the free viewpoint moving image, the transmitting unit is made to transmit the free viewpoint moving image.
  • the information processing apparatus according to (2), wherein when the generation determination unit determines that the generation of the free viewpoint moving image is delayed, the transmission unit transmits the actual camera viewpoint moving image.
  • the control unit When it is determined as the determination result that the encoded data of the plurality of camera moving images has been successfully decoded, the transmitting unit is made to transmit the free viewpoint moving image. When it is determined as the determination result that at least one or more of the encoded data of the plurality of camera moving images has failed to be decoded, the transmitting unit is made to transmit the actual camera viewpoint moving image (1).
  • the information processing apparatus according to any one of (3).
  • a decoding determination unit for determining the success or failure of decoding the coded data of the plurality of camera moving images is provided. The control unit When it is determined by the decoding determination unit that the encoded data of the plurality of camera moving images has been successfully decoded, the transmitting unit is made to transmit the free viewpoint moving image.
  • the transmitting unit is made to transmit the actual camera viewpoint moving image (4). ).
  • the information processing device (6) The control unit
  • the transmitting unit is made to transmit the free viewpoint moving image.
  • the transmitting unit is notified of the actual camera viewpoint.
  • a reception determination unit for determining whether or not there is a delay in receiving the plurality of camera moving images is further provided.
  • the control unit When the reception determination unit determines that there is no delay in receiving the plurality of camera moving images, the transmitting unit is made to transmit the free viewpoint moving image.
  • the reception determination unit determines that the reception of at least one or more of the plurality of camera moving images is delayed, the transmitting unit is made to transmit the actual camera viewpoint moving image (6).
  • a free viewpoint moving image generation unit for generating the free viewpoint moving image using the plurality of camera moving images is further provided. Based on the determination result, the control unit causes the transmission unit to transmit the free viewpoint moving image generated by the free viewpoint moving image generation unit, or to generate the actual camera viewpoint moving image.
  • the information processing apparatus according to any one of (1) to (7) above.
  • the free viewpoint moving image generation unit moves the viewpoint so as to approach the viewpoint of the actual camera viewpoint moving image before the control unit transmits the real camera viewpoint moving image to the transmitting unit.
  • the information processing apparatus according to (8) above, which generates the free-viewpoint moving image.
  • a decoding unit that decodes the coded data of the plurality of camera moving images and restores the plurality of camera moving images is further provided.
  • the information processing apparatus according to (8) or (9), wherein the free viewpoint moving image generation unit generates the free viewpoint moving image using the plurality of camera moving images restored by the decoding unit.
  • a receiver that receives the coded data transmitted from another device is further provided.
  • the information processing device wherein the decoding unit decodes the coded data received by the receiving unit.
  • a real camera viewpoint moving image generation unit for generating the real camera viewpoint moving image using the camera moving image is further provided. Based on the determination result, the control unit causes the transmission unit to transmit the free viewpoint moving image or generate the real camera viewpoint moving image generated by the real camera viewpoint moving image generation unit.
  • the information processing apparatus according to any one of (1) to (11) above.
  • (13) The information processing according to (12) above, wherein the real camera viewpoint moving image generation unit generates the real camera viewpoint moving image using any one of the plurality of camera moving images used for generating the free viewpoint moving image. apparatus.
  • the real camera viewpoint moving image generation unit generates the real camera viewpoint moving image by using another camera moving image different from the plurality of camera moving images used for generating the free viewpoint moving image (12).
  • the information processing device described in. The real camera viewpoint moving image generation unit generates the real camera viewpoint moving image using a camera moving image whose viewpoint is closer to the free viewpoint moving image under the control of the control unit (12) to (14).
  • the information processing device according to any one.
  • Information processing device Based on the judgment result regarding the success or failure of generation of a free-viewpoint moving image, which is a moving image with an arbitrary position and orientation as a viewpoint using a plurality of camera moving images generated by a plurality of cameras capturing a subject, the transmission unit is used.
  • the free viewpoint moving image is transmitted, or the actual camera viewpoint moving image which is a moving image with the position and orientation of the camera as the viewpoint generated from the camera moving image generated by the camera capturing the subject is transmitted. Control whether to let An information processing method for transmitting the free viewpoint moving image or the real camera viewpoint moving image according to the control. (17) On the computer Based on the judgment result regarding the success or failure of generation of a free-viewpoint moving image, which is a moving image with an arbitrary position and orientation as a viewpoint using a plurality of camera moving images generated by a plurality of cameras capturing a subject, the transmission unit is used.
  • the free viewpoint moving image is transmitted, or the actual camera viewpoint moving image which is a moving image with the position and orientation of the camera as the viewpoint generated from the camera moving image generated by the camera capturing the subject is transmitted.
  • An information processing system including an imaging device and an information processing device.
  • the image pickup device A plurality of imaging units, each of which captures a subject and generates a camera moving image, An imaging determination unit that determines the success or failure of generation of the camera moving image by the plurality of imaging units,
  • the camera includes a plurality of camera moving images generated by the plurality of imaging units, and an information transmitting unit that transmits a determination result by the imaging determination unit to the information processing apparatus.
  • the information processing device An information receiving unit that receives a plurality of the camera moving images and the determination result transmitted from the imaging device.
  • a moving image transmitter that transmits moving images, Based on the determination result received by the information receiving unit, the information transmitting unit has an arbitrary position and orientation generated by using the plurality of camera moving images received by the information receiving unit as a viewpoint.
  • the information processing device A control information transmission unit for transmitting control information for designating the camera moving image, which is generated by the control unit based on the determination result, to the image pickup apparatus is further provided.
  • the image pickup device A control information receiving unit for receiving the control information transmitted from the information processing device is further provided.
  • the information transmitting unit of the imaging device transmits the camera moving image designated by the control unit to the information processing device according to the control information received by the control information receiving unit (18) or (19). )

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Studio Devices (AREA)

Abstract

本技術は、自由視点動画像を視聴するユーザに対して、より良いユーザ体験を提供することができるようにする情報処理装置および方法、プログラム、並びに、情報処理システムに関する。 本技術の情報処理装置は、動画像を送信する送信部と、複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、送信部に、自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成されるカメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御する制御部とを備える装置である。本技術は、リアルタイムで自由視点動画像を伝送するリアルタイムボリュメトリックシステムに適用することができる。

