WO2021117421A1 - Active energy ray-curable coating composition - Google Patents

Active energy ray-curable coating composition Download PDF

Info

Publication number
WO2021117421A1
WO2021117421A1 PCT/JP2020/042624 JP2020042624W WO2021117421A1 WO 2021117421 A1 WO2021117421 A1 WO 2021117421A1 JP 2020042624 W JP2020042624 W JP 2020042624W WO 2021117421 A1 WO2021117421 A1 WO 2021117421A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
composition according
meth
acrylate
Prior art date
Application number
PCT/JP2020/042624
Other languages
French (fr)
Japanese (ja)
Inventor
晴彦 西田
Original Assignee
積水フーラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水フーラー株式会社 filed Critical 積水フーラー株式会社
Priority to JP2021563810A priority Critical patent/JPWO2021117421A1/ja
Publication of WO2021117421A1 publication Critical patent/WO2021117421A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the present invention relates to a composition for active energy ray-curable coating.
  • an insulating moisture-proof coating is applied with a coating agent for the purpose of protecting metal exposed parts of electronic parts such as IC chips and chip coils from moisture, dust, corrosive gas, etc. Is given.
  • coating agents have become a particularly important factor in order to ensure the reliability of electronic circuit mounting boards.
  • coating agents such as solvent-drying type, moisture-curing type, and ultraviolet-curing type are mainly known.
  • a coating agent using a polyurethane resin, an acrylic resin, or a polyolefin resin is known.
  • moisture-curable coating agents are also known.
  • a photocurable coating agent has been proposed as a coating agent that can be particularly preferably used for electronic circuit substrates (Patent Document 1).
  • the solvent-drying coating agent is inferior in productivity because it takes time to dry the solvent.
  • it since it contains a solvent, it is necessary to manage the working environment at the coating site (manufacturing line).
  • the ultraviolet curable coating agent a coating agent using an acrylic compound such as urethane (meth) acrylate oligomer or (meth) acrylate ester monomer is mainly used, and a radical polymerization type is particularly used for electronic parts. It has become mainstream.
  • the light source of such an ultraviolet curable coating agent is a high-pressure mercury lamp or a metal halide lamp, sufficient deep curability can be obtained by a combination of a photopolymerization initiator, but a UV-LED light source having a single wavelength is sufficient. There is a problem that a good deep curability cannot be obtained.
  • UV-LED light source has a cost advantage as a factory line facility because the light source life of the device is long and the irradiation device is relatively inexpensive. Therefore, since the lamps have become popular in recent years instead of high-pressure mercury lamps, the above-mentioned problems related to deep curability have become even more non-negligible.
  • a film thickness of 1 mm or more may be required to ensure insulation reliability, and in that case, if sufficient deep curability cannot be obtained, insulation reliability will decrease.
  • the coating agent that has entered under the lead of the lead portion of the IC chip is shielded from ultraviolet rays by the lead portion, and the portion becomes a dark portion and remains in an uncured state.
  • an uncured state may have some effect on the electronic circuit board.
  • Patent Document 2 which is a photocurable composition combined with moisture curing, has been proposed, but since curing proceeds when it comes into contact with moisture in the air, it is easy to handle at the coating site (factory line). Is expected to worsen, and delicate control of the coating agent is required during work, which is not realistic.
  • Patent Document 3 proposes a coating agent containing urethane (meth) acrylate as a main component using a polyester polyol containing a dimer acid component, but it has a high viscosity and is unlikely to be practical. It is considered that the water resistance and moisture permeability can be improved by containing the dimer acid component, but it is insufficient to ensure the insulation reliability.
  • Patent Document 4 proposes a coating composition based on a fluorine-based UV curable functional group-containing compound.
  • the base resin has a fluorine skeleton, and it can be expected that it has excellent water resistance, but LEDs The deep curability, dark curability, thermal shock resistance, and insulation reliability of the light source are insufficient.
  • Patent Document 5 proposes an LED curable moisture-proof insulating coating composition based on an oligomer having a butadiene skeleton, which can be expected to be excellent in water resistance and insulation reliability, but is deeply curable by an LED light source. And the dark part curability is insufficient.
  • an object of the present invention is to provide an active energy ray-curable coating composition having excellent deep curability, insulation reliability and thermostable impact resistance in a thick film. ..
  • the present inventor uses an active energy ray-curable coating having excellent deep curability, insulation reliability and thermal shock resistance in a thick film by using a predetermined oligomer. It has been found that a composition for use can be provided. The present inventor has completed the present invention by conducting further research based on such findings.
  • the present invention provides the following composition for active energy ray-curable coating.
  • Item 1 A composition for active energy ray-curable coating containing the following components (A), (B) and (C).
  • (C) Photopolymerization initiator [In formula (1), R 1 represents a perfluoroalkyl group having 4 to 6 carbon atoms. ] Item 2. Further, a fluorescent whitening agent is contained as a component (D), and the component (D) is contained. Item 2.
  • composition according to Item 1 wherein the fluorescent whitening agent is at least one selected from the group consisting of an oxazole-based compound, a coumarin-based compound, and a stilbene-based compound.
  • Item 3. Item 2. The composition according to Item 1 or 2, further comprising a thiol compound as the component (E).
  • Item 4. Item 3. The composition according to Item 3, wherein the thiol compound is a secondary thiol compound having 2 to 4 thiol groups.
  • the unsaturated group is a substituted or unsubstituted acryloyl group.
  • the component (A) is a segment derived from at least one selected from the group consisting of an aliphatic diisocyanate compound, an alicyclic diisocyanate compound and an aromatic diisocyanate compound, and a hydrogenated polyester polyol dimerate, a polyester dimerate polyol and a polycarbonate.
  • Item 2. The composition according to any one of Items 1 to 4, which is an oligomer containing a segment derived from at least one selected from the group consisting of diols.
  • Item 8. Item 2. The composition according to any one of Items 1 to 7, wherein the component (A) has a perfluoroalkyl group content of 0.01 to 0.6 mol / kg.
  • Item 9. Item 2. The composition according to any one of Items 1 to 8, wherein the component (B) is a (meth) acrylic acid ester monomer having a hydroxyl group as a molecule.
  • the component (C) is an acylphosphine oxide-based photopolymerization initiator.
  • Item 11. Item 2. The composition according to any one of Items 1 to 10, wherein the component (C) is an acylphosphine oxide-based photopolymerization initiator represented by the following formula (2) or (3).
  • Item 12. Item 2. The composition according to any one of Items 1 to 11, wherein the viscosity at 25 ° C. is 3000 mPa ⁇ s or less.
  • composition for active energy ray-curable coating of the present invention is excellent in deep curability, insulation reliability and thermal shock resistance in a thick film.
  • the active energy ray-curable coating composition of the present invention (hereinafter, also simply referred to as “the composition of the present invention”) is a coating composition that is cured by being irradiated with active energy rays.
  • the active energy ray is not particularly limited, and examples thereof include ultraviolet rays, visible rays, X-rays, and electron beams. Among them, it is preferable to use ultraviolet rays at the time of curing, and examples of the ultraviolet light source include high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, xenon lamps, electrodeless discharge lamps, LED lamps, etc., and high-pressure mercury lamps and metal halides. Lamps or LEDs are preferred.
  • the irradiation amount of ultraviolet rays is usually 2000 to 5,000 mJ / cm 2 (preferably 3500 to 4500 mJ / cm 2 ), but when the light source is an LED, a device that emits an emission wavelength of 365 nm to 405 nm is preferable. Irradiation with ultraviolet rays of 3,500 to 5000 mJ / cm 2 (preferably 4000 to 4500 mJ / cm 2) may be performed.
  • composition of the present invention contains components (A), (B) and (C).
  • the component (A) is an oligomer having a group represented by the following formula (1) and a substituted or unsubstituted acryloyl group.
  • R 1 is a perfluoroalkyl group having 4 to 6 carbon atoms.
  • the perfluoro group may be linear or branched, but is more preferably linear. Further, the number of carbon atoms is more preferably 4 or 6.
  • the oligomer has a substituted or unsubstituted acryloyl group at one end, and the group is more preferably an acryloyl group represented by the following formula (4).
  • R 2 can be an arbitrary substituent, but is preferably a hydrogen atom or a methyl group. That is, it is preferably an unsubstituted acryloyl group or a meta-acryloyl group.
  • the oligomer of component (A) is preferably a linear oligomer, and may have a group represented by the above formula (1) at one end and a substituted or unsubstituted acryloyl group at the other end. preferable.
  • the oligomer of the component (A) is a segment derived from at least one selected from the group consisting of an aliphatic diisocyanate compound, an alicyclic diisocyanate compound and an aromatic diisocyanate compound (hereinafter, also simply referred to as “Seg1”). Further, it is preferable to include a segment derived from at least one selected from the group consisting of a hydrogenated polyester polyol dimerate, a polyester dimerate polyol and a polycarbonate diol (hereinafter, also simply referred to as “Seg2”).
  • the compound from which Seg1 is derived include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), and methyl.
  • isophorone diisocyanate hexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and tolylene diisocyanate are particularly preferable, and isophorone diisocyanate is most preferable.
  • Seg2 is preferably a residue derived from at least one selected from the group consisting of hydrogenated polyester polyol dimerate, polyester dimerate polyol and polycarbonate diol.
  • the oligomer of the component (A) is an oligomer represented by the following formula (5) or (6).
  • R 3 represents an alkenyl group having 1 to 6 carbon atoms, preferably 2 to 4 carbon atoms, and R 4 represents a hydrogen atom or a methyl group.
  • n is a real number from 3 to 7.
  • the group represented by the above formula (1) is, for example, 2- (perfluorohexyl) ethanol or 2- (perfluorobutyl) ethanol, and the above-mentioned alicyclic diisocyanate compound, aliphatic diisocyanate compound and At least one selected from aromatic diisocyanate compounds can be obtained by an addition reaction (also referred to as urethanization reaction) between an isocyanate group and a hydroxyl group.
  • an addition reaction also referred to as urethanization reaction
  • the unsaturated group present at the other end of the oligomer is at least selected from the group consisting of, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate. It can be obtained as an acryloyl group by subjecting one type and the diisocyanate compound to an addition reaction (also referred to as a butylation reaction) between an isocyanate group and a hydroxyl group.
  • the dimer acid of the polyester polyol dimer acid in the production of Seg2 is produced by dimerization of C18 unsaturated fatty acids made from plant-based fats and oils, and has a dibasic acid of C36 dicarboxylic acid (38 carbon atoms). Typical compounds thereof are obtained by heating linoleic acid and oleic acid. Further, in the present specification, the dimer acid is a saturated dibasic acid obtained by reducing the double bond existing in the molecule by a hydrogenation reaction in addition to the one having a double bond in the molecule. It is defined as a concept that also includes.
  • Diomeric polyester polyols include, but are limited to, reaction products obtained by reacting the above-mentioned dimer acids with, for example, short-chain diols, polyalkylene glycols, long-chain polyols, or various other diols. It's not a thing.
  • the molecular weight of the polyester polyol dimerate is preferably 1000 to 3000, more preferably 1000 to 2000. Within such a numerical range, the molecular weight of the oligomer becomes an appropriate range, and a coating composition having excellent mechanical properties, thermal shock resistance, and insulation reliability can be obtained.
  • the polycarbonate diol in the production of Seg2 is a compound obtained by reacting dialkyl carbonates, alkylene carbonates, and other carbonates with the diol, and a hydrocarbon group (C3 to C18) derived from the diol is formed via a carbonate bond.
  • a hydrocarbon group (C3 to C18) derived from the diol is formed via a carbonate bond.
  • Examples thereof include those having a linked polymer chain and hydroxyl groups bonded to both ends of the polymer chain and having a structure represented by the following formula (7).
  • R 5 indicates a residue obtained by removing the hydroxyl group from the diol that reacts with carbonates, and R 5 and p are set so that the number average molecular weight of the carbonate diol is 500 to 3000.
  • the number average molecular weight of the polycarbonate diol is preferably 500 to 2000 or less, and more preferably 500 to 1000.
  • the mass average molecular weight of the oligomer represented by the formula (5) or (6) is preferably 5000 to 30,000.
  • the mass average molecular weight is 5000 or more, the hardness of the composition does not become too high, and excellent heat impact resistance as well as excellent flexibility can be obtained.
  • the mass average molecular weight is 30,000 or less, the viscosity of the coating composition does not become too high, and as a result, excellent coatability of the composition can be maintained.
  • Seg2 is derived from polyester dimerate, it is preferably 8000 to 30000, and more preferably 10000 to 18000. Further, particularly when Seg2 is derived from a polycarbonate diol, the mass average molecular weight of the oligomer represented by the formula (5) or (6) is preferably 5000 to 10000.
  • the mass average molecular weight of the component (A) is defined as a measured value obtained by converting with standard polystyrene using a gel permeation chromatograph measuring device.
  • the mass average molecular weight of the component (A) can be measured, for example, with the following measuring device and measuring conditions.
  • the perfluoroalkyl group content of the component (A) is preferably 0.01 to 0.6 mol / kg, more preferably 0.1 to 0.5 mol / kg.
  • the perfluoroalkyl group referred to here means CF 3 (CF 2 ) q- (where q is a natural number of 4 to 6). That is, it represents the number of moles of perfluorohexyl contained in 1 kg of oligomer, and when 2- (perfluorohexyl) ethanol was used to synthesize the component (A), the total amount of the charged raw materials was 1 kg.
  • the content of the component (A) is preferably 20 to 50% by mass, preferably 30 to 40% by mass, based on the total mass of the component (A) and the component (B) described later. Is more preferable.
  • the component (B) is a (meth) acrylic acid ester monomer having one unsaturated bond in the molecule. If a monofunctional (meth) acrylic acid ester monomer having one unsaturated bond in the molecule is not used, the flexibility and thermostable impact resistance of the coating agent composition will not be sufficient.
  • (meth) acrylic acid ester monomer having one unsaturated bond in the molecule examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-.
  • a (meth) acrylic acid ester monomer having an alicyclic structure a (meth) acrylic acid ester monomer having a cyclic structure such as an aromatic skeleton, and an ethylene oxide-modified (meth) having an aromatic skeleton. It is preferable to use at least one selected from the group consisting of an acrylic acid ester monomer and a (meth) acrylic acid ester monomer having a hydroxyl group as a molecule. Among these, it is particularly preferable to use a (meth) acrylic acid ester monomer having a hydroxyl group as a molecule because good adhesion of the coating agent to the surface to be treated can be obtained.
  • Examples of the (meth) acrylic acid ester monomer having an alicyclic structure include isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopentanyl (meth) acrylate. can do.
  • the (meth) acrylate having an aromatic skeleton and modified with ethylene oxide includes a cyclic structure (meth) such as phenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, and an aromatic skeleton.
  • phenoxyethyl (meth) acrylate can be exemplified.
  • phenoxypolyethylene glycol (meth) acrylate isobornyl (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate and the like are particularly preferable.
  • Examples of the (meth) acrylic acid ester monomer having a hydroxyl group in the molecule include 4-hydroxybutyl (meth) acrylate and 2-hydroxy-3-phenoxypropyl acrylate, and 2-hydroxy-3-phenoxypropyl acrylate. Is particularly preferable.
  • acrylic acid ester monomer of the component (B) a commercially available product can be used.
  • commercially available products for example, Kyoeisha Chemical Co., Ltd. product name "Light Acrylate P-200A” as phenoxypolyethylene glycol acrylate, Toa Synthetic Chemical Co., Ltd. product name "Aronix M-111” as nonylphenoxypolyethylene glycol acrylate, as isobornyl acrylate.
  • Is a product name "IBXA” manufactured by Osaka Organic Chemical Co., Ltd., and Hitachi Kasei Co., Ltd. "FA-513M” is mentioned as a dicyclopentanyl methacrylate.
  • phenoxyethyl acrylate product name "Viscoat 192" manufactured by Osaka Organic Chemical Industry Co., Ltd., product name "Light acrylate PO-A” manufactured by Kyoeisha Chemical Co., Ltd., and as 2-hydroxy-3-phenoxypropyl acrylate, manufactured by Toa Synthetic Chemical Co., Ltd.
  • Examples include the product name "Aronix M-5700” and the product name “Epoxyester M-600A” manufactured by Kyoeisha Chemical Co., Ltd.
  • the content of the component (B) is preferably 50 to 80% by mass, more preferably 60 to 70% by mass, based on the total mass of the components (A) and (B). ..
  • the photopolymerization initiator used as the component (C) may be one that generates radicals by light and the radicals efficiently initiate radical polymerization of unsaturated group-containing oligomers and (meth) acrylic acid ester monomers.
  • the photopolymerization initiator can be widely used.
  • photopolymerization initiators include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and benzyl dimethyl ketal.
  • the acylphosphine oxide-based photopolymerization initiator represented by the following formula (2) or (3), which has absorption in the long wavelength region of UV light (phenylbis (2,4,6-trimethylbenzoyl)).
  • -Phosphine oxide, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide is most preferable.
  • the long wavelength in UV light mainly represents UV-A, represents a wavelength of 315 to 400 nm, and particularly means having an absorption peak wavelength in the vicinity of 375 nm.
  • the content of the component (C) is preferably 0.5 to 3.0 parts by mass, preferably 1.0 to 2.0 parts by mass, based on 100 parts by mass of the total of the components (A) and (B). It is more preferable to do so. By adopting such a configuration, excellent deep curability can be obtained.
  • a commercially available product may be used as the photopolymerization initiator of the component (C).
  • Examples of commercially available products include IGM Resin product names "Omnirad 819" and "Omnirad TPO-H”.
  • the composition of the present invention further contains a fluorescent whitening agent as the component (D).
  • a fluorescent whitening agent known ones can be widely adopted, and there is no particular limitation.
  • the fluorescent whitening agent include oxazole-based, coumarin-based, triazole-based, imidazole-based, virazolone-based, naphthalimide-based, and stillbenzene-based fluorescent whitening agents.
  • 2,2'-(2,5-thiophenidiyl) bis (5-tert-butylbenzoxazole) which is an oxazole-based fluorescent whitening agent represented by the following formula (8), can be used.
  • 2,2'-(2,5-thiophenidiyl) bis which is an oxazole-based fluorescent whitening agent represented by the following formula (8), can be used.
  • 2,2'-(2,5-thiophenidiyl) bis which is an oxazole-based fluorescent whitening agent represented by the following formula (8)
  • the oxazole-based fluorescent whitening agent is excited by absorbing ultraviolet light having a wavelength of 320 to 400 nm (peak wavelength 370 nm), and emits purple-blue to blue-green fluorescence (visible light) having a wavelength of 400 to 460 nm (peak wavelength 430 nm). It is a thing.
  • the photosensitivity is further increased in ultraviolet irradiation emitting an emission wavelength of 365 nm to 405 nm, which contributes to the acquisition of more excellent deep curability and dark curability of the coating composition.
  • the blending amount of the component (D) is preferably 0.1 to 0.5 parts by mass, preferably 0.1 to 0.2 parts by mass, based on 100 parts by mass of the total of the components (A) and (B). It is more preferable to do so.
  • the photosensitivity is further increased in the ultraviolet irradiation emitting an emission wavelength of 365 nm to 405 nm, and the deep curability and the dark curability of the coating composition can be improved.
  • fluorescent whitening agent for component (D) a commercially available product may be used.
  • examples of commercially available products include BASF's product name "TINOPAL OB”.
  • the composition of the present invention further contains a thiol compound as a component (E).
  • the thiol compound may be any of a primary, secondary and tertiary thiol compound. Above all, it is preferable to use a secondary thiol compound. By using the secondary thiol compound, an appropriate storage stability period can be maintained without affecting the storage stability of the coating composition. Further, among the secondary thiol compounds, a compound having 2 to 4 thiol groups is preferable, and a compound having 4 thiol groups is particularly preferable.
  • 1,4-bis (3-mercaptobutylyloxy) butane, 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 ( 1H, 3H, 5H) -Trione, Trimethylol Propantris (3-mercaptobutyrate) Trimethylol Propantris (3-mercaptopropionate), Pentaerythritol Tetrakiss (3-Mercaptobutyrate), Pentaerythritol Tetrakiss (3- Mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate) and the like. These may be used alone or in combination of two or more.
  • pentaerythritol tetrakis (3-mercaptobutyrate) and trimethylolpropane tris (3-mercaptobutyrate), which are secondary thiol compounds, are particularly preferable.
  • the blending amount of the component (E) is preferably 1.0 part by mass or less, preferably 0.3 to 0.5 part by mass, based on 100 parts by mass of the total of the components (A) and (B). More preferred.
  • the coating composition is crosslinked by ultraviolet irradiation emitting an emission wavelength of 365 nm to 405 nm. The degree is improved and a coating having a high degree of curing can be formed. These degrees of curing can be confirmed by the gel fraction. Further, by setting the blending amount of the component (E) to 0.3 parts by mass or more with respect to 100 parts by mass of the total of the components (A) and (B), sufficient dark part curability can be obtained.
  • the composition of the present invention may contain a filler as appropriate depending on its purpose and the like.
  • a filler an inorganic filler used in a normal curable resin composition can be used.
  • the filler is preferably in the form of fine particles.
  • fused silica, crystalline silica, fumed silica, quartz fine powder, calcium carbonate, mica, talc, etc. can be used, but it is more preferable to use fumed silica.
  • the average primary particle size of fumed silica is preferably 5 nm to 50 ⁇ m.
  • a polymerization inhibitor an adhesion imparting agent, a leveling agent, an antifoaming agent, an antioxidant, a flame retardant, etc. can be appropriately added as long as the effects of the present invention are not impaired.
  • the composition of the present invention preferably has a viscosity at 25 ° C. of 50 to 3000 mPa ⁇ s, and has a viscosity of 100 to 2000 mPa ⁇ s. s is preferable.
  • the viscosity can be measured and calculated by using a Brookfield rotational viscometer.
  • the method for producing the composition of the present invention is not particularly limited, and the composition can be produced by a conventional method.
  • the above-mentioned components (A) to (C) and, if necessary, other components can be mixed using a kneader whose temperature can be adjusted, for example, a planetary mixer, a twin-screw mixer, a high-shear mixer, a butterfly mixer, or the like.
  • a kneader whose temperature can be adjusted, for example, a planetary mixer, a twin-screw mixer, a high-shear mixer, a butterfly mixer, or the like.
  • the method of coating the electronic circuit mounting substrate using the composition of the present invention is not particularly limited, and coating can be performed by a conventionally known method, and a method of coating using a dispenser device is particularly preferable. ..
  • Component (A-1) Synthesis Example 1 In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500 g of polyester polyol dimerate (Crawder preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate (ebonic). VESTNAT IPDI) 111.12 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, and then 45.51 g of 2- (perfluorohexyl) ethanol and 43.54 g of 2-hydroxyethyl acrylate were added. The reaction was carried out with stirring at 80 ° C.
  • component (A-1) mass average molecular weight 14,900, perfluorohexyl group content: 0.18 mol / kg) was obtained.
  • Component (A-2) Synthesis Example 2 In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500.0 g of polyester polyol dimerate (Crawder's preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate. (Ebonic VESTNAT IPDI) 111.12 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, and then 91.03 g of 2- (perfluorohexyl) ethanol and 29.03 g of 2-hydroxyethyl acrylate were added.
  • component (A-2) mass average molecular weight: 15200, perfluorohexyl group content: 0.34 mol / kg) was obtained.
  • Component (A-3) Synthesis Example 3 In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500.0 g of polyester polyol dimerate (Crawder's preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate. (Ebonic VESTNAT IPDI) 111.12 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, and then 66.02 g of 2- (perfluorobutyl) ethanol and 29.03 g of 2-hydroxyethyl acrylate were added.
  • component (A-3) mass average molecular weight: 14900, perfluorohexyl group content: 0.35 mol / kg) was obtained.
  • Component (A-4) Synthesis Example 4 In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 400 g of polycarbonate diol (Nipporan 965 from Toso, hydroxyl value: 112 mgKOH / g, number average molecular weight: 1000) and isophorone diisocyanate (VESTNAT IPDI from Ebonic) 177.83 g was added and stirred at 80 ° C. for 3 hours under reflux with nitrogen to react, then 72.82 g of perfluorohexyl alcohol and 78.08 g of 2-hydroxypropyl acrylate were added and stirred at 80 ° C. for 15 hours for reaction.
  • polycarbonate diol Nipporan 965 from Toso, hydroxyl value: 112 mgKOH / g, number average molecular weight: 1000
  • isophorone diisocyanate VESTNAT IPDI from Ebonic
  • component (A-4) mass average molecular weight: 7300 perfluorohexyl group content: 0.27 mol / kg
  • Component (A-5) Synthesis Example 5 In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 400 g of polycarbonate diol (Nipporan 965 from Toso, hydroxyl value: 112 mgKOH / g, number average molecular weight: 1000) and isophorone diisocyanate (VESTNAT IPDI from Ebonic) 177.83 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, then 145.64 g of perfluorohexyl alcohol and 52.06 g of 2-hydroxypropyl acrylate were added, and the mixture was stirred at 80 ° C. for 15 hours.
  • polycarbonate diol Nipporan 965 from Toso, hydroxyl value: 112 mgKOH / g, number average molecular weight: 1000
  • isophorone diisocyanate VESTNAT IPDI from Ebonic
  • component (A-5) mass average molecular weight: 7700, perfluorohexyl group content: 0.52 mol / kg) was obtained.
  • Component (A-6) Synthesis Example 6 In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500 g of polyester polyol dimerate (Crawder's preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate ( Ebonic VESTNAT IPDI) 83.36 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, and then 9.10 g of 2- (perfluorohexyl) ethanol and 26.12 g of 2-hydroxyethyl acrylate were added.
  • component (A-6) mass average molecular weight 16,000 perfluorohexyl group content: 0.04 mol / kg
  • Component (A-7) Synthesis Example 7 In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500 g of polyester polyol dimerate (Crawder's preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate ( Ebonic VESTNAT IPDI) 83.36 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, and then 22.76 g of 2- (perfluorohexyl) ethanol and 21.77 g of 2-hydroxyethyl acrylate were added.
  • polyester polyol dimerate Cosmetic's preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000
  • isophorone diisocyanate Ebonic VESTNAT IPDI
  • component (A-7) mass average molecular weight 16,300 perfluorohexyl group content: 0.10 mol / kg
  • Component (A-8) Synthesis Example 8 In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500 g of polyester polyol dimerate (Crawder Preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate (ebonic). VESTNAT IPDI) 111.12 g was added, and the mixture was stirred and reacted at 80 ° C. under reflux with nitrogen for 3 hours, then 58.05 g of 2-hydroxyethyl acrylate was added, and the mixture was stirred and reacted at 80 ° C. for 15 hours for reaction. The termination was confirmed by the disappearance of the isocyanate residue by the titration according to JIS K7301. As a result, the component (A-8) (mass average molecular weight: 14,600) was obtained.
  • Component (A-9) Synthesis Example 9 In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 400 g of a hydrogenated polybutadiene polyol (Tosoh GI-1000, hydroxyl value: 70 mgKOH / g, number average molecular weight: 1,000) and isophorone diisocyanate ( 177.83 g of Ebonic VESTNAT IPDI) was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, then 92.88 g of 2-hydroxyethyl acrylate was added, and the mixture was stirred and reacted at 80 ° C. for 15 hours. The completion of the reaction was confirmed by the disappearance of the isocyanate residue by the titration according to JIS K7301. As a result, component (A-9) (mass average molecular weight: 20,500) was obtained.
  • a hydrogenated polybutadiene polyol To
  • Examples and comparative examples Based on the formulations shown in Tables 1 and 2, the above components (A) to (E) are evaluated by producing a composition for active energy ray-curable coating using a stirring mixer equipped with a heating device. It was.
  • Viscosity measurement Using a Brookfield B-type viscometer (Type DVE), (Spindle SC4-No. 29) and Thermocell were prepared, the chamber was filled with 13 cc of the coating composition, and the viscosity at 25 ° C. was measured.
  • a peeling PET was attached to a stainless steel plate (5 cm ⁇ 5 cm) with double-sided tape so that the peeling surface was facing up, and a base base material for coating was prepared.
  • a base base material for coating was prepared.
  • the spacer was set on the prepared base material for coating, and the coating composition was filled to the height of the spacer.
  • the packed coating composition was cured with a UV irradiation device (Aure UJ30 head wavelength 365 nm ANUJ6186 manufactured by Panasonic Corporation) at an integrated irradiation amount of 4500 mJ / cm2.
  • the UV illuminance and the integrated irradiation amount were adjusted using an illuminance meter (UV Power PackII, Heraeus).
  • the cured coating film was peeled off, placed on high-quality paper so that the peeled coating film was on the bottom, and cured for 1 hour. After curing, the coating film was removed and evaluated according to the following evaluation criteria.
  • Uncured product is confirmed in the coating model of (dark area curability evaluation test)
  • a 1 mm spacer was used, the coating agent was filled, the film thickness was set to 1 mm, and then half the area of the filled part was made into an aluminum foil as shown in FIG. It was covered with UV light so that it would be a non-irradiated part.
  • the irradiated part is cured with the same UV irradiation device and integrated irradiation amount as in the deep curable, the aluminum foil is removed, and the distance from the end face to the curing is observed with reference to the end face of the irradiated part. Judged by.
  • A distance of 5.0 or more and 7.5 mm or less from the end face of the irradiation part leads to curing ⁇ : A distance of 2.5 or more and less than 5.0 mm from the end face of the irradiation part leads to curing ⁇ : 1.0 or more from the end face of the irradiation part A distance of less than 2.5 mm leads to curing ⁇ : Only the irradiated part is cured. There is no curing on the non-irradiated part covered with aluminum foil.
  • a coating device (Applicator (Unity IC30 PLUS) manufactured by Nordson, 3-axis robot (w / 4XP robot), Unity controller, nozzle 1.35 mm) was prepared.
  • a silicon rubber sheet having a thickness of 2 mm was prepared, cut into 2 cm ⁇ 3.5 cm, and cut out so that the filled portion of the coating agent became 15 ⁇ 30 mm as shown in FIG. 3, and used as a spacer.
  • the above spacer is set on the prepared copper-clad laminate, the coating composition is filled to the spacer height with the coating device, and the applied active energy ray coating composition is UV-irradiated in the same manner as in the deep curability evaluation.
  • the spacers were removed to obtain a coated coating film with a thickness of 2 mm, then the coating composition was applied, and the cured test piece was put into a thermal shock tester for 30 minutes at -40 ° C. The repetition of / 80 ° C. for 30 minutes was regarded as one cycle, and 500 cycles were carried out and evaluated according to the following evaluation criteria.
  • No peeling from the copper-clad laminate was caused.
  • When the coating area is 100%, the peeling is less than 10%.
  • When the coating area is 100%, there is 10 to 30% peeling.
  • X When the coating area is 100%, there is peeling of 30% or more.
  • the coating composition is applied to a comb-shaped electrode substrate (electrode spacing 0.318 mm) conforming to JIS Z3197 8.5.3e with the same coating device used in the measurement of thermal shock resistance so that the thickness is 1 mm. Then, the coating composition was cured with the same UV irradiation device and integrated irradiation amount used for the deep curability evaluation, and the test was performed for 500 hours using a migration tester under the conditions of 85 ° C. and 87.5% RH. Was evaluated according to the following evaluation criteria.
  • the insulation resistance is not generated dendrite 10 8 Omega more
  • the insulating resistance of at least 10 8 ⁇
  • ⁇ dendrite occurs insulation resistance is less than 10 8 Omega
  • a coating composition was applied to a copper-clad laminate (70 mm ⁇ 90 mm ⁇ 1.6 mm) in an area of 45 mm ⁇ 45 mm so as to have a thickness of 500 ⁇ m.
  • the coating composition was left at room temperature for 24 hours, and a cross-cut method conforming to JIS K5400 (cut interval 2 mm, mass). The number of eyes 25) was evaluated according to the following evaluation criteria.
  • Remaining squares are 15 or more and less than 20

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is an active energy ray-curable coating composition containing the components (A), (B), and (C) indicated below. (A) is an oligomer having a group represented by formula (1) and a substituted or unsubstituted acryloyl group, (B) is a (meth)acrylic acid ester monomer having one unsaturated bond per molecule thereof, and (C) is photopolymerization initiator (in formula (1), R1 represents a perfluoroalkyl group having 4-6 carbon atoms).

