WO2021117104A1 - Alignment film, display device, method for producing display device, liquid crystal alignment agent, and liquid crystal composition - Google Patents

Alignment film, display device, method for producing display device, liquid crystal alignment agent, and liquid crystal composition Download PDF

Info

Publication number
WO2021117104A1
WO2021117104A1 PCT/JP2019/048128 JP2019048128W WO2021117104A1 WO 2021117104 A1 WO2021117104 A1 WO 2021117104A1 JP 2019048128 W JP2019048128 W JP 2019048128W WO 2021117104 A1 WO2021117104 A1 WO 2021117104A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
monomer
light emitting
layer
light
Prior art date
Application number
PCT/JP2019/048128
Other languages
French (fr)
Japanese (ja)
Inventor
真伸 水崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/048128 priority Critical patent/WO2021117104A1/en
Priority to US17/781,338 priority patent/US20230046964A1/en
Publication of WO2021117104A1 publication Critical patent/WO2021117104A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133715Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films by first depositing a monomer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133726Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films made of a mesogenic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2035Ph-COO-Ph
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present disclosure relates to an alignment film, a display device, a method for manufacturing a display device, a liquid crystal alignment agent, and a liquid crystal composition.
  • the display of the reflective liquid crystal display device is difficult to see when the surrounding environment is dark.
  • a display device using a self-luminous element such as an OLED (organic light emitting diode) has high brightness, but its visibility is deteriorated in an environment with high peripheral brightness (bright environment).
  • a display device that combines a reflective liquid crystal display device and a self-luminous element such as an OLED is being developed.
  • an alignment film for aligning the liquid crystal.
  • a method for forming an alignment film a method of applying a polymer solution such as polyamic acid as an alignment agent and then firing at a high temperature of 200 ° C. or higher to remove the solvent is common.
  • high-temperature firing causes damage such as a decrease in emission brightness due to heat to the self-luminous element.
  • a flexible substrate made of polyimide, polycarbonate or the like is used as the support, if high-temperature firing is performed, there is a possibility that contrast will not be obtained when the reflective liquid crystal display device is displayed. This is because the retardation value slightly possessed by polyimide, polycarbonate, etc. changes due to high-temperature firing.
  • PSA Polymer Sustained Alignment
  • a liquid crystal material containing a photopolymerizable monomer is sealed between a pair of substrates constituting a liquid crystal cell, and a voltage is applied to the liquid crystal layer, and an active energy ray such as ultraviolet rays is irradiated to the above light.
  • an active energy ray such as ultraviolet rays is irradiated to the above light.
  • the reflective liquid crystal display device performs color display by including a reflecting plate (for example, a self-luminous element such as an OLED) on one substrate and introducing a color conversion layer such as a color filter on the other substrate.
  • a reflecting plate for example, a self-luminous element such as an OLED
  • a color conversion layer such as a color filter
  • metal is used for forming thin film transistors, wiring, and the like on an array substrate (active substrate) provided with a self-luminous element such as an OLED, it is not possible to irradiate ultraviolet rays from the array substrate side. Further, it is not possible to irradiate ultraviolet rays from the substrate side provided with the color conversion layer. Therefore, it is impossible to form an alignment film by irradiating ultraviolet light from the outside of the liquid crystal cell.
  • One aspect of the present disclosure is made in view of the above problems, and an alignment film and a display device that can be formed without high-temperature firing, a method for manufacturing the display device, and the alignment film and display. It is an object of the present invention to provide a liquid crystal alignment agent and a liquid crystal composition used in the manufacture of an apparatus.
  • the alignment film according to one aspect of the present disclosure is an alignment film that orients a liquid crystal, and the alignment film is at least a first monomer represented by the following general formula (1). And a copolymer with at least one of the second monomer represented by the following general formula (2) and the third monomer represented by the following general formula (3).
  • X 1 and X 2 independently represent -H, -CH 3 , or -C 2 H 5 , and Z is -O-, -S-, and -NH-. , -CO -, - COO -, - OCO-, or a direct bond, Y 1 and Y 2 are each independently, -H, -F, -Cl, -Br, straight having 1 to 6 carbon atoms It represents a chain, branched or cyclic alkyl group, or a linear, branched or cyclic alkyloxy having 1 to 6 carbon atoms, m represents an integer of 6 to 16, and n represents 8 to 24. Represents an integer of.
  • R 1 and R 2 independently represent a hydrogen atom or a methyl group, respectively.
  • R 3 and R 4 independently represent a hydrogen atom or a methyl group, respectively.
  • the display device includes a thin film transistor layer including a plurality of thin film transistors between the first insulating substrate and the second insulating substrate, and a plurality of light emitting elements.
  • the light emitting element layer, the first alignment film, the liquid crystal layer, and the second alignment film are provided in this order from the first insulating substrate side, and the first alignment film and the second alignment film are provided in this order.