Description

情報処理装置および方法、プログラム、並びに、情報処理システム
 本技術は、情報処理装置および方法、プログラム、並びに、情報処理システムに関し、特に、自由視点動画像を視聴するユーザに対して、より良いユーザ体験を提供することができるようにした情報処理装置および方法、プログラム、並びに、情報処理システムに関する。
 多視点で撮像された動画像から被写体の3Dモデルを生成し、任意の視点位置に応じた動画像である自由視点動画像を3Dモデルに基づいて生成する技術がある。このような技術は、ボリュメトリックキャプチャ技術などとも呼ばれている。
 例えば、特許文献1においては、異なる方向から撮像して得られた複数の撮像画像に基づいて被写体の3次元形状の削り出しを行うVisual Hull等の手法を用いて、3Dモデルを生成する技術が記載されている。
国際公開第2018/150933号
 ボリュメトリックキャプチャ技術によって生成された自由視点動画像をリアルタイムで伝送することによって、自由視点動画像に被写体として写っているユーザと、自由視点動画像を視聴しているユーザとがコミュニケーションをとるようなことも行われている。
 しかしながら、多視点で撮像された全てのカメラ動画像の伝送が正常に行われない場合、視聴側において、形状が崩れた3Dモデルの自由視点動画像が表示されたり、自由視点動画像が表示されなかったりすることがある。これにより、自由視点動画像を視聴するユーザ体験が低下してしまうことになる。
 本技術はこのような状況に鑑みてなされたものであり、自由視点動画像を視聴するユーザに対して、より良いユーザ体験を提供することができるようにするものである。
 本技術の一側面の情報処理装置は、動画像を送信する送信部と、複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、前記送信部に、前記自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成される前記カメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御する制御部とを備える情報処理装置である。
 本技術の一側面の情報処理方法は、情報処理装置が、複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、送信部に、前記自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成される前記カメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御し、前記制御に従って、前記自由視点動画像または前記実カメラ視点動画像を送信する情報処理方法である。
 本技術の一側面のプログラムは、コンピュータに、複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、送信部に、前記自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成される前記カメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御し、前記制御に従って、前記自由視点動画像または前記実カメラ視点動画像を送信する処理を実行させるためのプログラムである。
 本技術の一側面の情報処理システムは、撮像装置と情報処理装置とを備える情報処理システムであって、前記撮像装置は、それぞれが被写体を撮像してカメラ動画像を生成する複数の撮像部と、複数の前記撮像部による前記カメラ動画像の生成の成否を判定する撮像判定部と、複数の前記撮像部により生成された複数の前記カメラ動画像と、前記撮像判定部による判定結果とを前記情報処理装置に送信する情報送信部とを備え、前記情報処理装置は、前記撮像装置から送信された複数の前記カメラ動画像および前記判定結果を受信する情報受信部と、動画像を送信する動画像送信部と、前記情報受信部により受信された前記判定結果に基づいて、前記情報送信部に、前記情報受信部により受信された複数の前記カメラ動画像を用いて生成される任意の位置および向きを視点とする動画像である自由視点動画像を送信させるか、または、前記情報受信部により受信された前記カメラ動画像を用いて生成される前記撮像部の位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御する制御部とを備える情報処理システムである。
 本技術の一側面の情報処理装置および方法、並びにプログラムにおいては、動画像が送信され、複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、送信部に、前記自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成される前記カメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかが制御される。
 本技術の一側面の情報処理システムにおいては、被写体を撮像してカメラ動画像が生成され、複数の撮像部による前記カメラ動画像の生成の成否が判定され、複数の前記撮像部により生成された複数の前記カメラ動画像と、前記撮像判定部による判定結果とが情報処理装置に送信され、撮像装置から送信された複数の前記カメラ動画像および前記判定結果が受信され、動画像が送信され、情報受信部により受信された前記判定結果に基づいて、情報送信部に、前記情報受信部により受信された複数の前記カメラ動画像を用いて生成される任意の位置および向きを視点とする動画像である自由視点動画像を送信させるか、または、前記情報受信部により受信された前記カメラ動画像を用いて生成される前記撮像部の位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかが制御される。
本技術の一実施形態に係る情報処理システムの構成例を示す図である。 自由視点動画像を伝送する情報処理システムの処理の流れを示す図である。 カメラの配置の例を示す図である。 情報処理システムにおいて発生する遅延の例を示す図である。 情報処理システムの処理の流れを示す図である。 動画像の切り替えの例を示す図である。 自由視点動画像と実カメラ視点動画像の切り替え条件の例を示す図である。 情報処理システムにおける情報の流れの例を示す図である。 キャプチャシステムの機能構成例を示すブロック図である。 カメラの台数の例を示す図である。 サーバの機能構成例を示すブロック図である。 視聴装置の機能構成例を示すブロック図である。 キャプチャシステム、サーバ、および視聴装置が行う処理の流れを示すシーケンス図である。 動画像切り替え処理#1について説明するフローチャートである。 動画像切り替え処理#2について説明するフローチャートである。 動画像切り替え処理#3について説明するフローチャートである。 情報処理システムにおける情報の流れの他の例を示す図である。 キャプチャシステムの第2の機能構成例を示すブロック図である。 サーバの第2の機能構成例を示すブロック図である。 視聴装置の第2の機能構成例を示すブロック図である。 キャプチャシステムの第2の他の機能構成例を示すブロック図である。 情報処理システムにおける情報の流れのさらに他の例を示す図である。 キャプチャシステムの第3の機能構成例を示す図である。 キャプチャシステム、サーバ、および視聴装置が行う他の処理の流れを示すシーケンス図である。 コンピュータのハードウェアの構成例を示すブロック図である。
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.情報処理システムの概要の説明
 2.第1の情報処理の例
 3.第2の情報処理の例
 4.第3の情報処理の例
 5.変形例
<1.情報処理システムの概要の説明>
 図1は、本技術の一実施形態に係る情報処理システム1の構成例を示す図である。
 図1に示すように、情報処理システム1は、キャプチャシステム11、サーバ12、視聴装置14により構成される。キャプチャシステム11とサーバ12は、有線または無線の通信を介して接続される。サーバ12と視聴装置14は、インターネット、無線LAN(Local Area Network)、セルラー方式のネットワークなどのネットワーク13を介して接続される。なお、キャプチャシステム11が、サーバ12や視聴装置14とネットワーク13を介して接続されるようにしてもよい。
 キャプチャシステム11は、撮像装置21と送信装置22により構成される。
 撮像装置21は、被写体を撮像し、カメラ動画像を生成する複数台のカメラにより構成される。例えば、コンピュータビジョン用のカメラ、コンピュータビジョン用のカメラと異なるカメラ、スマートフォン、ネットワークカメラ、デプスセンサなどが、撮像装置21を構成するカメラとして用いられ得る。撮像装置21を構成する複数台のカメラは、被写体を囲むように配置され、多視点で被写体を撮像する。なお、撮像装置21を構成するカメラの数は、複数であれば任意である。
 送信装置22は、例えばPC(Personal Computer)や専用の機器により構成される。例えば、送信装置22として、撮像装置21を構成するカメラの台数と同じ台数のPCが用意される。送信装置22は、撮像装置21により生成された複数のカメラ動画像をサーバ12に対して送信する。送信装置22からサーバ12に対して、複数の視点位置から被写体を撮像して得られた多視点のカメラ動画像が送信される。なお、送信装置22を構成するPC(または専用の機器)の数は、任意である。カメラと同数であってもよいし、異なっていてもよい。
 サーバ12は、例えば、ネットワーク上に設置されたサーバ装置である。1台のサーバ装置によりサーバ12が実現されるようにしてもよいし、いわゆるクラウドを構成する複数台のサーバ装置によりサーバ12が実現されるようにしてもよい。サーバ12は、キャプチャシステム11から送信されてきた複数のカメラ動画像を用いて自由視点動画像を生成する。自由視点動画像は、任意の位置および向きを視点とすることが可能な動画像である。
 また、サーバ12は、キャプチャシステム11から送信されてきた複数のカメラ動画像のうちのいずれかのカメラ動画像を用いて、実カメラ視点動画像を生成する。実カメラ視点動画像は、撮像装置21を構成する複数台のカメラのうちの特定のカメラにより撮像されたカメラ動画像を用いて生成される動画像である。すなわち、実カメラ視点動画像は、特定のカメラの位置および向きを視点とする動画像である。これに対して自由視点動画像の視点は、いずれかのカメラの位置および向きとすることもできるし、いずれかのカメラの位置および向きでもない仮想の視点とすることもできる。
 サーバ12は、自由視点動画像または実カメラ視点動画像を視聴装置14に対してネットワーク13を介して送信する。
 視聴装置14は、例えば、PC、スマートフォン、タブレット端末、ヘッドマウントディスプレイなどの、表示機能を有するデバイスにより構成される。視聴装置14は、サーバ12から送信されてきた動画像を受信し、リアルタイムで表示する。
 例えば、自由視点動画像がサーバ12から送信されてきた場合、視聴装置14は、被写体の3Dモデルの動画像を表示する。ユーザは、視聴装置14を操作することによって、被写体の3Dモデルを任意の視点からリアルタイムで見ることができる。
 なお、図1においては、キャプチャシステム11、サーバ12、ネットワーク13、および視聴装置14をそれぞれ1つずつ示しているが、情報処理システム1を構成するこれらのシステムやデバイスは、それぞれ単数であってもよいし複数であってもよい。
 図2は、自由視点動画像を伝送する情報処理システム1の処理の流れを示す図である。
 図2の左側に示すように、例えば、キャプチャシステム11においては、撮像装置21および送信装置22により、それぞれが撮像を行い、カメラ動画像を送信する処理を行うカメラシステム31-1乃至31-nが構成される。以下においては、カメラシステム31-1乃至31-nのそれぞれを区別する必要がない場合、まとめてカメラシステム31という。複数設けられる他の構成についても同様にまとめて説明する。
 カメラシステム31-1乃至31-nは、それぞれ、撮像装置21の少なくとも1台のカメラと、送信装置22の少なくとも1台のPCにより実現される。1つのカメラシステム31を構成するこれら(カメラおよびPC)の数は任意であり、単数であってもよいし複数であってもよい。また、そのカメラおよびPCの数が互いに同一であってもよいし、異なっていてもよい。以下においては、1つのカメラシステム31が1台のカメラと1台のPCにより構成されるものとして説明する。それぞれのカメラシステム31における撮像を行うカメラは、被写体を囲むように配置される。
 図3は、カメラの配置の例を示す図である。
 図3に示すように、カメラは、被写体を下から見上げるように撮像する位置、水平方向から撮像する位置、上から見下ろすように撮像する位置などの様々な位置に配置される。図3に示す1つの白丸は、1台のカメラを示す。
 図3の例では、上段に8台、中段に8台、下段に8台の計24台のカメラが撮像装置21として配置されている。各段にはカメラが円周上に配置される。このような配置を有する24台のカメラによって撮像が行われることにより、24の視点のカメラ動画像が生成される。
 図2の説明に戻り、カメラシステム31-1乃至31-nのそれぞれにおいては、撮像によって生成されたカメラ動画像に対して、例えば輝度調節などの処理であるポストプロセス処理が行われる。また、ポストプロセス処理が行われたカメラ動画像が所定の規格でエンコードされ、符号化データが生成される。エンコードによって生成された各カメラシステム31の符号化データが、サーバ12に対して送信される。
 サーバ12においては、カメラシステム31-1乃至31-nのそれぞれから送信されてきた符号化データがデコードされ、カメラ動画像が復元される。ここで、カメラシステム31-1乃至31-nにより生成された全てのカメラ動画像が揃っているか否かが確認される。また、それぞれのカメラ動画像の同期が確保されているか否かが確認される。
 全てのカメラ動画像が揃っていることと、カメラ動画像の同期が確保されていることが確認された場合、サーバ12は、復元された複数のカメラ動画像を用いて3Dモデルのモデリング(三次元再構成)を行う。
 例えば、サーバ12は、カメラ動画像と背景動画像との差分を抽出することにより、被写体領域を抽出したシルエット画像を生成する。また、サーバ12は、異なる方向の複数枚のシルエット画像とカメラパラメータを用いたVisual Hull等の手法により、被写体の3Dモデルを生成する。
 3Dモデルのデータには、色情報としての複数のカメラ動画像が含まれる。また、3Dモデルのデータには、3Dモデルの形状を規定するジオメトリ情報が含まれる。ジオメトリ情報として、複数のカメラ動画像に対応するデプス動画像、被写体の3次元位置を点の集合で表したポイントクラウド、頂点と頂点間のつながりで表したポリゴンメッシュを用いることが可能である。
 その後、3Dモデルに基づいてレンダリングが行われることによって、キャプチャシステム11において指定された視点位置から見た3Dモデルの動画像が、自由視点動画像として生成される。自由視点動画像の生成においては、複数のカメラ動画像を用いて3Dモデルに対してキャプチャシステム11において指定された視点位置(仮想視点位置)に応じたテクスチャをつけるViewDependentレンダリングが行われる。また、キャプチャシステム11から取得されたCG背景の合成等が行われる。