Description

活性エネルギー線硬化型コーティング用組成物Composition for active energy ray-curable coating
 本発明は、活性エネルギー線硬化型コーティング用組成物に関する。 The present invention relates to a composition for active energy ray-curable coating.
 従来より、電気・電子部品、特に電子回路実装基板においては、ICチップ及びチップコイル等の電子部品の金属露出部を湿気、塵埃又は腐食性ガス等から保護する目的で、コーティング剤により絶縁防湿コーティングが施されている。 Conventionally, in electric / electronic parts, especially electronic circuit mounting boards, an insulating moisture-proof coating is applied with a coating agent for the purpose of protecting metal exposed parts of electronic parts such as IC chips and chip coils from moisture, dust, corrosive gas, etc. Is given.
 近年、電子部品の実装密度が高くなり、電子回路実装基板の信頼性を確保するために、コーティング剤は特に重要なファクターとなっている。電子回路実装基板に塗布されるコーティング剤として、主に溶媒乾燥型、湿気硬化型、及び紫外線硬化型などのコーティング剤が公知である。 In recent years, the mounting density of electronic components has increased, and coating agents have become a particularly important factor in order to ensure the reliability of electronic circuit mounting boards. As coating agents applied to electronic circuit mounting substrates, coating agents such as solvent-drying type, moisture-curing type, and ultraviolet-curing type are mainly known.
 溶媒乾燥型コーティング剤としては、ポリウレタン樹脂、アクリル樹脂、又はポリオレフィン樹脂を用いたコーティング剤が公知である。その他にも、湿気硬化型コーティング剤も知られている。 As the solvent-drying coating agent, a coating agent using a polyurethane resin, an acrylic resin, or a polyolefin resin is known. In addition, moisture-curable coating agents are also known.
 また、特に電子回路基板に好適に使用可能なコーティング剤として、光硬化性コーティング剤が提案されている(特許文献1)。 Further, a photocurable coating agent has been proposed as a coating agent that can be particularly preferably used for electronic circuit substrates (Patent Document 1).
日本国特開2007-308681号公報Japanese Patent Application Laid-Open No. 2007-308681 日本国特開2017-179171号公報Japanese Patent Application Laid-Open No. 2017-179171 日本国特開2008-159437号公報Japanese Patent Application Laid-Open No. 2008-159437 日本国特開2014-159573号公報Japanese Patent Application Laid-Open No. 2014-159573 日本国特開2017-155207号公報Japanese Patent Application Laid-Open No. 2017-155207
 しかしながら、湿気硬化型コーティング剤は、一般的にシリコーン樹脂が使用されているところ、硬化時間が湿度により左右されるため、硬化に数時間もの時間を要することがあり、作業性に課題がある。 However, when a silicone resin is generally used as a moisture-curable coating agent, the curing time depends on the humidity, so that it may take several hours to cure, which poses a problem in workability.
 また、溶剤乾燥型コーティング剤は、溶剤を乾燥させる工程に時間を要するため、生産性の面で劣る。加えて、溶剤を含有するが故に、塗布現場(製造ライン)での作業環境管理が必要となる。 In addition, the solvent-drying coating agent is inferior in productivity because it takes time to dry the solvent. In addition, since it contains a solvent, it is necessary to manage the working environment at the coating site (manufacturing line).
 そこで、これらの課題を解決するために、近年では紫外線硬化型防湿コーティング剤が用いられる傾向にある。 Therefore, in recent years, there has been a tendency to use an ultraviolet curable moisture-proof coating agent in order to solve these problems.
 紫外線硬化型のコーティング剤としては、ウレタン(メタ)アクリレートオリゴマー、(メタ)アクリレートエステルモノマー等のアクリル系化合物を用いたコーティング剤が主に使用されており、特に電子部品用途としてはラジカル重合型が主流となっている。こうした紫外線硬化型のコーティング剤は光源が高圧水銀ランプあるいはメタルハライドランプである場合には光重合開始剤の組み合わせにより、十分な深部硬化性を得られるが、単一波長であるUV-LED光源では十分な深部硬化性が得られないという課題がある。 As the ultraviolet curable coating agent, a coating agent using an acrylic compound such as urethane (meth) acrylate oligomer or (meth) acrylate ester monomer is mainly used, and a radical polymerization type is particularly used for electronic parts. It has become mainstream. When the light source of such an ultraviolet curable coating agent is a high-pressure mercury lamp or a metal halide lamp, sufficient deep curability can be obtained by a combination of a photopolymerization initiator, but a UV-LED light source having a single wavelength is sufficient. There is a problem that a good deep curability cannot be obtained.
 特に、かかるUV-LED光源は、装置の光源寿命が長いことや照射装置が比較的安価であることから、工場ラインの設備としてコスト面での優位性がある。したがって、高圧水銀ランプなどに変わって近年、普及しつつあるため、上記した深部硬化性に関する課題は、なおさら無視できないものとなっている。 In particular, such a UV-LED light source has a cost advantage as a factory line facility because the light source life of the device is long and the irradiation device is relatively inexpensive. Therefore, since the lamps have become popular in recent years instead of high-pressure mercury lamps, the above-mentioned problems related to deep curability have become even more non-negligible.
 また、電子回路実装基板によっては絶縁信頼性を確保するために1mm以上の膜厚が必要な場合があり、その場合に十分な深部硬化性が得られないと、絶縁信頼性が低下する。 Further, depending on the electronic circuit mounting board, a film thickness of 1 mm or more may be required to ensure insulation reliability, and in that case, if sufficient deep curability cannot be obtained, insulation reliability will decrease.
 また一方で、前記紫外線硬化型のコーティング剤を使用した場合、ICチップのリード部のリード下に入り込んだコーティング剤がリード部により紫外線が遮蔽されその箇所が暗部となり、未硬化な状態で残存する可能性がある。このような未硬化の状態は電子回路基板に何らかの影響を及ぼす可能性がある。 On the other hand, when the ultraviolet curable coating agent is used, the coating agent that has entered under the lead of the lead portion of the IC chip is shielded from ultraviolet rays by the lead portion, and the portion becomes a dark portion and remains in an uncured state. there is a possibility. Such an uncured state may have some effect on the electronic circuit board.
 これらの解決策として湿気硬化併用光硬化型組成物なるコーティング剤(特許文献2)が提案されているが、空気中の湿気に触れると硬化が進むため、塗布現場(工場ライン)での取り扱い性が悪くなることが予想され、作業時にはコーティング剤の繊細な管理が必要となり、現実的ではない。 As a solution to these problems, a coating agent (Patent Document 2), which is a photocurable composition combined with moisture curing, has been proposed, but since curing proceeds when it comes into contact with moisture in the air, it is easy to handle at the coating site (factory line). Is expected to worsen, and delicate control of the coating agent is required during work, which is not realistic.
 さらにはこのようなコーティング剤は常温~40℃の温度にて塗布機で塗布できる適切な粘度が要求される。特許文献3にはダイマー酸成分を含有するポリエステルポリオールを用いたウレタン(メタ)アクリレートを主成分とするコーティング剤が提案されているが、粘度が高く、実用的であるとは考えられ難く、またダイマー酸成分を含有することにより、耐水性および透湿性は向上できると考えられるが、絶縁信頼性を確保するには不十分である。 Furthermore, such a coating agent is required to have an appropriate viscosity that can be applied with a coating machine at a temperature of room temperature to 40 ° C. Patent Document 3 proposes a coating agent containing urethane (meth) acrylate as a main component using a polyester polyol containing a dimer acid component, but it has a high viscosity and is unlikely to be practical. It is considered that the water resistance and moisture permeability can be improved by containing the dimer acid component, but it is insufficient to ensure the insulation reliability.
 特許文献4にフッ素系UV硬化型官能基含有化合物をベースとしたコーティング組成物が提案されており、ベース樹脂にはフッ素骨格を有しており、耐水性に優れた事は予想できるが、LED光源での深部硬化性や暗部硬化性、耐熱衝撃性および絶縁信頼性については不十分である。 Patent Document 4 proposes a coating composition based on a fluorine-based UV curable functional group-containing compound. The base resin has a fluorine skeleton, and it can be expected that it has excellent water resistance, but LEDs The deep curability, dark curability, thermal shock resistance, and insulation reliability of the light source are insufficient.
 また、特許文献5にはブタジエン骨格を有するオリゴマーをベースとしたLED硬化型防湿絶縁コート組成物が提案されており、耐水性及び絶縁信頼性に優れることは予測できるが、LED光源による深部硬化性及び暗部硬化性については不十分である。 Further, Patent Document 5 proposes an LED curable moisture-proof insulating coating composition based on an oligomer having a butadiene skeleton, which can be expected to be excellent in water resistance and insulation reliability, but is deeply curable by an LED light source. And the dark part curability is insufficient.
 上記のような事情に鑑み、本発明の目的とするところは、厚膜での深部硬化性、絶縁信頼性及び耐熱衝撃性に優れた活性エネルギー線硬化型コーティング用組成物を提供することにある。 In view of the above circumstances, an object of the present invention is to provide an active energy ray-curable coating composition having excellent deep curability, insulation reliability and thermostable impact resistance in a thick film. ..
 本発明者は上記目的を達成すべく鋭意研究を重ねた結果、所定のオリゴマーを使用することにより、厚膜での深部硬化性、絶縁信頼性及び耐熱衝撃性に優れた活性エネルギー線硬化型コーティング用組成物を提供できることを見出した。本発明者は、かかる知見に基づきさらに研究を重ね、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventor uses an active energy ray-curable coating having excellent deep curability, insulation reliability and thermal shock resistance in a thick film by using a predetermined oligomer. It has been found that a composition for use can be provided. The present inventor has completed the present invention by conducting further research based on such findings.
 即ち、本発明は、以下の活性エネルギー線硬化型コーティング用組成物を提供する。 That is, the present invention provides the following composition for active energy ray-curable coating.
項1.
 下記成分(A)、(B)及び(C)を含む活性エネルギー線硬化型コーティング用組成物。
 (A)下記式(1)で表される基及び置換又は未置換のアクリロイル基を有するオリゴマー、
 (B)1分子あたり1個の不飽和結合を有する(メタ)アクリル酸エステルモノマー、
 (C)光重合開始剤
Figure JPOXMLDOC01-appb-C000003
〔式(1)中、Rは炭素数4~6のパーフルオロアルキル基を示す。〕
項2.
 さらに成分(D)として蛍光増白剤を含み、
 前記蛍光増白剤は、オキサゾール系化合物、クマリン系化合物、及びスチルベン系化合物からなる群より選ばれる少なくとも一種である、項1に記載の組成物。
項3.
 さらに成分(E)としてチオール化合物を含む項1又は2に記載の組成物。
項4.
 前記チオール化合物は、2~4個のチオール基を有する2級チオール化合物である、項3に記載の組成物。
項5.
 前記不飽和基は、置換又は未置換のアクリロイル基であり、
 前記成分(A)は、脂肪族ジイソシアネート化合物、脂環族ジイソシアネート化合物及び芳香族ジイソシアネート化合物からなる群より選択される少なくとも一種に由来するセグメント、並びに
 水添ダイマー酸ポリエステルポリオール、ダイマー酸ポリエステルポリオール及びポリカーボネートジオールからなる群より選択される少なくとも一種に由来するセグメントを含むオリゴマーである、項1~4の何れかに記載の組成物。
項6.
 前記成分(A)及び前記成分(B)の合計質量に対する前記成分(A)の質量が20~50質量%である、項1~5の何れかに記載の組成物。
項7.
 前記成分(A)の質量平均分子量は5000~30000である、項1~6の何れかに記載の組成物。
項8.
 前記成分(A)のパーフルオロアルキル基含有量が0.01~0.6mol/kgである、項1~7の何れかに記載の組成物。
項9.
 前記成分(B)が、水酸基を分子に有する(メタ)アクリル酸エステルモノマーである、項1~8の何れかに記載の組成物。
項10.
 前記成分(C)はアシルフォスフィンオキサイド系光重合開始剤であり、
 前記成分(A)及び(B)の合計100質量部に対し、前記成分(C)が0.5~3.0質量部含まれる、項1~9の何れかに記載の組成物。
項11.
 前記成分(C)は、下記式(2)又は(3)で表されるアシルフォスフィンオキサイド系光重合開始剤である、項1~10の何れかに記載の組成物。
Figure JPOXMLDOC01-appb-C000004
項12.
 25℃における粘度が3000mPa・s以下である、項1~11の何れかに記載の組成物。
Item 1.
A composition for active energy ray-curable coating containing the following components (A), (B) and (C).
(A) Oligomer having a group represented by the following formula (1) and a substituted or unsubstituted acryloyl group,
(B) A (meth) acrylic acid ester monomer having one unsaturated bond per molecule,
(C) Photopolymerization initiator
Figure JPOXMLDOC01-appb-C000003
[In formula (1), R 1 represents a perfluoroalkyl group having 4 to 6 carbon atoms. ]
Item 2.
Further, a fluorescent whitening agent is contained as a component (D), and the component (D) is contained.
Item 2. The composition according to Item 1, wherein the fluorescent whitening agent is at least one selected from the group consisting of an oxazole-based compound, a coumarin-based compound, and a stilbene-based compound.
Item 3.
Item 2. The composition according to Item 1 or 2, further comprising a thiol compound as the component (E).
Item 4.
Item 3. The composition according to Item 3, wherein the thiol compound is a secondary thiol compound having 2 to 4 thiol groups.
Item 5.
The unsaturated group is a substituted or unsubstituted acryloyl group.
The component (A) is a segment derived from at least one selected from the group consisting of an aliphatic diisocyanate compound, an alicyclic diisocyanate compound and an aromatic diisocyanate compound, and a hydrogenated polyester polyol dimerate, a polyester dimerate polyol and a polycarbonate. Item 2. The composition according to any one of Items 1 to 4, which is an oligomer containing a segment derived from at least one selected from the group consisting of diols.
Item 6.
Item 2. The composition according to any one of Items 1 to 5, wherein the mass of the component (A) is 20 to 50% by mass with respect to the total mass of the component (A) and the component (B).
Item 7.
Item 2. The composition according to any one of Items 1 to 6, wherein the component (A) has a mass average molecular weight of 5000 to 30000.
Item 8.
Item 2. The composition according to any one of Items 1 to 7, wherein the component (A) has a perfluoroalkyl group content of 0.01 to 0.6 mol / kg.
Item 9.
Item 2. The composition according to any one of Items 1 to 8, wherein the component (B) is a (meth) acrylic acid ester monomer having a hydroxyl group as a molecule.
Item 10.
The component (C) is an acylphosphine oxide-based photopolymerization initiator.
Item 2. The composition according to any one of Items 1 to 9, wherein the component (C) is contained in an amount of 0.5 to 3.0 parts by mass with respect to a total of 100 parts by mass of the components (A) and (B).
Item 11.
Item 2. The composition according to any one of Items 1 to 10, wherein the component (C) is an acylphosphine oxide-based photopolymerization initiator represented by the following formula (2) or (3).
Figure JPOXMLDOC01-appb-C000004
Item 12.
Item 2. The composition according to any one of Items 1 to 11, wherein the viscosity at 25 ° C. is 3000 mPa · s or less.
 本発明の活性エネルギー線硬化型コーティング用組成物は、厚膜での深部硬化性、絶縁信頼性及び耐熱衝撃性に優れる。 The composition for active energy ray-curable coating of the present invention is excellent in deep curability, insulation reliability and thermal shock resistance in a thick film.
深部硬化性評価試験の説明図。Explanatory drawing of deep curability evaluation test. 暗部硬化性評価試験の説明図。Explanatory drawing of dark part curability evaluation test. 耐熱衝撃性評価試験の説明図。Explanatory drawing of thermal shock resistance evaluation test.
 本発明の活性エネルギー線硬化型コーティング用組成物(以下、単に「本発明の組成物」ともいう。)は、活性エネルギー線が照射されることにより硬化するコーティング用組成物である。かかる活性エネルギー線としては特に限定されず、紫外線、可視光線、X線及び電子線を例示することができる。中でも硬化の際には紫外線を採用することが好ましく、紫外線光源としては、例えば高圧水銀灯、超高圧水銀灯、メタルハライドランプ、キセノンランプ、無電極放電ランプ、及びLEDランプ等が挙げられ、高圧水銀灯、メタルハライドランプ、又はLEDが好ましい。 The active energy ray-curable coating composition of the present invention (hereinafter, also simply referred to as "the composition of the present invention") is a coating composition that is cured by being irradiated with active energy rays. The active energy ray is not particularly limited, and examples thereof include ultraviolet rays, visible rays, X-rays, and electron beams. Among them, it is preferable to use ultraviolet rays at the time of curing, and examples of the ultraviolet light source include high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, xenon lamps, electrodeless discharge lamps, LED lamps, etc., and high-pressure mercury lamps and metal halides. Lamps or LEDs are preferred.
