WO2021117107A1 - Distribution device, heat exchanger provided with distribution device, and air conditioner provided with said heat exchanger - Google Patents

Distribution device, heat exchanger provided with distribution device, and air conditioner provided with said heat exchanger Download PDF

Info

Publication number
WO2021117107A1
WO2021117107A1 PCT/JP2019/048137 JP2019048137W WO2021117107A1 WO 2021117107 A1 WO2021117107 A1 WO 2021117107A1 JP 2019048137 W JP2019048137 W JP 2019048137W WO 2021117107 A1 WO2021117107 A1 WO 2021117107A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
plate
opening area
holes
stage
Prior art date
Application number
PCT/JP2019/048137
Other languages
French (fr)
Japanese (ja)
Inventor
ヒマンシュ ディマン
光佑 熊本
高藤 亮一
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2020528359A priority Critical patent/JP6767606B1/en
Priority to PCT/JP2019/048137 priority patent/WO2021117107A1/en
Publication of WO2021117107A1 publication Critical patent/WO2021117107A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a distributor, a heat exchanger equipped with the distributor, and an air conditioner equipped with the heat exchanger.
  • the refrigerant is sent through the pipes to each heat transfer tube constituting the heat exchanger.
  • the pipe generally has a main pipe and a plurality of branch pipes branched from the main pipe, and the branch pipe is connected to the heat transfer pipe. In this configuration, it is necessary to evenly distribute the refrigerant from the main pipe to each branch pipe.
  • the number of branch pipes corresponding to the number of heat transfer tubes is provided, the size of the device becomes large, which is contrary to the demand for compactness of the device.
  • Patent Document 1 a horizontally flowing refrigerant collides with a collision portion, the flow direction of the refrigerant is changed upward to flow the refrigerant into the main header chamber, and the refrigerant flows horizontally from the main header chamber in the vertical direction.
  • a structure for distributing a refrigerant to a plurality of juxtaposed sub-header chambers is disclosed. Further, Patent Document 1 discloses a configuration further provided with a tubular structure slidable in the vertical direction, a throttle plate for adjusting the flow rate of the upward refrigerant, and the like.
  • Patent Document 1 has a combination structure of a main header and a sub-header, and has a problem that the device size becomes large.
  • the present invention provides a distribution device capable of evenly distributing the refrigerant to each heat transfer tube with a size smaller than that of the distribution device (main header and sub-header) of Patent Document 1. It also provides a heat exchanger equipped with the distributor. It also provides an air conditioner equipped with the heat exchanger.
  • the distribution device of the present invention A distribution unit that distributes the refrigerant to each of the plurality of heat transfer tubes arranged in the vertical direction, A refrigerant flow path portion, which is connected to one end of each of the preceding plurality of heat transfer tubes and is formed with a plurality of flow paths for sending the refrigerant distributed by the distribution section to each of the plurality of heat transfer tubes. Be prepared.
  • the distribution unit A first plate with at least one refrigerant inlet and A second plate having at least one opening having an opening area larger than the opening area of the refrigerant inlet of the first plate, and a second plate.
  • a third plate having a collision region provided at a position facing the refrigerant inlet and a plurality of holes provided at positions corresponding to each of the plurality of flow paths is provided.
  • the refrigerant flow path portion It includes at least one plate in which a plurality of openings serving as the plurality of flow paths are formed.
  • the at least one opening of the second plate is arranged between the first plate and the third plate to form a main flow path for feeding the refrigerant into the refrigerant flow path portion.
  • FIG. It is the schematic of the air conditioner provided with the distribution device which concerns on Embodiment 1.
  • FIG. It is the schematic of the distribution device and the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a top view for demonstrating the component of the distribution apparatus which concerns on Embodiment 1.
  • FIG. It is a top view for showing a plurality of holes of a third plate. It is a top view for showing the plurality of holes of the 3rd plate of another embodiment. It is a top view for showing the plurality of holes of the 3rd plate of another embodiment.
  • It is a top view for showing a plurality of openings of a refrigerant flow path part. It is a top view for showing the plurality of openings of the refrigerant flow path part of another embodiment.
  • FIG. It is a top view for showing the plurality of openings of the refrigerant flow path part of another embodiment. It is a top view for demonstrating the distribution part of another embodiment. It is a top view for demonstrating the distribution part of another embodiment. It is a top view for demonstrating the component of the distribution apparatus which concerns on Embodiment 2. FIG. It is the schematic for demonstrating the multistage distribution apparatus which concerns on Embodiment 3.
  • FIG. 1 is a block diagram of a refrigeration cycle of an air conditioner according to the first embodiment of the present invention.
  • the air conditioner 100 is composed of an outdoor unit 101 installed outdoors (non-air-conditioned space) on the heat source side and an indoor unit 108 installed indoors (air-conditioned space) on the user side. , Connected by connecting pipes 112a, 112b.
  • the outdoor unit 101 includes a compressor 102, a four-way valve 103, an outdoor heat exchanger 104, an outdoor fan motor 105, an outdoor fan 106, and a throttle device 107, and the indoor unit 108 includes an indoor heat exchanger 109.
  • the indoor fan motor 110 and the indoor fan 111 are provided.
  • each element of the air conditioner 100 will be described by taking the operation during the cooling operation as an example.
  • the refrigerant flows in the direction of the solid arrow in FIG.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 102 flows to the outdoor heat exchanger 104 after passing through the four-way valve 103, and is condensed by dissipating heat to the outside air in the outdoor heat exchanger 104, resulting in high pressure. It becomes a liquid refrigerant.
  • This liquid refrigerant is depressurized by the action of the throttle device 107, becomes a low-temperature low-pressure gas-liquid two-phase state, and flows to the indoor unit 108 through the connecting pipe 112a.
  • the gas-liquid two-phase refrigerant contained in the indoor unit 108 evaporates by absorbing the heat of the indoor air in the indoor heat exchanger 109, whereby indoor cooling is realized.
  • the gas refrigerant evaporated in the indoor unit 108 returns to the outdoor unit 101 through the connecting pipe 112b, and is compressed again by the compressor 102 through the four-way valve 103. This is the refrigeration cycle during cooling operation.
  • the four-way valve 103 switches the refrigerant flow path, and the refrigerant flows in the direction of the broken line arrow in FIG.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 102 flows to the indoor unit 108 through the four-way valve 103 and the connecting pipe 112b.
  • the high-temperature gas refrigerant that has entered the indoor unit 108 is dissipated to the indoor air by the indoor heat exchanger 109 to realize indoor heating.
  • the gas refrigerant condenses and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows to the outdoor unit 101 through the connection pipe 112a.
  • the high-pressure liquid refrigerant that has entered the outdoor unit 101 is depressurized by the action of the throttle device 107, becomes a low-temperature low-pressure gas-liquid two-phase state, flows to the outdoor heat exchanger 104, and evaporates by absorbing the heat of the outdoor air. , Becomes a gas refrigerant.
  • This gas refrigerant passes through the four-way valve 103 and is then compressed again by the compressor 102. This is the refrigeration cycle during heating operation.
  • the directions of the refrigerant flows in the outdoor heat exchanger 104 and the indoor heat exchanger 109 are opposite in the cooling operation and the heating operation.
  • Examples of the refrigerant include R32 and R410A.
  • FIG. 2 is a schematic view of the outdoor heat exchanger 109 or the indoor heat exchanger 104 of the air conditioner 100.
  • the outdoor heat exchanger 109 or the indoor heat exchanger 104 includes a distribution device 50 on the inflow side on the right side in the figure for distributing the refrigerant and a merging device 60 on the outflow side on the left side in the figure for merging the refrigerant.
  • a plurality of flat tubes 2 heat transfer tubes
  • a plurality of fins 1 for expanding the heat area are provided.
  • the flow direction of the refrigerant (from right to left in the figure) and the flow direction of air (direction perpendicular to the drawing paper) are orthogonal to each other, and the refrigerant flowing in the flat pipe 2 is flat. Efficient heat exchange is realized by heat exchange of the air flowing between the pipes 2 through the fins 1. Since the flow of the refrigerant is opposite between the cooling operation and the heating operation, reference numeral 60 serves as a distribution unit device, and reference numeral 50 functions as a merging device.
  • the distribution device 50 of the first embodiment will be described with reference to FIGS. 3, 4A, and 5A.
  • the distribution device 50 includes a first introduction plate 501, a second introduction plate 502, a distribution unit 51, and a refrigerant flow path unit 52.
  • the first introduction plate 501 has a refrigerant introduction port 5011.
  • a pipe for supplying a refrigerant (not shown) is connected to the introduction port 5011, and the refrigerant is introduced.
  • the second introduction plate 502 has a first introduction path 5021 and a second introduction path 5022 communicating with the introduction port 5011.
  • the refrigerant introduced from the introduction port 5011 is sent to the distribution unit 51 through the first introduction path 5021 and the second introduction path 5022.
  • the introduction side of the refrigerant is composed of two first and second introduction plates 501 and 502, but may be composed of three or more. By reducing the thickness of the entire plate, the distribution device can be made compact.
  • the distribution unit 51 distributes the refrigerant to each of the plurality of heat transfer tubes 2 arranged in the vertical direction.
  • the distribution unit 51 has a first plate 511, a second plate 512, and a third plate 513.
  • the first plate 511 has a first refrigerant inflow port 5111 formed in the lower part and a second refrigerant inflow port 5112 formed in the middle part.
  • the first refrigerant inflow port 5111 and the second refrigerant inflow port 5112 are formed in the thickness direction of the plate.
  • the "lower part” is between the lowermost first-stage hole 5131 and the lowermost second-stage hole 5132, which will be described later.
  • the "middle portion" is between the 9th-stage hole 5139 and the 10th-stage hole 51310, which will be described later, when viewed from the bottom to the top.
  • the second plate 512 has a first opening 5121 communicating with the first refrigerant inflow port 5111 and a second opening 5122 formed above the first opening 5121 and communicating with the second refrigerant inflow port 5112.
  • the first opening 5121 and the second opening 5122 are physically separated.
  • the first opening 5121 has an area larger than the area of the first refrigerant inflow port 5111, and is formed in the thickness direction of the plate.
  • the second opening 5122 has an area larger than the area of the second refrigerant inflow port 5112, and is formed in the thickness direction of the plate.
  • the third plate 513 has a plurality of holes 5131 to 51316 provided at positions corresponding to the respective positions of the heat transfer tubes 2 in order to distribute the refrigerant toward each of the plurality of heat transfer tubes 2 arranged in the vertical direction. Have.
  • the plurality of holes 5131 to 51316 are provided at positions corresponding to each of the plurality of flow paths (5211 to 52116, 5221 to 52216, 5231 to 52316, 5241 to 52416,) of the refrigerant flow path portion 52.
  • the third plate 513 has a first collision region P1 provided at a position facing the first refrigerant inlet 5111 and a second collision region P2 provided at a position facing the second refrigerant inlet 5112.
  • the first and second collision regions P1 and P2 are regions without holes.
  • the first opening 5121 of the second plate 512 is arranged between the first plate 511 and the third plate 513, and is provided with a refrigerant through a plurality of holes (5131 to 5138) in the lower stage of the third plate 513.
  • a first main flow path for feeding the refrigerant into the flow path portion 52 (lower openings 5211 to 5218) is formed.
  • the second opening 5122 is arranged between the first plate 511 and the third plate 513, and is provided with the refrigerant flow path portion 52 (5139 to 51316) through the plurality of holes (5139 to 51316) in the upper stage of the third plate 513.
  • a second main flow path for sending the refrigerant to the upper opening 5219 to 52116) is formed.
  • the first main flow path distributes the refrigerant to the plurality of holes in the lower stage, and the second main flow path distributes the refrigerant to the plurality of upper holes.
  • the refrigerant flowing in from the first refrigerant inflow port 5111 collides with the first collision region P1 of the third plate 513, changes the flow from the horizontal direction to the vertical direction, and is inside the first main flow path (inside the first opening 5121).
  • the refrigerant is guided to a plurality of holes (5131 to 5138) in the lower stage of the third plate 513.
  • the refrigerant flowing in from the second refrigerant inflow port 5112 collides with the second collision region P2 of the third plate 513, changes the flow from the horizontal direction to the vertical direction, and is inside the second main flow path (inside the second opening 5122).
  • the refrigerant is guided to the plurality of holes (5139 to 51316) in the upper stage of the third plate 513.
  • the plurality of holes (5131 to 51316) are all configured with the same opening area.
  • the plurality of holes (5131 to 51316) are formed in 16 steps in the vertical direction according to the position of each heat transfer tube 2.
  • Each hole (51316 to 51316) is formed as a pair of two holes parallel to the lateral direction (width direction) of the plate.