 このようにしてサーバ12により生成された自由視点動画像が、視聴装置14に対して送信され、表示される。なお、視聴装置14がヘッドマウントディスプレイにより構成される場合、右目用の動画像と左目用の動画像が、視聴装置14に対して送信される。
 情報処理システム1においては、いずれかのカメラシステム31のカメラ動画像がサーバ12に対して送信されないことなどによって、遅延が発生した場合、自由視点動画像が生成されないことがある。
 図4は、情報処理システム1において発生する遅延の原因となる障害の例を示す図である。
 図4の吹き出しB1に示すように、キャプチャシステム11において、いずれかのカメラシステム31のカメラでフレームの欠損が発生した場合、遅延が発生する。また、カメラシステム31のカメラの電池が切れることなどによって撮像が失敗した場合、遅延が発生する。
 上述したように、全てのカメラシステム31において同時に撮像を行うことができない場合、サーバ12において自由視点動画像が生成されない可能性がある。
 また、図4の吹き出しB2に示すように、帯域が不足することなどによって、いずれかのカメラシステム31からサーバ12に対する符号化データの送信に遅延が発生することがある。
 符号化データの送信に遅延などの不調が発生した場合、3Dモデルの形状が崩れてしまう可能性がある。
 図4の吹き出しB3に示すように、サーバ12の負荷が上昇することによって、モデリングの処理に遅延が発生することがある。モデリングに用いるカメラ動画像が多いほどモデリングの処理に時間がかかるため、カメラシステム31の数が多い場合、モデリングの処理に遅延が発生する可能性がある。
 モデリングの処理に遅延が発生し、自由視点動画像が送信されてこない場合、視聴装置14においては、ディスプレイに何も表示されない状態になったり、CGの背景のみが表示される状態になったりする。この場合、コミュニケーションによるユーザ体験の質が低下してしまうおそれがあった。
 ユーザ体験の質の低下を防ぐため、遅延が発生した場合においてもコミュニケーションを続けられるようにする仕組みが求められる。
 図5は、情報処理システム1の処理の流れを示す図である。
 図5の下方に示すように、情報処理システム1においては、カメラシステム31と同様の構成を有する1つのカメラシステムであるカメラシステム41が設けられる。
 カメラシステム41においては、カメラシステム31-1乃至31-nと同様にカメラ動画像の撮像が行われる。カメラシステム41により撮像されたカメラ動画像は、実カメラ視点動画像を生成するためにサーバ12において用いられる。実カメラ視点動画像の生成は、例えばカメラシステム31-1乃至31-nのカメラ動画像を用いて自由視点動画像を生成するのと並行して行われる。
 カメラシステム41においては、カメラシステム31-1乃至31-nにおいて行われる処理と同様の処理が行われる。具体的には、カメラシステム41のカメラにより撮像されたカメラ動画像に対して、ポストプロセス処理とエンコードが行われることによって、符号化データが生成される。符号化データはサーバ12に対して送信される。
 サーバ12においては、カメラシステム41から送信されてきた符号化データがデコードされ、カメラ動画像が復元される。また、復元されたカメラ動画像に対して前景背景差分処理が施されることによって、被写体領域の動画像が抽出される。その後、被写体領域の動画像とキャプチャシステム11から取得されたCG背景とが合成され、実カメラ視点動画像が生成される。
 実カメラ視点動画像は、カメラシステム41のカメラにより撮像された1視点のカメラ動画像を含む動画像となる。
 情報処理システム1においては、自由視点動画像の生成の成否に関する判定が行われる。例えば図4を参照して説明したような障害を原因として、自由視点動画像の生成にエラーが生じる。
 すなわち、自由視点動画像の生成に関する判定には、キャプチャシステム11におけるカメラ動画像の生成の成否の判定、サーバ12において符号データの受信に遅延が生じているか否かの判定、サーバ12における符号化データの復号の成否の判定、および、サーバ12において自由視点動画像の生成に遅延が生じているか否かの判定が含まれる。
 例えばサーバ12においては、自由視点動画像の生成の成否に関する判定結果に基づいて、自由視点動画像と実カメラ視点動画像のいずれかが、視聴装置14に対して送信する動画像として選択される。視聴装置14においては、自由視点動画像に代えて、実カメラ視点動画像が表示されることもある。
 図6は、動画像の切り替えの例を示す図である。
 図6の左上に示すように、情報処理システム1において遅延が発生していない場合、視聴装置14においては自由視点動画像が表示される。
 一方、例えばいずれかのカメラシステム31にエラーが発生した場合、白抜き矢印A1の先に示すように、サーバ12においては、視聴装置14に対して送信する動画像が実カメラ視点動画像に切り替えられる。
 実カメラ視点動画像への切り替え時、仮想カメラワークの生成と画像加工が行われる。
 仮想カメラワークの生成は、視点位置の切り替えによってユーザが不快に感じるのを防ぐための処理である。自由視点動画像の所定の仮想視点位置から実カメラ視点動画像の視点位置に視点が突然切り替えられると、不自然であり、視聴装置14のユーザが不快に感じる可能性がある。
 具体的には、サーバ12は、実カメラ視点動画像に切り替えられる前の仮想視点位置からカメラシステム41のカメラの位置(実カメラ視点動画像の視点位置)までの最短のルートである仮想カメラワークを生成する。実カメラ視点動画像に切り替える前の自由視点動画像として、仮想カメラワークに沿って、実カメラ視点動画像の視点位置に近づくように視点が移動する動画像が生成され、視聴装置14において表示される。
 画像加工は、自由視点動画像および実カメラ視点動画像のそれぞれにフェードアウトおよびフェードインなどのエフェクトを加える処理である。
 サーバ12により以上のような処理が行われることによって、白抜き矢印A2の先に示すように、視聴装置14においては実カメラ視点動画像が表示される。
 実カメラ視点動画像の表示が行われている状態において、例えばエラーが解消された場合、白抜き矢印A3の先に示すように、サーバ12においては、視聴装置14に対して送信する動画像が自由視点動画像に切り替えられる。
 動画像の切り替えが行われた後、白抜き矢印A4の先に示すように、視聴装置14においては自由視点動画像が表示されることになる。
 なお、実カメラ視点動画像から自由視点動画像への切り替え時、自由視点動画像の視点位置を実カメラ視点動画像の視点位置に合わせることによって、動画像を自然に切り替えることが可能である。したがって、実カメラ視点動画像から自由視点動画像に切り替える際、動画像に対してエフェクトを加えるなどの画像加工は行われない。
 図7は、自由視点動画像と実カメラ視点動画像の切り替え条件の例を示す図である。
 図7の1行目に示すように、被写体の撮像時、同期ずれやフレームの欠損などの異常がカメラに発生することがある。情報処理システム1においては、異常が発生したカメラの台数が判定される。また、正常なカメラの位置の分布が、3Dモデルの品質を担保できるか否かが判定される。
 例えば、異常が発生したカメラの台数が少なく、かつ、3Dモデルの形状の品質も担保できると判定された場合、サーバ12は、正常なカメラにより生成されたカメラ動画像を用いて三次元再構成を行い、自由視点動画像を生成する。この場合、自由視点動画像が視聴装置14に対して送信され、表示される。
 一方、異常が発生したカメラの台数が多い、または、3Dモデルの形状の品質が担保されないと判定された場合、実カメラ視点動画像が視聴装置14に対して送信され、表示される。
 図7の2行目に示すように、カメラ動画像の符号化データの送信に遅延が発生することがある。また、サーバ12において、指定時間以内に全ての符号化データを受信できないことがある。情報処理システム1においては、遅延が生じた符号化データの数が判定される。また、符号化データが正常に受信されたカメラ動画像を生成した正常なカメラの位置の分布が、3Dモデルの品質を担保できるか否かが判定される。
 例えば、遅延が生じた符号化データの数が少なく、かつ、3Dモデルの形状の品質も担保できると判定された場合、サーバ12は、正常なカメラにより生成されたカメラ動画像を用いて三次元再構成を行い、自由視点動画像を生成する。この場合、自由視点動画像が視聴装置14に対して送信され、表示される。
 一方、遅延が生じた符号化データの数が多い、または、3Dモデルの形状の品質が担保されないと判定された場合、実カメラ視点動画像が視聴装置14に対して送信され、表示される。
 図7の3行目に示すように、キャプチャシステム11から送信されてきた符号化データをサーバ12においてデコードできないことがある。また、キャプチャシステム11から送信されてきた符号化データが破綻していることがある。情報処理システム1においては、復元できなかったカメラ動画像の数が判定される。また、正常なカメラの位置の分布が、3Dモデルの品質を担保できるか否かが判定される。
 例えば、復元できなかったカメラ動画像の数が少なく、かつ、3Dモデルの形状の品質も担保できると判定された場合、サーバ12は、復元されたカメラ動画像を用いて三次元再構成を行い、自由視点動画像を生成する。この場合、自由視点動画像が視聴装置14に対して送信され、表示される。
 一方、復元できなかったカメラ動画像の数が多い、または、3Dモデルの形状の品質が担保されないと判定された場合、実カメラ視点動画像が視聴装置14に対して送信され、表示される。
 図7の4行目に示すように、3Dモデルの生成時、モデリングの処理にかかる時間が、動画像をリアルタイムで表示するために許容される時間を超えることがある。この場合、実カメラ視点動画像が視聴装置14に対して送信され、表示される。
 一方、モデリングの処理にかかる時間が、動画像をリアルタイムで表示するために許容される時間を超えない場合、自由視点動画像が視聴装置14に対して送信され、表示される。
 図7の5行目に示すように、自由視点動画像の視点変更のためのインタラクションが視聴装置14から届かないことがある。情報処理システム1においては、オートパイロットが指定されているか否かが判定される。自由視点動画像の視点位置を自動的に設定することをオートパイロットとして設定することが可能とされる。
 例えば、オートパイロットが指定されている場合、オートパイロットによって選択された視点位置から見た自由視点動画像が視聴装置14に対して送信され、表示される。
 一方、オートパイロットが指定されていない場合、実カメラ視点動画像が視聴装置14に対して送信され、表示される。
 図7の6行目に示すように、情報処理システム1において不具合が頻繁に発生することがある。例えば、一定の時間の間に閾値となる回数以上の不具合が発生した場合、実カメラ視点動画像が視聴装置14に対して送信され、表示される。
 一方、一定の時間の間に発生した不具合の回数が閾値未満である場合、自由視点動画像が視聴装置14に対して送信され、表示される。
 このように、自由視点動画像の生成の成否に関する各種の判定結果に基づいて、視聴装置14に対して、自由視点動画像を送信するか、または、実カメラ視点動画像を送信するかが選択される。
 これにより、カメラに異常が発生することなどによって自由視点動画像が生成されない場合においても、途切れさせることなく、動画像を視聴装置14に表示させることが可能となる。
 また、動画像が途切れることなく表示されるため、視聴装置14を用いて自由視点動画像を視聴するユーザに対して、より良いユーザ体験を提供することができる。
<2.第1の情報処理の例>
 図8は、情報処理システム1における情報の流れの例を示す図である。
 図8に示すように、キャプチャシステム11に対しては、端末情報が視聴装置14から供給される。端末情報は、視聴装置14を構成する機器を表す情報や、視聴装置14の帯域情報などを含む情報である。帯域情報は、視聴装置14が利用している通信(例えば、Wi-Fi,4G,5Gなど)を表す情報である。なお、視聴装置14を用いて動画像を視聴するユーザによるリクエストを表す情報が端末情報に含まれるようにしてもよい。
 キャプチャシステム11は、視聴装置14から供給された端末情報に基づいて、撮像を行うカメラの台数を決定する。ここで決定された台数のカメラにより生成されたカメラ動画像が、自由視点動画像の生成に用いられる。
 サーバ12に対しては、仮想視点位置を表す情報がキャプチャシステム11から供給される。すなわち、この例においては、仮想視点位置がキャプチャシステム11によって指定されることになる。サーバ12は、キャプチャシステム11から供給された仮想視点位置から被写体を見ているような自由視点動画像を生成する。
・キャプチャシステム11の構成
 図9は、キャプチャシステム11の機能構成例を示すブロック図である。
 図9に示すように、キャプチャシステム11を構成する撮像装置21は、端末情報受信部61、カメラシステム台数選定部62、インスタンス生成部63、および撮像部64により構成される。
 端末情報受信部61は、無線通信または有線通信に対応した通信モジュールなどを制御し、視聴装置14から送信されてきた端末情報を受信する。端末情報受信部61により受信された端末情報は、カメラシステム台数選定部62に供給される。
 カメラシステム台数選定部62は、端末情報受信部61から供給された端末情報に基づいて、撮像を行うカメラ(カメラシステム31)の台数を選定する。例えば、視聴装置14がスマートフォンである場合、撮像を行うカメラの台数として15台が選定される。また、視聴装置14がハイスペックなPCである場合、撮像を行うカメラの台数として24台が選定される。
 図10は、カメラの台数の例を示す図である。
 図10の上段には、撮像を行うカメラの台数が1台、3台、9台、15台、および24台のそれぞれの場合のカメラの配置が示されている。図10の上段に示す色付きの円は、撮像を行うカメラを表す。また、図10の上段に示す白抜きの円は、撮像を行わないカメラを表す。
 図10の下段に示すように、撮像を行うカメラが多いほど、視聴装置14において表示される自由視点動画像の視点の自由度が高くなる。また、撮像を行うカメラが多いほど、キャプチャシステム11からサーバ12に対して符号化データの送信に用いられる帯域の量が多くなる。
 撮像を行うカメラが多いほど、自由視点動画像の画質が高くなる。また、撮像を行うカメラが多いほど、ユーザが負担するネットワーク使用料は高くなる。
 撮像を行うカメラとしてToF(Time of Flight)センサなどのデプスセンサが用いられる場合、自由視点動画像はポイントクラウドで構成される。ToFセンサの台数が多いほど、ポイントクラウドを構成する点は密になる。
 図10の左端に示すように、撮像を行うカメラが1台である場合、自由視点動画像の視点の自由度はない。この場合、視聴装置14においては、1台のカメラにより撮像されたカメラ動画像、または、カメラ動画像に写っている被写体とCG背景とが合成された動画像が表示される。
 撮像を行うカメラが、垂直方向に並べられた3台のカメラである場合、1視点で立体視が可能な動画像が自由視点動画像として生成される。この場合、3台のカメラの位置から被写体までの距離が用いられることによって、自由視点動画像で運動視差を表現することができる。