 紫外線の照射量は通常2000~5,000mJ/cm2(好ましくは3500~4500mJ/cm2)の紫外線を照射すればよいが、光源がLEDの場合は365nm~405nmの発光波長を発する装置が好ましく、3500~5000mJ/cm2(好ましくは4000~4500mJ/cm)の紫外線を照射すればよい The irradiation amount of ultraviolet rays is usually 2000 to 5,000 mJ / cm 2 (preferably 3500 to 4500 mJ / cm 2 ), but when the light source is an LED, a device that emits an emission wavelength of 365 nm to 405 nm is preferable. Irradiation with ultraviolet rays of 3,500 to 5000 mJ / cm 2 (preferably 4000 to 4500 mJ / cm 2) may be performed.
 本発明の組成物は、成分(A)、(B)及び(C)を含む。 The composition of the present invention contains components (A), (B) and (C).
1.成分(A)
 成分(A)は、下記式(1)で表される基及び置換又は未置換のアクリロイル基を有するオリゴマーである。
1. 1. Ingredient (A)
The component (A) is an oligomer having a group represented by the following formula (1) and a substituted or unsubstituted acryloyl group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)において、Rは炭素数4~6のパーフルオロアルキル基である。当該パーフルオロ基は直鎖状であっても分岐状であってもよいが、直鎖状であることがより好ましい。また、炭素数は4又は6であることがより好ましい。 In formula (1), R 1 is a perfluoroalkyl group having 4 to 6 carbon atoms. The perfluoro group may be linear or branched, but is more preferably linear. Further, the number of carbon atoms is more preferably 4 or 6.
 オリゴマーは、一つの末端に置換又は未置換のアクリロイル基を有しており、当該基は下記式(4)で表されるアクリロイル基であることがより好ましい。 The oligomer has a substituted or unsubstituted acryloyl group at one end, and the group is more preferably an acryloyl group represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(4)において、Rは任意の置換基とすることが可能であるが、水素原子又はメチル基であることが好ましい。つまり、未置換のアクリロイル基又はメタアクリロイル基であることが好ましい。 In the formula (4), R 2 can be an arbitrary substituent, but is preferably a hydrogen atom or a methyl group. That is, it is preferably an unsubstituted acryloyl group or a meta-acryloyl group.
 成分(A)のオリゴマーは、直鎖状オリゴマーであることが好ましく、一方の末端に上記式(1)で表される基、並びにもう一方の末端に置換若しくは未置換のアクリロイル基を有することが好ましい。 The oligomer of component (A) is preferably a linear oligomer, and may have a group represented by the above formula (1) at one end and a substituted or unsubstituted acryloyl group at the other end. preferable.
 また、成分(A)のオリゴマーは、脂肪族ジイソシアネート化合物、脂環族ジイソシアネート化合物及び芳香族ジイソシアネート化合物からなる群より選択される少なくとも一種に由来するセグメント(以下、単に「Seg1」ともいう。)、並びに、水添ダイマー酸ポリエステルポリオール、ダイマー酸ポリエステルポリオール及びポリカーボネートジオールからなる群より選択される少なくとも一種に由来するセグメント(以下、単に「Seg2」ともいう。)を含むことが好ましい。 Further, the oligomer of the component (A) is a segment derived from at least one selected from the group consisting of an aliphatic diisocyanate compound, an alicyclic diisocyanate compound and an aromatic diisocyanate compound (hereinafter, also simply referred to as “Seg1”). Further, it is preferable to include a segment derived from at least one selected from the group consisting of a hydrogenated polyester polyol dimerate, a polyester dimerate polyol and a polycarbonate diol (hereinafter, also simply referred to as “Seg2”).
 上記Seg1が由来する化合物の具体例としては、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、キシレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン-2,4(または2,6)-ジイソシアネート、1,3-(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、ジアニシジンジイソシアネート、フェニルジイソシアネート、メチレンジイソシアネート、エチレンジイソシアネート、ブチレンジイソシアネート、プロピレンジイソシアネート、オクタデシレンジイソシアネート、1,5-ナフタレンジイソシアネート、ポリメチレンポリフェニレンジイソシアネート、ナフタレンジイソシアネート、3-フェニル-2-エチレンジイソシアネート、クメン-2,4-ジイソシアネート、4-メトキシ-1,3-フェニレンジイソシアネート、4-エトキシ-1,3-フェニレンジイソシアネート、2,4’-ジイソシアネートジフェニルエーテル、5,6-ジメチル-1,3-フェニレンジイソシアネート、2,4’-ジイソシアネートジフェニルエーテル、ベンジジンジイソシアネート、9,10-アンスラセンジイソシアネート、4,4’-ジイソシアネートベンジル、3,3’-ジメチル-4,4’-ジイソシアネートジフェニルメタン、2,6’-ジメチル-4,4’-ジイソシアネートジフェニル、3,3’-ジメトキシ-4,4’-ジイソシアネートジフェニル、1,4-アンスラセンジイソシアネート、フェニレンジイソシアネート、2,4,6-トリレントリイソシアネート、2,4,4’-トリイソシアネートジフェニルエーテル、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,10-デカメチレンジイソシアネート、1,3-シクロヘキシレンジイソシアネート、及び4,4’-メチレン-ビス(シクロヘキシルイソシアネート)などを挙げることができる。これらは一種のみを単独で使用してもよいし、二種以上を併用してもよい。 Specific examples of the compound from which Seg1 is derived include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), and methyl. Cyclohexane-2,4 (or 2,6) -diisocyanate, 1,3- (isocyanatemethyl) cyclohexane, isophorone diisocyanate, trimethylhexamethylene diisocyanate, dimerate diisocyanate, dianisidine diisocyanate, phenyldiisocyanate, methylene diisocyanate, ethylene diisocyanate, butylene Diisocyanate, propylene diisocyanate, octadecylene diisocyanate, 1,5-naphthalenediocyanate, polymethylene polyphenylenediocyanate, naphthalene diisocyanate, 3-phenyl-2-ethylene diisocyanate, cumene-2,4-diisocyanate, 4-methoxy-1,3- Phenylene diisocyanate, 4-ethoxy-1,3-phenylenediisocyanate, 2,4'-diisocyanate diphenyl ether, 5,6-dimethyl-1,3-phenylenediisocyanate, 2,4'-diisocyanate diphenyl ether, benzidine diisocyanate, 9,10- Anthracene diisocyanate, 4,4'-diisocyanate benzyl, 3,3'-dimethyl-4,4'-diisocyanate diphenylmethane, 2,6'-dimethyl-4,4'-diisocyanate diphenyl, 3,3'-dimethoxy-4 , 4'-diisocyanate diphenyl, 1,4-anthracene diisocyanate, phenylenediisocyanate, 2,4,6-tolylene triisocyanate, 2,4,4'-triisocyanate diphenyl ether, 1,4-tetramethylene diisocyanate, 1, 6-Hexamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,3-cyclohexylene diisocyanate, 4,4'-methylene-bis (cyclohexylisocyanate) and the like can be mentioned. These may be used alone or in combination of two or more.
 上記した中でも、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、及びトリレンジイソシアネートが特に好ましく、イソホロンジイソシアネートが最も好ましい。 Among the above, isophorone diisocyanate, hexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and tolylene diisocyanate are particularly preferable, and isophorone diisocyanate is most preferable.
 Seg2は、水添ダイマー酸ポリエステルポリオール、ダイマー酸ポリエステルポリオール及びポリカーボネートジオールからなる群より選択される少なくとも1種に由来する残基とすることが好ましい。 Seg2 is preferably a residue derived from at least one selected from the group consisting of hydrogenated polyester polyol dimerate, polyester dimerate polyol and polycarbonate diol.
 成分(A)のオリゴマーは、より具体的には、下記式(5)又は(6)で表されるオリゴマーである。
Figure JPOXMLDOC01-appb-C000007
〔式(5)及び(6)中、Rは炭素数1~6、好ましくは炭素数2~4のアルケニル基を示し、Rは水素原子又はメチル基を示す。nは、3~7の実数である。〕
More specifically, the oligomer of the component (A) is an oligomer represented by the following formula (5) or (6).
Figure JPOXMLDOC01-appb-C000007
[In the formulas (5) and (6), R 3 represents an alkenyl group having 1 to 6 carbon atoms, preferably 2 to 4 carbon atoms, and R 4 represents a hydrogen atom or a methyl group. n is a real number from 3 to 7. ]
 かかるオリゴマーにおいて、上記式(1)で表される基は、例えば、2-(パーフルオロヘキシル)エタノール又は2-(パーフルオロブチル)エタノール、並びに、前記脂環族ジイソシアネート化合物、脂肪族ジイソシアネート化合物及び芳香族ジイソシアネート化合物から選ばれる少なくとも1種を、イソシアネート基と水酸基とを付加反応(ウレタン化反応とも言う)ことにより得ることができる。 In such an oligomer, the group represented by the above formula (1) is, for example, 2- (perfluorohexyl) ethanol or 2- (perfluorobutyl) ethanol, and the above-mentioned alicyclic diisocyanate compound, aliphatic diisocyanate compound and At least one selected from aromatic diisocyanate compounds can be obtained by an addition reaction (also referred to as urethanization reaction) between an isocyanate group and a hydroxyl group.
 2-(パーフルオロヘキシル)エタノール及び2-(パーフルオロブチル)エタノールは、市販品を用いてもよい。市販品としてはユニマテック社製 製品名「CHEMINOXFA-4」「CHEMINOX FA-6」等が挙げられる。 Commercially available products may be used as 2- (perfluorohexyl) ethanol and 2- (perfluorobutyl) ethanol. Examples of commercially available products include product names "CHEMINOX FA-4" and "CHEMINOX FA-6" manufactured by Unimatec.
 オリゴマーのもう一方の末端に存在する不飽和基は、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、及び2-ヒドロキシブチル(メタ)アクリレートからなる群より選ばれる少なくとも1種と前記ジイソシアネート化合物とをイソシアネート基と水酸基とを付加反応(ウレタン化反応とも言う)させることにより、アクリロイル基として得ることができる。 The unsaturated group present at the other end of the oligomer is at least selected from the group consisting of, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate. It can be obtained as an acryloyl group by subjecting one type and the diisocyanate compound to an addition reaction (also referred to as a butylation reaction) between an isocyanate group and a hydroxyl group.
 Seg2製造におけるダイマー酸ポリエステルポリオールのダイマー酸は植物系油脂を原料とするC18不飽和脂肪酸の二量化によって生成され、C36ジカルボン酸(炭素数38)の二塩基酸を有する。その代表的な化合物としては、リノール酸、オレイン酸を加熱することによって得られる。また本明細書において、ダイマー酸とは、分子内に二重結合が存在するものに加えて、水素添加反応により、分子内に存在する二重結合が還元されて飽和二塩基酸となったものも含む概念であると定義される。 The dimer acid of the polyester polyol dimer acid in the production of Seg2 is produced by dimerization of C18 unsaturated fatty acids made from plant-based fats and oils, and has a dibasic acid of C36 dicarboxylic acid (38 carbon atoms). Typical compounds thereof are obtained by heating linoleic acid and oleic acid. Further, in the present specification, the dimer acid is a saturated dibasic acid obtained by reducing the double bond existing in the molecule by a hydrogenation reaction in addition to the one having a double bond in the molecule. It is defined as a concept that also includes.
 ダイマー酸ポリエステルポリオールは、上記したダイマー酸と、例えば、短鎖のジオール、ポリアルキレングリコール、長鎖のポリオール、またはその他各種のジオールなど反応させた反応生成物が挙げられるが、これに限定されるものではない。 Diomeric polyester polyols include, but are limited to, reaction products obtained by reacting the above-mentioned dimer acids with, for example, short-chain diols, polyalkylene glycols, long-chain polyols, or various other diols. It's not a thing.
 前記ダイマー酸ポリエステルポリオールの分子量は1000~3000が好ましく、1000~2000がより好ましい。かかる数値範囲内であることによりオリゴマーの分子量が適切な範囲となり、機械物性、耐熱衝撃性、及び絶縁信頼性に優れたコーティング用組成物を得ることができる。 The molecular weight of the polyester polyol dimerate is preferably 1000 to 3000, more preferably 1000 to 2000. Within such a numerical range, the molecular weight of the oligomer becomes an appropriate range, and a coating composition having excellent mechanical properties, thermal shock resistance, and insulation reliability can be obtained.
 また、Seg2製造におけるポリカーボネートジオールは、ジアルキルカーボネート類、アルキレンカーボネート類、その他カーボネート類とジオールとの反応によって得られる化合物であり、カーボネート結合を介してジオールに由来する炭化水素基(C3~C18)が連結した高分子鎖と、この高分子鎖の両末端に結合した水酸基とを有するものであって、例えば下記式(7)で表される構造のものが挙げられる。 Further, the polycarbonate diol in the production of Seg2 is a compound obtained by reacting dialkyl carbonates, alkylene carbonates, and other carbonates with the diol, and a hydrocarbon group (C3 to C18) derived from the diol is formed via a carbonate bond. Examples thereof include those having a linked polymer chain and hydroxyl groups bonded to both ends of the polymer chain and having a structure represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000008
〔式(7)中、Rはカーボネート類と反応するジオールから水酸基を除いた残基を示し、R及びpは、カーボネートジオールの数平均分子量が500~3000となるように設定される。〕
Figure JPOXMLDOC01-appb-C000008
[In the formula (7), R 5 indicates a residue obtained by removing the hydroxyl group from the diol that reacts with carbonates, and R 5 and p are set so that the number average molecular weight of the carbonate diol is 500 to 3000. ]
 ここで、ポリカーボネートジオールの数平均分子量は、500~2000以下であることが好ましく、500~1000であることがより好ましい。かかる構成を採用することにより、機械物性、耐熱衝撃性、及び絶縁信頼性に優れたコーティング用組成物を得ることができる。 Here, the number average molecular weight of the polycarbonate diol is preferably 500 to 2000 or less, and more preferably 500 to 1000. By adopting such a configuration, a coating composition having excellent mechanical properties, thermal shock resistance, and insulation reliability can be obtained.
 式(5)又は(6)で表されるオリゴマーは、例えば、Seg1が由来する化合物とSeg2が由来する化合物とを、(Seg1が由来する化合物):(Seg2が由来する化合物)=2:1のモル比、或いは、3:2~3.5:2のモル比で反応させることにより得ることができる。つまり、Seg1が由来する化合物のイソシアネート基1当量に対して、Seg2が由来する化合物のヒドロキシ基を0.5当量、若しくは、0.57~0.65当量となる割合にて、Seg1が由来する化合物とSeg2が由来する化合物とを反応させることにより、得ることができる。 The oligomer represented by the formula (5) or (6) is, for example, a compound derived from Seg1 and a compound derived from Seg2 (compound derived from Seg1) :( compound derived from Seg2) = 2: 1. It can be obtained by reacting with a molar ratio of 3: 2 to 3.5: 2. That is, Seg1 is derived at a ratio of 0.5 equivalent or 0.57 to 0.65 equivalent of the hydroxy group of the compound derived from Seg2 with respect to 1 equivalent of the isocyanate group of the compound derived from Seg1. It can be obtained by reacting a compound with a compound from which Seg2 is derived.
 式(5)又は(6)で表されるオリゴマーの質量平均分子量は、5000~30000とすることが好ましい。質量平均分子量が5000以上であることにより、組成物の硬度が高くなりすぎず、優れた柔軟性と共に優れた耐熱衝撃性を得ることができる。一方、質量平均分子量が30000以下とすることにより、コーティング用組成物としての粘度が高くなりすぎることがなく、その結果、当該組成物の優れた塗布性を維持することができる。 The mass average molecular weight of the oligomer represented by the formula (5) or (6) is preferably 5000 to 30,000. When the mass average molecular weight is 5000 or more, the hardness of the composition does not become too high, and excellent heat impact resistance as well as excellent flexibility can be obtained. On the other hand, when the mass average molecular weight is 30,000 or less, the viscosity of the coating composition does not become too high, and as a result, excellent coatability of the composition can be maintained.
 特にSeg2がダイマー酸ポリエステル由来の場合には、8000~30000とすることが好ましく、10000~18000とすることがより好ましい。また、特にSeg2がポリカーボネートジオール由来の場合には、式(5)又は(6)で表されるオリゴマーの質量平均分子量は、5000~10000とすることが好ましい。 Particularly when Seg2 is derived from polyester dimerate, it is preferably 8000 to 30000, and more preferably 10000 to 18000. Further, particularly when Seg2 is derived from a polycarbonate diol, the mass average molecular weight of the oligomer represented by the formula (5) or (6) is preferably 5000 to 10000.
 本明細書において、成分(A)の質量平均分子量とは、ゲルパーミエーションクロマトグラフ測定装置を用いて、標準ポリスチレンで換算することにより得られる測定値であると定義される。 In the present specification, the mass average molecular weight of the component (A) is defined as a measured value obtained by converting with standard polystyrene using a gel permeation chromatograph measuring device.
 成分(A)の質量平均分子量は例えば、下記測定装置および測定条件にて測定することができる。
測定機器:HLC-8320(東ソー)
測定条件:
・移動層:THF
・カラム:TSKgel Super Multipore HZ-M ×4
・カラム温度:40℃
・流速:0.35ml/min
・標準物質:ポリスチレン
The mass average molecular weight of the component (A) can be measured, for example, with the following measuring device and measuring conditions.
Measuring equipment: HLC-8320 (Tosoh)