  • the refrigerant flow path portion 52 has a first distribution plate 521, a second distribution plate 522, a third distribution plate 523, and a fourth distribution plate 524.
  • the first, second, third, and fourth distribution plates 521, 522, 523, and 524 have a plurality of flow paths at positions (16 steps) corresponding to the positions (16 steps) of the plurality of holes 5131 to 51316, respectively. It has a plurality of openings (5211 to 52116, 5221 to 52216, 5231 to 52316, 5241 to 52416).
  • One end of each of the plurality of heat transfer tubes 2 is connected to the plurality of openings (5241 to 52416) of the fourth distribution plate 524.
  • the plurality of openings (211 to 52116, 5221 to 52216, 5231 to 52316, 5241 to 52416) all have the same opening area.
  • the plurality of openings (5211 to 52116, 5221 to 52216, 5231 to 52316, 5241 to 52416) are formed in 16 steps in the vertical direction according to the position of each heat transfer tube 2.
  • [Another Embodiment: Multiple holes in the third plate] 4B and 4C show an example of the arrangement, shape, and size of a plurality of holes of the third plate 513 of another embodiment.
  • the first-stage holes 5131 and the ninth-stage holes 5139 below the first and second collision regions P1 and P2 are one and have an opening area smaller than that of the other holes.
  • the holes 5138 in the 8th stage and the holes 51316 in the 16th stage, which are the farthest from the first and second collision areas P1 and P2, are one, and the holes 5131 in the first stage and the holes 5139 in the 9th stage. Larger opening area and smaller opening area than other holes.
  • the second-stage hole 5132 and the tenth-stage hole 51310 are one and have a horizontally long shape in the lateral direction (width direction).
  • the 7th-stage hole 5137 and the 15th-stage hole 51315 are one and have a horizontally long shape in the lateral direction (width direction).
  • the opening area of the 4th and 5th stage holes (5134, 5135) in the intermediate region located between the first collision region P1 and the most distal 8th stage hole 5138 is the same as that of the 3rd stage. It is larger than the opening area of the sixth-stage holes (5133, 5136).
  • the opening area of the 12th and 13th stage holes (51312, 51313) in the intermediate region located between the second collision region P2 and the most distal 16th stage hole 51316 is the same as that of the 11th stage. It is larger than the opening area of the 14th stage hole (51311, 51314). That is, the following magnitude relationship is established.
  • Opening area of 1 hole in 2nd and 7th stages ⁇ Total opening area of 2 holes in 4th and 5th stages> Total opening area of 2 holes in 3rd and 6th stages> 8th stage Opening area of 1 hole of eye> Opening area of 1 hole of 1st stage (2) Opening area of 1 hole of 10th and 15th stages ⁇ Total opening of 2 holes of 12th and 13th stages Area> Total opening area of the two holes in the 11th and 14th stages> Opening area of the 1 hole in the 16th stage> Opening area of the 1 hole in the 9th stage or (3) Total opening area of 2 holes in 4th and 5th stages ⁇ Opening area of 1 hole in 2nd and 7th stages> Total opening area of 2 holes in 3rd and 6th stages> 8th stage Opening area of 1 hole of eye> Opening area of 1 hole of 1st stage (4) Total opening area of 2 holes of 12th and 13th stages ⁇ Opening of 1 hole of 10th and 15th stages Area> Total opening area of 2 holes in 11th and 14th stages> Opening area of 1 hole in 16th stage> Opening area
  • the third plate 513 in FIG. 4C and the third plate 513 in FIG. 4B are different from each other in the holes 5132 in the second stage and the holes 51310 in the tenth stage.
  • the second-stage hole 5132 and the tenth-stage hole 51310 have two holes parallel to each other in the lateral direction (width direction), and the two holes have the same opening area.
  • the opening area of the second-stage hole 5132 and the tenth-stage hole 51310 is smaller than the opening area of the third-stage and eleventh-stage holes (5133, 51311). That is, the following magnitude relationship is established.
  • FIG. 5B and 5C show an example of a plurality of openings of the refrigerant flow path portion 52 of another embodiment.
  • the opening areas of the plurality of openings (5211 to 52116, 5231 to 52316) of the first flow plate 521 and the third flow plate 523 are the second flow plate 522 and the fourth flow plate. It is larger than the opening area of the plurality of openings (5221 to 52216, 5241 to 52416) of 524.
  • the opening areas of the plurality of openings (5221 to 52216, 5231 to 52316) of the second flow plate 522 and the third flow plate 523 are the first flow plate 521 and the fourth flow plate. It is larger than the opening area of the plurality of openings (5211 to 52116, 5241 to 52416) of 524.
  • the number of plates constituting the refrigerant flow path portion 52 is not limited to four, and may be two or three.
  • the distribution section 51 of FIG. 6A includes a first plate 514, a second plate 515, and a third plate 516.
  • the first plate 514 has a main refrigerant inflow port 5141 for inflowing the refrigerant and an auxiliary refrigerant inflow port 5142 arranged below the main refrigerant inflow port 5141.
  • the opening area of the auxiliary refrigerant inflow port 5142 is the main refrigerant. It is smaller than the opening area of the inflow port 5141.
  • the second plate 515 has an opening 5151 that communicates with the main refrigerant inflow port 5141 and the auxiliary refrigerant inflow port 5142.
  • the third plate 516 includes a main collision region P4 provided at a position facing the main refrigerant inflow port 5141, an auxiliary collision region P5 provided at a position facing the auxiliary refrigerant inflow port 5142, and a plurality of flow paths (and a plurality of flow paths). It has a plurality of holes (5161 to 51616) provided at positions corresponding to each of the openings (5211 to 52116).
  • the opening 5151 of the second plate 515 is arranged between the first plate 514 and the third plate 516 to form a main flow path for sending the refrigerant to the refrigerant flow path portion 52.
  • the main collision region P4 is provided in the intermediate region of the third plate 516 without holes, and the auxiliary collision region P5 is provided below the third plate 516 without holes.
  • the main collision region P4 is provided between the 9th stage hole 3169 and the 10th stage hole 31610, and the auxiliary collision region P5 is the first stage hole 3161 and the second stage hole 3161. It is provided between the holes 3162.
  • the flow passage has 16 steps, but the flow passage is not limited to this, and may be 16 steps or less and 16 steps or more.
  • the distribution section 51 of FIG. 6B includes a first plate 517, a second plate 518, and a third plate 519.
  • the first plate 517 has a first main refrigerant inflow port 5171 for inflowing the refrigerant and a first auxiliary refrigerant inflow port 5172 arranged below the first main refrigerant inflow port 5171.
  • the opening area of the first auxiliary refrigerant inlet 5172 is smaller than the opening area of the first main refrigerant inlet 5171.
  • the first plate 517 is arranged above the first main refrigerant inlet 5171, the second main refrigerant inlet 5173 for inflowing the refrigerant, and the second auxiliary arranged below the second main refrigerant inlet 5173.
  • the opening area of the second auxiliary refrigerant inlet 5174 is smaller than the opening area of the second main refrigerant inlet 5173.
  • the second plate 518 is provided above the first opening 5181 and the first opening 5181 that communicate with the first main refrigerant inlet 5171 and the first auxiliary refrigerant inlet 5172, and the second main refrigerant inlet 5173. It has a second opening 5182 that communicates with the second auxiliary refrigerant inflow port 5174.
  • the third plate 519 includes a first main collision region P6 provided at a position facing the first main refrigerant inflow port 5171 and a first auxiliary collision region P7 provided at a position facing the first auxiliary refrigerant inflow port 5172.
  • a plurality of flow paths (and) a second main collision region P8 provided at a position facing the second main refrigerant inlet 5173, a second auxiliary collision region P9 provided at a position facing the second auxiliary refrigerant inlet 5174, and a plurality of flow paths (and It has a plurality of holes (5191 to 51916) provided at positions corresponding to each of the plurality of openings (5211 to 52116).
  • the first opening 5181 of the second plate 518 is arranged between the first plate 517 and the third plate 519 to form a first main flow path for sending the refrigerant to the refrigerant flow path portion 52.
  • the second opening 5182 of the second plate 518 is arranged between the first plate 517 and the third plate 519 to form a second flow path for sending the refrigerant to the refrigerant flow path portion 52.
  • the first main collision region P6 is provided between the fourth stage hole 3194 and the fifth stage hole 3195 of the third plate 519 having no holes
  • the first auxiliary collision region P7 is It is provided between the first-stage holes 3191 and the second-stage holes 3192 of the third plate 519 having no holes.
  • the second main collision area P8 is provided between the 12th stage hole 31912 and the 13th stage hole 31913 of the third plate 519 having no holes
  • the second auxiliary collision area P9 is the third without holes. It is provided between the 9th step hole 3199 and the 10th step hole 31910 of the plate 519.
  • the refrigerant inlet may be formed on the main surface of the rectangular first plate.
  • the number of refrigerant inlets may be one or two or more, but collision regions corresponding to each may be formed on the third plate.
  • the rectangular second plate may have a rectangular first opening and a rectangular second opening arranged in series in the longitudinal direction of the rectangle. The sizes of the first and second openings may be the same or different.
  • the opening area of the holes formed near the collision region is smaller than the opening area of the holes formed farther than the holes. You may.
  • the opening area of the hole formed in the central region of the rectangular third plate in the longitudinal direction is the opening area formed at both ends of the third plate (or the rectangular opening) in the longitudinal direction. It may be larger than the opening area of the hole.
  • the opening area of the hole formed in the central region of the rectangular third plate in the longitudinal direction may be smaller than the opening area of the refrigerant inflow port.
  • the opening area of the hole formed at both ends of the rectangular third plate in the longitudinal direction may be smaller than the opening area of the hole formed near the collision region.
  • the cross-sectional (planar) shape of the hole may be a circle, a rectangle, a polygon, or an irregular shape.
  • the holes may have the same opening size in the thickness direction of the third plate, and the opening size on the second plate side and the opening size on the refrigerant flow path side may be different.
  • the opening size of the hole on the second plate side may be large and the opening size on the refrigerant flow path side may be small, or vice versa.
  • the shapes or areas of the plurality of holes may all be the same or different.
  • the plurality of holes formed corresponding to the positions of the heat transfer tubes may be one or two or more.
  • the distribution device 70 of FIG. 7 has eight steps of openings and holes in the vertical direction, unlike the distribution device 50 of the first embodiment (FIG. 1), which has 16 steps of openings and holes in the vertical direction.
  • the distribution device 70 includes a first introduction plate 701, a second introduction plate 702, a distribution unit 71, and a refrigerant flow path unit 72.
  • the first introduction plate 701 has a refrigerant introduction port 7011.
  • a pipe for supplying a refrigerant (not shown) is connected to the introduction port 7011, and the refrigerant is introduced.
  • the second introduction plate 702 has an introduction path 7021 communicating with the introduction port 7011.
  • the refrigerant introduced from the introduction port 7011 is sent to the distribution unit 71 through the introduction path 7021.
  • the distribution unit 71 has a first plate 711, a second plate 712, and a third plate 713.
  • the first plate 711 has a refrigerant inlet 7111 formed at the bottom.
  • the lower portion (or collision region P10) is between the first-stage hole 7131 and the second-stage hole 7132.
  • the second plate 712 has an opening 7121 that communicates with the refrigerant inlet 7111.
  • the third plate 713 has a plurality of holes 7131 to 7138 in eight stages.
  • the plurality of holes 7131 to 7138 are provided at positions corresponding to each of the plurality of flow paths of the refrigerant flow path portion 52.
  • the third plate 713 has a collision region P10 at a position facing the refrigerant inflow port 7111.
  • the refrigerant flow path portion 72 has a first distribution plate 721, a second distribution plate 722, a third distribution plate 723, and a fourth distribution plate 724.
  • the first, second, third, and fourth distribution plates 721, 722, 723, and 724 have a plurality of openings (7211 to 7211 to) that form a plurality of flow paths at positions corresponding to the positions of the plurality of holes 7131 to 51318, respectively.
  • each of the plurality of heat transfer tubes 2 is connected to the plurality of openings (7241 to 7248) of the fourth flow plate 724.
  • the shapes and sizes of the respective embodiments of FIGS. 4A to 4D can be adopted.
  • Example 1 Distributor (FIG. 4A), Refrigerant flow path (FIG. 5A)
  • Example 2 Distributor (FIG. 4B), Refrigerant flow path (FIG. 5A)
  • Example 3 Distributor (FIG. 4C), Refrigerant flow path (FIG. 5A)
  • Example 4 Distributor (FIG. 6B), Refrigerant flow path (FIG. 5A) Comparative Example 1: Patent Document 1 (Structure of FIG.
  • FIG. 8 shows an example of a multi-stage distribution device in which the distribution device 70 of the second embodiment is arranged in multiple stages. It can be distributed to 8 by the first-stage distribution device 70 on the right side of the drawing, introduced into the eight distribution devices 70 in the second stage, and further distributed to 64 of 8 ⁇ 8.
  • the first-stage distribution device 70 may distribute to two or more (preferably four or more, more preferably six or more), and the second-stage distribution device 70 may distribute to eight.
  • the configuration is not limited to the configuration in which the second-stage distribution device 70 is connected to the heat transfer tube, and a third-stage or higher distribution device is provided, and the third-stage or higher distribution device is connected to the heat transfer tube. May be good.