 撮像を行うカメラが9台である場合、形状の再現度が中程度の3Dモデルに基づいて自由視点動画像が生成される。自由視点動画像の画質も中程度となる。
 撮像を行うカメラが、被写体の前方に重点的に配置された15台のカメラである場合、被写体の前方の形状の再現度が高い3Dモデルに基づいて自由視点動画像が生成される。ただし、被写体の後方における3Dモデルの形状の再現度が低いため、被写体の背中側を見せないような視点位置の制約が必要となる。
 撮像を行うカメラが24台である場合、被写体の全体の形状の再現度が高い3Dモデルに基づいて、高画質の自由視点動画像が生成される。カメラ動画像の解像度が4Kである場合、より高画質な自由視点動画像が生成される。
 このようにして選定されたカメラ台数を表す情報が、カメラシステム台数選定部62から図9のインスタンス生成部63に対して供給される。
 インスタンス生成部63は、カメラシステム台数選定部62から供給された情報に基づいて、カメラパラメータ(内部パラメータおよび外部パラメータ)を設定し、設定内容を表す情報を撮像部64に供給する。
 撮像部64は、インスタンス生成部63から供給された情報に応じて、撮像を行うカメラを選択し、撮像を行う。撮像部64により撮像された複数のカメラ動画像は送信装置22に供給される。
 図9に示すように、送信装置22は、撮像遅延判定部71、制御信号受信部72、送信制御部73、および送信部74により構成される。
 撮像遅延判定部71は、撮像部64から供給された複数のカメラ動画像に基づいて、それぞれのカメラ動画像の生成の成否を判定する。具体的には、撮像遅延判定部71は、撮像時、それぞれのカメラに異常が発生したか否かを判定する。撮像遅延判定部71は、カメラ動画像の生成の成否の判定結果を複数のカメラ動画像とともに送信部74に供給する。
 制御信号受信部72は、サーバ12から送信されてきた制御信号を受信し、送信制御部73に供給する。制御信号は、送信部74から送信するカメラ動画像を指定する信号である。
 送信制御部73は、送信部74を制御し、制御信号によって指定されたカメラ動画像を送信部74から送信させる。
 制御信号により、多視点カメラ動画像を送信するか、または、1視点カメラ動画像を送信するかが指定される。多視点カメラ動画像は、自由視点動画像の生成に用いられる、複数台のカメラにより生成されたカメラ動画像である。1視点カメラ動画像は、実カメラ視点動画像の生成に用いられる、カメラシステム41を構成する1台のカメラにより生成された特定のカメラ動画像である。
 送信部74は、撮像遅延判定部71から供給された判定結果をサーバ12に対して送信する。
 送信部74は、カメラ動画像を符号化する符号化部としても機能する。送信部74は、撮像遅延判定部71から供給されたカメラ動画像を符号化し、符号化データを生成する。
 また、送信部74は、送信制御部73による制御に従って、符号化データを、CG背景、仮想視点位置を表す情報、および実カメラ視点位置を表す情報とともに送信する。実カメラ視点位置は、実カメラ視点動画像の視点位置である。
 多視点カメラ動画像を送信することが制御信号により指定された場合、送信部74は、多視点カメラ動画像の符号化データを各種の情報とともに送信する。
 一方、1視点カメラ動画像を送信することが制御信号により指定された場合、送信部74は、多視点カメラ動画像のうち、実カメラ視点位置に配置されたカメラにより生成された特定のカメラ動画像を、1視点カメラ動画像として選択する。選択された1視点カメラ動画像の符号化データは、各種の情報とともに送信される。
 なお、それぞれのカメラ動画像には、当該カメラ動画像を生成したカメラのカメラパラメータが対応付けられている。カメラ動画像に対応付けられたカメラパラメータも、符号化データとしてサーバ12に送信される。
 実カメラ視点動画像の生成に用いられるカメラ動画像を撮像するカメラが、自由視点動画像の生成に用いられるカメラ動画像を撮像するカメラとは別に設けられるようにしてもよい。すなわち、カメラシステム41が、カメラシステム31-1乃至31-nのいずれかのカメラシステムによって構成されるようにしてもよいし、カメラシステム31-1乃至31-nとは別に設けられたカメラシステムによって構成されるようにしてもよい。
 実カメラ視点動画像の生成に用いられるカメラ動画像を撮像するカメラが、自由視点動画像の生成に用いられるカメラ動画像を撮像するカメラとは別に設けられる場合、多視点カメラ動画像と1視点カメラ動画像がそれぞれサーバ12に対して送信される。実カメラ視点動画像用のカメラは、ビデオカメラやスマートフォンなどの手持ちのカメラであってもよい。
・サーバ12の構成
 図11は、サーバ12の機能構成例を示すブロック図である。
 図11に示すように、サーバ12は、受信部91、受信遅延判定部92、自由視点動画像生成部93、実カメラ視点動画像生成部94、生成遅延判定部95、配信動画像生成部96、制御信号送信部97、および配信動画像送信部98により構成される。
 受信部91は、無線通信または有線通信に対応した通信モジュールなどを制御し、キャプチャシステム11から送信されてきた、撮像遅延判定部71(図9)による判定結果を受信する。受信部91により受信された判定結果は配信動画像生成部96に供給される。
 また、受信部91は、キャプチャシステム11から送信されてきた符号化データを受信し、復号する。符号化データを復号することによって復元されたカメラ動画像は、受信遅延判定部92に供給される。受信部91は、符号化データを復号し、カメラ動画像を復元する復号部としても機能する。
 受信部91は、キャプチャシステム11から送信されてきたCG背景、仮想視点位置を表す情報、および実カメラ視点位置を表す情報を受信する。CG背景は、自由視点動画像生成部93の背景合成部113と、実カメラ視点動画像生成部94の背景合成部122とに供給される。仮想視点位置を表す情報は、自由視点動画像生成部93の仮想視点動画像生成部112に供給される。実カメラ視点位置を表す情報は、実カメラ視点動画像生成部94の実カメラ視点動画像生成部121に供給される。
 受信遅延判定部92は、複数の符号化データの受信に遅延が生じているか否かを判定する。また、受信遅延判定部92は、受信部91から供給されたカメラ動画像が破綻しているか否かを判定する。すなわち、受信遅延判定部92は、符号化データの復号の成否を判定する復号判定部としても機能するといえる。受信遅延判定部92は、これらの判定結果を配信動画像生成部96に供給する。
 受信遅延判定部92は、多視点カメラ動画像が受信部91から供給された場合、多視点カメラ動画像を自由視点動画像生成部93の三次元再構成部111と、実カメラ視点動画像生成部94の実カメラ視点動画像生成部121に供給する。
 一方、受信遅延判定部92は、1視点カメラ動画像が受信部91から供給された場合、1視点カメラ動画像を実カメラ視点動画像生成部121のみに供給する。
 自由視点動画像生成部93は、三次元再構成部111、仮想視点動画像生成部112、および背景合成部113により構成される。
 三次元再構成部111は、受信遅延判定部92から供給された多視点カメラ動画像に基づいて、被写体の3Dモデルを生成し、仮想視点動画像生成部112に供給する。
 仮想視点動画像生成部112は、配信動画像生成部96による制御に従って、受信部91から供給された情報により指定される仮想視点の自由視点動画像を生成する。具体的には、仮想視点動画像生成部112は、レンダリング処理によって、指定された仮想視点から見た3Dモデルの動画像を、自由視点動画像として生成する。
 配信動画像生成部96から仮想カメラワークが供給された場合、仮想視点動画像生成部112は、仮想カメラワークに基づいて、実カメラ視点位置に近づくように視点が移動する自由視点動画像を生成する。仮想視点動画像生成部112により生成された自由視点動画像は背景合成部113に供給される。
 背景合成部113は、仮想視点動画像生成部112から供給された自由視点動画像に、受信部91から供給されたCG背景を合成する。CG背景が合成された自由視点動画像は、生成遅延判定部95に供給される。
 実カメラ視点動画像生成部94は、実カメラ視点動画像生成部121および背景合成部122により構成される。
 実カメラ視点動画像生成部121は、配信動画像生成部96による制御に従って実カメラ視点動画像を生成する。具体的には、実カメラ視点動画像生成部121は、前景背景差分処理によって、1視点カメラ動画像から被写体領域の動画像を実カメラ視点動画像として抽出する。
 多視点カメラ動画像が受信遅延判定部92から供給された場合、実カメラ視点動画像生成部121は、実カメラ視点位置を表す情報に基づいて、多視点カメラ動画像のうちの特定のカメラ動画像を1視点カメラ動画像として選択する。実カメラ視点動画像生成部121により選択された1視点カメラ動画像は、実カメラ視点動画像の生成に用いられる。
 一方、1視点カメラ動画像が受信遅延判定部92から供給された場合、実カメラ視点動画像生成部121は、そのカメラ動画像を用いて、実カメラ視点動画像を生成する。実カメラ視点動画像生成部121により生成された実カメラ視点動画像は、背景合成部122に供給される。
 背景合成部122は、実カメラ視点動画像生成部121から供給された実カメラ視点動画像に、受信部91から供給されたCG背景を合成する。CG背景が合成された実カメラ視点動画像は、生成遅延判定部95に供給される。
 生成遅延判定部95は、自由視点動画像の生成に遅延が生じているか否かを判定し、判定結果を配信動画像生成部96に供給する。例えば、視聴装置14において表示される動画像のフレームレートが60fpsである場合、自由視点動画像の生成が16msec以内に行われる必要がある。このため、16msec以内に自由視点動画像が生成された場合、自由視点動画像の生成に遅延が生じていないと判定される。
 また、生成遅延判定部95は、背景合成部113から供給された自由視点動画像と、背景合成部122から供給された実カメラ視点動画像を配信動画像生成部96に供給する。
 配信動画像生成部96は、情報処理システム1に設けられた各種の判定部から供給された自由視点動画像の生成の成否に関する判定結果に基づいて、情報処理システム1に設けられた各構成を制御する制御部として機能する。
 具体的には、配信動画像生成部96は、受信部91から供給された撮像遅延判定部71による判定結果に基づいて、キャプチャシステム11に、多視点カメラ動画像を送信させるか、または、1視点カメラ動画像を送信させるかを選択する。配信動画像生成部96は、キャプチャシステム11において送信されるカメラ動画像を指定する制御信号を生成する。
 配信動画像生成部96により生成された制御信号は、制御信号送信部97に供給される。制御信号送信部97においては、配信動画像生成部96から供給された制御信号がキャプチャシステム11に対して送信される。
 また、配信動画像生成部96は、受信遅延判定部92による判定結果に基づいて、正常なカメラの台数と位置が、3Dモデルの形状の品質を保証できるものであるか否かを判定する。
 配信動画像生成部96は、自身による判定結果に基づいて、仮想視点動画像生成部112に自由視点動画像を生成させるか否かを選択する。配信動画像生成部96は、選択結果に応じて、仮想視点動画像生成部112と実カメラ視点動画像生成部121を制御する。
 さらに、配信動画像生成部96は、生成遅延判定部95による判定結果に基づいて、自由視点動画像を送信するか、または、実カメラ視点動画像を送信するかを選択する。
 なお、視聴装置14に対して送信する動画像が自由視点動画像から実カメラ視点動画像に切り替えられる場合、配信動画像生成部96は、仮想カメラワークを生成し、仮想視点動画像生成部112に供給する。
 配信動画像送信部98は、配信動画像生成部96から供給された自由視点動画像または実カメラ視点動画像を視聴装置14に対して送信する。
・視聴装置14の構成
 図12は、視聴装置14の機能構成例を示すブロック図である。
 図12に示すように、視聴装置14は、端末情報送信部141、動画像受信部142、および表示部143により構成される。
 端末情報送信部141は、無線通信または有線通信に対応した通信モジュールなどを制御し、キャプチャシステム11に対して端末情報を送信する。
 動画像受信部142は、サーバ12から送信されてきた自由視点動画像または実カメラ視点動画像を受信し、表示部143に供給する。
 表示部143は、動画像受信部142から供給された動画像をディスプレイに表示する。
・各機器の動作
 ここで、以上のような構成を有する情報処理システム1において行われる処理について説明する。
 図13は、キャプチャシステム11、サーバ12、および視聴装置14が行う処理の流れを示すシーケンス図である。
 ステップS41において、視聴装置14の端末情報送信部141は、視聴装置14の端末情報をキャプチャシステム11に対して送信する。
 ステップS1において、キャプチャシステム11の端末情報受信部61は、視聴装置14から送信されてきた端末情報を受信する。
 ステップS2において、キャプチャシステム11のカメラシステム台数選定部62は、端末情報に基づいて、撮像を行うカメラの台数を選定する。
 ステップS3において、キャプチャシステム11のインスタンス生成部63は、カメラパラメータを設定し、インスタンスを生成する。
 ステップS4において、キャプチャシステム11の撮像部64は、ステップS2で選定された台数のカメラを用いて被写体を撮像し、カメラ動画像を取得する。
 ステップS5において、キャプチャシステム11の撮像遅延判定部71は、撮像部64によるカメラ動画像の生成の成否を判定する。
 ステップS6において、キャプチャシステム11の送信部74は、判定結果をサーバ12に対して送信する。
 ステップS21において、サーバ12の受信部91は、キャプチャシステム11から送信されてきた撮像遅延判定部71による判定結果を受信する。
 ステップS22において、サーバ12の配信動画像生成部96は、動画像切り替え処理#1を行う。動画像切り替え処理#1により、キャプチャシステム11の撮像遅延判定部71による判定結果に基づいて制御信号が生成される。動画像切り替え処理#1については、図14のフローチャートを参照して後述する。
 ステップS23において、サーバ12の制御信号送信部97は、制御信号をキャプチャシステム11に対して送信する。
 ステップ7において、キャプチャシステム11の制御信号受信部72は、サーバ12から送信されてきた制御信号を受信する。
 ステップS8において、キャプチャシステム11の送信部74は、ステップS4で生成されたカメラ動画像を符号化することによって、符号化データを生成する。送信部74は、制御信号に従って、CG背景、仮想視点位置を表す情報、および実カメラ視点位置を表す情報とともに、符号化データをサーバ12に対して送信する。
 ステップS24において、サーバ12の受信部91は、キャプチャシステム11から送信されてきた符号化データ、CG背景、仮想視点位置を表す情報、および実カメラ視点位置を表す情報を受信する。受信部91は、符号化データを復号し、カメラ動画像を復元する。
 ステップS25において、サーバ12の受信遅延判定部92は、符号化データの受信に遅延が生じているか否か、および、カメラ動画像の復元の成否を判定する。
 ステップS26において、サーバ12の配信動画像生成部96は、動画像切り替え処理#2を行う。動画像切り替え処理#2により、受信遅延判定部92による判定結果に基づいて、自由視点動画像の生成が制御される。動画像切り替え処理#2については、図15のフローチャートを参照して後述する。