  • At least one of the films is the alignment film according to one aspect of the present disclosure.
  • the method for manufacturing the display device is the method for manufacturing the above-mentioned display device according to one aspect of the present disclosure, wherein the first insulating substrate and the thin film transistor are used.
  • the step of forming the array substrate having the layer and the light emitting element layer the step of forming the opposed substrate having the second insulating substrate, and the liquid crystal material between the array substrate and the opposed substrate, A step of forming a liquid crystal layer by encapsulating a liquid crystal composition containing at least the first monomer, the second monomer, and at least one of the third monomers, and causing the light emitting element to emit light.
  • the facing substrate includes a step of contacting the liquid crystal layer to form the first alignment film.
  • the liquid crystal alignment agent includes a first monomer represented by the general formula (1), a second monomer represented by the general formula (2), and a second monomer represented by the general formula (2). It contains at least one of the third monomers represented by the general formula (3).
  • the liquid crystal composition according to one aspect of the present disclosure includes the above liquid crystal alignment agent according to one aspect of the present disclosure and a liquid crystal material.
  • the first monomer and at least one of the second monomer and the third monomer can be copolymerized with near-ultraviolet light to visible light, and the liquid crystal molecules are oriented by the copolymerization. be able to. Therefore, according to one aspect of the present disclosure, an alignment film and a display device that can be formed without high-temperature firing, a method for manufacturing the display device, and a liquid crystal alignment used for manufacturing the alignment film and the display device. Agents and liquid crystal compositions can be provided.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a main part of the display device 100 according to the present embodiment. Note that FIG. 1 shows the orientation state of the liquid crystal molecules 54a when no voltage is applied.
  • the display device 100 includes an array substrate 10, an opposing substrate 70, a liquid crystal layer 54 sandwiched between the array substrate 10 and the opposing substrate 70, and an array substrate 10 on the opposing substrate 70. Is provided with a circular polarizing plate 8 provided on the opposite side.
  • the array substrate 10 is an electrode substrate (element substrate) in which a light emitting element 31 and a pixel electrode 52 are formed for each pixel P.
  • the array substrate 10 has a thin film transistor layer (hereinafter referred to as “TFT layer”) 2, a light emitting element layer 3, an insulating layer 4, a plurality of pixel electrodes 52, and an alignment film 53 on an insulating substrate 1 (first insulating substrate). (First alignment film) has a structure in which they are laminated in this order.
  • the light emitting element layer 3 is provided with a plurality of light emitting elements 31.
  • the counter substrate 70 is an electrode substrate having a common electrode 56 common to all pixels P as a counter electrode facing the pixel electrode 52 with the liquid crystal layer 54 interposed therebetween.
  • the facing substrate 70 has a configuration in which a color conversion layer 6, a common electrode 56, and an alignment film 55 (second alignment film) are laminated in this order on an insulating substrate 7 (second insulating substrate). ..
  • the array substrate 10 and the opposing substrate 70 have the forming surfaces of the layers formed on the array substrate 10 and the opposing substrate 70 inside so that the liquid crystal element 51 is formed between the pair of insulating substrates 1 and 7. They are arranged so as to face each other.
  • the array substrate 10 and the facing substrate 70 are adhered to each other at their outer peripheral portions with a sealant (not shown) with a certain gap.
  • the liquid crystal element 51 is composed of a pixel electrode 52, an alignment film 53, a liquid crystal layer 54, an alignment film 55, and a common electrode 56.
  • the layer provided with the pixel electrode 52, the alignment film 53, the liquid crystal layer 54, the alignment film 55, and the common electrode 56 is the liquid crystal element layer 5.
  • a plurality of liquid crystal elements 51 are provided on the liquid crystal element layer 5.
  • the TFT layer 2, the light emitting element layer 3, the insulating layer 4, the liquid crystal element layer 5, and the color conversion layer 6 are sandwiched between the pair of insulating substrates 1 and 7, and the insulating substrate in the insulating substrate 7 is sandwiched. It can also be said that it has a configuration in which the circular polarizing plate 8 is provided on the surface opposite to 1.
  • Insulating substrates 1 and 7 are supports (base substrates) having insulating properties. Of the insulating substrates 1 and 7, a transparent insulating substrate is used for at least the insulating substrate 7 on the light extraction side.
  • the insulating substrates 1 and 7 may be, for example, glass substrates, but are preferably flexible substrates such as plastic substrates and resin films. Examples of the material of these flexible substrates (that is, the material of the plastic substrate or the material of the resin film) include polyimide and polycarbonate.
  • a resin film for the insulating substrates 1 and 7 a thin film can be formed, and a foldable display device can be obtained as the display device 100.
  • the display device 100 is provided with a plurality of pixels P, for example, in a matrix.