Abstract

Provided is a distribution device with which it is possible to distribute a refrigerant to heat transfer tubes at a smaller size than that of the distribution device (main header and sub-header) of Patent Document 1, and to equalize the distribution of the refrigerant. The distribution device comprises: a distribution unit for distributing a refrigerant towards each of a plurality of vertically positioned heat transfer tubes; and a refrigerant channel part in which there are formed a plurality of channels connected to individual first ends of each of the plurality of heat transfer tubes, the plurality of channels channeling the refrigerant distributed by the distribution unit to each of the plurality of heat transfer tubes. The distribution unit is provided with: a first plate having at least one refrigerant inflow port; a second plate having at least one opening, which has an opening area greater than the opening area of the refrigerant inflow port of the first plate; and a third plate having a collision region provided at a position facing the refrigerant inflow port, and a plurality of holes provided at positions corresponding to each of the plurality of channels.

Description

分配装置、分配装置を備えた熱交換器およびその熱交換器を備えた空気調和機Distributor, heat exchanger with distributor and air conditioner with the heat exchanger
 本発明は、分配装置、分配装置を備えた熱交換器およびその熱交換器を備えた空気調和機に関する。 The present invention relates to a distributor, a heat exchanger equipped with the distributor, and an air conditioner equipped with the heat exchanger.
 空気調和機の熱交換器において、熱交換効率の最大化を図るためには、熱交換器全体に均等に冷媒を分配することが重要である。
 冷媒は、配管を通って熱交換器を構成する各伝熱管に送られる。配管は、一般的に、主配管と、主配管から分岐される複数の分岐配管を有し、分岐配管が伝熱管に接続される。この構成では、主配管から各分岐配管へ均等に冷媒を分配する必要がある。
 しかし、伝熱管の数に対応した分岐配管を設けるほど、装置サイズが大きくなり、装置のコンパクト化の要求に反する。
 また、装置のコンパクト化のために、分岐配管を備えず、主配管と接続されるヘッダが各伝熱管に接続される構成もある。この構成では、冷媒流通路が形成されているヘッダから各伝熱管に冷媒を均等に分配する必要があるが、ヘッダの長手方向に直列に配置される伝熱管とヘッダとの接続構造上、ヘッダからの冷媒を均等に分配することは難しい。
In the heat exchanger of an air conditioner, in order to maximize the heat exchange efficiency, it is important to evenly distribute the refrigerant throughout the heat exchanger.
The refrigerant is sent through the pipes to each heat transfer tube constituting the heat exchanger. The pipe generally has a main pipe and a plurality of branch pipes branched from the main pipe, and the branch pipe is connected to the heat transfer pipe. In this configuration, it is necessary to evenly distribute the refrigerant from the main pipe to each branch pipe.
However, as the number of branch pipes corresponding to the number of heat transfer tubes is provided, the size of the device becomes large, which is contrary to the demand for compactness of the device.
Further, in order to make the device compact, there is also a configuration in which a branch pipe is not provided and a header connected to the main pipe is connected to each heat transfer pipe. In this configuration, it is necessary to evenly distribute the refrigerant from the header in which the refrigerant flow path is formed to each heat transfer tube, but due to the connection structure between the heat transfer tubes arranged in series in the longitudinal direction of the header and the header, the header It is difficult to evenly distribute the refrigerant from.
 特許文献1は、水平方向に流れる冷媒を衝突部に衝突させて上方向に冷媒の流れ方向を変更してメインヘッダ室に冷媒を流入させ、メインヘッダ室から水平方向に分岐して上下方向に並置される複数のサブヘッダ室へ冷媒を分配する構造を開示する。
 また、特許文献1では、上下方向に摺動可能な筒状構造体や、上向きの冷媒の流量を調整する絞り板などがさらに備えた構成が開示されている。
In Patent Document 1, a horizontally flowing refrigerant collides with a collision portion, the flow direction of the refrigerant is changed upward to flow the refrigerant into the main header chamber, and the refrigerant flows horizontally from the main header chamber in the vertical direction. A structure for distributing a refrigerant to a plurality of juxtaposed sub-header chambers is disclosed.
Further, Patent Document 1 discloses a configuration further provided with a tubular structure slidable in the vertical direction, a throttle plate for adjusting the flow rate of the upward refrigerant, and the like.
特開2017-133820号公報JP-A-2017-133820
 特許文献1は、メインヘッダとサブヘッダとの組み合わせ構造であり、装置サイズが大きくなるという課題がある。 Patent Document 1 has a combination structure of a main header and a sub-header, and has a problem that the device size becomes large.
 本発明は、各伝熱管への冷媒の分配を、特許文献1の分配装置(メインヘッダおよびサブヘッダ)より小さいサイズで、かつ冷媒の均等な分配を可能とする分配装置を提供する。
 また、その分配装置を備える熱交換器を提供する。
 また、その熱交換器を備えた空気調和機を提供する。
The present invention provides a distribution device capable of evenly distributing the refrigerant to each heat transfer tube with a size smaller than that of the distribution device (main header and sub-header) of Patent Document 1.
It also provides a heat exchanger equipped with the distributor.
It also provides an air conditioner equipped with the heat exchanger.
 本発明の分配装置は、
 上下方向に配置される複数の伝熱管のそれぞれに向けて冷媒を分配する分配部と、
 前複数の伝熱管のそれぞれの一方端と接続され、前記分配部で分配された冷媒を前記複数の伝熱管のそれぞれに送るための複数の流路が形成されている冷媒流路部と、を備える。
 前記分配部は、
  少なくとも一つの冷媒流入口を有する第一プレートと、
  前記第一プレートの前記冷媒流入口の開口面積よりも大きい開口面積を有する、少なくとも一つの開口部を有する第二プレートと、
  前記冷媒流入口に対向する位置に設けられる衝突領域と、前記複数の流路のそれぞれと対応する位置に設けられる複数の孔と、を有する第三プレートと、を備える。
 前記冷媒流路部は、
  前記複数の流路となる複数の開口部が形成されている、少なくとも一つのプレートを備える。
 前記第二プレートの前記少なくとも一つの開口部は、前記第一プレートと前記第三プレートとの間に配置されることで、前記冷媒流路部へ前記冷媒を送り込むための主流路を形成する。
The distribution device of the present invention
A distribution unit that distributes the refrigerant to each of the plurality of heat transfer tubes arranged in the vertical direction,
A refrigerant flow path portion, which is connected to one end of each of the preceding plurality of heat transfer tubes and is formed with a plurality of flow paths for sending the refrigerant distributed by the distribution section to each of the plurality of heat transfer tubes. Be prepared.
The distribution unit
A first plate with at least one refrigerant inlet and
A second plate having at least one opening having an opening area larger than the opening area of the refrigerant inlet of the first plate, and a second plate.
A third plate having a collision region provided at a position facing the refrigerant inlet and a plurality of holes provided at positions corresponding to each of the plurality of flow paths is provided.
The refrigerant flow path portion
It includes at least one plate in which a plurality of openings serving as the plurality of flow paths are formed.
The at least one opening of the second plate is arranged between the first plate and the third plate to form a main flow path for feeding the refrigerant into the refrigerant flow path portion.
 本発明によれば、冷媒分配の均等化を向上できるため、熱交換効率およびエネルギー効率の向上、冷媒使用量を低減できる。 According to the present invention, since the equalization of refrigerant distribution can be improved, heat exchange efficiency and energy efficiency can be improved, and the amount of refrigerant used can be reduced.
実施形態1に係る分配装置を備える空気調和機の概略図である。It is the schematic of the air conditioner provided with the distribution device which concerns on Embodiment 1. FIG. 実施形態1に係る分配装置および熱交換器の概略図である。It is the schematic of the distribution device and the heat exchanger which concerns on Embodiment 1. FIG. 実施形態1に係る分配装置の構成要素を説明するための平面図である。It is a top view for demonstrating the component of the distribution apparatus which concerns on Embodiment 1. FIG. 第三プレートの複数の孔を示すための平面図である。It is a top view for showing a plurality of holes of a third plate. 別実施形態の第三プレートの複数の孔を示すための平面図である。It is a top view for showing the plurality of holes of the 3rd plate of another embodiment. 別実施形態の第三プレートの複数の孔を示すための平面図である。It is a top view for showing the plurality of holes of the 3rd plate of another embodiment. 冷媒流路部の複数の開口部を示すための平面図である。It is a top view for showing a plurality of openings of a refrigerant flow path part. 別実施形態の冷媒流路部の複数の開口部を示すための平面図である。It is a top view for showing the plurality of openings of the refrigerant flow path part of another embodiment. 別実施形態の冷媒流路部の複数の開口部を示すための平面図である。It is a top view for showing the plurality of openings of the refrigerant flow path part of another embodiment. 別実施形態の分配部を説明するための平面図である。It is a top view for demonstrating the distribution part of another embodiment. 別実施形態の分配部を説明するための平面図である。It is a top view for demonstrating the distribution part of another embodiment. 実施形態2に係る分配装置の構成要素を説明するための平面図である。It is a top view for demonstrating the component of the distribution apparatus which concerns on Embodiment 2. FIG. 実施形態3に係る多段分配装置を説明するための概略図である。It is the schematic for demonstrating the multistage distribution apparatus which concerns on Embodiment 3.
[第1の実施形態]
 以下、本発明の実施形態について図面を参照して詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
 図1は、本発明の第1の実施形態に係る空気調和機の冷凍サイクルの構成図である。
 図1に示すように、空気調和機100は、熱源側で室外(非空調空間)に設置される室外機101と、利用側で室内(空調空間)に設置される室内機108とから構成され、接続配管112a,112bによって接続されている。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same reference numerals are given to common parts in each figure, and duplicate description is omitted.
FIG. 1 is a block diagram of a refrigeration cycle of an air conditioner according to the first embodiment of the present invention.
As shown in FIG. 1, the air conditioner 100 is composed of an outdoor unit 101 installed outdoors (non-air-conditioned space) on the heat source side and an indoor unit 108 installed indoors (air-conditioned space) on the user side. , Connected by connecting pipes 112a, 112b.
[空気調和機100]
 室外機101は、圧縮機102と、四方弁103と、室外熱交換器104と、室外ファンモータ105と、室外ファン106と、絞り装置107を備え、室内機108は、室内熱交換器109と、室内ファンモータ110と、室内ファン111を備えている。
[Air conditioner 100]
The outdoor unit 101 includes a compressor 102, a four-way valve 103, an outdoor heat exchanger 104, an outdoor fan motor 105, an outdoor fan 106, and a throttle device 107, and the indoor unit 108 includes an indoor heat exchanger 109. , The indoor fan motor 110 and the indoor fan 111 are provided.
 冷房運転中の動作を例に、空気調和機100の各要素の作用を説明する。
 冷房運転時には、冷媒は図1中の実線矢印の向きに流れる。まず、圧縮機102から吐出された高温・高圧のガス冷媒は、四方弁103を経由したのちに室外熱交換器104に流れ、室外熱交換器104で外気に放熱することで凝縮し、高圧の液冷媒となる。この液冷媒は、絞り装置107の作用で減圧され、低温低圧の気液二相状態となり、接続配管112aを通じて室内機108へ流れる。室内機108に入った気液二相冷媒は、室内熱交換器109で室内空気の熱を吸熱することで蒸発し、これにより室内冷房が実現される。室内機108で蒸発したガス冷媒は、接続配管112bを通じて室外機101へ戻り、四方弁103を通って再び圧縮機102で圧縮されることになる。これが冷房運転中の冷凍サイクルである。
The operation of each element of the air conditioner 100 will be described by taking the operation during the cooling operation as an example.
During the cooling operation, the refrigerant flows in the direction of the solid arrow in FIG. First, the high-temperature, high-pressure gas refrigerant discharged from the compressor 102 flows to the outdoor heat exchanger 104 after passing through the four-way valve 103, and is condensed by dissipating heat to the outside air in the outdoor heat exchanger 104, resulting in high pressure. It becomes a liquid refrigerant. This liquid refrigerant is depressurized by the action of the throttle device 107, becomes a low-temperature low-pressure gas-liquid two-phase state, and flows to the indoor unit 108 through the connecting pipe 112a. The gas-liquid two-phase refrigerant contained in the indoor unit 108 evaporates by absorbing the heat of the indoor air in the indoor heat exchanger 109, whereby indoor cooling is realized. The gas refrigerant evaporated in the indoor unit 108 returns to the outdoor unit 101 through the connecting pipe 112b, and is compressed again by the compressor 102 through the four-way valve 103. This is the refrigeration cycle during cooling operation.
 暖房運転時は、四方弁103により冷媒流路が切り替えられ、図1中の破線矢印の方向に冷媒が流れる。まず、圧縮機102から吐出された高温・高圧のガス冷媒は、四方弁103および接続配管112bを通って室内機108に流れる。室内機108に入った高温のガス冷媒は、室内熱交換器109で室内空気に放熱することで室内暖房が実現される。このとき、ガス冷媒は凝縮し、高圧の液冷媒となる。その後、高圧の液冷媒は、接続配管112aを通って室外機101に流れる。室外機101に入った高圧の液冷媒は、絞り装置107の作用で減圧され、低温低圧の気液二相状態となり、室外熱交換器104に流れ、室外空気の熱を吸熱することで蒸発し、ガス冷媒となる。このガス冷媒は、四方弁103を通った後、圧縮機102で再び圧縮される。これが暖房運転中の冷凍サイクルである。
 このように、室外熱交換器104、及び、室内熱交換器109内の冷媒の流れの向きは、冷房運転時と暖房運転時で逆向きになる。
 なお、冷媒としては例えば、R32、R410A等が挙げられる。