 ステップS27において、サーバ12の自由視点動画像生成部93は、配信動画像生成部96による制御に従って、自由視点動画像を生成する。また、サーバ12の実カメラ視点動画像生成部94は、配信動画像生成部96による制御に従って、実カメラ視点動画像を生成する。
 ステップS28において、サーバ12の生成遅延判定部95は、ステップS27で行われた自由視点動画像の生成に遅延が生じているか否かを判定する。
 ステップS29において、サーバ12の配信動画像生成部96は、動画像切り替え処理#3を行う。動画像切り替え処理#3により、生成遅延判定部95による判定結果に基づいて、自由視点動画像を送信するか、または、実カメラ視点動画像を送信するかが制御される。動画像切り替え処理#3については、図16のフローチャートを参照して後述する。
 ステップS30において、サーバ12の配信動画像送信部98は、配信動画像生成部96による制御に従って、自由視点動画像または実カメラ視点動画像を視聴装置14に対して送信する。
 ステップS42において、視聴装置14の動画像受信部142は、サーバ12から送信されてきた動画像を受信する。
 ステップS43において、視聴装置14の表示部143は、サーバ12から送信されてきた動画像をディスプレイに表示する。
 次に、図14のフローチャートを参照して、図13のステップS22において行われる動画像切り替え処理#1について説明する。
 ステップS61において、図13のステップS5の撮像遅延判定部71による判定結果に従った判定が行われ、撮像部64に異常が発生していないと撮像遅延判定部71により判定された場合、処理はステップS62に進む。
 ステップS62において、サーバ12の配信動画像生成部96は、多視点カメラ動画像を送信させるための制御信号を生成する。その後、図13のステップS22に戻り、それ以降の処理が行われる。
 一方、ステップS61において、撮像部64に異常が発生したと撮像遅延判定部71により判定された場合、処理はステップS63に進む。
 ステップS63において、サーバ12の配信動画像生成部96は、正常なカメラの台数と分布が、3Dモデルの形状の品質を保証できるものであるか否かを判定する。3Dモデルの形状の品質を保証するためには、それぞれが所定の位置に配置された複数台のカメラにより生成された多視点カメラ動画像が必要となる。配信動画像生成部96は、正常なカメラのカメラパラメータを用いて、正常なカメラの分布を確認することになる。
 キャプチャシステム11によって、3Dモデルを生成するために必須のカメラが指定されるようにしてもよい。この場合、指定された必須のカメラに異常が発生した場合、正常なカメラの台数と分布が、3Dモデルの形状の品質を保証できるものではないと判定される。3Dモデルを生成するために必須のカメラとして、例えば被写体の正面に設けられたズームカメラが指定される。
 正常なカメラの台数と分布が、3Dモデルの形状の品質を保証できるものであるとステップS63において判定された場合、処理はステップS62に進む。
 一方、正常なカメラの台数と分布が、3Dモデルの形状の品質を保証できるものではないとステップS63において判定された場合、処理はステップS64に進む。
 ステップS64において、サーバ12の配信動画像生成部96は、1視点カメラ動画像を送信させるための制御信号を生成する。その後、図13のステップS22に戻り、それ以降の処理が行われる。
 次に、図15のフローチャートを参照して、図13のステップS26において行われる動画像切り替え処理#2について説明する。
 ステップS71において、図13のステップS25の受信遅延判定部92による判定結果に従った判定が行われ、符号化データの受信に遅延が発生していないと受信遅延判定部92により判定された場合、処理はステップS72に進む。
 ステップS72において、サーバ12の配信動画像生成部96は、正常なカメラの台数と分布が、3Dモデルの形状の品質を保証できるものであるか否かを判定する。配信動画像生成部96は、正常なカメラのカメラパラメータを用いて、正常なカメラの分布を確認する。
 正常なカメラの台数と分布が、3Dモデルの形状の品質を保証できるものではないとステップS72において判定された場合、処理はステップS73に進む。
 ステップS73において、サーバ12の配信動画像生成部96は、仮想視点動画像生成部112に対して、自由視点動画像を生成させないように制御を行う。また、配信動画像生成部96は、実カメラ視点動画像生成部121に対して、実カメラ視点動画像を生成させるように制御を行う。その後、図13のステップS26に戻り、それ以降の処理が行われる。
 一方、正常なカメラの台数と分布が、3Dモデルの形状の品質を保証できるものであるとステップS72において判定された場合、処理はステップS74に進む。ステップS71において、符号化データの受信に遅延が発生していないと受信遅延判定部92により判定された場合も同様に、処理はステップS72に進む。
 ステップS74において、図13のステップS25の受信遅延判定部92による判定結果に従った判定が行われ、復元されたカメラ動画像が破綻していたと受信遅延判定部92により判定された場合、処理はステップS75に進む。
 ステップS75において、サーバ12の配信動画像生成部96は、正常なカメラの台数と分布が、3Dモデルの形状の品質を保証できるものであるか否かを判定する。配信動画像生成部96は、正常なカメラのカメラパラメータを用いて、正常なカメラの分布を確認する。
 正常なカメラの台数と分布が、3Dモデルの形状の品質を保証できるものではないとステップS75において判定された場合、処理はステップS73に進む。
 一方、正常なカメラの台数と分布が、3Dモデルの形状の品質を保証できるものであるとステップS75において判定された場合、処理はステップS76に進む。また、ステップS74において、復元されたカメラ動画像が破綻していないと受信遅延判定部92により判定された場合も同様に、処理はステップS76に進む。
 ステップS76において、サーバ12の配信動画像生成部96は、仮想視点動画像生成部112に対して、自由視点動画像を生成させるように制御を行う。また、配信動画像生成部96は、実カメラ視点動画像生成部121に対して、実カメラ視点動画像を生成させるように制御を行う。その後、図13のステップS22に戻り、それ以降の処理が行われる。
 次に、図16のフローチャートを参照して、図13のステップS29において行われる動画像切り替え処理#3について説明する。
 ステップS81において、図13のステップS28の生成遅延判定部95による判定結果に従った判定が行われ、指定時間以内に自由視点動画像を生成する処理が終了したと生成遅延判定部95により判定された場合、処理はステップS82に進む。
 ステップS82において、サーバ12の配信動画像生成部96は、配信動画像送信部98に対して、自由視点動画像を送信させるように制御を行う。その後、図13のステップS29に戻り、それ以降の処理が行われる。
 一方、ステップS81において、指定時間以内に自由視点動画像を生成する処理が終了していないと生成遅延判定部95により判定された場合、処理はステップS83に進む。
 ステップS83において、サーバ12の配信動画像生成部96は、配信動画像送信部98に対して、実カメラ視点動画像を送信させるように制御を行う。その後、図13のステップS29に戻り、それ以降の処理が行われる。
 以上の処理により、サーバ12は、カメラに異常が発生することなどによって自由視点動画像が生成されない場合においても、途切れさせることなく、動画像を視聴装置14に表示させることが可能となる。
 撮像遅延判定部71による判定結果に基づいて、サーバ12に対して送信されるカメラ動画像が制御されるため、カメラ動画像を送信するために用いられる帯域の量を抑えることができる。
 受信遅延判定部92による判定結果に基づいて、自由視点動画像の生成が制御されるため、サーバ12において行われる処理の負荷を抑えることができる。
<3.第2の情報処理の例>
 図17は、情報処理システム1における情報の流れの他の例を示す図である。
 図17に示すように、端末情報が視聴装置14からキャプチャシステム11に供給されるとともに、視聴装置14において指定された仮想視点位置を表す情報がサーバ12に供給されるようにしてもよい。
 図18は、キャプチャシステム11の第2の機能構成例を示すブロック図である。
 図18において、図9のキャプチャシステム11の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
 図18に示すキャプチャシステム11の構成は、送信部74がCG背景を取得しない点で、図9を参照して説明した構成と異なる。
 送信部74は、送信制御部73による制御に従って、符号化データを、CG背景および実カメラ視点位置を表す情報とともに、サーバ12に対して送信する。
 図19は、サーバ12の第2の機能構成例を示すブロック図である。
 図19において、図11のサーバ12の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
 図19に示すサーバ12の構成は、仮想視点位置受信部201が仮想視点動画像生成部112の前段に設けられる点で、図11を参照して説明した構成と異なる。
 仮想視点位置受信部201は、無線通信または有線通信に対応した通信モジュールなどを制御し、視聴装置14から送信されてきた仮想視点位置を表す情報を受信する。仮想視点位置受信部201により受信された仮想視点位置を表す情報は、仮想視点動画像生成部112に供給される。
 仮想視点動画像生成部112は、配信動画像生成部96による制御に従って、仮想視点位置受信部201から供給された仮想視点位置を表す情報に基づいて自由視点動画像を生成する。
 配信動画像生成部96は、視聴装置14により指定された仮想視点位置に最も近い位置に配置されたカメラによって撮像されたカメラ動画像を用いて実カメラ視点動画像を生成するように、実カメラ視点動画像生成部121を制御することも可能である。
 なお、多視点カメラ動画像の符号化データのうちの少なくとも1つ以上の受信に遅延が生じている、または、多視点カメラ動画像のうちの少なくとも1つ以上が破綻していると受信遅延判定部92により判定された場合、視聴装置14により指定された仮想視点位置から見た自由視点動画像が生成されない。
 このため、配信動画像生成部96は、配信動画像送信部98に、動画像の視点が変更できない旨を表す情報を視聴装置14に対して送信させるようにしてもよい。このような場合、動画像の視点が変更できない旨を表す情報が、視聴装置14のディスプレイに表示されることになる。
 図20は、視聴装置14の第2の機能構成例を示すブロック図である。
 図20において、図12の視聴装置14の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
 図20に示す視聴装置14の構成は、仮想視点位置送信部221が設けられる点で、図12を参照して説明した構成と異なる。
 視聴装置14に対しては、例えばユーザの操作に応じて、仮想視点位置を表す情報が入力される。
 仮想視点位置送信部221は、仮想視点位置を表す情報をサーバ12に対して送信する。
 なお、情報処理システム1により実行される処理の流れは、基本的に、図13のシーケンス図に示した処理の流れと同様である。サーバ12に対して仮想視点位置を表す情報が視聴装置14から送信される処理は適宜行われる。
 以上のように、視聴装置14のユーザは、視聴装置14を用いて、自由視点動画像に写っている被写体を見る視点を指定することが可能となる。
 サーバ12へのカメラ動画像やCG背景の送信に用いられるネットワーク帯域の量に余裕がある場合、自由視点動画像に合成されるライティングや影を表す情報が、符号化データとともにサーバ12に対して送信されるようにしてもよい。
 図21は、キャプチャシステム11の第2の他の機能構成例を示すブロック図である。
 図21において、図18のキャプチャシステム11の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。後述する図23においても同様である。
 図21に示すキャプチャシステム11の構成は、送信部74がハイポリゴンのCG背景、ライティングを表す情報、影を表す情報、およびローポリゴンのCG背景を取得する点で、図18を参照して説明した構成と異なる。
 ハイポリゴンのCG背景は、多量のポリゴンを用いて精細に描画されたCG背景である。ハイポリゴンのCG背景は、自由視点動画像の背景として用いられる。ローポリゴンのCC背景は、ハイポリゴンのCG背景と比べて少量のポリゴンを用いて描画されたCG背景である。ローポリゴンのCG背景は、実カメラ視点動画像の背景として用いられる。
 ライティングと影を表す情報は、自由視点動画像において被写体の3Dモデルに対して当てられるライティングと、ライティングにより生じる3Dモデルの影を表す情報である。
 送信部74は、送信制御部73による制御に従って、符号化データを、ハイポリゴンのCG背景、ライティングを表す情報、影を表す情報、実カメラ視点位置を表す情報、およびローポリゴンのCG背景とともに、サーバ12に対して送信する。
 送信部74は、多視点カメラ動画像の符号化データを送信する場合、ハイポリゴンのCG背景、ライティングを表す情報、影を表す情報、実カメラ視点位置を表す情報、およびローポリゴンのCG背景をサーバ12に対して送信する。一方、1視点カメラ動画像の符号化データを送信する場合、実カメラ視点位置を表す情報およびローポリゴンのCG背景をサーバ12に対して送信する。
 自由視点動画像に合成されるライティングや影を表す情報が、符号化データとともにサーバ12に対して送信される場合におけるサーバ12の構成は、図19を参照して説明した構成と同じである。
 受信部91(図19)は、キャプチャシステム11から送信されてきたハイポリゴンのCG背景、ライティングを表す情報、影を表す情報、実カメラ視点位置を表す情報、およびローポリゴンのCG背景を受信する。ハイポリゴンのCG背景、ライティングを表す情報、および影を表す情報は、自由視点動画像生成部93の背景合成部113に供給される。ローポリゴンを表す情報は、実カメラ視点動画像生成部94の背景合成部122に供給される。
 背景合成部113は、仮想視点動画像生成部112から供給された自由視点動画像に、受信部91から供給されたハイポリゴンのCG背景、ライティング、および影を合成する。CG背景などが合成された自由視点動画像は、生成遅延判定部95に供給される。
 背景合成部122は、実カメラ視点動画像生成部121から供給された実カメラ視点動画像に、受信部91から供給されたローポリゴンのCG背景を合成する。CG背景が合成された実カメラ視点動画像は、生成遅延判定部95に供給される。
 以上のように、ライティングや影が合成された自由視点動画像が視聴装置14に表示されるため、ユーザ体験の質を向上させることが可能となる。
 また、ハイポリゴンのCG背景が自由視点動画像に合成されるため、より精細な画質の自由視点動画像をユーザに提供することができる。
<4.第3の情報処理の例>
 図22は、情報処理システム1における情報の流れのさらに他の例を示す図である。