Measurement condition:
-Moving layer: THF
-Column: TSKgel Super Multipore HZ-M x 4
-Column temperature: 40 ° C
-Flow velocity: 0.35 ml / min
・ Standard substance: Polystyrene
 成分(A)のパーフルオロアルキル基含有量は0.01~0.6mol/kgとすることが好ましく、0.1~0.5mol/kgとすることがより好ましい。ここでいうパーフルオロアルキル基とはCF(CF)q-(但し、qは4~6の自然数である)を意味する。つまりオリゴマー1kgあたりに含まれるパーフルオロヘキシルのモル数を表し、成分(A)を合成するために2-(パーフルオロヘキシル)エタノールを用いた場合には、仕込まれた原料の全量を1kgとした場合に、2-(パーフルオロヘキシル)エタノールの仕込み量(g)×0.876/319(mol)/kgで計算される。同様に、成分(A)を合成するために2-(パーフルオロブチル)エタノールを用いた場合にはオリゴマー1kgあたりに含まれるパーフルオロブチルのモル数を表し、成分(A)を合成するために仕込まれた原料の全量を1kgとした場合に、2-(パーフルオロブチル)エタノールの仕込み量(g)×0.829/219(mol)/kgで表される。 The perfluoroalkyl group content of the component (A) is preferably 0.01 to 0.6 mol / kg, more preferably 0.1 to 0.5 mol / kg. The perfluoroalkyl group referred to here means CF 3 (CF 2 ) q- (where q is a natural number of 4 to 6). That is, it represents the number of moles of perfluorohexyl contained in 1 kg of oligomer, and when 2- (perfluorohexyl) ethanol was used to synthesize the component (A), the total amount of the charged raw materials was 1 kg. In the case, it is calculated by the amount of 2- (perfluorohexyl) ethanol charged (g) × 0.876 / 319 (mol) / kg. Similarly, when 2- (perfluorobutyl) ethanol is used to synthesize the component (A), it represents the number of moles of perfluorobutyl contained in 1 kg of the oligomer, and to synthesize the component (A). When the total amount of the charged raw materials is 1 kg, it is represented by the charged amount (g) of 2- (perfluorobutyl) ethanol × 0.829 / 219 (mol) / kg.
 成分(A)の含有量は、該成分(A)及び後述する成分(B)の合計質量に対する成分(A)の質量を20~50質量%とすることが好ましく、30~40質量%とすることがより好ましい。かかる構成を採用することにより、コーティング用組成物の粘度が高くなり過ぎない結果、組成物の良好な塗布性を維持することができる。また、コーティング用組成物の優れた絶縁信頼性も維持することができる。 The content of the component (A) is preferably 20 to 50% by mass, preferably 30 to 40% by mass, based on the total mass of the component (A) and the component (B) described later. Is more preferable. By adopting such a structure, the viscosity of the coating composition does not become too high, and as a result, good coatability of the composition can be maintained. In addition, excellent insulation reliability of the coating composition can be maintained.
2.成分(B)
 成分(B)は、不飽和結合を分子に1個有する(メタ)アクリル酸エステルモノマーである。不飽和結合を分子に1個有する単官能の(メタ)アクリル酸エステルモノマーを使用しない場合、コーティング剤組成物の柔軟性及び耐熱衝撃性が充分なものとならない。
2. Ingredient (B)
The component (B) is a (meth) acrylic acid ester monomer having one unsaturated bond in the molecule. If a monofunctional (meth) acrylic acid ester monomer having one unsaturated bond in the molecule is not used, the flexibility and thermostable impact resistance of the coating agent composition will not be sufficient.
 不飽和結合を分子に1個有する(メタ)アクリル酸エステルモノマーの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、1-エチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、1-ブチルアミル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレートなどの鎖状アルキル(メタ)アクリレート、またイソボルニル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、アルキルフェノキシ(メタ)アクリレート、アルキルフェノキシエチル(メタ)アクリレート、などの環状構造を持つ(メタ)アクリレート;ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、2-ヒドロキシラウリル(メタ)アクリレートなどの水酸基を持つヒドロキシアルキル(メタ)アクリレートあるいは2-ヒドロキシ -3-フェノキシプロピルアクリレート;および、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリメチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレートなどのオリゴまたはポリオキシアルキレングリコールのモノ(メタ)アクリレート、などが挙げられる。これらは一種のみを単独で使用してもよいし、二種以上を併用してもよい。 Specific examples of the (meth) acrylic acid ester monomer having one unsaturated bond in the molecule include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-. Butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 1-ethylheptyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, 1-butylamyl (meth) acrylate , Lauryl (meth) acrylate, chain alkyl (meth) acrylate such as octadecyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl ( Meta) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, phenoxy (meth) acrylate, phenoxyethyl (meth) acrylate, alkylphenoxy (meth) acrylate, alkyl (Meta) acrylate having a cyclic structure such as phenoxyethyl (meth) acrylate; hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) Acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 2-hydroxylauryl (meth) acrylate and other hydroxyl groups Hydroxyalkyl (meth) acrylate or 2-hydroxy-3-phenoxypropyl acrylate; and diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) ) Acrylate, trimethylene glycol mono (meth) acrylate, oligo or polyoxyalkylene glycol mono (meth) acrylate such as polypropylene glycol (meth) acrylate, and the like. These may be used alone or in combination of two or more.
 これらの中でも、脂環式構造を有する(メタ)アクリル酸エステルモノマー、芳香族骨格などの環状構造を持つ(メタ)アクリル酸エステルモノマー、芳香族骨格を有し且つエチレンオキサイド変性された(メタ)アクリル酸エステルモノマー、水酸基を分子に有する(メタ)アクリル酸エステルモノマーからなる群より選択される少なくとも一種を使用することが好ましい。これらの中でも、コーティング剤の被処理表面に対する良好な付着性が得られるという理由から、水酸基を分子に有する(メタ)アクリル酸エステルモノマーを使用することが特に好ましい。 Among these, a (meth) acrylic acid ester monomer having an alicyclic structure, a (meth) acrylic acid ester monomer having a cyclic structure such as an aromatic skeleton, and an ethylene oxide-modified (meth) having an aromatic skeleton. It is preferable to use at least one selected from the group consisting of an acrylic acid ester monomer and a (meth) acrylic acid ester monomer having a hydroxyl group as a molecule. Among these, it is particularly preferable to use a (meth) acrylic acid ester monomer having a hydroxyl group as a molecule because good adhesion of the coating agent to the surface to be treated can be obtained.
 脂環式構造を有する(メタ)アクリル酸エステルモノマーとしては、例えば、イソボルニル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートを例示することができる。また、芳香族骨格を有しかつエチレンオキサイド変性された(メタ)アクリレートとしては、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、及び芳香族骨格などの環状構造を持つ(メタ)アクリル酸エステルモノマーとしてはフェノキシエチル(メタ)アクリレートを例示することができる。 Examples of the (meth) acrylic acid ester monomer having an alicyclic structure include isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopentanyl (meth) acrylate. can do. The (meth) acrylate having an aromatic skeleton and modified with ethylene oxide includes a cyclic structure (meth) such as phenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, and an aromatic skeleton. ) As the acrylic acid ester monomer, phenoxyethyl (meth) acrylate can be exemplified.
 これらの中でも、フェノキシポリエチレングリコール(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、及びジシクロペンタニル(メタ)アクリレートなどが特に好ましい。 Among these, phenoxypolyethylene glycol (meth) acrylate, isobornyl (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate and the like are particularly preferable.
 水酸基を分子に有する(メタ)アクリル酸エステルモノマーとしては、4-ヒドロキシブチル(メタ)アクリレート、及び2-ヒドロキシ-3-フェノキシプロピルアクリレートを例示することができ、2-ヒドロキシ-3-フェノキシプロピルアクリレートが特に好ましい。これらを含有することにより、コーティング膜の柔軟性を損なうことなく電子回路実装基板のソルダーレジストや電子部品への付着性またフラックス残渣がある場合にも、コーティング剤による被処理表面に対して付着性が向上し、電子回路実装基板の信頼性をさらに維持することができる。 Examples of the (meth) acrylic acid ester monomer having a hydroxyl group in the molecule include 4-hydroxybutyl (meth) acrylate and 2-hydroxy-3-phenoxypropyl acrylate, and 2-hydroxy-3-phenoxypropyl acrylate. Is particularly preferable. By containing these, the adhesiveness of the electronic circuit mounting substrate to the solder resist and electronic components without impairing the flexibility of the coating film, and the adhesiveness to the surface to be treated by the coating agent even when there is a flux residue. Is improved, and the reliability of the electronic circuit mounting board can be further maintained.
 また、成分(B)のアクリル酸エステルモノマーとしては、市販品を使用することができる。市販品として、例えばフェノキシポリエチレングリコールアクリレートとしては共栄社化学社 製品名「ライトアクリレートP―200A」、ノニルフェノキシポリエチレングリコールアクリレートとしては東亞合成化学社製 製品名「アロニックスM-111」、イソボルニルアクリレートとしては大阪有機化学社製 製品名「IBXA」、ジシクロペンタニルメタアクリレートとしては日立化成社「FA-513M」が挙げられる。また、フェノキシエチルアクリレートとしては大阪有機化学工業社製 製品名「ビスコート192」、共栄社化学社製 製品名「ライトアクリレートPO-A」、2-ヒドロキシ-3-フェノキシプロピルアクリレートとしては東亜合成化学社製 製品名「アロニックスM-5700」、共栄社化学社製 製品名「エポキシエステルM-600A」が挙げられる。 Further, as the acrylic acid ester monomer of the component (B), a commercially available product can be used. As commercially available products, for example, Kyoeisha Chemical Co., Ltd. product name "Light Acrylate P-200A" as phenoxypolyethylene glycol acrylate, Toa Synthetic Chemical Co., Ltd. product name "Aronix M-111" as nonylphenoxypolyethylene glycol acrylate, as isobornyl acrylate. Is a product name "IBXA" manufactured by Osaka Organic Chemical Co., Ltd., and Hitachi Kasei Co., Ltd. "FA-513M" is mentioned as a dicyclopentanyl methacrylate. As phenoxyethyl acrylate, product name "Viscoat 192" manufactured by Osaka Organic Chemical Industry Co., Ltd., product name "Light acrylate PO-A" manufactured by Kyoeisha Chemical Co., Ltd., and as 2-hydroxy-3-phenoxypropyl acrylate, manufactured by Toa Synthetic Chemical Co., Ltd. Examples include the product name "Aronix M-5700" and the product name "Epoxyester M-600A" manufactured by Kyoeisha Chemical Co., Ltd.
 成分(B)の含有量は、成分(A)及び(B)の合計質量に対する成分(B)の質量を50~80質量%とすることが好ましく、60~70質量%とすることがより好ましい。かかる構成を採用することにより、コーティング用組成物の粘度が高くなり過ぎない結果、組成物の良好な塗布性を維持することができる。また、コーティング用組成物の優れた絶縁信頼性も維持することができる。 The content of the component (B) is preferably 50 to 80% by mass, more preferably 60 to 70% by mass, based on the total mass of the components (A) and (B). .. By adopting such a structure, the viscosity of the coating composition does not become too high, and as a result, good coatability of the composition can be maintained. In addition, excellent insulation reliability of the coating composition can be maintained.
3.成分(C)
 成分(C)として使用される光重合開始剤としては、光によりラジカルを発生し、そのラジカルが不飽和基含有オリゴマーおよび(メタ)アクリル酸エステルモノマーのラジカル重合を効率的に開始するものであれば特に制限はなく、公知の光重合開始剤を広く使用することができる。
3. 3. Ingredient (C)
The photopolymerization initiator used as the component (C) may be one that generates radicals by light and the radicals efficiently initiate radical polymerization of unsaturated group-containing oligomers and (meth) acrylic acid ester monomers. However, there is no particular limitation, and a known photopolymerization initiator can be widely used.
 かかる光重合開始剤として、具体的には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルフォリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、フェニルビス(2,4,6-トリメチルベンゾイル)-フォスフィンオキサイド、ジフェニル(2,4,6―トリメチルベンゾイル)フォスフィンオキサイド、ベンゾフェノン、o-ベンゾイル安息香酸メチル、ヒドロキシベンゾフェノン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、2,4,6-トリス(トリクロロメチル)-S-トリアジン、2-メチル-4,6-ビス(トリクロロ)-S-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-S-トリアジン、などが挙げられる。これらの光重合開始剤は、単独で、または2種以上を組み合わせて使用することができる。 Specific examples of such photopolymerization initiators include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and benzyl dimethyl ketal. , 1-Hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, phenylbis (2,4,6-trimethylbenzoyl) -phosphenyl oxide, diphenyl (2,4,6-trimethylbenzoyl) phosphenyl oxide, benzophenone, o-benzoyl methyl benzoate, hydroxybenzophenone, 2-isopropylthioxanthone, 2,4 -Dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 2,4,6-tris (trichloromethyl) -S-triazine, 2-methyl-4,6-bis (trichloro) -S-triazine , 2- (4-Methenylphenyl) -4,6-bis (trichloromethyl) -S-triazine, and the like. These photopolymerization initiators can be used alone or in combination of two or more.
 上述の中でも、UV光における長波長域に吸収を有する、下記式(2)又は(3)で表されるアシルフォスフィンオキサイド系光重合開始剤(フェニルビス(2,4,6-トリメチルベンゾイル)-フォスフィンオキサイド、ジフェニル(2,4,6―トリメチルベンゾイル)フォスフィンオキサイド)が最も好ましい。ここで、UV光における長波長とは主にUV-Aを表し、315~400nmの波長を表し、特に375nm近辺に吸収ピーク波長を有することを意味する。 Among the above, the acylphosphine oxide-based photopolymerization initiator represented by the following formula (2) or (3), which has absorption in the long wavelength region of UV light (phenylbis (2,4,6-trimethylbenzoyl)). -Phosphine oxide, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide) is most preferable. Here, the long wavelength in UV light mainly represents UV-A, represents a wavelength of 315 to 400 nm, and particularly means having an absorption peak wavelength in the vicinity of 375 nm.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 成分(C)の含有量は、成分(A)及び(B)の合計100質量部に対し、0.5~3.0質量部とすることが好ましく、1.0~2.0質量部とすることがより好ましい。かかる構成を採用することにより、優れた深部硬化性を得ることができる。 The content of the component (C) is preferably 0.5 to 3.0 parts by mass, preferably 1.0 to 2.0 parts by mass, based on 100 parts by mass of the total of the components (A) and (B). It is more preferable to do so. By adopting such a configuration, excellent deep curability can be obtained.
 成分(C)の光重合開始剤としては、市販品を使用してもよい。市販品としては、IGM Resin社 製品名「Omnirad 819」「Omnirad TPO-H」などが挙げられる。 A commercially available product may be used as the photopolymerization initiator of the component (C). Examples of commercially available products include IGM Resin product names "Omnirad 819" and "Omnirad TPO-H".
4.成分(D)
 本発明の組成物は、さらに成分(D)として蛍光増白剤を含むことも好ましい。かかる蛍光増白剤としては、公知のものを広く採用することが可能であり、特に限定はない。蛍光増白剤として、例えば、オキサゾール系、クマリン系、トリアゾール系、イミダゾール系、ビラゾロン系、ナフタルイミド系、スチルベンゼン系などの蛍光増白剤が挙げられる。これらの中でも、下記式(8)で表されるオキサゾール系蛍光増白剤である2,2'-(2,5-チオフェンジイル)ビス(5-tert-ブチルベンゾキサゾール)を使用することが特に好ましい。
4. Ingredient (D)
It is also preferable that the composition of the present invention further contains a fluorescent whitening agent as the component (D). As the fluorescent whitening agent, known ones can be widely adopted, and there is no particular limitation. Examples of the fluorescent whitening agent include oxazole-based, coumarin-based, triazole-based, imidazole-based, virazolone-based, naphthalimide-based, and stillbenzene-based fluorescent whitening agents. Among these, 2,2'-(2,5-thiophenidiyl) bis (5-tert-butylbenzoxazole), which is an oxazole-based fluorescent whitening agent represented by the following formula (8), can be used. Especially preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 オキサゾール系蛍光増白剤は、波長320~400nm(ピーク波長370nm)の紫外光線を吸収して励起され、波長400~460nm(ピーク波長430nm)の紫青から青緑の蛍光(可視光線)を発するものである。前記、式8で表されるオキサゾール系蛍光増白剤である2,2‘-(2,5-チオフェンジイル)ビス(5-tert-ブチルベンゾキサゾール)は成分(C)の光重合開始剤と併用することにより、365nm~405nmの発光波長を発する紫外線照射において、より、感光性が増し、コーティング用組成物のより優れた深部硬化性及び暗部硬化性の獲得に寄与する。 The oxazole-based fluorescent whitening agent is excited by absorbing ultraviolet light having a wavelength of 320 to 400 nm (peak wavelength 370 nm), and emits purple-blue to blue-green fluorescence (visible light) having a wavelength of 400 to 460 nm (peak wavelength 430 nm). It is a thing. 2,2'-(2,5-thiophenidiyl) bis (5-tert-butylbenzoxazole), which is an oxazole-based fluorescent whitening agent represented by the formula 8, is a photopolymerization initiator of the component (C). When used in combination with, the photosensitivity is further increased in ultraviolet irradiation emitting an emission wavelength of 365 nm to 405 nm, which contributes to the acquisition of more excellent deep curability and dark curability of the coating composition.