During the heating operation, the four-way valve 103 switches the refrigerant flow path, and the refrigerant flows in the direction of the broken line arrow in FIG. First, the high-temperature, high-pressure gas refrigerant discharged from the compressor 102 flows to the indoor unit 108 through the four-way valve 103 and the connecting pipe 112b. The high-temperature gas refrigerant that has entered the indoor unit 108 is dissipated to the indoor air by the indoor heat exchanger 109 to realize indoor heating. At this time, the gas refrigerant condenses and becomes a high-pressure liquid refrigerant. After that, the high-pressure liquid refrigerant flows to the outdoor unit 101 through the connection pipe 112a. The high-pressure liquid refrigerant that has entered the outdoor unit 101 is depressurized by the action of the throttle device 107, becomes a low-temperature low-pressure gas-liquid two-phase state, flows to the outdoor heat exchanger 104, and evaporates by absorbing the heat of the outdoor air. , Becomes a gas refrigerant. This gas refrigerant passes through the four-way valve 103 and is then compressed again by the compressor 102. This is the refrigeration cycle during heating operation.
As described above, the directions of the refrigerant flows in the outdoor heat exchanger 104 and the indoor heat exchanger 109 are opposite in the cooling operation and the heating operation.
Examples of the refrigerant include R32 and R410A.
[熱交換器]
 図2は、空気調和機100の室外熱交換器109または室内熱交換器104の概略図である。
 図2に示すように、室外熱交換器109または室内熱交換器104は、冷媒を分配する図中右側の流入側の分配装置50と冷媒を合流させる図中左側の流出側の合流装置60と、これらの分配装置50と合流装置60間を接続するとともに、空気と熱交換をするための冷媒が内部を流れる複数の扁平管2(伝熱管)と、扁平管2にロウ付けされ、その伝熱面積を拡大する複数のフィン1と、を備える。
[Heat exchanger]
FIG. 2 is a schematic view of the outdoor heat exchanger 109 or the indoor heat exchanger 104 of the air conditioner 100.
As shown in FIG. 2, the outdoor heat exchanger 109 or the indoor heat exchanger 104 includes a distribution device 50 on the inflow side on the right side in the figure for distributing the refrigerant and a merging device 60 on the outflow side on the left side in the figure for merging the refrigerant. Along with connecting these distribution devices 50 and the merging device 60, a plurality of flat tubes 2 (heat transfer tubes) through which a refrigerant for exchanging heat with air flows inside, and the flat tubes 2 are brazed to transfer the refrigerant. A plurality of fins 1 for expanding the heat area are provided.
 図2に示すように、冷媒の流れ方向(図中右から左方向)と、空気の流れ方向(図紙に向かって垂直方向)とは直交しており、扁平管2内を流れる冷媒と扁平管2間を流れる空気が、フィン1を介して熱交換することで、効率の良い熱交換が実現される。
 冷房運転時と暖房運転時とで冷媒の流れは逆になるため、符号60が分配部装置となり、符号50が合流装置として機能する。
As shown in FIG. 2, the flow direction of the refrigerant (from right to left in the figure) and the flow direction of air (direction perpendicular to the drawing paper) are orthogonal to each other, and the refrigerant flowing in the flat pipe 2 is flat. Efficient heat exchange is realized by heat exchange of the air flowing between the pipes 2 through the fins 1.
Since the flow of the refrigerant is opposite between the cooling operation and the heating operation, reference numeral 60 serves as a distribution unit device, and reference numeral 50 functions as a merging device.
[分配装置]
 実施形態1の分配装置50を図3、図4A、図5Aを参照しながら説明する。
 分配装置50は、第一導入プレート501、第二導入プレート502、分配部51、冷媒流路部52を備える。
 第一導入プレート501は、冷媒の導入口5011を有する。導入口5011に不図示の冷媒供給用の配管が接続され、冷媒が導入される。第二導入プレート502は、導入口5011と連通する第一導入路5021および第二導入路5022を有する。導入口5011から導入された冷媒が、第一導入路5021および第二導入路5022を通じて分配部51へ送られる。
 本実施形態では冷媒の導入側が2枚の第一、第二導入プレート501、502とで構成されているが3枚以上で構成されていてもよい。全体のプレートの厚みを小さくすることで分配装置のコンパクト化を実現できる。
[Distributor]
The distribution device 50 of the first embodiment will be described with reference to FIGS. 3, 4A, and 5A.
The distribution device 50 includes a first introduction plate 501, a second introduction plate 502, a distribution unit 51, and a refrigerant flow path unit 52.
The first introduction plate 501 has a refrigerant introduction port 5011. A pipe for supplying a refrigerant (not shown) is connected to the introduction port 5011, and the refrigerant is introduced. The second introduction plate 502 has a first introduction path 5021 and a second introduction path 5022 communicating with the introduction port 5011. The refrigerant introduced from the introduction port 5011 is sent to the distribution unit 51 through the first introduction path 5021 and the second introduction path 5022.
In the present embodiment, the introduction side of the refrigerant is composed of two first and second introduction plates 501 and 502, but may be composed of three or more. By reducing the thickness of the entire plate, the distribution device can be made compact.
[分配部]
 分配部51は、上下方向に配置される複数の伝熱管2のそれぞれに向けて冷媒を分配する。分配部51は、第一プレート511、第二プレート512、第三プレート513を有する。
 第一プレート511は、下部に形成された第一冷媒流入口5111と、中部に形成された第二冷媒流入口5112を有する。第一冷媒流入口5111と第二冷媒流入口5112は、プレートの厚み方向に形成されている。
 本実施形態で「下部」は、後述する最下位の第1段目の孔5131と最下二位の第二段目の孔5132との間である。本実施形態で「中部」は、下から上向きにみて、後述する第9段目の孔5139と第10段目の孔51310との間である。
[Distribution section]
The distribution unit 51 distributes the refrigerant to each of the plurality of heat transfer tubes 2 arranged in the vertical direction. The distribution unit 51 has a first plate 511, a second plate 512, and a third plate 513.
The first plate 511 has a first refrigerant inflow port 5111 formed in the lower part and a second refrigerant inflow port 5112 formed in the middle part. The first refrigerant inflow port 5111 and the second refrigerant inflow port 5112 are formed in the thickness direction of the plate.
In the present embodiment, the "lower part" is between the lowermost first-stage hole 5131 and the lowermost second-stage hole 5132, which will be described later. In the present embodiment, the "middle portion" is between the 9th-stage hole 5139 and the 10th-stage hole 51310, which will be described later, when viewed from the bottom to the top.
 第二プレート512は、第一冷媒流入口5111と連通する第一開口部5121と、第一開口部5121より上方に形成され、第二冷媒流入口5112と連通する第二開口部5122を有する。第一開口部5121と第二開口部5122とは、物理的に分離している。第一開口部5121は、第一冷媒流入口5111の面積よりも大きい面積であり、プレートの厚み方向に形成されている。第二開口部5122は、第二冷媒流入口5112の面積よりも大きい面積であり、プレートの厚み方向に形成されている。 The second plate 512 has a first opening 5121 communicating with the first refrigerant inflow port 5111 and a second opening 5122 formed above the first opening 5121 and communicating with the second refrigerant inflow port 5112. The first opening 5121 and the second opening 5122 are physically separated. The first opening 5121 has an area larger than the area of the first refrigerant inflow port 5111, and is formed in the thickness direction of the plate. The second opening 5122 has an area larger than the area of the second refrigerant inflow port 5112, and is formed in the thickness direction of the plate.
 第三プレート513は、上下方向に配置される複数の伝熱管2のそれぞれに向けて冷媒を分配するために、伝熱管2のそれぞれの位置に対応した位置に設けられる複数の孔5131~51316を有する。複数の孔5131~51316は、冷媒流路部52の複数の流路(5211~52116、5221~52216、5231~52316、5241~52416、)のそれぞれと対応する位置に設けられる。
 第三プレート513は、第一冷媒流入口5111に対向する位置に設けられる第一衝突領域P1と、第二冷媒流入口5112に対向する位置に設けられる第二衝突領域P2と、を有する。第一、第二衝突領域P1、P2は孔がない領域である。
The third plate 513 has a plurality of holes 5131 to 51316 provided at positions corresponding to the respective positions of the heat transfer tubes 2 in order to distribute the refrigerant toward each of the plurality of heat transfer tubes 2 arranged in the vertical direction. Have. The plurality of holes 5131 to 51316 are provided at positions corresponding to each of the plurality of flow paths (5211 to 52116, 5221 to 52216, 5231 to 52316, 5241 to 52416,) of the refrigerant flow path portion 52.
The third plate 513 has a first collision region P1 provided at a position facing the first refrigerant inlet 5111 and a second collision region P2 provided at a position facing the second refrigerant inlet 5112. The first and second collision regions P1 and P2 are regions without holes.
 第二プレート512の第一開口部5121は、第一プレート511と第三プレート513との間に配置されることで、第三プレート513の下段の複数の孔(5131~5138)を介して冷媒流路部52(の下段の開口部5211~5218)へ冷媒を送り込むための第一主流路を形成する。
 第二開口部5122は、第一プレート511と第三プレート513との間に配置されることで、第三プレート513の上段の複数の孔(5139~51316)を介して冷媒流路部52(の上段の開口部5219~52116)へ冷媒を送り込むための第二主流路を形成する。
 第一主流路で下段の複数の孔へ冷媒を分配し、第二主流路で上段の複数の孔へ冷媒を分配する。
The first opening 5121 of the second plate 512 is arranged between the first plate 511 and the third plate 513, and is provided with a refrigerant through a plurality of holes (5131 to 5138) in the lower stage of the third plate 513. A first main flow path for feeding the refrigerant into the flow path portion 52 (lower openings 5211 to 5218) is formed.
The second opening 5122 is arranged between the first plate 511 and the third plate 513, and is provided with the refrigerant flow path portion 52 (5139 to 51316) through the plurality of holes (5139 to 51316) in the upper stage of the third plate 513. A second main flow path for sending the refrigerant to the upper opening 5219 to 52116) is formed.
The first main flow path distributes the refrigerant to the plurality of holes in the lower stage, and the second main flow path distributes the refrigerant to the plurality of upper holes.
 第一冷媒流入口5111から流入した冷媒は、第三プレート513の第一衝突領域P1に衝突し、水平方向から上下方向に流れを変えて、第一主流路内(第一開口部5121内)を流れることで、第三プレート513の下段の複数の孔(5131から5138)へ冷媒が導かれる。
 第二冷媒流入口5112から流入した冷媒は、第三プレート513の第二衝突領域P2に衝突し、水平方向から上下方向に流れを変えて、第二主流路内(第二開口部5122内)を流れることで、第三プレート513の上段の複数の孔(5139から51316)へ冷媒が導かれる。
The refrigerant flowing in from the first refrigerant inflow port 5111 collides with the first collision region P1 of the third plate 513, changes the flow from the horizontal direction to the vertical direction, and is inside the first main flow path (inside the first opening 5121). The refrigerant is guided to a plurality of holes (5131 to 5138) in the lower stage of the third plate 513.
The refrigerant flowing in from the second refrigerant inflow port 5112 collides with the second collision region P2 of the third plate 513, changes the flow from the horizontal direction to the vertical direction, and is inside the second main flow path (inside the second opening 5122). The refrigerant is guided to the plurality of holes (5139 to 51316) in the upper stage of the third plate 513.
 図4Aに示すように、本実施形態において、複数の孔(5131~51316)はすべて、同じ開口面積で構成されている。複数の孔(5131~51316)は、各伝熱管2の位置に合わせて、上下方向に16段に形成されている。各孔(5131~51316)は、プレートの短手方向(幅方向)と平行に2つの孔のペアとして形成されている。 As shown in FIG. 4A, in the present embodiment, the plurality of holes (5131 to 51316) are all configured with the same opening area. The plurality of holes (5131 to 51316) are formed in 16 steps in the vertical direction according to the position of each heat transfer tube 2. Each hole (51316 to 51316) is formed as a pair of two holes parallel to the lateral direction (width direction) of the plate.
[冷媒流路部]
 冷媒流路部52は、第一流通プレート521、第二流通プレート522、第三流通プレート523、第四流通プレート524を有する。第一、第二、第三、第四流通プレート521、522、523、524は、それぞれ、複数の孔5131~51316の位置(16段)に対応する位置(16段)に複数の流路となる複数の開口部(5211~52116、5221~52216、5231~52316、5241~52416)を有する。
 第四流通プレート524の複数の開口部(5241~52416)に複数の伝熱管2のそれぞれの一方端が接続される。
[Refrigerant flow path]
The refrigerant flow path portion 52 has a first distribution plate 521, a second distribution plate 522, a third distribution plate 523, and a fourth distribution plate 524. The first, second, third, and fourth distribution plates 521, 522, 523, and 524 have a plurality of flow paths at positions (16 steps) corresponding to the positions (16 steps) of the plurality of holes 5131 to 51316, respectively. It has a plurality of openings (5211 to 52116, 5221 to 52216, 5231 to 52316, 5241 to 52416).
One end of each of the plurality of heat transfer tubes 2 is connected to the plurality of openings (5241 to 52416) of the fourth distribution plate 524.
 図5Aに示すように、本実施形態において、複数の開口部(5211~52116、5221~52216、5231~52316、5241~52416)はすべて、同じ開口面積である。複数の開口部(5211~52116、5221~52216、5231~52316、5241~52416)は、各伝熱管2の位置に合わせて、上下方向に16段に形成されている。 As shown in FIG. 5A, in the present embodiment, the plurality of openings (5211 to 52116, 5221 to 52216, 5231 to 52316, 5241 to 52416) all have the same opening area. The plurality of openings (5211 to 52116, 5221 to 52216, 5231 to 52316, 5241 to 52416) are formed in 16 steps in the vertical direction according to the position of each heat transfer tube 2.
[別実施形態:第三プレートの複数の孔]