 図22に示すように、端末情報が視聴装置14からキャプチャシステム11に供給されるとともに、視聴装置14において指定された仮想視点位置を表す情報がキャプチャシステム11とサーバ12のそれぞれに供給されるようにしてもよい。
 図23は、キャプチャシステム11の第3の機能構成例を示す図である。
 図23に示すキャプチャシステム11の構成は、実カメラ視点位置選択部251が端末情報受信部61の後段に設けられる点で、図18を参照して説明した構成と異なる。
 端末情報受信部61は、視聴装置14から送信されてきた仮想視点位置を表す情報を受信し、実カメラ視点位置選択部251に供給する。
 実カメラ視点位置選択部251に対しては、設定内容を表す情報がインスタンス生成部63から供給される。
 実カメラ視点位置選択部251は、インスタンス生成部63から供給された情報に基づいて、視聴装置14により指定された仮想視点位置の最も近傍に配置されたカメラを選択する。実カメラ視点位置選択部251は、選択されたカメラの位置を表す情報を、実カメラ視点位置を表す情報として送信部74に供給する。
 視聴装置14において指定された仮想視点位置を表す情報がキャプチャシステム11とサーバ12のそれぞれに供給される場合における視聴装置14の構成は、図20を参照して説明した構成と同じである。
 仮想視点位置送信部221(図20)は、仮想視点位置を表す情報をキャプチャシステム11とサーバ12のそれぞれに対して送信する。
 ここで、以上のような構成を有する情報処理システム1の全体において行われる処理について説明する。
 図24は、キャプチャシステム11、サーバ12、および視聴装置14が行う他の処理の流れを示すシーケンス図である。
 視聴装置14におけるステップS141の処理は、図13のステップS41の処理と同様である。また、キャプチャシステム11におけるステップS101乃至S103の処理は、図1のステップS1乃至S3の処理と同様である。
 ステップS142において、視聴装置14の仮想視点位置送信部221は、仮想視点位置を表す情報をキャプチャシステム11に対して送信する。
 ステップS104において、キャプチャシステム11の端末情報受信部61は、視聴装置14から送信されてきた仮想視点位置を表す情報を受信する。
 ステップS105において、実カメラ視点位置選択部251は、ステップS103で設定されたカメラパラメータに基づいて、視聴装置14により指定された仮想視点位置の最も近傍に配置されたカメラの位置を実カメラ視点位置として選択する。
 キャプチャシステム11におけるステップS106乃至S110の処理は、図13のステップS4乃至S8の処理と同様である。また、サーバ12におけるステップS121乃至S130の処理は、図13のステップS21乃至S30の処理と同様である。視聴装置14におけるステップS143,S144の処理は、図13のステップS42,S43の処理と同様である。
 以上のように、表示される動画像が自由視点動画像から実カメラ視点動画像に切り替わる際、自由視点動画像における仮想視点位置の最も近傍にあるカメラにより生成されたカメラ動画像を用いて、実カメラ視点動画像が生成される。
 これにより、表示される動画像が自由視点動画像から実カメラ視点動画像に切り替わる際に生じる、不自然さを低減することが可能となる。
<5.変形例>
・コンピュータについて
 上述したキャプチャシステム11、サーバ12、および視聴装置14のそれぞれの処理の全部または一部は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。キャプチャシステム11、サーバ12、および視聴装置14のそれぞれの処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または汎用のパーソナルコンピュータなどに、プログラム記録媒体からインストールされる。
 図25は、上述したキャプチャシステム11、サーバ12、および視聴装置14のそれぞれの処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003は、バス1004により相互に接続されている。
 バス1004には、さらに、入出力インタフェース1005が接続されている。入出力インタフェース1005には、キーボード、マウスなどよりなる入力部1006、ディスプレイ、スピーカなどよりなる出力部1007が接続される。また、入出力インタフェース1005には、ハードディスクや不揮発性のメモリなどよりなる記憶部1008、ネットワークインタフェースなどよりなる通信部1009、リムーバブルメディア1011を駆動するドライブ1010が接続される。
 以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを入出力インタフェース1005及びバス1004を介してRAM1003にロードして実行することにより、上述した一連の処理が行われる。
 CPU1001が実行するプログラムは、例えばリムーバブルメディア1011に記録して、あるいは、ローカルエリアネットワーク、インターネット、デジタル放送といった、有線または無線の伝送媒体を介して提供され、記憶部1008にインストールされる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
・その他
 なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
<構成の組み合わせ例>
 本技術は、以下のような構成をとることもできる。
(1)
 動画像を送信する送信部と、
 複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、前記送信部に、前記自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成される前記カメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御する制御部と
 を備える情報処理装置。
(2)
 前記制御部は、
  前記判定結果として、前記自由視点動画像の生成に遅延が生じていないと判定される場合、前記送信部に前記自由視点動画像を送信させ、
  前記判定結果として、前記自由視点動画像の生成に遅延が生じていると判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
 前記(1)に記載の情報処理装置。
(3)
 前記自由視点動画像の生成に遅延が生じているか否かを判定する生成判定部をさらに備え、
 前記制御部は、
  前記生成判定部により、前記自由視点動画像の生成に遅延が生じていないと判定される場合、前記送信部に前記自由視点動画像を送信させ、
  前記生成判定部により、前記自由視点動画像の生成に遅延が生じていると判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
 前記(2)に記載の情報処理装置。
(4)
 前記制御部は、
  前記判定結果として、前記複数のカメラ動画像の符号化データの復号に成功したと判定される場合、前記送信部に前記自由視点動画像を送信させ、
  前記判定結果として、前記複数のカメラ動画像の符号化データのうちの少なくとも1つ以上の復号に失敗したと判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
 前記(1)乃至(3)のいずれかに記載の情報処理装置。
(5)
 前記複数のカメラ動画像の符号化データの復号の成否を判定する復号判定部をさらに備え、
 前記制御部は、
  前記復号判定部により、前記複数のカメラ動画像の符号化データの復号に成功したと判定される場合、前記送信部に前記自由視点動画像を送信させ、
  前記復号判定部により、前記複数のカメラ動画像の符号化データのうちの少なくとも1つ以上の復号に失敗したと判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
 前記(4)に記載の情報処理装置。
(6)
 前記制御部は、
  前記判定結果として、前記自由視点動画像の生成に用いられる前記複数のカメラ動画像の受信に遅延が生じていないと判定される場合、前記送信部に前記自由視点動画像を送信させ、
  前記判定結果として、前記自由視点動画像の生成に用いられる前記複数のカメラ動画像のうちの少なくとも1つ以上の受信に遅延が生じていると判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
 前記(1)乃至(5)のいずれかに記載の情報処理装置。
(7)
 前記複数のカメラ動画像の受信に遅延が生じているか否かを判定する受信判定部をさらに備え、
 前記制御部は、
  前記受信判定部により、前記複数のカメラ動画像の受信に遅延が生じていないと判定される場合、前記送信部に前記自由視点動画像を送信させ、
  前記受信判定部により、前記複数のカメラ動画像のうちの少なくとも1つ以上の受信に遅延が生じていると判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
 前記(6)に記載の情報処理装置。
(8)
 前記複数のカメラ動画像を用いて前記自由視点動画像を生成する自由視点動画像生成部をさらに備え、
 前記制御部は、前記判定結果に基づいて、前記送信部に、前記自由視点動画像生成部により生成された前記自由視点動画像を送信させるか、または、前記実カメラ視点動画像を生成させるかを制御する
 前記(1)乃至(7)のいずれかに記載の情報処理装置。
(9)
 前記自由視点動画像生成部は、前記制御部の制御に従って、前記制御部が前記送信部に前記実カメラ視点動画像を送信させる前に、前記実カメラ視点動画像の視点に近づくように視点移動する前記自由視点動画像を生成する
 前記(8)に記載の情報処理装置。
(10)
 前記複数のカメラ動画像の符号化データを復号し、前記複数のカメラ動画像を復元する復号部をさらに備え、
 前記自由視点動画像生成部は、前記復号部により復元された前記複数のカメラ動画像を用いて前記自由視点動画像を生成する
 前記(8)または(9)に記載の情報処理装置。
(11)
 他の装置から送信されてくる前記符号化データを受信する受信部をさらに備え、
 前記復号部は、前記受信部により受信された前記符号化データを復号する
 前記(10)に記載の情報処理装置。
(12)
 前記カメラ動画像を用いて前記実カメラ視点動画像を生成する実カメラ視点動画像生成部をさらに備え、
 前記制御部は、前記判定結果に基づいて、前記送信部に、前記自由視点動画像を送信させるか、または、前記実カメラ視点動画像生成部により生成された前記実カメラ視点動画像を生成させるかを制御する
 前記(1)乃至(11)のいずれかに記載の情報処理装置。
(13)
 前記実カメラ視点動画像生成部は、前記自由視点動画像の生成に用いられる前記複数のカメラ動画像のいずれかを用いて前記実カメラ視点動画像を生成する
 前記(12)に記載の情報処理装置。
(14)
 前記実カメラ視点動画像生成部は、前記自由視点動画像の生成に用いられる前記複数のカメラ動画像とは異なる他のカメラ動画像を用いて前記実カメラ視点動画像を生成する
 前記(12)に記載の情報処理装置。
(15)
 前記実カメラ視点動画像生成部は、前記制御部の制御に従って、視点が前記自由視点動画像により近いカメラ動画像を用いて前記実カメラ視点動画像を生成する
 前記(12)乃至(14)のいずれかに記載の情報処理装置。
(16)
 情報処理装置が、
 複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、送信部に、前記自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成される前記カメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御し、
 前記制御に従って、前記自由視点動画像または前記実カメラ視点動画像を送信する
 情報処理方法。
(17)
 コンピュータに、
 複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、送信部に、前記自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成される前記カメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御し、
 前記制御に従って、前記自由視点動画像または前記実カメラ視点動画像を送信する
 処理を実行させるためのプログラム。
(18)
 撮像装置と情報処理装置とを備える情報処理システムであって、
 前記撮像装置は、
  それぞれが被写体を撮像してカメラ動画像を生成する複数の撮像部と、
  複数の前記撮像部による前記カメラ動画像の生成の成否を判定する撮像判定部と、
  複数の前記撮像部により生成された複数の前記カメラ動画像と、前記撮像判定部による判定結果とを前記情報処理装置に送信する情報送信部と
 を備え、
 前記情報処理装置は、
  前記撮像装置から送信された複数の前記カメラ動画像および前記判定結果を受信する情報受信部と、
  動画像を送信する動画像送信部と、
  前記情報受信部により受信された前記判定結果に基づいて、前記情報送信部に、前記情報受信部により受信された複数の前記カメラ動画像を用いて生成される任意の位置および向きを視点とする動画像である自由視点動画像を送信させるか、または、前記情報受信部により受信された前記カメラ動画像を用いて生成される前記撮像部の位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御する制御部と
 を備える情報処理システム。
(19)
 前記撮像装置の前記撮像判定部は、前記複数のカメラ動画像について、同期ずれおよびフレームの欠損が発生しているか否かを判定する
 前記(18)に記載の情報処理システム。
(20)
 前記情報処理装置は、
  前記制御部により前記判定結果に基づいて生成された、前記カメラ動画像を指定する制御情報を前記撮像装置に送信する制御情報送信部をさらに備え、
 前記撮像装置は、
  前記情報処理装置から送信された前記制御情報を受信する制御情報受信部をさらに備え、
  前記撮像装置の前記情報送信部は、前記制御情報受信部により受信された前記制御情報に従って、前記制御部により指定された前記カメラ動画像を前記情報処理装置に送信する
 前記(18)または(19)に記載の情報処理システム。
 1 情報処理システム, 11 キャプチャシステム, 12 サーバ, 13 ネットワーク, 14 視聴装置, 21 撮像装置, 22 送信装置, 31 カメラシステム, 61 端末情報受信部, 62 カメラシステム台数選定部, 63 インスタンス生成部, 64 撮像部, 71 撮像遅延判定部, 72 制御信号受信部, 73 送信制御部, 74 送信部, 91 受信部, 92 受信遅延判定部, 93 自由視点動画像生成部, 94 実カメラ視点動画像生成部, 95 生成遅延判定部, 96 配信動画像生成部, 97 制御信号送信部, 98 配信動画像送信部, 111 三次元再構成部, 112 仮想視点動画像生成部, 113 背景合成部, 121 実カメラ視点動画像生成部, 122 背景合成部, 141 端末情報送信部, 142 動画像受信部, 143 表示部, 201 仮想視点位置受信部, 221 仮想視点位置送信部, 251 実カメラ視点位置選択部