 成分(D)の配合量は、成分(A)及び(B)の合計100質量部に対し、0.1~0.5質量部とすることが好ましく、0.1~0.2質量部とすることがより好ましい。蛍光増白剤を使用することにより、365nm~405nmの発光波長を発する紫外線照射において、より感光性が増し、コーティング用組成物の深部硬化性及び暗部硬化性を向上させることができる。 The blending amount of the component (D) is preferably 0.1 to 0.5 parts by mass, preferably 0.1 to 0.2 parts by mass, based on 100 parts by mass of the total of the components (A) and (B). It is more preferable to do so. By using the fluorescent whitening agent, the photosensitivity is further increased in the ultraviolet irradiation emitting an emission wavelength of 365 nm to 405 nm, and the deep curability and the dark curability of the coating composition can be improved.
 成分(D)の蛍光増白剤は、市販品を使用してもよい。市販品としては、例えば、BASF社 製品名「TINOPAL OB」などを挙げることができる。 As the fluorescent whitening agent for component (D), a commercially available product may be used. Examples of commercially available products include BASF's product name "TINOPAL OB".
5.成分(E)
 本発明の組成物は、さらに成分(E)としてチオール化合物を含むことも好ましい。かかるチオール化合物としては1級、2級、及び3級の何れのチオール化合物であってもよい。中でも、2級チオール化合物を使用することが好ましい。2級チオール化合物を使用することにより、コーティング用組成物の貯蔵安定性に影響を及ぼすことなく、適切な貯蔵安定期間を保持することができる。また、2級チオール化合物の中でも、2~4個のチオール基を有する化合物が好ましく、4個のチオール基を有する化合物が特に好ましい。
5. Ingredient (E)
It is also preferable that the composition of the present invention further contains a thiol compound as a component (E). The thiol compound may be any of a primary, secondary and tertiary thiol compound. Above all, it is preferable to use a secondary thiol compound. By using the secondary thiol compound, an appropriate storage stability period can be maintained without affecting the storage stability of the coating composition. Further, among the secondary thiol compounds, a compound having 2 to 4 thiol groups is preferable, and a compound having 4 thiol groups is particularly preferable.
 具体的には、1,4‐ビス(3‐メルカプトブチリルオキシ)ブタン、1,3,5‐トリス(3‐メルカプトブチルオキシエチル)‐1,3,5‐トリアジン‐2,4,6(1H,3H,5H)‐トリオン、トリメチロールプロパントリス(3-メルカプトブチレート)トリメチロールプロパントリス(3‐メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3‐メルカプトブチレート)、ペンタエリスリトールテトラキス(3‐メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3‐メルカプトプロピオネート)、テトラエチレングリコールビス(3‐メルカプトプロピオネート)などを挙げることができる。これらは一種のみを単独で使用してもよいし、二種以上を併用してもよい。 Specifically, 1,4-bis (3-mercaptobutylyloxy) butane, 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 ( 1H, 3H, 5H) -Trione, Trimethylol Propantris (3-mercaptobutyrate) Trimethylol Propantris (3-mercaptopropionate), Pentaerythritol Tetrakiss (3-Mercaptobutyrate), Pentaerythritol Tetrakiss (3- Mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate) and the like. These may be used alone or in combination of two or more.
 上記した中でも、2級チオール化合物であるペンタエリスリトールテトラキス(3‐メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)が特に好ましい。 Among the above, pentaerythritol tetrakis (3-mercaptobutyrate) and trimethylolpropane tris (3-mercaptobutyrate), which are secondary thiol compounds, are particularly preferable.
 成分(E)の配合量は、成分(A)及び(B)の合計100質量部に対し、1.0質量部以下とすることが好ましく、0.3~0.5質量部とすることがより好ましい。成分(A)及び(B)の合計100質量部に対し成分(E)の配合量を1.0質量部以下とすることにより、365nm~405nmの発光波長を発する紫外線照射においてコーティング組成物の架橋度が向上し、高い硬化度を有するコーティングを形成することができる。これら硬化度はゲル分率で確認できる。また、成分(A)及び(B)の合計100質量部に対し成分(E)の配合量を0.3質量部以上とすることにより充分な暗部硬化性を得ることができる。 The blending amount of the component (E) is preferably 1.0 part by mass or less, preferably 0.3 to 0.5 part by mass, based on 100 parts by mass of the total of the components (A) and (B). More preferred. By setting the blending amount of the component (E) to 1.0 part by mass or less with respect to a total of 100 parts by mass of the components (A) and (B), the coating composition is crosslinked by ultraviolet irradiation emitting an emission wavelength of 365 nm to 405 nm. The degree is improved and a coating having a high degree of curing can be formed. These degrees of curing can be confirmed by the gel fraction. Further, by setting the blending amount of the component (E) to 0.3 parts by mass or more with respect to 100 parts by mass of the total of the components (A) and (B), sufficient dark part curability can be obtained.
6.その他の成分
 本発明の組成物は、その目的等に応じ適宜、充填剤を含んでもよい。充填剤としては、通常の硬化性樹脂組成物に用いられる無機充填剤が利用できる。充填剤は、微粒子状のものが好ましい。例えば、無機充填剤としては、溶融シリカ、結晶シリカ、フュームドシリカ、石英微粉末、炭酸カルシウム、マイカ、タルク、などが使用できるが、フュームドシリカを用いることがより好ましい。フュームドシリカの平均一次粒子径は、5nm~50μmが好ましい。このようなフュームドシリカを用いることにより、本発明の組成物に良好なチクソ性を付与することができ、厚膜の確保が必要な箇所へのコーティングとして好適に使用できる。さらにほぼ透明に近い組成物を得ることができ、紫外線照射した場合にも、十分な硬化性を得ることができる。
6. Other Ingredients The composition of the present invention may contain a filler as appropriate depending on its purpose and the like. As the filler, an inorganic filler used in a normal curable resin composition can be used. The filler is preferably in the form of fine particles. For example, as the inorganic filler, fused silica, crystalline silica, fumed silica, quartz fine powder, calcium carbonate, mica, talc, etc. can be used, but it is more preferable to use fumed silica. The average primary particle size of fumed silica is preferably 5 nm to 50 μm. By using such fumed silica, good thixophilicity can be imparted to the composition of the present invention, and it can be suitably used as a coating on a portion where a thick film needs to be secured. Further, a composition that is almost transparent can be obtained, and sufficient curability can be obtained even when irradiated with ultraviolet rays.
 その他、必要に応じ本発明の効果を損ねない範囲で、重合禁止剤、密着性付与剤、レべリング剤、消泡剤、酸化防止剤、難燃剤などを適宜添加することができる。 In addition, if necessary, a polymerization inhibitor, an adhesion imparting agent, a leveling agent, an antifoaming agent, an antioxidant, a flame retardant, etc. can be appropriately added as long as the effects of the present invention are not impaired.
 本発明の組成物は、25℃における粘度が50~3000mPa・sであることが好ましく、100~2000mPa.sであることが好ましい。当該粘度は、ブルックフィールド回転粘度計を使用することにより、計測・算出することが可能である。 The composition of the present invention preferably has a viscosity at 25 ° C. of 50 to 3000 mPa · s, and has a viscosity of 100 to 2000 mPa · s. s is preferable. The viscosity can be measured and calculated by using a Brookfield rotational viscometer.
 本発明の組成物の製造方法は特に限定されず、常法により製造することができる。例えば、上述の成分(A)~(C)、及び必要に応じてその他の成分を、温度調節可能な混練機、例えば、プラネタリーミキサー、二軸ミキサー、高せん断型ミキサー、バタフライミキサーなどを用いて混練することにより製造することができる The method for producing the composition of the present invention is not particularly limited, and the composition can be produced by a conventional method. For example, the above-mentioned components (A) to (C) and, if necessary, other components can be mixed using a kneader whose temperature can be adjusted, for example, a planetary mixer, a twin-screw mixer, a high-shear mixer, a butterfly mixer, or the like. Can be manufactured by kneading
 また、本発明の組成物を使用して電子回路実装基板をコーティングする方法としては特に限定されず、従来公知の方法によりコーティングすることができ、特にディスペンサー装置を用いてコーティングする方法が好適である。 Further, the method of coating the electronic circuit mounting substrate using the composition of the present invention is not particularly limited, and coating can be performed by a conventionally known method, and a method of coating using a dispenser device is particularly preferable. ..
 以上、本発明の実施形態について説明したが、本発明はこうした例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to these examples, and it goes without saying that the present invention can be implemented in various forms without departing from the gist of the present invention.
 以下、実施例に基づき、本発明の実施形態をより具体的に説明するが、本発明がこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail based on Examples, but the present invention is not limited thereto.
成分(A-1):合成例1
 温度計、冷却管、撹拌装置を備えた1Lの4口フラスコに、ダイマー酸ポリエステルポリオール(クローダー社 プリプラスト1838、水酸基価:56mgKOH/g、数平均分子量:2,000)500gと、イソホロンジイソシアネート(エボニック社 VESTNAT IPDI)111.12gを投入し、窒素還流下で80℃で3時間攪拌し反応させ、次に2-(パーフルオロヘキシル)エタノール45.51gと2―ヒドロキシエチルアクリレート43.54gを投入し 80℃において15時間攪拌し反応させ、反応終了はJIS K7301に準ずる滴定によりイソシアネート残基が消失していることにより確認した。これにより成分(A-1)(質量平均分子量 14,900、パーフルオロヘキシル基含有量:0.18mol/kg)を得た。
Component (A-1): Synthesis Example 1
In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500 g of polyester polyol dimerate (Crawder preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate (ebonic). VESTNAT IPDI) 111.12 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, and then 45.51 g of 2- (perfluorohexyl) ethanol and 43.54 g of 2-hydroxyethyl acrylate were added. The reaction was carried out with stirring at 80 ° C. for 15 hours, and the completion of the reaction was confirmed by the disappearance of the isocyanate residue by the titration according to JIS K7301. As a result, component (A-1) (mass average molecular weight 14,900, perfluorohexyl group content: 0.18 mol / kg) was obtained.
成分(A-2):合成例2
 温度計、冷却管、撹拌装置を備えた1Lの4口フラスコに、ダイマー酸ポリエステルポリオール(クローダー社 プリプラスト1838、水酸基価:56mgKOH/g、数平均分子量:2,000)500.0gと、イソホロンジイソシアネート(エボニック社 VESTNAT IPDI)111.12gを投入し、窒素還流下で80℃で3時間攪拌し反応させ、次に2-(パーフルオロヘキシル)エタノール91.03g と2-ヒドロキシエチルアクリレート29.03gを投入し、80℃において15時間攪拌し反応させ、反応終了はJIS K7301に準ずる滴定によりイソシアネート残基が消失していることにより確認した。これにより成分(A-2)(質量平均分子量:15200、パーフルオロヘキシル基含有量:0.34mol/kg)を得た。
Component (A-2): Synthesis Example 2
In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500.0 g of polyester polyol dimerate (Crawder's preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate. (Ebonic VESTNAT IPDI) 111.12 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, and then 91.03 g of 2- (perfluorohexyl) ethanol and 29.03 g of 2-hydroxyethyl acrylate were added. The mixture was charged and stirred at 80 ° C. for 15 hours to react, and the completion of the reaction was confirmed by the disappearance of isocyanate residues by titration according to JIS K7301. As a result, component (A-2) (mass average molecular weight: 15200, perfluorohexyl group content: 0.34 mol / kg) was obtained.
成分(A-3):合成例3
 温度計、冷却管、撹拌装置を備えた1Lの4口フラスコに、ダイマー酸ポリエステルポリオール(クローダー社 プリプラスト1838、水酸基価:56mgKOH/g、数平均分子量:2,000)500.0gと、イソホロンジイソシアネート(エボニック社 VESTNAT IPDI)111.12gを投入し、窒素還流下で80℃で3時間攪拌し反応させ、次に2-(パーフルオロブチル)エタノール66.02g と2-ヒドロキシエチルアクリレート29.03gを投入し、80℃において15時間攪拌し反応させ、反応終了はJIS K7301に準ずる滴定によりイソシアネート残基が消失していることにより確認した。これにより成分(A-3)(質量平均分子量:14900、パーフルオロヘキシル基含有量:0.35mol/kg)を得た。
Component (A-3): Synthesis Example 3
In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500.0 g of polyester polyol dimerate (Crawder's preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate. (Ebonic VESTNAT IPDI) 111.12 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, and then 66.02 g of 2- (perfluorobutyl) ethanol and 29.03 g of 2-hydroxyethyl acrylate were added. The mixture was charged and stirred at 80 ° C. for 15 hours to react, and the completion of the reaction was confirmed by the disappearance of isocyanate residues by titration according to JIS K7301. As a result, component (A-3) (mass average molecular weight: 14900, perfluorohexyl group content: 0.35 mol / kg) was obtained.
成分(A-4):合成例4
 温度計、冷却管、撹拌装置を備えた1Lの4口フラスコに、ポリカーボネートジオール(東ソー社 ニッポラン965、水酸基価:112mgKOH/g、数平均分子量:1000)400gと、イソホロンジイソシアネート(エボニック社 VESTNAT IPDI)177.83gを投入し、窒素還流下で80℃で3時間攪拌し反応させ、次にパーフルオロヘキシルアルコール72.82gと2-ヒドロキシプロピルアクリレート78.08gを投入し 80℃において15時間攪拌し反応させ、反応終了はJIS K7301に準ずる滴定によりイソシアネート残基が消失していることにより確認した。これにより成分(A-4)(質量平均分子量:7300 パーフルオロヘキシル基含有量:0.27mol/kg)を得た。
Component (A-4): Synthesis Example 4
In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 400 g of polycarbonate diol (Nipporan 965 from Toso, hydroxyl value: 112 mgKOH / g, number average molecular weight: 1000) and isophorone diisocyanate (VESTNAT IPDI from Ebonic) 177.83 g was added and stirred at 80 ° C. for 3 hours under reflux with nitrogen to react, then 72.82 g of perfluorohexyl alcohol and 78.08 g of 2-hydroxypropyl acrylate were added and stirred at 80 ° C. for 15 hours for reaction. The reaction was completed by confirming that the isocyanate residue had disappeared by the titration according to JIS K7301. As a result, component (A-4) (mass average molecular weight: 7300 perfluorohexyl group content: 0.27 mol / kg) was obtained.
成分(A-5):合成例5
 温度計、冷却管、撹拌装置を備えた1Lの4口フラスコに、ポリカーボネートジオール(東ソー社 ニッポラン965、水酸基価:112mgKOH/g、数平均分子量:1000)400gと、イソホロンジイソシアネート(エボニック社 VESTNAT IPDI)177.83gを投入し、窒素還流下で80℃で3時間攪拌し反応させ、次にパーフルオロヘキシルアルコール145.64g と2-ヒドロキシプロピルアクリレート52.06gを投入し、80℃において15時間攪拌し反応させ、反応終了はJIS K7301に準ずる滴定によりイソシアネート残基が消失していることにより確認した。これにより成分(A-5)(質量平均分子量:7700、 パーフルオロヘキシル基含有量:0.52mol/kg)を得た。
Component (A-5): Synthesis Example 5
In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 400 g of polycarbonate diol (Nipporan 965 from Toso, hydroxyl value: 112 mgKOH / g, number average molecular weight: 1000) and isophorone diisocyanate (VESTNAT IPDI from Ebonic) 177.83 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, then 145.64 g of perfluorohexyl alcohol and 52.06 g of 2-hydroxypropyl acrylate were added, and the mixture was stirred at 80 ° C. for 15 hours. The reaction was carried out, and the completion of the reaction was confirmed by the disappearance of the isocyanate residue by the titration according to JIS K7301. As a result, component (A-5) (mass average molecular weight: 7700, perfluorohexyl group content: 0.52 mol / kg) was obtained.
成分(A-6):合成例6
 温度計、冷却管、撹拌装置を備えた1Lの4口フラスコに、ダイマー酸ポリエステルポリオール(クローダー社 プリプラスト1838、水酸基価:56mgKOH/g、数平均分子量:2,000)500 gと、イソホロンジイソシアネート(エボニック社 VESTNAT IPDI )83.36gを投入し、窒素還流下で80℃で3時間攪拌し反応させ、次に2-(パーフルオロヘキシル)エタノール9.10gと2―ヒドロキシエチルアクリレート26.12gを投入し、80℃において15時間攪拌し反応させ、反応終了はJIS K7301に準ずる滴定によりイソシアネート残基が消失していることにより確認した。これにより成分(A-6)(質量平均分子量 16,000 パーフルオロヘキシル基含有量:0.04 mol/kg)を得た。