 図4B、4Cは、別実施形態の第三プレート513の複数の孔の配置、形状、サイズの一例を示す。
 図4Bにおいて、第一、第二衝突領域P1、P2の下の第1段目の孔5131および第9段目の孔5139は、一つであり、その他の孔よりも小さい開口面積である。第一、第二衝突領域P1、P2から最も遠い第8段目の孔5138および第16段目の孔51316は、一つであり、第1段目の孔5131および第9段目の孔5139よりも大きい開口面積であり、その他の孔よりも小さい開口面積である。第2段目の孔5132と第10段目の孔51310は、一つであり、短手方向(幅方向)に横長の形状である。第7段目の孔5137と第15段目の孔51315は、一つであり、短手方向(幅方向)に横長の形状である。第一衝突領域P1から最遠位の第8段目の孔5138との間に位置する中間領域の第4、第5段目の孔(5134、5135)の開口面積が、第3段目と第6段目の孔(5133、5136)の開口面積より大きい。第二衝突領域P2から最遠位の第16段目の孔51316との間に位置する中間領域の第12、第13段目の孔(51312、51313)の開口面積が、第11段目と第14段目の孔(51311、51314)の開口面積よりも大きい。
 つまり以下の大小関係が成立する。
(1)第2、7段目の1つ孔の開口面積≧第4、5段目の2つ孔のトータル開口面積>第3、6段目の2つ孔のトータル開口面積>第8段目の1つ孔の開口面積>第1段目の1つ孔の開口面積
(2)第10、15段目の1つ孔の開口面積≧第12、13段目の2つ孔のトータル開口面積>第11、14段目の2つ孔のトータル開口面積>第16段目の1つ孔の開口面積>第9段目の1つ孔の開口面積
または、
(3)第4、5段目の2つ孔のトータル開口面積≧第2、7段目の1つ孔の開口面積>第3、6段目の2つ孔のトータル開口面積>第8段目の1つ孔の開口面積>第1段目の1つ孔の開口面積
(4)第12、13段目の2つ孔のトータル開口面積≧第10、15段目の1つ孔の開口面積>第11、14段目の2つ孔のトータル開口面積>第16段目の1つ孔の開口面積>第9段目の1つ孔の開口面積
[Another Embodiment: Multiple holes in the third plate]
4B and 4C show an example of the arrangement, shape, and size of a plurality of holes of the third plate 513 of another embodiment.
In FIG. 4B, the first-stage holes 5131 and the ninth-stage holes 5139 below the first and second collision regions P1 and P2 are one and have an opening area smaller than that of the other holes. The holes 5138 in the 8th stage and the holes 51316 in the 16th stage, which are the farthest from the first and second collision areas P1 and P2, are one, and the holes 5131 in the first stage and the holes 5139 in the 9th stage. Larger opening area and smaller opening area than other holes. The second-stage hole 5132 and the tenth-stage hole 51310 are one and have a horizontally long shape in the lateral direction (width direction). The 7th-stage hole 5137 and the 15th-stage hole 51315 are one and have a horizontally long shape in the lateral direction (width direction). The opening area of the 4th and 5th stage holes (5134, 5135) in the intermediate region located between the first collision region P1 and the most distal 8th stage hole 5138 is the same as that of the 3rd stage. It is larger than the opening area of the sixth-stage holes (5133, 5136). The opening area of the 12th and 13th stage holes (51312, 51313) in the intermediate region located between the second collision region P2 and the most distal 16th stage hole 51316 is the same as that of the 11th stage. It is larger than the opening area of the 14th stage hole (51311, 51314).
That is, the following magnitude relationship is established.
(1) Opening area of 1 hole in 2nd and 7th stages ≥ Total opening area of 2 holes in 4th and 5th stages> Total opening area of 2 holes in 3rd and 6th stages> 8th stage Opening area of 1 hole of eye> Opening area of 1 hole of 1st stage (2) Opening area of 1 hole of 10th and 15th stages ≥ Total opening of 2 holes of 12th and 13th stages Area> Total opening area of the two holes in the 11th and 14th stages> Opening area of the 1 hole in the 16th stage> Opening area of the 1 hole in the 9th stage or
(3) Total opening area of 2 holes in 4th and 5th stages ≥ Opening area of 1 hole in 2nd and 7th stages> Total opening area of 2 holes in 3rd and 6th stages> 8th stage Opening area of 1 hole of eye> Opening area of 1 hole of 1st stage (4) Total opening area of 2 holes of 12th and 13th stages ≧ Opening of 1 hole of 10th and 15th stages Area> Total opening area of 2 holes in 11th and 14th stages> Opening area of 1 hole in 16th stage> Opening area of 1 hole in 9th stage
 図4Cの第三プレート513と、図4Bの第三プレート513とは、第2段目の孔5132と第10段目の孔51310が異なる。図4Cにおいて、第2段目の孔5132と第10段目の孔51310は、短手方向(幅方向)に平行に2つの孔を有し、2つの孔は同じ開口面積である。第2段目の孔5132と第10段目の孔51310の開口面積は、第3段目と第11段目の孔(5133、51311)の開口面積よりも小さい。
 つまり以下の大小関係が成立する。
(1)第4、5段目の2つ孔のトータル開口面積>7段目の1つ孔の開口面積>第3、6段目の2つ孔のトータル開口面積>第2段目の2つ孔のトータル開口面積>第8段目の1つ孔の開口面積>第1段目の1つ孔の開口面積
(2)第12、13段目の2つ孔のトータル開口面積>15段目の1つ孔の開口面積>第11、14段目の2つ孔のトータル開口面積>第10段目の2つ孔のトータル開口面積>第16段目の1つ孔の開口面積>第9段目の1つ孔の開口面積
The third plate 513 in FIG. 4C and the third plate 513 in FIG. 4B are different from each other in the holes 5132 in the second stage and the holes 51310 in the tenth stage. In FIG. 4C, the second-stage hole 5132 and the tenth-stage hole 51310 have two holes parallel to each other in the lateral direction (width direction), and the two holes have the same opening area. The opening area of the second-stage hole 5132 and the tenth-stage hole 51310 is smaller than the opening area of the third-stage and eleventh-stage holes (5133, 51311).
That is, the following magnitude relationship is established.
(1) Total opening area of 2 holes in 4th and 5th stages> Opening area of 1 hole in 7th stage> Total opening area of 2 holes in 3rd and 6th stages> 2 in 2nd stage Total opening area of the holes> Opening area of the 1st hole in the 8th stage> Opening area of the 1st hole in the 1st stage (2) Total opening area of the 2 holes in the 12th and 13th stages> 15 stages Opening area of 1 hole of eye> Total opening area of 2 holes of 11th and 14th steps> Total opening area of 2 holes of 10th step> Opening area of 1 hole of 16th step> 1st Opening area of 1 hole in 9th stage
[別実施形態の効果]
 衝突領域から最遠位の孔との間に位置する中間領域の複数の孔の開口面積を、その他の孔の開口面積よりも大きくすることで、中間領域に位置する孔への流入を促進できる。
 また、主流路を形成する開口部の上下方向の側面に最近位の第1、第8、第9、第16段目の孔を他の孔よりも小さくしていることで、側面に当たって冷媒の流れが変わり滞留する冷媒の流入を制御(抑制)できる。
[Effect of another embodiment]
By making the opening areas of the plurality of holes in the intermediate region located between the collision region and the most distal hole larger than the opening areas of the other holes, the inflow into the holes located in the intermediate region can be promoted. ..
Further, by making the holes of the 1st, 8th, 9th, and 16th stages of the latest positions smaller than the other holes on the vertical side surface of the opening forming the main flow path, the refrigerant hits the side surface. The inflow of the refrigerant that changes and stays can be controlled (suppressed).
[別実施形態:冷媒流路部の複数の開口部]
 図5B、図5Cは、別実施形態の冷媒流路部52の複数の開口部の一例を示す。
 図5Bの冷媒流路部52では、第一流通プレート521と第三流通プレート523の複数の開口部(5211~52116、5231~52316)の開口面積が、第二流通プレート522と第四流通プレート524の複数の開口部(5221~52216、5241~52416)の開口面積よりも大きい。
[Another Embodiment: Multiple openings in the refrigerant flow path]
5B and 5C show an example of a plurality of openings of the refrigerant flow path portion 52 of another embodiment.
In the refrigerant flow path portion 52 of FIG. 5B, the opening areas of the plurality of openings (5211 to 52116, 5231 to 52316) of the first flow plate 521 and the third flow plate 523 are the second flow plate 522 and the fourth flow plate. It is larger than the opening area of the plurality of openings (5221 to 52216, 5241 to 52416) of 524.
 図5Cの冷媒流路部52では、第二流通プレート522と第三流通プレート523の複数の開口部(5221~52216、5231~52316)の開口面積が、第一流通プレート521と第四流通プレート524の複数の開口部(5211~52116、5241~52416)の開口面積よりも大きい。
 別実施形態として、冷媒流路部52を構成するプレート数は4枚に限定されず、2枚または3枚でもよい。
In the refrigerant flow path portion 52 of FIG. 5C, the opening areas of the plurality of openings (5221 to 52216, 5231 to 52316) of the second flow plate 522 and the third flow plate 523 are the first flow plate 521 and the fourth flow plate. It is larger than the opening area of the plurality of openings (5211 to 52116, 5241 to 52416) of 524.
As another embodiment, the number of plates constituting the refrigerant flow path portion 52 is not limited to four, and may be two or three.
[別実施形態:分配部]
 図6A、図6Bは、別実施形態の分配部51の一例を示す。
 図6Aの分配部51は、第一プレート514、第二プレート515、第三プレート516を備える。
 第一プレート514は、冷媒を流入するための主冷媒流入口5141と、主冷媒流入口5141より下方に配置される補助冷媒流入口5142を有する、補助冷媒流入口5142の開口面積は、主冷媒流入口5141の開口面積よりも小さい。
 第二プレート515は、主冷媒流入口5141と補助冷媒流入口5142と連通する開口部5151を有する。
 第三プレート516は、主冷媒流入口5141に対向する位置に設けられる主衝突領域P4と、補助冷媒流入口5142に対向する位置に設けられる補助衝突領域P5と、複数の流路(および複数の開口部(5211~52116)のそれぞれと対応する位置に設けられる複数の孔(5161~51616)と、を有する。
 第二プレート515の開口部5151は、第一プレート514と第三プレート516との間に配置されることで、冷媒流路部52へ冷媒を送り込むための主流路を形成する。
 主衝突領域P4は、孔がない第3プレート516の中間領域に設けられ、補助衝突領域P5は、孔がない第3プレート516の下部に設けられる。本実施形態では、主衝突領域P4は、第9段目の孔3169と第10段目の孔31610の間に設けられ、補助衝突領域P5は、第1段目の孔3161と第2段目の孔3162の間に設けられる。図6Aにおいて流通路が16段であるが、これに制限されず、16段以下、16段以上でもよい。
[Separate embodiment: Distribution unit]
6A and 6B show an example of the distribution unit 51 of another embodiment.
The distribution section 51 of FIG. 6A includes a first plate 514, a second plate 515, and a third plate 516.
The first plate 514 has a main refrigerant inflow port 5141 for inflowing the refrigerant and an auxiliary refrigerant inflow port 5142 arranged below the main refrigerant inflow port 5141. The opening area of the auxiliary refrigerant inflow port 5142 is the main refrigerant. It is smaller than the opening area of the inflow port 5141.
The second plate 515 has an opening 5151 that communicates with the main refrigerant inflow port 5141 and the auxiliary refrigerant inflow port 5142.
The third plate 516 includes a main collision region P4 provided at a position facing the main refrigerant inflow port 5141, an auxiliary collision region P5 provided at a position facing the auxiliary refrigerant inflow port 5142, and a plurality of flow paths (and a plurality of flow paths). It has a plurality of holes (5161 to 51616) provided at positions corresponding to each of the openings (5211 to 52116).
The opening 5151 of the second plate 515 is arranged between the first plate 514 and the third plate 516 to form a main flow path for sending the refrigerant to the refrigerant flow path portion 52.
The main collision region P4 is provided in the intermediate region of the third plate 516 without holes, and the auxiliary collision region P5 is provided below the third plate 516 without holes. In the present embodiment, the main collision region P4 is provided between the 9th stage hole 3169 and the 10th stage hole 31610, and the auxiliary collision region P5 is the first stage hole 3161 and the second stage hole 3161. It is provided between the holes 3162. In FIG. 6A, the flow passage has 16 steps, but the flow passage is not limited to this, and may be 16 steps or less and 16 steps or more.
 図6Bの分配部51は、第一プレート517、第二プレート518、第三プレート519を備える。
 第一プレート517は、冷媒を流入するための第一主冷媒流入口5171と第一主冷媒流入口5171より下方に配置される第一補助冷媒流入口5172を有する。第一補助冷媒流入口5172の開口面積は、第一主冷媒流入口5171の開口面積よりも小さい。
 第一プレート517は、第一主冷媒流入口5171より上方に配置され、冷媒を流入するための第二主冷媒流入口5173と、第二主冷媒流入口5173より下方に配置される第二補助冷媒流入口5174を有する。第二補助冷媒流入口5174の開口面積は、第二主冷媒流入口5173の開口面積よりも小さい。
 第二プレート518は、第一主冷媒流入口5171と第一補助冷媒流入口5172と連通する第一開口部5181と、第一開口部5181の上方に設けられ、第二主冷媒流入口5173と第二補助冷媒流入口5174と連通する第二開口部5182とを有する。
 第三プレート519は、第一主冷媒流入口5171に対向する位置に設けられる第一主衝突領域P6と、第一補助冷媒流入口5172に対向する位置に設けられる第一補助衝突領域P7と、第二主冷媒流入口5173に対向する位置に設けられる第二主衝突領域P8と、第二補助冷媒流入口5174に対向する位置に設けられる第二補助衝突領域P9と、複数の流路(および複数の開口部(5211~52116)のそれぞれと対応する位置に設けられる複数の孔(5191~51916)と、を有する。
 第二プレート518の第一開口部5181は、第一プレート517と第三プレート519との間に配置されることで、冷媒流路部52へ冷媒を送り込むための第一主流路を形成する。第二プレート518の第二開口部5182は、第一プレート517と第三プレート519との間に配置されることで、冷媒流路部52へ冷媒を送り込むための第二流路を形成する。
The distribution section 51 of FIG. 6B includes a first plate 517, a second plate 518, and a third plate 519.
The first plate 517 has a first main refrigerant inflow port 5171 for inflowing the refrigerant and a first auxiliary refrigerant inflow port 5172 arranged below the first main refrigerant inflow port 5171. The opening area of the first auxiliary refrigerant inlet 5172 is smaller than the opening area of the first main refrigerant inlet 5171.
The first plate 517 is arranged above the first main refrigerant inlet 5171, the second main refrigerant inlet 5173 for inflowing the refrigerant, and the second auxiliary arranged below the second main refrigerant inlet 5173. It has a refrigerant inlet 5174. The opening area of the second auxiliary refrigerant inlet 5174 is smaller than the opening area of the second main refrigerant inlet 5173.
The second plate 518 is provided above the first opening 5181 and the first opening 5181 that communicate with the first main refrigerant inlet 5171 and the first auxiliary refrigerant inlet 5172, and the second main refrigerant inlet 5173. It has a second opening 5182 that communicates with the second auxiliary refrigerant inflow port 5174.