Claims (20)

  1.  動画像を送信する送信部と、
     複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、前記送信部に、前記自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成される前記カメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御する制御部と
     を備える情報処理装置。
  2.  前記制御部は、
      前記判定結果として、前記自由視点動画像の生成に遅延が生じていないと判定される場合、前記送信部に前記自由視点動画像を送信させ、
      前記判定結果として、前記自由視点動画像の生成に遅延が生じていると判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
     請求項1に記載の情報処理装置。
  3.  前記自由視点動画像の生成に遅延が生じているか否かを判定する生成判定部をさらに備え、
     前記制御部は、
      前記生成判定部により、前記自由視点動画像の生成に遅延が生じていないと判定される場合、前記送信部に前記自由視点動画像を送信させ、
      前記生成判定部により、前記自由視点動画像の生成に遅延が生じていると判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
     請求項2に記載の情報処理装置。
  4.  前記制御部は、
      前記判定結果として、前記複数のカメラ動画像の符号化データの復号に成功したと判定される場合、前記送信部に前記自由視点動画像を送信させ、
      前記判定結果として、前記複数のカメラ動画像の符号化データのうちの少なくとも1つ以上の復号に失敗したと判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
     請求項1に記載の情報処理装置。
  5.  前記複数のカメラ動画像の符号化データの復号の成否を判定する復号判定部をさらに備え、
     前記制御部は、
      前記復号判定部により、前記複数のカメラ動画像の符号化データの復号に成功したと判定される場合、前記送信部に前記自由視点動画像を送信させ、
      前記復号判定部により、前記複数のカメラ動画像の符号化データのうちの少なくとも1つ以上の復号に失敗したと判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
     請求項4に記載の情報処理装置。
  6.  前記制御部は、
      前記判定結果として、前記自由視点動画像の生成に用いられる前記複数のカメラ動画像の受信に遅延が生じていないと判定される場合、前記送信部に前記自由視点動画像を送信させ、
      前記判定結果として、前記自由視点動画像の生成に用いられる前記複数のカメラ動画像のうちの少なくとも1つ以上の受信に遅延が生じていると判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
     請求項1に記載の情報処理装置。
  7.  前記複数のカメラ動画像の受信に遅延が生じているか否かを判定する受信判定部をさらに備え、
     前記制御部は、
      前記受信判定部により、前記複数のカメラ動画像の受信に遅延が生じていないと判定される場合、前記送信部に前記自由視点動画像を送信させ、
      前記受信判定部により、前記複数のカメラ動画像のうちの少なくとも1つ以上の受信に遅延が生じていると判定される場合、前記送信部に前記実カメラ視点動画像を送信させる
     請求項6に記載の情報処理装置。
  8.  前記複数のカメラ動画像を用いて前記自由視点動画像を生成する自由視点動画像生成部をさらに備え、
     前記制御部は、前記判定結果に基づいて、前記送信部に、前記自由視点動画像生成部により生成された前記自由視点動画像を送信させるか、または、前記実カメラ視点動画像を生成させるかを制御する
     請求項1に記載の情報処理装置。
  9.  前記自由視点動画像生成部は、前記制御部の制御に従って、前記制御部が前記送信部に前記実カメラ視点動画像を送信させる前に、前記実カメラ視点動画像の視点に近づくように視点移動する前記自由視点動画像を生成する
     請求項8に記載の情報処理装置。
  10.  前記複数のカメラ動画像の符号化データを復号し、前記複数のカメラ動画像を復元する復号部をさらに備え、
     前記自由視点動画像生成部は、前記復号部により復元された前記複数のカメラ動画像を用いて前記自由視点動画像を生成する
     請求項8に記載の情報処理装置。
  11.  他の装置から送信されてくる前記符号化データを受信する受信部をさらに備え、
     前記復号部は、前記受信部により受信された前記符号化データを復号する
     請求項10に記載の情報処理装置。
  12.  前記カメラ動画像を用いて前記実カメラ視点動画像を生成する実カメラ視点動画像生成部をさらに備え、
     前記制御部は、前記判定結果に基づいて、前記送信部に、前記自由視点動画像を送信させるか、または、前記実カメラ視点動画像生成部により生成された前記実カメラ視点動画像を生成させるかを制御する
     請求項1に記載の情報処理装置。
  13.  前記実カメラ視点動画像生成部は、前記自由視点動画像の生成に用いられる前記複数のカメラ動画像のいずれかを用いて前記実カメラ視点動画像を生成する
     請求項12に記載の情報処理装置。
  14.  前記実カメラ視点動画像生成部は、前記自由視点動画像の生成に用いられる前記複数のカメラ動画像とは異なる他のカメラ動画像を用いて前記実カメラ視点動画像を生成する
     請求項12に記載の情報処理装置。
  15.  前記実カメラ視点動画像生成部は、前記制御部の制御に従って、視点が前記自由視点動画像により近いカメラ動画像を用いて前記実カメラ視点動画像を生成する
     請求項12に記載の情報処理装置。
  16.  情報処理装置が、
     複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、送信部に、前記自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成される前記カメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御し、
     前記制御に従って、前記自由視点動画像または前記実カメラ視点動画像を送信する
     情報処理方法。
  17.  コンピュータに、
     複数のカメラが被写体を撮像して生成した複数のカメラ動画像を用いた任意の位置および向きを視点とする動画像である自由視点動画像の生成の成否に関する判定結果に基づいて、送信部に、前記自由視点動画像を送信させるか、または、カメラが被写体を撮像して生成したカメラ動画像から生成される前記カメラの位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御し、
     前記制御に従って、前記自由視点動画像または前記実カメラ視点動画像を送信する
     処理を実行させるためのプログラム。
  18.  撮像装置と情報処理装置とを備える情報処理システムであって、
     前記撮像装置は、
      それぞれが被写体を撮像してカメラ動画像を生成する複数の撮像部と、
      複数の前記撮像部による前記カメラ動画像の生成の成否を判定する撮像判定部と、
      複数の前記撮像部により生成された複数の前記カメラ動画像と、前記撮像判定部による判定結果とを前記情報処理装置に送信する情報送信部と
     を備え、
     前記情報処理装置は、
      前記撮像装置から送信された複数の前記カメラ動画像および前記判定結果を受信する情報受信部と、
      動画像を送信する動画像送信部と、
      前記情報受信部により受信された前記判定結果に基づいて、前記情報送信部に、前記情報受信部により受信された複数の前記カメラ動画像を用いて生成される任意の位置および向きを視点とする動画像である自由視点動画像を送信させるか、または、前記情報受信部により受信された前記カメラ動画像を用いて生成される前記撮像部の位置および向きを視点とする動画像である実カメラ視点動画像を送信させるかを制御する制御部と
     を備える情報処理システム。
  19.  前記撮像装置の前記撮像判定部は、前記複数のカメラ動画像について、同期ずれおよびフレームの欠損が発生しているか否かを判定する
     請求項18に記載の情報処理システム。
  20.  前記情報処理装置は、
      前記制御部により前記判定結果に基づいて生成された、前記カメラ動画像を指定する制御情報を前記撮像装置に送信する制御情報送信部をさらに備え、
     前記撮像装置は、
      前記情報処理装置から送信された前記制御情報を受信する制御情報受信部をさらに備え、
      前記撮像装置の前記情報送信部は、前記制御情報受信部により受信された前記制御情報に従って、前記制御部により指定された前記カメラ動画像を前記情報処理装置に送信する
     請求項18に記載の情報処理システム。
PCT/JP2020/043735 2019-12-09 2020-11-25 情報処理装置および方法、プログラム、並びに、情報処理システム WO2021117482A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/770,525 US20220394231A1 (en) 2019-12-09 2020-11-25 Information processing device, information processing method, program, and information processing system
DE112020006061.6T DE112020006061T5 (de) 2019-12-09 2020-11-25 Informationsverarbeitungsvorrichtung und -verfahren, programm und informationsverarbeitungssystem
CN202080083748.6A CN114762355B (zh) 2019-12-09 2020-11-25 信息处理装置和方法、程序以及信息处理系统
JP2021563836A JP7552616B2 (ja) 2019-12-09 2020-11-25 情報処理装置および方法、プログラム、並びに、情報処理システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222245 2019-12-09
JP2019-222245 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021117482A1 true WO2021117482A1 (ja) 2021-06-17