Component (A-6): Synthesis Example 6
In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500 g of polyester polyol dimerate (Crawder's preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate ( Ebonic VESTNAT IPDI) 83.36 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, and then 9.10 g of 2- (perfluorohexyl) ethanol and 26.12 g of 2-hydroxyethyl acrylate were added. Then, the mixture was stirred and reacted at 80 ° C. for 15 hours, and the completion of the reaction was confirmed by the disappearance of the isocyanate residue by the titration according to JIS K7301. As a result, component (A-6) (mass average molecular weight 16,000 perfluorohexyl group content: 0.04 mol / kg) was obtained.
成分(A-7):合成例7
 温度計、冷却管、撹拌装置を備えた1Lの4口フラスコに、ダイマー酸ポリエステルポリオール(クローダー社 プリプラスト1838、水酸基価:56mgKOH/g、数平均分子量:2,000)500 gと、イソホロンジイソシアネート(エボニック社 VESTNAT IPDI )83.36gを投入し、窒素還流下で80℃で3時間攪拌し反応させ、次に2-(パーフルオロヘキシル)エタノール22.76gと2―ヒドロキシエチルアクリレート21.77gを投入し、80℃において15時間攪拌し反応させ、反応終了はJIS K7301に準ずる滴定によりイソシアネート残基が消失していることにより確認した。これにより成分(A-7)(質量平均分子量 16,300 パーフルオロヘキシル基含有量:0.10 mol/kg)を得た。
Component (A-7): Synthesis Example 7
In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500 g of polyester polyol dimerate (Crawder's preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate ( Ebonic VESTNAT IPDI) 83.36 g was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, and then 22.76 g of 2- (perfluorohexyl) ethanol and 21.77 g of 2-hydroxyethyl acrylate were added. Then, the mixture was stirred and reacted at 80 ° C. for 15 hours, and the completion of the reaction was confirmed by the disappearance of the isocyanate residue by the titration according to JIS K7301. As a result, component (A-7) (mass average molecular weight 16,300 perfluorohexyl group content: 0.10 mol / kg) was obtained.
成分(A-8):合成例8
 温度計、冷却管、撹拌装置を備えた1Lの4口フラスコに、ダイマー酸ポリエステルポリオール(クローダー社プリプラスト1838、水酸基価:56mgKOH/g、数平均分子量:2,000)500gと、イソホロンジイソシアネート(エボニック社 VESTNAT IPDI)111.12gを投入し、窒素還流下で80℃で3時間攪拌し反応させ、次に2-ヒドロキシエチルアクリレート 58.05gを投入し、80℃において15時間攪拌し反応させ、反応終了はJIS K7301に準ずる滴定によりイソシアネート残基が消失していることにより確認した。これにより成分(A-8)(質量平均分子量:14,600)を得た。
Component (A-8): Synthesis Example 8
In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 500 g of polyester polyol dimerate (Crawder Preplast 1838, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000) and isophorone diisocyanate (ebonic). VESTNAT IPDI) 111.12 g was added, and the mixture was stirred and reacted at 80 ° C. under reflux with nitrogen for 3 hours, then 58.05 g of 2-hydroxyethyl acrylate was added, and the mixture was stirred and reacted at 80 ° C. for 15 hours for reaction. The termination was confirmed by the disappearance of the isocyanate residue by the titration according to JIS K7301. As a result, the component (A-8) (mass average molecular weight: 14,600) was obtained.
成分(A-9):合成例9
 温度計、冷却管、撹拌装置を備えた1Lの4口フラスコに、水添ポリブタジエンポリオール(東ソー社 GI-1000、水酸基価:70mgKOH/g、数平均分子量:1,000)400gと、イソホロンジイソシアネート(エボニック社 VESTNAT IPDI)177.83gを投入し、窒素還流下で80℃で3時間攪拌し反応させ、次に2-ヒドロキシエチルアクリレート92.88gを投入し、80℃において15時間攪拌し反応させ、反応終了はJIS K7301に準ずる滴定によりイソシアネート残基が消失していることにより確認した。これにより成分(A-9)(質量平均分子量:20,500)を得た。
Component (A-9): Synthesis Example 9
In a 1 L 4-neck flask equipped with a thermometer, a cooling tube, and a stirrer, 400 g of a hydrogenated polybutadiene polyol (Tosoh GI-1000, hydroxyl value: 70 mgKOH / g, number average molecular weight: 1,000) and isophorone diisocyanate ( 177.83 g of Ebonic VESTNAT IPDI) was added, and the mixture was stirred and reacted at 80 ° C. for 3 hours under reflux with nitrogen, then 92.88 g of 2-hydroxyethyl acrylate was added, and the mixture was stirred and reacted at 80 ° C. for 15 hours. The completion of the reaction was confirmed by the disappearance of the isocyanate residue by the titration according to JIS K7301. As a result, component (A-9) (mass average molecular weight: 20,500) was obtained.
成分(B):アクリル酸エステルモノマー
(B-1)単官能アクリレート(ノニルフェノキシポリエチレングリコールアクリレート)
東亞合成社製 アロニックスM-111
(B-2)単官能アクリレート (フェノキシポリエチレングリコールアクリレート)共栄社化学  ライトアクリレートP-200
(B-3)単官能アクリレート (イソボルニルアクリレート) 
大阪有機化学工業 IBXA
(B-4)単官能アクリレート(2-ヒドロキシ-3-フェノキシプロピルアクリレート)
東亜合成化学社製 アロニックスM-5700
Ingredient (B): Acrylic acid ester monomer (B-1) Monofunctional acrylate (Nonylphenoxypolyethylene glycol acrylate)
Aronix M-111 manufactured by Toagosei Co., Ltd.
(B-2) Monofunctional Acrylate (Phenoxy Polyethylene Glycol Acrylate) Kyoeisha Chemical Light Acrylate P-200
(B-3) Monofunctional acrylate (isobornyl acrylate)
Osaka Organic Chemical Industry IBXA
(B-4) Monofunctional acrylate (2-hydroxy-3-phenoxypropyl acrylate)
Toagosei Aronix M-5700
成分(C):光重合開始剤
 アシルフォスフィンオキサイド化合物
(C1)IGM Resin社   Omnirad819
(C2)IGM Resin社  Omnirad TPO-H
Ingredient (C): Photopolymerization Initiator Acylphosphine Oxide Compound (C1) IGM Resin Omnirad 819
(C2) IGM Resin Omnirad TPO-H
成分(D):蛍光増白剤
 オキサゾール系蛍光増白剤 BASF社 TINOPAL OB    
Component (D): Fluorescent whitening agent Oxazole-based fluorescent whitening agent BASF TINOPAL OB
成分(E):チオール化合物
 4官能2級チオール 昭和電工社 カレンズMTPE1
Ingredient (E): Thiol compound 4-functional secondary thiol Showa Denko Karens MTPE1
(実施例及び比較例)
 上記成分(A)~(E)を、表1及び2に示される配合に基づき、加熱装置を備えた攪拌混合機を使用して活性エネルギー線硬化型コーティング用組成物を製造し、評価を行った。
(Examples and comparative examples)
Based on the formulations shown in Tables 1 and 2, the above components (A) to (E) are evaluated by producing a composition for active energy ray-curable coating using a stirring mixer equipped with a heating device. It was.
(粘度測定)
 ブルックフィールドB型粘度計(タイプDVE)を用い、(スピンドルSC4-No.29)とサーモセルを準備し、コーティング用組成物をチャンバーに13cc充填し、25℃における粘度を測定した。
(Viscosity measurement)
Using a Brookfield B-type viscometer (Type DVE), (Spindle SC4-No. 29) and Thermocell were prepared, the chamber was filled with 13 cc of the coating composition, and the viscosity at 25 ° C. was measured.
(深部硬化性評価試験)
 ステンレス板(5cm×5cm)に剥離用PETを剥離面が上になるように両面テープで張り合わせ、塗布用のベース基材を作成した。厚さがそれぞれ1mm、1.5mm、2mm、3mmのシリコンゴムシートを準備し、2cm×2cmにカットし、図1のようにコーティング剤の充填部分が15mm×15mmとなるように切り抜き、スペーサーとした。当該スペーサーを準備した塗布用ベース基材の上にセットし、コーティング用組成物をスペーサーの高さまで充填した。充填したコーティング用組成物をUV照射装置(パナソニック社製 Aicure UJ30 ヘッド 波長365nm ANUJ6186)により4500mJ/cm2の積算照射量にて硬化させた。UV照度と積算照射量の調整は照度計(ヘレウス社 UV Power PuckII)を用いて行った。硬化させた塗膜を剥がし、剥がした塗膜が下になるように上質紙上に置いて、1時間養生した。養生後、塗膜をとり除き、下記評価基準に従って評価した。硬化させたコーティング用組成物の裏面を確認し、上記シリコンゴムシート1.5mmの膜厚のモデルにおいて未硬化部分が観察されない場合に、合格とした。その上で、上記シリコンゴムシートの各厚さにより得られる1mm、1.5mm、2mm、3mmの膜厚のモデルに関して、下記の評価基準で判定した。
 ◎:膜厚2mmのコーティングモデルかつ3mmのコーティングモデルにおいても未硬化物が確認できない
 ○:膜厚2mm以上では未硬化物が確認されるが、1.5mmでは確認されない
 ×:膜厚1.5mmのコーティングモデルで未硬化物が確認される
(暗部硬化性評価試験)
 上記、深部硬化性評価と同様の方法で、1mmのスペーサーを使用し、コーティング剤を充填し、膜厚を1mmとし、次に充填部の1/2の面積を図2のようにアルミニウムフォイルにて覆い、UV光が非照射部となるようにした。深部硬化性と同様のUV照射装置および積算照射量にて、照射部を硬化させ、アルミニウムフォイルを取り除き、照射部端面を基準にして、その端面から硬化に至った距離を観察し、下記の基準で判定した。
 ◎:照射部端面から5.0以上7.5mm以下の距離が硬化にいたる
 ○:照射部端面から2.5以上5.0mm未満の距離が硬化にいたる
 △:照射部端面から1.0以上2.5mm未満の距離が硬化にいたる
 ×:照射部のみ硬化。アルミニウムフォイルで覆った非照射部への硬化は全くなし。
(Deep curability evaluation test)
A peeling PET was attached to a stainless steel plate (5 cm × 5 cm) with double-sided tape so that the peeling surface was facing up, and a base base material for coating was prepared. Prepare silicon rubber sheets with thicknesses of 1 mm, 1.5 mm, 2 mm, and 3 mm, respectively, cut them into 2 cm x 2 cm, cut out so that the filling part of the coating agent is 15 mm x 15 mm as shown in Fig. 1, and use a spacer. did. The spacer was set on the prepared base material for coating, and the coating composition was filled to the height of the spacer. The packed coating composition was cured with a UV irradiation device (Aure UJ30 head wavelength 365 nm ANUJ6186 manufactured by Panasonic Corporation) at an integrated irradiation amount of 4500 mJ / cm2. The UV illuminance and the integrated irradiation amount were adjusted using an illuminance meter (UV Power PackII, Heraeus). The cured coating film was peeled off, placed on high-quality paper so that the peeled coating film was on the bottom, and cured for 1 hour. After curing, the coating film was removed and evaluated according to the following evaluation criteria. The back surface of the cured coating composition was confirmed, and if an uncured portion was not observed in the model having a film thickness of 1.5 mm of the silicon rubber sheet, the result was passed. Then, the models having a film thickness of 1 mm, 1.5 mm, 2 mm, and 3 mm obtained by each thickness of the silicon rubber sheet were judged according to the following evaluation criteria.
⊚: Uncured product cannot be confirmed even in the coating model with a film thickness of 2 mm and the coating model with a film thickness of 3 mm. Uncured product is confirmed in the coating model of (dark area curability evaluation test)
By the same method as the above-mentioned deep curability evaluation, a 1 mm spacer was used, the coating agent was filled, the film thickness was set to 1 mm, and then half the area of the filled part was made into an aluminum foil as shown in FIG. It was covered with UV light so that it would be a non-irradiated part. The irradiated part is cured with the same UV irradiation device and integrated irradiation amount as in the deep curable, the aluminum foil is removed, and the distance from the end face to the curing is observed with reference to the end face of the irradiated part. Judged by.
⊚: A distance of 5.0 or more and 7.5 mm or less from the end face of the irradiation part leads to curing ○: A distance of 2.5 or more and less than 5.0 mm from the end face of the irradiation part leads to curing Δ: 1.0 or more from the end face of the irradiation part A distance of less than 2.5 mm leads to curing ×: Only the irradiated part is cured. There is no curing on the non-irradiated part covered with aluminum foil.
(耐熱衝撃性評価試験)
 塗布装置(ノードソン社製、アプリケーター(ユニティーIC30 PLUS )、3軸ロボット(w/4XPロボット)、 Unityコントローラー、 ノズル1.35mm)を用意した。厚さが2mmのシリコンゴムシートを準備し、2cm×3.5cmにカットし、図3のようにコーティング剤の充填部分が15×30mmとなるように切り抜き、スペーサーとした。上記スペーサーを準備した銅張積層板の上にセットし、コーティング組成物を当該塗布装置で、スペーサー高さまで充填し、塗布された活性エネルギー線コーティング組成物に深部硬化性評価と同様のUV照射装置および同様の積算照射量で硬化させ、スペーサーを取り除き、厚み2mmのコーティング塗膜を得た次にコーティング組成物が塗布され、硬化した試験体を熱衝撃試験機に投入し、-40℃30分/80℃30分の繰り返しを1サイクルのとし、500サイクル実施し、下記評価基準にしたがって評価した。
 ◎:銅張り積層板からの剥がれがまったく引き起こされていない。
 ○:塗布面積100%とした場合、剥がれ10%未満である
 △:塗布面積100%とした場合、10~30%の剥がれがある  
 ×:塗布面積100%とした場合、30%以上の剥がれがある
(Heat and shock resistance evaluation test)
A coating device (Applicator (Unity IC30 PLUS) manufactured by Nordson, 3-axis robot (w / 4XP robot), Unity controller, nozzle 1.35 mm) was prepared. A silicon rubber sheet having a thickness of 2 mm was prepared, cut into 2 cm × 3.5 cm, and cut out so that the filled portion of the coating agent became 15 × 30 mm as shown in FIG. 3, and used as a spacer. The above spacer is set on the prepared copper-clad laminate, the coating composition is filled to the spacer height with the coating device, and the applied active energy ray coating composition is UV-irradiated in the same manner as in the deep curability evaluation. And the same integrated irradiation dose, the spacers were removed to obtain a coated coating film with a thickness of 2 mm, then the coating composition was applied, and the cured test piece was put into a thermal shock tester for 30 minutes at -40 ° C. The repetition of / 80 ° C. for 30 minutes was regarded as one cycle, and 500 cycles were carried out and evaluated according to the following evaluation criteria.
⊚: No peeling from the copper-clad laminate was caused.
◯: When the coating area is 100%, the peeling is less than 10%. Δ: When the coating area is 100%, there is 10 to 30% peeling.
X: When the coating area is 100%, there is peeling of 30% or more.
(絶縁信頼性評価試験)
 JIS Z3197 8.5.3e に準ずるくし型電極基板(電極間隔0.318mm)にコーティング用組成物を前記、耐熱衝撃性の測定で用いた同一の塗布装置にて厚みが1mmとなるように塗布し、次に深部硬化性評価に用いた同一のUV照射装置および積算照射量にてコーティング用組成物を硬化させ、85℃ 87.5%RHの条件にてマイグレーションテスターを使用し500時間の試験を行い、下記評価基準にしたがって評価した。
 ○:絶縁抵抗値が10Ω以上でデンドライトの発生がない
 △:絶縁抵抗値が10Ω以上であるが、デンドライトが発生している
 ×:絶縁抵抗値が10Ω未満である
(Insulation reliability evaluation test)
The coating composition is applied to a comb-shaped electrode substrate (electrode spacing 0.318 mm) conforming to JIS Z3197 8.5.3e with the same coating device used in the measurement of thermal shock resistance so that the thickness is 1 mm. Then, the coating composition was cured with the same UV irradiation device and integrated irradiation amount used for the deep curability evaluation, and the test was performed for 500 hours using a migration tester under the conditions of 85 ° C. and 87.5% RH. Was evaluated according to the following evaluation criteria.
○: the insulation resistance is not generated dendrite 10 8 Omega more △: the insulating resistance of at least 10 8 Ω, × dendrite occurs: insulation resistance is less than 10 8 Omega
(付着性評価)
 銅張積層板(70mm×90mm×1.6mm)にコーティング組成物を厚みが500μmとなるように45mm×45mmの面積を塗布した。次に深部硬化性評価に用いた同一のUV照射装置および積算照射量にてコーティング用組成物を硬化させた後、24時間室温で放置し、JISK5400に準ずるクロスカット法(カットの間隔2mm、マス目の数25)にて、下記評価基準にしたがって評価した。
◎:残存マス目が25
〇:残存マス目が20以上25未満
△:残存マス目が15以上20未満
×:残存マス目が15未満
(Adhesion evaluation)
A coating composition was applied to a copper-clad laminate (70 mm × 90 mm × 1.6 mm) in an area of 45 mm × 45 mm so as to have a thickness of 500 μm. Next, after curing the coating composition with the same UV irradiation device and integrated irradiation amount used for deep curability evaluation, the coating composition was left at room temperature for 24 hours, and a cross-cut method conforming to JIS K5400 (cut interval 2 mm, mass). The number of eyes 25) was evaluated according to the following evaluation criteria.
⊚: 25 remaining squares
〇: Remaining squares are 20 or more and less than 25 Δ: Remaining squares are 15 or more and less than 20 ×: Remaining squares are less than 15
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012