  • the TFT layer 2 includes a light emitting element pixel circuit that controls each light emitting element 31 in the light emitting element layer 3, a liquid crystal element pixel circuit that controls the liquid crystal element 51 in the liquid crystal element layer 5 for each pixel P, and these light emitting elements.
  • a flattening film 23 that covers the pixel circuit and the pixel circuit for the liquid crystal element is provided.
  • the pixel circuit for a light emitting element includes a plurality of first thin film transistors (hereinafter, referred to as "first TFT") 21 for driving each light emitting element 31.
  • the pixel circuit for a liquid crystal element includes a plurality of second thin film transistors (hereinafter, referred to as “second TFTs”) 22 that drive the liquid crystal element 51 for each pixel P.
  • the TFT layer 2 is provided with a plurality of bus lines (not shown) electrically connected to the first TFT 21 and the second TFT 22. These plurality of bus lines include a plurality of gate bus lines and a plurality of source bus lines.
  • Multiple gate bus lines are provided in the row direction in the display area.
  • a plurality of source bus lines are provided in the column direction in the display area so as to intersect each gate bus line.
  • Each region surrounded by these gate bus lines and source bus lines is a pixel P.
  • the first TFT 21 and the second TFT 22 are provided for each pixel P, respectively.
  • the gate electrode of the second TFT 22 is connected to the gate bus line, and the source electrode (or drain electrode) of the second TFT 22 is connected to the source bus line. Further, the drain electrode (or source electrode) of the second TFT 22 is connected to the gate electrode of the first TFT 21 and the pixel electrode 52 of the liquid crystal element 51. Further, the source electrode (or drain electrode) of the first TFT 21 is connected to a current supply bus line (not shown) that supplies a current to the light emitting element 31. The drain electrode (or source electrode) of the first TFT 21 is connected to the first electrode 32 described later in the light emitting element 31.
  • the second TFT 22 electrically connects the first TFT 21 and the liquid crystal element 51 with the source bus line based on the potential of the gate bus line.
  • the first TFT 21 changes the magnitude of the current supplied to the light emitting element 31 based on the potential of the source bus line.
  • a drive current flows through the current supply bus line and the drain electrode (or source electrode) of the first TFT 21 to the light emitting element 31, and the light emitting layer emits light.
  • the flattening film 23 covers the plurality of first TFTs 21, the plurality of second TFTs 22, and the plurality of bus lines.
  • the flattening film 23 is an insulating film made of an organic insulating material such as acrylic resin or polyimide.
  • the flattening film 23 flattens the irregularities on the first TFT 21, the second TFT 22, and the bus line.
  • an organic insulating film such as an acrylic resin or polyimide is used for the flattening film 23, for example.
  • the light emitting element layer 3 is provided on the flattening film 23 of the TFT layer 2.
  • the light emitting element layer 3 includes a plurality of light emitting elements 31 and a bank 35.
  • the light emitting element 31 has a configuration in which at least a functional layer 33 including a light emitting layer is sandwiched between the first electrode 32 and the second electrode 34.
  • a case where the light emitting element 31 is an OLED (organic light emitting diode) will be described as an example.
  • the first electrode 32 is formed on the flattening film 23 in an island shape for each pixel P.
  • the second electrode 34 is a solid electrode (common electrode) commonly provided on all pixels P.
  • the light emitting element 31 is a top emission type light emitting element. Therefore, the upper second electrode 34 is formed of a translucent electrode made of a light-transmitting material, and the lower first electrode 32 is formed of a reflective electrode made of a light-reflecting material.
  • a transparent conductive film material can be used.
  • the transparent conductive film material for example, ITO (indium tin oxide), IZO (indium zinc oxide) and the like can be used. Since these materials have high visible light transmittance, the luminous efficiency is improved.
  • the light-reflecting material for example, a metal material such as Al (aluminum), Ag (silver), Cu (copper), Au (gold), APC (AgPdCu) can be used. Since these materials have high visible light reflectance, the luminous efficiency is improved.
  • a metal material such as Al (aluminum), Ag (silver), Cu (copper), Au (gold), APC (AgPdCu) can be used. Since these materials have high visible light reflectance, the luminous efficiency is improved.
  • the first electrode 32 may be a reflective electrode having light reflectivity by forming a laminate of a layer made of a translucent material and a layer made of a light-reflecting material. Further, by forming a reflective film made of, for example, APC or the like in a solid shape on the flattening film 23 and forming a layer made of a translucent material in an island shape on the reflective film, the reflection having light reflectivity is obtained. It may be used as an electrode.
  • the functional layer 33 may be a light emitting layer, or may be a laminated film having a multilayer structure including a light emitting layer and a carrier transport layer that transports carriers to the light emitting layer. Further, the functional layer 33 may further include a carrier injection layer that injects carriers into the carrier transport layer. For example, when the first electrode 32 is an anode and the second electrode 34 is a cathode, the functional layer 33 has a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection in this order from the lower layer side. It may have a structure in which layers are laminated.