Family

ID=76329825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043735 WO2021117482A1 (ja) 2019-12-09 2020-11-25 情報処理装置および方法、プログラム、並びに、情報処理システム

Country Status (5)

Country Link
US (1) US20220394231A1 (ja)
JP (1) JP7552616B2 (ja)
CN (1) CN114762355B (ja)
DE (1) DE112020006061T5 (ja)
WO (1) WO2021117482A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119916A (ja) * 2010-11-30 2012-06-21 Canon Inc 放送受信装置及びその制御方法
WO2018043225A1 (ja) * 2016-09-01 2018-03-08 パナソニックIpマネジメント株式会社 多視点撮像システム、三次元空間再構成システム、及び三次元空間認識システム
JP2018133063A (ja) * 2017-02-17 2018-08-23 株式会社ソニー・インタラクティブエンタテインメント 画像生成装置および画像生成方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246667A (ja) * 2003-02-14 2004-09-02 Keiogijuku 自由視点動画像データ生成方法およびその処理をコンピュータに実行させるためのプログラム
JP6079131B2 (ja) * 2012-10-25 2017-02-15 富士通株式会社 画像処理装置、方法、及びプログラム
KR102375411B1 (ko) * 2015-05-11 2022-03-18 삼성전자주식회사 차량 주변 영상 제공 방법 및 장치
US10003786B2 (en) * 2015-09-25 2018-06-19 Intel Corporation Method and system of 3D image capture with dynamic cameras
JP6672075B2 (ja) * 2016-05-25 2020-03-25 キヤノン株式会社 制御装置、制御方法、及び、プログラム
JP6894687B2 (ja) 2016-10-11 2021-06-30 キヤノン株式会社 画像処理システム、画像処理装置、制御方法、及び、プログラム
JP6419128B2 (ja) * 2016-10-28 2018-11-07 キヤノン株式会社 画像処理装置、画像処理システム、画像処理方法及びプログラム
JP6961612B2 (ja) * 2016-11-30 2021-11-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 三次元モデル配信方法及び三次元モデル配信装置
JP6857032B2 (ja) * 2017-01-05 2021-04-14 キヤノン株式会社 制御装置、システム、制御装置の制御方法
JP6482580B2 (ja) * 2017-02-10 2019-03-13 キヤノン株式会社 情報処理装置、情報処理方法、およびプログラム
US11200675B2 (en) 2017-02-20 2021-12-14 Sony Corporation Image processing apparatus and image processing method
JP6807781B2 (ja) * 2017-03-13 2021-01-06 株式会社小松製作所 表示システム、表示方法、及び遠隔操作システム
JP6871801B2 (ja) * 2017-05-11 2021-05-12 キヤノン株式会社 画像処理装置、画像処理方法、情報処理装置、撮像装置および画像処理システム
JP7121470B2 (ja) * 2017-05-12 2022-08-18 キヤノン株式会社 画像処理システム、制御方法、及び、プログラム
JP6953188B2 (ja) * 2017-06-01 2021-10-27 キヤノン株式会社 画像処理システム、画像処理システムの制御方法、及び、プログラム
JP6924079B2 (ja) * 2017-06-12 2021-08-25 キヤノン株式会社 情報処理装置及び方法及びプログラム
JP7030452B2 (ja) * 2017-08-30 2022-03-07 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、情報処理システム及びプログラム
JP6425780B1 (ja) * 2017-09-22 2018-11-21 キヤノン株式会社 画像処理システム、画像処理装置、画像処理方法及びプログラム
JP6415675B1 (ja) * 2017-12-04 2018-10-31 キヤノン株式会社 生成装置、生成方法及びプログラム
JP2019103067A (ja) * 2017-12-06 2019-06-24 キヤノン株式会社 情報処理装置、記憶装置、画像処理装置、画像処理システム、制御方法、及びプログラム
JP7023696B2 (ja) * 2017-12-12 2022-02-22 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
JP7051457B2 (ja) * 2018-01-17 2022-04-11 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
JP2019135617A (ja) * 2018-02-05 2019-08-15 キヤノン株式会社 情報処理装置およびその制御方法、画像処理システム
JP7075252B2 (ja) * 2018-03-23 2022-05-25 キヤノン株式会社 情報処理装置およびその制御方法、プログラム
JP2020010300A (ja) * 2018-07-12 2020-01-16 キヤノン株式会社 映像生成装置、映像生成装置の制御方法及びプログラム
JP7207913B2 (ja) * 2018-09-07 2023-01-18 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119916A (ja) * 2010-11-30 2012-06-21 Canon Inc 放送受信装置及びその制御方法
WO2018043225A1 (ja) * 2016-09-01 2018-03-08 パナソニックIpマネジメント株式会社 多視点撮像システム、三次元空間再構成システム、及び三次元空間認識システム
JP2018133063A (ja) * 2017-02-17 2018-08-23 株式会社ソニー・インタラクティブエンタテインメント 画像生成装置および画像生成方法

Also Published As

Publication number Publication date
DE112020006061T5 (de) 2022-10-27
JP7552616B2 (ja) 2024-09-18
CN114762355B (zh) 2024-08-02
JPWO2021117482A1 (ja) 2021-06-17
US20220394231A1 (en) 2022-12-08
CN114762355A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN109997358B (zh) 用于自由视点视频流式传输的以解码器为中心的uv编解码器
CN113347405B (zh) 缩放相关的方法和装置
KR102166158B1 (ko) 입체 영상 생성 장치, 입체 영상 복원 장치와 이를 포함하는 입체 영상 재생 시스템
KR102308604B1 (ko) 레거시 및 몰입형 렌더링 디바이스들에 대한 몰입형 비디오를 포맷하는 방법, 장치 및 스트림
EP3857898B1 (en) Apparatus and method for generating and rendering a video stream
CN113438495A (zh) Vr直播方法、装置、系统、设备及存储介质
WO2022191070A1 (ja) 3dオブジェクトのストリーミング方法、装置、及びプログラム
EP3729805B1 (en) Method and apparatus for encoding and decoding volumetric video data
WO2021117482A1 (ja) 情報処理装置および方法、プログラム、並びに、情報処理システム
US20240212294A1 (en) Augmenting video or external environment with 3d graphics
WO2022004233A1 (ja) 情報処理装置、情報処理方法およびプログラム
US11985181B2 (en) Orchestrating a multidevice video session
JP2020042666A (ja) 画像生成装置、画像生成装置の制御方法及びプログラム
TWI817273B (zh) 即時多視像視訊轉換方法和系統
WO2022259632A1 (ja) 情報処理装置及び情報処理方法
US20230115563A1 (en) Method for a telepresence system
JP6322740B1 (ja) 画像送信装置及び画像送信方法、並びに、画像受信装置及び画像受信方法
WO2024056524A1 (en) Methods and apparatuses for immersive videoconference
JP2024097254A (ja) 画像処理装置、画像処理方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563836

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20899724

Country of ref document: EP

Kind code of ref document: A1