Claims (12)

  1.  下記成分(A)、(B)及び(C)を含む活性エネルギー線硬化型コーティング用組成物。
     (A)下記式(1)で表される基及び置換又は未置換のアクリロイル基を有するオリゴマー、
     (B)1分子あたり1個の不飽和結合を有する(メタ)アクリル酸エステルモノマー、
     (C)光重合開始剤
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、Rは炭素数4~6のパーフルオロアルキル基を示す。〕
    A composition for active energy ray-curable coating containing the following components (A), (B) and (C).
    (A) Oligomer having a group represented by the following formula (1) and a substituted or unsubstituted acryloyl group,
    (B) A (meth) acrylic acid ester monomer having one unsaturated bond per molecule,
    (C) Photopolymerization initiator
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), R 1 represents a perfluoroalkyl group having 4 to 6 carbon atoms. ]
  2.  さらに成分(D)として蛍光増白剤を含み、
     前記蛍光増白剤は、オキサゾール系化合物、クマリン系化合物、及びスチルベン系化合物からなる群より選ばれる少なくとも一種である、請求項1に記載の組成物。
    Further, a fluorescent whitening agent is contained as a component (D), and the component (D) is contained.
    The composition according to claim 1, wherein the fluorescent whitening agent is at least one selected from the group consisting of an oxazole-based compound, a coumarin-based compound, and a stilbene-based compound.
  3.  さらに成分(E)としてチオール化合物を含む、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, further containing a thiol compound as the component (E).
  4.  前記チオール化合物は、2~4個のチオール基を有する2級チオール化合物である、請求項3に記載の組成物。 The composition according to claim 3, wherein the thiol compound is a secondary thiol compound having 2 to 4 thiol groups.
  5.  前記不飽和基は、置換又は未置換のアクリロイル基であり、
     前記成分(A)は、脂肪族ジイソシアネート化合物、脂環族ジイソシアネート化合物及び芳香族ジイソシアネート化合物からなる群より選択される少なくとも一種に由来するセグメント、並びに
     水添ダイマー酸ポリエステルポリオール、ダイマー酸ポリエステルポリオール及びポリカーボネートジオールからなる群より選択される少なくとも一種に由来するセグメントを含むオリゴマーである、請求項1~4の何れか1項に記載の組成物。
    The unsaturated group is a substituted or unsubstituted acryloyl group.
    The component (A) is a segment derived from at least one selected from the group consisting of an aliphatic diisocyanate compound, an alicyclic diisocyanate compound and an aromatic diisocyanate compound, and a hydrogenated polyester polyol dimerate, a polyester dimerate polyol and a polycarbonate. The composition according to any one of claims 1 to 4, which is an oligomer containing a segment derived from at least one selected from the group consisting of diols.
  6.  前記成分(A)及び前記成分(B)の合計質量に対する前記成分(A)の質量が20~50質量%である、請求項1~5の何れか1項に記載の組成物。 The composition according to any one of claims 1 to 5, wherein the mass of the component (A) is 20 to 50% by mass with respect to the total mass of the component (A) and the component (B).
  7.  前記成分(A)の質量平均分子量は5000~30000である、請求項1~6の何れか1項に記載の組成物。 The composition according to any one of claims 1 to 6, wherein the mass average molecular weight of the component (A) is 5000 to 30000.
  8.  前記成分(A)のパーフルオロアルキル基含有量が0.01~0.6mol/kgである、請求項1~7の何れか1項に記載の組成物。 The composition according to any one of claims 1 to 7, wherein the component (A) has a perfluoroalkyl group content of 0.01 to 0.6 mol / kg.
  9.  前記成分(B)が、水酸基を分子に有する(メタ)アクリル酸エステルモノマーである、請求項1~8の何れか1項に記載の組成物。 The composition according to any one of claims 1 to 8, wherein the component (B) is a (meth) acrylic acid ester monomer having a hydroxyl group as a molecule.
  10.  前記成分(C)はアシルフォスフィンオキサイド系光重合開始剤であり、
     前記成分(A)及び(B)の合計100質量部に対し、前記成分(C)が0.5~3.0質量部含まれる、請求項1~9の何れか1項に記載の組成物。
    The component (C) is an acylphosphine oxide-based photopolymerization initiator.
    The composition according to any one of claims 1 to 9, wherein the component (C) is contained in an amount of 0.5 to 3.0 parts by mass with respect to a total of 100 parts by mass of the components (A) and (B). ..
  11.  前記成分(C)は、下記式(2)又は(3)で表されるアシルフォスフィンオキサイド系光重合開始剤である、請求項1~10の何れか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    The composition according to any one of claims 1 to 10, wherein the component (C) is an acylphosphine oxide-based photopolymerization initiator represented by the following formula (2) or (3).
    Figure JPOXMLDOC01-appb-C000002
  12.  25℃における粘度が3000mPa・s以下である、請求項1~11の何れか1項に記載の組成物。 The composition according to any one of claims 1 to 11, which has a viscosity at 25 ° C. of 3000 mPa · s or less.
PCT/JP2020/042624 2019-12-09 2020-11-16 Active energy ray-curable coating composition WO2021117421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021563810A JPWO2021117421A1 (en) 2019-12-09 2020-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-222005 2019-12-09
JP2019222005 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021117421A1 true WO2021117421A1 (en) 2021-06-17