  • the stacking order of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer is reversed.
  • a configuration that does not form one or more of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer is also possible.
  • Bank 35 is formed in a grid pattern, for example.
  • the bank 35 functions as a pixel separation wall that separates the light emitting element 31 for each pixel P, and also functions as an edge cover that covers each edge of the first electrode 32.
  • an organic insulating material such as acrylic resin or polyimide is used.
  • the light emitting layer is formed in an island shape for each opening 35a of the bank 35 (in other words, for each pixel P).
  • the layers other than the light emitting layer in the functional layer 33 may be formed in an island shape for each opening 35a of the bank 35, or may be formed in a solid shape as a common layer common to all pixels P.
  • the display device 100 is provided with a plurality of light emitting elements 31 corresponding to the pixels P.
  • the light emitting elements 31 are all light emitting elements that emit near-ultraviolet to blue light having emission peak wavelengths in the wavelength band of 360 nm or more and 500 nm or less, and when the light emitting element 31 is energized, the light emitting elements 31 are near-ultraviolet to blue.
  • the light emitting material of the light emitting layer is selected so that light emission can be obtained. Therefore, in the present embodiment, each of the light emitting elements 31 emits light in a color common to each pixel P. Therefore, light of the same color is emitted from the entire light emitting element layer 3.
  • the near-ultraviolet light refers to light having an emission peak wavelength in a wavelength band of 360 nm or more and less than 400 nm.
  • blue light refers to light having an emission peak wavelength in a wavelength band of 400 nm or more and 500 nm or less. It is more preferable that the light emitting element 31 has an emission peak wavelength in a wavelength band of 420 nm or more and 490 nm or less.
  • the light emitting element 31 is covered with a translucent insulating layer 4 formed on the light emitting element layer 3.
  • the insulating layer 4 contains an inorganic layer and functions as a sealing layer for preventing deterioration of the light emitting element 31 due to the infiltration of moisture and oxygen. Further, it is desirable that the insulating layer 4 functions as a flattening layer for flattening the unevenness on the light emitting element 31, and it is desirable that the insulating layer 4 further contains an organic layer.
  • the insulating layer 4 is formed of an inorganic layer or a laminate of an inorganic layer and an organic layer. It is desirable that the insulating layer 4 has a structure in which, for example, a first inorganic layer, an organic layer, and a second inorganic layer are laminated in this order.
  • the inorganic layer (for example, the first inorganic layer and the second inorganic layer) has a moisture-proof function of preventing the infiltration of water and oxygen, and functions as a barrier layer (moisture-proof layer).
  • the organic layer functions as a buffer layer.
  • the organic layer relaxes the stress of the inorganic layer, flattens it by filling the stepped portion on the surface of the light emitting element 31, cancels out pinholes, suppresses the occurrence of cracks and film peeling during lamination of the inorganic layer, and the like.
  • a translucent inorganic insulating film such as silicon nitride (SiN) or silicon oxide (SiO 2) is used.
  • an organic insulating film having translucency such as acrylic resin or polyimide is used.
  • a liquid crystal element layer 5 is formed on the insulating layer 4.
  • the liquid crystal element layer 5 is provided with a liquid crystal element 51 for each pixel P.
  • the pixel electrode 52 and the alignment film 53 in the liquid crystal element 51 are formed on the array substrate 10.
  • the pixel electrodes 52 are formed on the insulating layer 4 in an island shape for each pixel P.
  • the pixel electrode 52 is connected to the second TFT 22 via a contact hole 4a provided in the insulating layer 4 and a contact hole 35b provided in the bank 35.
  • the alignment film 53 is formed solidly on the insulating layer 4 so as to cover all the pixel electrodes 52 as a common layer common to all the pixels P.
  • the alignment film 55 and the common electrode 56 are formed on the facing substrate 70.
  • the common electrode 56 is formed in a solid shape on the color conversion layer 6 of the opposed substrate 70 as a common layer common to all pixels P.
  • the alignment film 55 is formed in a solid shape on the common electrode 56 as a common layer common to all pixels P.
  • the alignment film 53 and the alignment film 55 are provided in contact with the liquid crystal layer 54 with the liquid crystal layer 54 interposed therebetween.
  • the liquid crystal layer 54 is sandwiched between the array substrate 10 and the opposing substrate 70 by enclosing the liquid crystal in the gap formed between the array substrate 10 and the opposing substrate 70.
  • the pixel electrode 52 and the common electrode 56 are translucent electrodes formed of a translucent material.
  • a translucent material a transparent conductive film material such as ITO or IZO can be used.
  • An electric field is applied to the liquid crystal layer 54 by the voltage applied to the pixel electrode 52 and the common electrode 56, whereby an image is formed.