The third plate 519 includes a first main collision region P6 provided at a position facing the first main refrigerant inflow port 5171 and a first auxiliary collision region P7 provided at a position facing the first auxiliary refrigerant inflow port 5172. A plurality of flow paths (and) a second main collision region P8 provided at a position facing the second main refrigerant inlet 5173, a second auxiliary collision region P9 provided at a position facing the second auxiliary refrigerant inlet 5174, and a plurality of flow paths (and It has a plurality of holes (5191 to 51916) provided at positions corresponding to each of the plurality of openings (5211 to 52116).
The first opening 5181 of the second plate 518 is arranged between the first plate 517 and the third plate 519 to form a first main flow path for sending the refrigerant to the refrigerant flow path portion 52. The second opening 5182 of the second plate 518 is arranged between the first plate 517 and the third plate 519 to form a second flow path for sending the refrigerant to the refrigerant flow path portion 52.
 この実施形態において、第一主衝突領域P6は、孔がない第3プレート519の第4段目の孔3194と第5段目の孔3195の間に設けられ、第一補助衝突領域P7は、孔がない第三プレート519の第1段目の孔3191と第2段目の孔3192の間に設けられる。第二主衝突領域P8は、孔がない第3プレート519の第12段目の孔31912と第13段目の孔31913の間に設けられ、第二補助衝突領域P9は、孔がない第三プレート519の第9段目の孔3199と第10段目の孔31910の間に設けられる。 In this embodiment, the first main collision region P6 is provided between the fourth stage hole 3194 and the fifth stage hole 3195 of the third plate 519 having no holes, and the first auxiliary collision region P7 is It is provided between the first-stage holes 3191 and the second-stage holes 3192 of the third plate 519 having no holes. The second main collision area P8 is provided between the 12th stage hole 31912 and the 13th stage hole 31913 of the third plate 519 having no holes, and the second auxiliary collision area P9 is the third without holes. It is provided between the 9th step hole 3199 and the 10th step hole 31910 of the plate 519.
[実施形態の変形例]
(1)冷媒流入口は、矩形状の第一プレートの主面に形成されてもよい。
(2)冷媒流入口は、一つでもよく二つ以上でもよいが、それぞれに対応する衝突領域が第三プレートに形成されていてもよい。
(3)矩形状の第二プレートは、矩形状の第一開口部と、当該矩形状の長手方向に直列に配置される、矩形状の第二開口部を有していてもよい。第一、第二開口部のサイズは同じでもよく、異なっていてもよい。
(4)矩形状の第三プレートの前記複数の孔において、前記衝突領域の近くに形成されている前記孔の開口面積は、それよりも遠くに形成されている前記孔の開口面積よりも小さくてもよい。
(5)矩形状の第三プレートの長手方向の中央領域に形成されている前記孔の開口面積は、第三プレート(または矩形状の開口部)の長手方向の両端部に形成されている前記孔の開口面積より大きくてもよい。
(6)矩形状の第三プレートの長手方向の中央領域に形成されている前記孔の開口面積は、冷媒流入口の開口面積よりも小さくてもよい。
(7)矩形状の第三プレートの長手方向の両端部に形成されている前記孔の開口面積は、前記衝突領域の近くに形成されている前記孔の開口面積より小さくてもよい。
(8)孔の断面(平面)形状は、円、矩形、多角形、異形でもよい。
(9)孔は、第3プレートの厚み方向で、同じ開口サイズでもよく、第二プレート側の開口サイズと冷媒流路部側の開口サイズが異なっていてもよい。例えば、孔の第二プレート側の開口サイズが大きく、冷媒流路部側の開口サイズが小さくてもよく、その逆でもよい。
(10)複数の孔の形状または面積は、すべて同じであってもよく、異なっていてもよい。
(11)伝熱管の位置に対応して形成される複数の孔は、1つでもよく2以上でもよい。
[Modified example of the embodiment]
(1) The refrigerant inlet may be formed on the main surface of the rectangular first plate.
(2) The number of refrigerant inlets may be one or two or more, but collision regions corresponding to each may be formed on the third plate.
(3) The rectangular second plate may have a rectangular first opening and a rectangular second opening arranged in series in the longitudinal direction of the rectangle. The sizes of the first and second openings may be the same or different.
(4) In the plurality of holes of the rectangular third plate, the opening area of the holes formed near the collision region is smaller than the opening area of the holes formed farther than the holes. You may.
(5) The opening area of the hole formed in the central region of the rectangular third plate in the longitudinal direction is the opening area formed at both ends of the third plate (or the rectangular opening) in the longitudinal direction. It may be larger than the opening area of the hole.
(6) The opening area of the hole formed in the central region of the rectangular third plate in the longitudinal direction may be smaller than the opening area of the refrigerant inflow port.
(7) The opening area of the hole formed at both ends of the rectangular third plate in the longitudinal direction may be smaller than the opening area of the hole formed near the collision region.
(8) The cross-sectional (planar) shape of the hole may be a circle, a rectangle, a polygon, or an irregular shape.
(9) The holes may have the same opening size in the thickness direction of the third plate, and the opening size on the second plate side and the opening size on the refrigerant flow path side may be different. For example, the opening size of the hole on the second plate side may be large and the opening size on the refrigerant flow path side may be small, or vice versa.
(10) The shapes or areas of the plurality of holes may all be the same or different.
(11) The plurality of holes formed corresponding to the positions of the heat transfer tubes may be one or two or more.
[実施形態2:分配装置]
 図7の分配装置70は、上下方向に16段の開口部および孔を有する実施形態1(図1)の分配装置50とは異なり、上下方向に8段の開口部と孔を有する。
 分配装置70は、第一導入プレート701、第二導入プレート702、分配部71、冷媒流路部72を備える。
 第一導入プレート701は、冷媒の導入口7011を有する。導入口7011に不図示の冷媒供給用の配管が接続され、冷媒が導入される。第二導入プレート702は、導入口7011と連通する導入路7021を有する。導入口7011から導入された冷媒が、導入路7021を通じて分配部71へ送られる。なお、第一導入プレート701および第二導入プレート702を有さず、冷媒供給用の配管が直接、後述する分配部71の冷媒流入口7111に接続されてもよい。
 分配部71は、第一プレート711、第二プレート712、第三プレート713を有する。
 第一プレート711は、下部に形成された冷媒流入口7111を有する。下部(あるいは衝突領域P10)は、第1段目の孔7131と第2段目の孔7132との間である。第二プレート712は、冷媒流入口7111と連通する開口部7121を有する。
 第三プレート713は、8段の複数の孔7131~7138を有する。複数の孔7131~7138は、冷媒流路部52の複数の流路のそれぞれと対応する位置に設けられる。第三プレート713は、冷媒流入口7111に対向する位置に衝突領域P10を有する。
 冷媒流路部72は、第一流通プレート721、第二流通プレート722、第三流通プレート723、第四流通プレート724を有する。第一、第二、第三、第四流通プレート721、722、723、724は、それぞれ、複数の孔7131~51318の位置に対応する位置に複数の流路となる複数の開口部(7211~7218、7222~7228、7231~7238、7241~7248)を有する。
 第四流通プレート724の複数の開口部(7241~7248)に複数の伝熱管2のそれぞれの一方端が接続される。
 実施形態2の複数の孔は、図4Aから図4Dの各実施形態の形状、サイズを採用できる。
[Embodiment 2: Distributor]
The distribution device 70 of FIG. 7 has eight steps of openings and holes in the vertical direction, unlike the distribution device 50 of the first embodiment (FIG. 1), which has 16 steps of openings and holes in the vertical direction.
The distribution device 70 includes a first introduction plate 701, a second introduction plate 702, a distribution unit 71, and a refrigerant flow path unit 72.
The first introduction plate 701 has a refrigerant introduction port 7011. A pipe for supplying a refrigerant (not shown) is connected to the introduction port 7011, and the refrigerant is introduced. The second introduction plate 702 has an introduction path 7021 communicating with the introduction port 7011. The refrigerant introduced from the introduction port 7011 is sent to the distribution unit 71 through the introduction path 7021. It should be noted that the first introduction plate 701 and the second introduction plate 702 may not be provided, and the refrigerant supply pipe may be directly connected to the refrigerant inflow port 7111 of the distribution unit 71 described later.
The distribution unit 71 has a first plate 711, a second plate 712, and a third plate 713.
The first plate 711 has a refrigerant inlet 7111 formed at the bottom. The lower portion (or collision region P10) is between the first-stage hole 7131 and the second-stage hole 7132. The second plate 712 has an opening 7121 that communicates with the refrigerant inlet 7111.
The third plate 713 has a plurality of holes 7131 to 7138 in eight stages. The plurality of holes 7131 to 7138 are provided at positions corresponding to each of the plurality of flow paths of the refrigerant flow path portion 52. The third plate 713 has a collision region P10 at a position facing the refrigerant inflow port 7111.
The refrigerant flow path portion 72 has a first distribution plate 721, a second distribution plate 722, a third distribution plate 723, and a fourth distribution plate 724. The first, second, third, and fourth distribution plates 721, 722, 723, and 724 have a plurality of openings (7211 to 7211 to) that form a plurality of flow paths at positions corresponding to the positions of the plurality of holes 7131 to 51318, respectively. 7218, 7222 to 7228, 7231 to 7238, 7241 to 7248).
One end of each of the plurality of heat transfer tubes 2 is connected to the plurality of openings (7241 to 7248) of the fourth flow plate 724.
For the plurality of holes of the second embodiment, the shapes and sizes of the respective embodiments of FIGS. 4A to 4D can be adopted.
[冷媒の分配流量のシミュレーション解析]
 上記実施形態に対し分配流量のシミュレーション解析を行った。
 実施例1:分配部(図4A)、冷媒流路部(図5A)
 実施例2:分配部(図4B)、冷媒流路部(図5A)
 実施例3:分配部(図4C)、冷媒流路部(図5A)
 実施例4:分配部(図6B)、冷媒流路部(図5A)
 比較例1:特許文献1(JP2017-133820号公報 図2の構造)
 冷媒流入口へ供給する冷媒の流量:20kg/hr
 第1段目から第8段目の各孔への分配流量(%)の標準偏差を求め、比較例1との差(Δ)を求めた。
[Simulation analysis of refrigerant distribution flow rate]
A simulation analysis of the distribution flow rate was performed for the above embodiment.
Example 1: Distributor (FIG. 4A), Refrigerant flow path (FIG. 5A)
Example 2: Distributor (FIG. 4B), Refrigerant flow path (FIG. 5A)
Example 3: Distributor (FIG. 4C), Refrigerant flow path (FIG. 5A)
Example 4: Distributor (FIG. 6B), Refrigerant flow path (FIG. 5A)
Comparative Example 1: Patent Document 1 (Structure of FIG. 2 of JP2017-133820)
Flow rate of refrigerant supplied to the refrigerant inlet: 20 kg / hr
The standard deviation of the distribution flow rate (%) from the first stage to the eighth stage was obtained, and the difference (Δ) from Comparative Example 1 was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 シミュレーション結果では、実施例1から4はいずれも比較例1よりも良い結果であった。特に実施例3と4は、標準偏差が低く、差△が大きかった。 In the simulation results, all of Examples 1 to 4 were better than Comparative Example 1. In particular, in Examples 3 and 4, the standard deviation was low and the difference Δ was large.
[実施形態3:多段分配装置]
 図8は、実施形態2の分配装置70を多段に配置した多段分配装置の一例を示す。図面右側の一段目の分配装置70で8に分配し、2段目の8つの分配装置70に導入し、さらに8×8の64に分配することができる。
 なお、1段目の分配装置70で2以上(好ましくは4以上、より好ましくは6以上)に分配し、2段目の分配装置70で8つに分配してもよい。
 2段目の分配装置70が伝熱管に接続される構成に限定されず、3段目またはそれ以上の分配装置が設けられ、3段目またはそれ以上の分配装置が伝熱管に接続されていてもよい。
 このように分配装置を複数段に設けることで、従来よりも、煩雑な配管構造やヘッダを設けることなく、コンパクト構造で、多くの伝熱管へ冷媒を均等に分配することが可能となる。
[Embodiment 3: Multistage Distributor]
FIG. 8 shows an example of a multi-stage distribution device in which the distribution device 70 of the second embodiment is arranged in multiple stages. It can be distributed to 8 by the first-stage distribution device 70 on the right side of the drawing, introduced into the eight distribution devices 70 in the second stage, and further distributed to 64 of 8 × 8.
The first-stage distribution device 70 may distribute to two or more (preferably four or more, more preferably six or more), and the second-stage distribution device 70 may distribute to eight.
The configuration is not limited to the configuration in which the second-stage distribution device 70 is connected to the heat transfer tube, and a third-stage or higher distribution device is provided, and the third-stage or higher distribution device is connected to the heat transfer tube. May be good.
By providing the distribution devices in a plurality of stages in this way, it is possible to evenly distribute the refrigerant to many heat transfer tubes with a compact structure without providing a complicated piping structure or header as compared with the conventional case.
1      フィン
2      扁平管(伝熱管)
50     分配装置(実施形態1)
51     分配部
511    第一プレート
512    第二プレート
513    第三プレート
52     冷媒流路部
521    第一流通プレート
522    第二流通プレート
523    第三流通プレート
60     合流部
70     分配装置(実施形態2)
100    空気調和機
104    室内熱交換器
109    室外熱交換器
P1     第一衝突領域
P2     第二衝突領域
1 Fin 2 Flat tube (heat transfer tube)
50 Distributor (Embodiment 1)
51 Distributor 511 First plate 512 Second plate 513 Third plate 52 Refrigerant flow path 521 First distribution plate 522 Second distribution plate 523 Third distribution plate 60 Confluence 70 Distributor (Embodiment 2)
100 Air conditioner 104 Indoor heat exchanger 109 Outdoor heat exchanger P1 First collision area P2 Second collision area