Family

ID=76329789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042624 WO2021117421A1 (en) 2019-12-09 2020-11-16 Active energy ray-curable coating composition

Country Status (3)

Country Link
JP (1) JPWO2021117421A1 (en)
TW (1) TW202128783A (en)
WO (1) WO2021117421A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162908A (en) * 2003-12-03 2005-06-23 Natoko Kk Active energy ray-curable urethane (meth)acrylate, active energy ray-curable composition containing the same and functional member using them
CN101367922A (en) * 2008-09-12 2009-02-18 中国科学技术大学 Fluorine-containing hyperbranched polyester acrylic ester and method of preparing the same
JP2011213965A (en) * 2010-04-02 2011-10-27 Dic Graphics Corp Ultraviolet curable coating varnish
CN104927024A (en) * 2014-03-20 2015-09-23 江南大学 Preparation method of fluorine modified light-cured polyurethane acrylate resin and application thereof as light-cured coating hydrophobic filling material
JP2016500716A (en) * 2012-10-04 2016-01-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Fluorinated polymerizable compounds
WO2016057002A1 (en) * 2014-10-10 2016-04-14 Nipsea Technologies Pte Ltd A polymer composition and preparation method thereof
JP2018070778A (en) * 2016-10-31 2018-05-10 三洋化成工業株式会社 Active energy ray-curable resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162908A (en) * 2003-12-03 2005-06-23 Natoko Kk Active energy ray-curable urethane (meth)acrylate, active energy ray-curable composition containing the same and functional member using them
CN101367922A (en) * 2008-09-12 2009-02-18 中国科学技术大学 Fluorine-containing hyperbranched polyester acrylic ester and method of preparing the same
JP2011213965A (en) * 2010-04-02 2011-10-27 Dic Graphics Corp Ultraviolet curable coating varnish
JP2016500716A (en) * 2012-10-04 2016-01-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Fluorinated polymerizable compounds
CN104927024A (en) * 2014-03-20 2015-09-23 江南大学 Preparation method of fluorine modified light-cured polyurethane acrylate resin and application thereof as light-cured coating hydrophobic filling material
WO2016057002A1 (en) * 2014-10-10 2016-04-14 Nipsea Technologies Pte Ltd A polymer composition and preparation method thereof
JP2018070778A (en) * 2016-10-31 2018-05-10 三洋化成工業株式会社 Active energy ray-curable resin composition

Also Published As

Publication number Publication date
TW202128783A (en) 2021-08-01
JPWO2021117421A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US4283480A (en) Photopolymerizable compositions, methods for their preparation, and methods for their use in coating substrates
US5312943A (en) Dual curing conformal coatings
KR100627082B1 (en) Phosphorus-containing urethane methacrylate compounds and photosensitive compositions
JP5319132B2 (en) Photocurable / thermosetting resin composition and cured product thereof
JP2008280414A (en) Photocurable resin composition, photocurable moistureproof insulating coating for mounting circuit board, electronic part and its manufacturing method
KR101623770B1 (en) Active-Energy-Ray-Curable Sealing Agent Composition, And Member Having Sealing Layer Attached Thereto
TW201345940A (en) Urethane (meth)acrylate and moisture-proof insulating coating material
JP2008291114A (en) Photosetting resin composition, photosetting and moistureproof insulating paint for mounted circuit board, electronic component and method for manufacturing the component
JP2009197053A (en) One component type moisture curing urethane resin adhesive composition
WO2021117421A1 (en) Active energy ray-curable coating composition
JP5162893B2 (en) Manufacturing method of photocurable resin composition, photocurable moisture-proof insulating coating for mounting circuit board, mounting circuit board, and manufacturing method of mounting circuit board
KR20130033027A (en) Adhesive composition for optical use, adhesive layer and adhesive sheet using the same
JP6474565B2 (en) Urethane (meth) acrylate and active energy ray-curable composition containing the same
JP2014177583A (en) Curable composition and laminate
KR20130066273A (en) Adhesive composition for uv-curing
JP2011074284A (en) Adhesive composition
JP2015010113A (en) Moisture-proof insulation coating, sealing insulating treatment method using the coating, and electronic component
WO2019182155A1 (en) Curable composition, cured product, method for producing cured product, and method for repairing damage of cured product
JP7187725B1 (en) Curable composition and electric member
JP3565240B2 (en) Photocurable resin composition and paint
JP2007314756A (en) Photo-curable resin composition, photo-curable moistureproof insulating coating for mounted circuit board, electronic part and method for producing the same
JPH06192384A (en) Hardenable composition
JP2010189634A (en) Active energy ray-curable resin composition having high refractive index
KR20220117246A (en) curable composition
KR20230045205A (en) Hybrid curable composition and a cured coating layer formed from the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563810

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898875

Country of ref document: EP

Kind code of ref document: A1