  • the liquid crystal element 51 is a liquid crystal element that displays by a vertically oriented method (for example, a VA method), and the liquid crystal layer 54 is a vertically oriented liquid crystal layer.
  • the liquid crystal molecule 54a has a negative dielectric anisotropy.
  • the alignment films 53 and 55 direct the liquid crystal molecules 54a of the liquid crystal layer 54 in a direction perpendicular to the surfaces of the array substrate 10 and the opposing substrate 70 (specifically, perpendicular to the substrate surfaces of the insulating substrates 1.7) when no voltage is applied. It is a vertically oriented film that is oriented in the above direction.
  • the liquid crystal molecules 54a are vertically oriented (vertically oriented) with respect to the substrate surface of the insulating substrates 1 and 7 when no voltage is applied, and the liquid crystal molecules 54a are collapsed when the voltage is applied to display the display.
  • the alignment films 53 and 55 will be described in detail later.
  • a circularly polarizing plate 8 is provided on the outside of the liquid crystal cell formed by sandwiching the liquid crystal layer 54 between the array substrate 10 and the facing substrate 70.
  • the circularly polarizing plate 8 is formed in a solid shape on the surface of the insulating substrate 7 opposite to the insulating substrate 1 as a common layer common to all pixels P.
  • the circularly polarizing plate 8 has a function of transmitting only specific circularly polarized light from the incident external light.
  • the circular polarizing plate 8 is formed by, for example, laminating a linear polarizing plate and a ⁇ / 4 wave plate with their optical axes tilted by a certain angle.
  • the liquid crystal element 51 becomes a dark display and displays black when no voltage is applied, while the reflectance gradually increases due to the voltage application, becomes a bright display, and displays white.
  • the liquid crystal element 51 is configured to be in the NB (normally black) mode by the cooperation of the circularly polarizing plate 8, the alignment film 53 and 55, and the liquid crystal layer 54. It is desirable to be there.
  • the dielectric anisotropy of the liquid crystal material is selected so that the liquid crystal molecules 54a are vertically oriented when no voltage is applied.
  • the liquid crystal element 51 is a reflective liquid crystal element, and external light transmitted through the circular polarizing plate 8 and incident on the liquid crystal element 51 passes through the liquid crystal element 51 and the second electrode 34 of the light emitting element 31 and emits light. It is reflected by the first electrode 32 of 31. Then, the light reflected by the first electrode 32, transmitted through the second electrode 34 and the liquid crystal element 51, and then transmitted through the circularly polarizing plate 8 is emitted to the outside.
  • the display device 100 has, as the pixel P, a red pixel RP that emits red light, a green pixel GP that emits green light, and a blue pixel BP that emits blue light.
  • the display device 100 is provided with a color conversion layer 6 so that both the liquid crystal element 51 and the light emitting element 31 can display colors.
  • each pixel P is provided with a light emitting element that emits near-ultraviolet to blue light as a light emitting element 31.
  • the light emitting element 31 is a light emitting element (blue light emitting element) that emits blue light
  • the pixel RP has blue light emitted from the light emitting layer of the light emitting element 31 provided on the pixel RP as a color conversion layer 6.
  • the pixel GP is provided with a color conversion layer 6G that converts blue light emitted from the light emitting layer of the light emitting element 31 provided in the pixel GP into green light.
  • the pixel BP may be provided with a color conversion layer 6B that transmits blue light emitted from the light emitting layer of the light emitting element 31 provided in the pixel BP as it is, or a normal blue color that transmits blue light.
  • a filter may be provided.
  • the color conversion layer 6B may not be provided with the color conversion layer.
  • the pixel RP is emitted from the light emitting layer of the light emitting element 31 provided in the pixel RP as a color conversion layer 6.
  • a color conversion layer 6R for converting the near-ultraviolet light to be red light is provided.
  • the pixel GP is provided with a color conversion layer 6G that converts near-ultraviolet light emitted from the light emitting layer of the light emitting element 31 provided in the pixel GP into green light.
  • the pixel BP is provided with a color conversion layer 6B that converts near-ultraviolet light emitted from the light emitting layer of the light emitting element 31 provided in the pixel BP into blue light.
  • red light refers to light having an emission peak wavelength in a wavelength band of 600 nm or more and 780 nm or less.
  • green light refers to light having an emission peak wavelength in a wavelength band of 500 nm or more and 600 nm or less.
  • a color conversion layer using quantum dots is used.
  • the color conversion layer 6R a color conversion layer having quantum dots having a red perovskite crystal structure that absorbs blue light or near-ultraviolet light emitted by the light emitting element 31 and emits red light is used.
  • the color conversion layer 6G a color conversion layer having quantum dots having a green perovskite crystal structure that absorbs blue light or near-ultraviolet light emitted by the light emitting element 31 and emits green light is used.
  • the color conversion layer 6B a color conversion layer having quantum dots having a blue perovskite crystal structure that absorbs blue light or near-ultraviolet light emitted by the light emitting element 31 and emits blue light is used.