Claims (6)

  1.  上下方向に配置される複数の伝熱管のそれぞれに向けて冷媒を分配する分配部と、
     前複数の伝熱管のそれぞれの一方端と接続され、前記分配部で分配された冷媒を前記複数の伝熱管のそれぞれに送るための複数の流路が形成されている冷媒流路部と、を備え、
     前記分配部は、
      少なくとも一つの冷媒流入口を有する第一プレートと、
      前記第一プレートの前記冷媒流入口の開口面積よりも大きい開口面積を有する、少なくとも一つの開口部を有する第二プレートと、
      前記冷媒流入口に対向する位置に設けられる衝突領域と、前記複数の流路のそれぞれと対応する位置に設けられる複数の孔と、を有する第三プレートと、を備え、
     前記冷媒流路部は、
      前記複数の流路となる複数の開口部が形成されている、少なくとも一つのプレートを備え、
     前記第二プレートの前記少なくとも一つの開口部は、前記第一プレートと前記第三プレートとの間に配置されることで、前記冷媒流路部へ前記冷媒を送り込むための主流路を形成する、分配装置。
    A distribution unit that distributes the refrigerant to each of the plurality of heat transfer tubes arranged in the vertical direction,
    A refrigerant flow path portion, which is connected to one end of each of the preceding plurality of heat transfer tubes and is formed with a plurality of flow paths for sending the refrigerant distributed by the distribution section to each of the plurality of heat transfer tubes. Prepare,
    The distribution unit
    A first plate with at least one refrigerant inlet and
    A second plate having at least one opening having an opening area larger than the opening area of the refrigerant inlet of the first plate, and a second plate.
    A third plate having a collision region provided at a position facing the refrigerant inlet and a plurality of holes provided at positions corresponding to each of the plurality of flow paths is provided.
    The refrigerant flow path portion
    It comprises at least one plate in which a plurality of openings for the plurality of flow paths are formed.
    The at least one opening of the second plate is arranged between the first plate and the third plate to form a main flow path for feeding the refrigerant into the refrigerant flow path portion. Distributor.
  2.  前記第三プレートの前記衝突領域の近くに形成されている前記孔の開口面積は、前記第三プレートの長手方向の中央領域に形成されている前記孔の開口面積よりも小さい、請求項1に記載の分配装置。 According to claim 1, the opening area of the hole formed near the collision region of the third plate is smaller than the opening area of the hole formed in the central region in the longitudinal direction of the third plate. The distributor according to the description.
  3.  前記第三プレートの長手方向の両端部に形成されている前記孔の開口面積は、前記衝突領域の近くに形成されている前記孔の開口面積より小さい、請求項1または2に記載の分配装置。 The distribution device according to claim 1 or 2, wherein the opening area of the hole formed at both ends in the longitudinal direction of the third plate is smaller than the opening area of the hole formed near the collision region. ..
  4.  請求項1から3のいずれか一項に記載の分配装置を多段に設けた、多段分配装置。 A multi-stage distribution device provided with the distribution device according to any one of claims 1 to 3 in multiple stages.
  5.  請求項1から3のいずれか一項に記載の分配装置、または請求項4に記載の多段分配装置を備える、熱交換器。 A heat exchanger comprising the distributor according to any one of claims 1 to 3 or the multi-stage distributor according to claim 4.
  6.  請求項5に記載の熱交換器を備える、空気調和機。 An air conditioner including the heat exchanger according to claim 5.
PCT/JP2019/048137 2019-12-09 2019-12-09 Distribution device, heat exchanger provided with distribution device, and air conditioner provided with said heat exchanger WO2021117107A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020528359A JP6767606B1 (en) 2019-12-09 2019-12-09 Distributor, heat exchanger with distributor and air conditioner with the heat exchanger
PCT/JP2019/048137 WO2021117107A1 (en) 2019-12-09 2019-12-09 Distribution device, heat exchanger provided with distribution device, and air conditioner provided with said heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048137 WO2021117107A1 (en) 2019-12-09 2019-12-09 Distribution device, heat exchanger provided with distribution device, and air conditioner provided with said heat exchanger

Publications (1)

Publication Number Publication Date
WO2021117107A1 true WO2021117107A1 (en) 2021-06-17

Family

ID=72745071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048137 WO2021117107A1 (en) 2019-12-09 2019-12-09 Distribution device, heat exchanger provided with distribution device, and air conditioner provided with said heat exchanger

Country Status (2)

Country Link
JP (1) JP6767606B1 (en)
WO (1) WO2021117107A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JPH11351787A (en) * 1998-06-09 1999-12-24 Zexel:Kk Heat exchanger
WO2015162678A1 (en) * 2014-04-21 2015-10-29 三菱電機株式会社 Laminated header, heat exchanger, and air-conditioner
WO2017042867A1 (en) * 2015-09-07 2017-03-16 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner
WO2018116413A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Distributor, heat exchanger, and refrigeration cycle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4281634B2 (en) * 2004-06-28 2009-06-17 株式会社デンソー Refrigerant evaporator
DE102012217340A1 (en) * 2012-09-25 2014-03-27 Behr Gmbh & Co. Kg Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JPH11351787A (en) * 1998-06-09 1999-12-24 Zexel:Kk Heat exchanger
WO2015162678A1 (en) * 2014-04-21 2015-10-29 三菱電機株式会社 Laminated header, heat exchanger, and air-conditioner
WO2017042867A1 (en) * 2015-09-07 2017-03-16 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner
WO2018116413A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Distributor, heat exchanger, and refrigeration cycle device

Also Published As

Publication number Publication date
JP6767606B1 (en) 2020-10-14
JPWO2021117107A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
US10309701B2 (en) Heat exchanger and air conditioner
US9651317B2 (en) Heat exchanger and air conditioner
US10393408B2 (en) Air conditioner
US9494368B2 (en) Heat exchanger and air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
US20150101363A1 (en) Refrigerant distributing device and heat exchanger including the same
WO2013161799A1 (en) Heat exchanger, and refrigerating cycle device equipped with heat exchanger
US20160327343A1 (en) Heat exchanger of air conditioner
JP6061994B2 (en) Heat exchanger, refrigeration cycle apparatus and air conditioner equipped with this heat exchanger
US20140102131A1 (en) Outdoor unit of refrigeration system
JP2018169062A (en) Air conditioner
KR20170031556A (en) Heat exchanger
JP6742112B2 (en) Heat exchanger and air conditioner
KR20170014903A (en) Heat exchanger
JP6767606B1 (en) Distributor, heat exchanger with distributor and air conditioner with the heat exchanger
CN110285603B (en) Heat exchanger and refrigeration system using same
WO2021095439A1 (en) Heat exchanger
KR20180087775A (en) Heat exchanger for refrigerator
JP6171765B2 (en) Heat exchanger
KR20170029317A (en) Heat exchanger
CN116324305A (en) Distributor, heat exchanger and air conditioner
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
JPWO2020090015A1 (en) Refrigerant distributor, heat exchanger and air conditioner
JP2020165578A (en) Heat exchanger flow divider
WO2023281656A1 (en) Heat exchanger and refrigeration cycle device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020528359

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955749

Country of ref document: EP

Kind code of ref document: A1