  • the alignment films 53 and 55 are polymerization orientation layers that polymerize with near-ultraviolet or blue light.
  • the alignment films 53 and 55 include at least one of the first monomer and the second monomer and the third monomer (that is, one or both of the second monomer and the third monomer). And are formed by a liquid crystal aligning agent containing. Specifically, the alignment film 53.55 has at least one of the first monomer, the second monomer, and the third monomer (that is, the second monomer and the third monomer). It can be formed by copolymerizing with one or both of the monomers of the above.
  • the first monomer is a vertically oriented monomer (first monomer) represented by the following general formula (1).
  • X 1 and X 2 independently represent -H, -CH 3 , or -C 2 H 5.
  • Z represents -O-, -S-, -NH-, -CO-, -COO-, -OCO-, or direct binding.
  • Y 1 and Y 2 are independently each of -H, -F, -Cl, -Br, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. Represents a linear, branched or cyclic alkyloxy.
  • m represents an integer of 6 to 16, and n represents an integer of 8 to 24.
  • the second monomer is an anthracene-based monomer represented by the following general formula (2).
  • R 1 and R 2 independently represent a hydrogen atom or a methyl group, respectively.
  • the third monomer is a benzyl-based monomer represented by the following general formula (3).
  • R 3 and R 4 independently represent a hydrogen atom or a methyl group, respectively.
  • the alignment films 53 and 55 contain at least a copolymer of the first monomer and at least one of the second monomer and the third monomer. Therefore, the copolymer contains at least a structural unit derived from the first monomer and a structural unit derived from at least one of the second monomer and the third monomer. ..
  • the structural unit derived from the first monomer has, for example, a structure represented by the following general formula (1-A) or (1-B).
  • the structural unit derived from the second monomer has, for example, a structure represented by the following general formula (2-A) or (2-B).
  • the structural unit derived from the third monomer has, for example, a structure represented by the following general formula (3-A) or (3-B).
  • X 1 , X 2 , Y 1 , Y 2 , m, n, R 1 , R 2 , R 3 , and R 4 are the general formulas (1). It is the same as X 1 , X 2 , Y 1 , Y 2 , m, and n in. Further, R 1, R 2 in the formula (2-A) and (2-B) is the same as R 1, R 2 in the general formula (2). R 3, R 4 in the formula (3-A) and (3-B) is the same as R 3, R 4 in the general formula (3).
  • Examples of the copolymer containing the structural unit derived from the first monomer and the structural unit derived from the second monomer include the copolymer represented by the following structural formula (4).
  • X 1, X 2, Y 1, Y 2, m, n, R 1, R 2, R 3, R 4 in the structural formula (4) is, X 1 in the general formula (1), X 2, Same as Y 1 , Y 2 , m, n. Further, R 1, R 2 in the structural formula (4) is the same as R 1, R 2 in the general formula (2).
  • p represents an integer of 1 to 100
  • q represents an integer of 1 to 50
  • r represents an integer of 1 to 100
  • s represents an integer of 1 to 100. Represents an integer.
  • examples of the copolymer containing the structural unit derived from the first monomer and the structural unit derived from the third monomer include the copolymer represented by the following structural formula (5). Be done.
  • X 1, X 2, Y 1, Y 2, m, n, R 1, R 2, R 3, R 4 in the structural formula (5) is, X 1 in the general formula (1), X 2, Same as Y 1 , Y 2 , m, n. Also, R 3, R 4 in the structural formula (5) is the same as R 3, R 4 in the general formula (3).
  • p represents an integer of 1 to 100
  • q represents an integer of 1 to 50
  • r represents an integer of 1 to 100
  • s represents an integer of 1 to 100. Represents an integer.
  • the copolymer constituting the alignment films 53 and 55 includes at least one of the structural unit derived from the first monomer and at least one of the second monomer and the third monomer. It may contain a structural unit derived from a monomer.
  • the copolymer constituting the alignment films 53 and 55 includes a structural unit derived from the first monomer, a structural unit derived from the second monomer, and a structural unit derived from the third monomer. , May be included.
  • Examples of such a copolymer include a copolymer having both the structure represented by the structural formula (4) and the structure represented by the structural formula (5).
  • the alignment films 53 and 55 are the copolymers represented by the structural formula (4) and the copolymers represented by the structural formula (5) as the copolymers constituting the alignment films 53 and 55. It may contain at least one copolymer.
  • the copolymer constituting the alignment films 53 and 55 is a copolymer of at least one of the copolymer represented by the structural formula (4) and the copolymer represented by the structural formula (5). May include.
  • first monomer examples include the monomers represented by the following structural formulas (1-1) to (1-8).
  • the first monomer may contain at least one of the monomers represented by the structural formulas (1-1) to (1-8).
  • the copolymer has a structural unit derived from at least one of the monomers represented by the structural formulas (1-1) to (1-8) as a structural unit derived from the first monomer. It may be included.
  • the first monomer is a vertically oriented monomer.
  • the alignment films 53 and 55 move the liquid crystal molecules 54a of the liquid crystal layer 54 in the direction perpendicular to the surfaces of the array substrate 10 and the opposing substrate 70 by the action of the structural unit derived from the first monomer in the copolymer. It can be oriented (vertically oriented).
  • the liquid crystal element 51 is a liquid crystal element that displays by a vertical alignment method (VA method).
  • VA method vertical alignment method
  • the orientation control of the liquid crystal molecules 54a is performed by the alignment films 53 and 55.
  • the fact that the liquid crystal molecules 54a are vertically oriented with respect to the surfaces of the array substrate 10 and the opposing substrate 70 means that the pretilt angle of the liquid crystal molecules 54a is 86 to 90 ° with respect to the surfaces of the array substrate 10 and the opposing substrate 70. Means that.
  • the preferred pretilt angle is 88.5 to 90 °.
  • the pretilt angle of the liquid crystal molecules 54a is such that when the voltage applied to the liquid crystal layer 54 is less than the threshold voltage (including when no voltage is applied), the long axis of the liquid crystal molecules 54a is on the surfaces of the array substrate 10 and the facing substrate 70. It means the angle of inclination.
  • the first monomer is composed of an aliphatic compound except for the end of the side chain, and has a molecular structure having excellent flexibility. Therefore, in the formation of the alignment films 53 and 55, when at least the first monomer and at least one of the second monomer and the third monomer are copolymerized, the nematic phase of the liquid crystal material of the liquid crystal layer 54 is formed. -Even if light is irradiated in an environment lower than the isotropic phase transition temperature (for example, in a normal temperature environment), a sufficient orientation regulating force for vertically aligning the liquid crystal molecules 54a can be obtained.
  • the normal temperature means 15 to 45 ° C.
  • the first monomer is a bifunctional monomer having two acryloyl groups as polymerizable groups
  • the polymerization rate becomes high when the alignment films 53 and 55 are formed, and the monomer in a non-polymerized state in the liquid crystal layer 54. Is hard to remain.
  • a display device 100 having a high voltage holding ratio can be obtained.
  • a monofunctional monomer having only one polymerizable group is used, the polymerization rate becomes slow and a large amount of unpolymerized monomers remain in the liquid crystal layer 54, so that the voltage retention rate is large. It will drop.
  • the second monomer include monomers represented by the following structural formulas (2-1) and (2-2).
  • the second monomer may contain at least one of the monomers represented by the structural formulas (2-1) and (2-2).
  • the copolymer has a structural unit derived from at least one of the monomers represented by the structural formulas (2-1) and (2-2) as a structural unit derived from the second monomer. It may be included.
  • the third monomer specifically, for example, the monomers represented by the following structural formulas (3-1) and (3-2) can be mentioned.
  • the third monomer may contain at least one of the monomers represented by the structural formulas (3-1) and (3-2).
  • the copolymer has a structural unit derived from at least one of the monomers represented by the structural formulas (3-1) and (3-2) as a structural unit derived from the third monomer. It may be included.
  • At least one of the second monomer and the third monomer initiates polymerization to initiate a copolymerization reaction between at least the first monomer and at least one of the second and third monomers. It is a functioning polymerization initiator. At least one of the second monomer and the third monomer absorbs near-ultraviolet to blue light (in other words, light having a wavelength band of 360 nm or more and 500 nm or less) to initiate polymerization.
  • the vertically oriented monomer and the monomer as the polymerization initiator are introduced into the liquid crystal cell together with the liquid crystal material as the liquid crystal aligning agent.
  • the liquid crystal aligning agent containing the vertically oriented monomer and the monomer as the polymerization initiator can be copolymerized with near-ultraviolet to blue visible light, and the liquid crystal molecules 54a can be copolymerized to form the liquid crystal molecules 54a.
  • the liquid crystal aligning agent is photopolymerized (in other words, the monomer is copolymerized) by utilizing the light emission of the light emitting element 31 inside the liquid crystal cell, so that high temperature firing is not performed.
  • the alignment films 53 and 55 can be formed on the surface.
  • the monomer as the polymerization initiator can initiate polymerization with near-ultraviolet to blue light. Therefore, as described above, only the light emitting element that emits near-ultraviolet to blue light is used as the light emitting element 31. Therefore, according to the present embodiment, it is not necessary to divide the color pixels of the light emitting element 31, and a wide area in the pixel area can be used as the light emitting region.
  • the monomers in the liquid crystal layer 54 can be uniformly polymerized, so that the polymerization oriented layer can be uniformly formed as the alignment films 53 and 55 over the entire display region.
  • the liquid crystal element layer 5 having a vertically oriented region in which the entire display region is uniform can be produced.
  • each pixel P includes both the light emitting element 31 and the reflective liquid crystal element 51, so that a bright display can be achieved when the light emitting element 31 is used. In addition to being bright, the brightness of each light emitting element 31 can be lowered, so that durability (long-term reliability) can be improved.
  • the display device 100 is a hybrid type display device including the light emitting element 31 and the reflective liquid crystal element 51, and therefore has good visibility even in a bright surrounding environment. Further, since the formation of the alignment films 53 and 55 does not require high-temperature firing, the high-temperature firing does not cause damage such as a decrease in the emission brightness of the light emitting element 31. Further, since it is possible to avoid changes in the retardation values of polyimide, polycarbonate and the like due to high-temperature firing, it is possible to use a flexible substrate as the insulating substrate 1.7 (support) as described above.
  • the display device 100 When the display device 100 is used under external light (in other words, when the external light is strong), when the external light is incident from above the circularly polarizing plate 8, the external light passes through the circularly polarizing plate 8 to form a circle. It becomes polarized light, and for example, only right circularly polarized light passes through the circularly polarizing plate 8.
  • the drain voltage of the second TFT 22 is equal to or less than the threshold voltage for the liquid crystal (in other words, when the voltage applied to the liquid crystal layer 54 is less than the threshold voltage (including when no voltage is applied)
  • the polarized light is right circularly polarized.
  • the external light is incident on the liquid crystal layer 54 in the vertically oriented state.
  • the birefringence of the liquid crystal layer 54 is substantially zero, when no voltage is applied to the second electrode 34, the right circularly polarized light incident on the liquid crystal element 51 is directly converted into right circularly polarized light and emits light through the insulating layer 4. It enters the element 31 and reaches the first electrode 32. When this right-handed circularly polarized light is reflected by the first electrode 32, it becomes left-handed circularly polarized light, and reaches the circularly polarizing plate 8 by following a path opposite to that up to that point. At this time, the polarization state does not change depending on the liquid crystal layer 54.
  • the left circularly polarized light that has reached the circularly polarizing plate 8 is absorbed by the circularly polarizing plate 8 and does not pass through the circularly polarizing plate 8. Therefore, the display device 100 becomes a dark display (black display). Further, at this time, the drain voltage of the second TFT 22 is less than the threshold voltage for the light emitting element in which the first TFT 21 operates, no current is supplied to the light emitting element 31, and the non-light emitting state (in other words, the off state) is maintained. ing. In this case, the liquid crystal element 51 performs gradation display.
  • the drain voltage of the second TFT 22 is larger than the threshold voltage for the liquid crystal and smaller than the threshold voltage for the light emitting element on which the first TFT 21 operates, it passes through the circularly polarizing plate 8 and is on the right.
  • the circularly polarized external light passes through the liquid crystal layer 54 and becomes linearly polarized light.
  • the linearly polarized light that has reached the first electrode 32 is reflected by the first electrode 32, follows a path opposite to that up to that point, and is transmitted through the liquid crystal layer 54 to become right-handed circularly polarized light, which is transmitted through the circularly polarizing plate 8. To do.
  • the display device 100 becomes a bright display and displays a color having a wavelength determined by the color conversion layer 6. Further, at this time, the drain voltage of the second TFT 22 is less than the threshold voltage for the light emitting element in which the first TFT 21 operates, no current is supplied to the light emitting element 31, and the non-light emitting state (in other words, the off state) is maintained. ing. Therefore, even in this case, the liquid crystal element 51 performs gradation display.
  • the drain voltage of the second TFT 22 is set to be equal to or higher than the threshold voltage for the light emitting element in which the first TFT 21 operates.
  • a current is supplied to the light emitting element 31, and the light emitting element 31 emits light.
  • the light emitting element 31 performs gradation display.
  • the on / off state of the liquid crystal element 51 does not matter.
  • the normally black mode that suppresses external light is preferable. In this case, the light transmitted through the liquid crystal layer 54 becomes linearly polarized light depending on the orientation state of the liquid crystal molecules 54a.
  • the linearly polarized light that has reached the first electrode 32 is reflected by the first electrode 32, follows a path opposite to that up to that point, becomes right-handed circularly polarized light by corriding the liquid crystal layer 54, and passes through the circularly polarizing plate 8. Therefore, also in this case, the display device 100 displays the color of the wavelength determined by the color conversion layer 6.
  • the display device 100 can display an arbitrary color image by controlling the potentials of the individual first electrodes 32.
  • FIG. 2 is a flowchart showing a manufacturing method of the display device 100 according to the present embodiment.
  • FIG. 3 is a flowchart showing the array substrate forming step (S1) shown in FIG.
  • FIG. 4 is a flowchart showing the facing substrate forming step (S2) shown in FIG.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a main part of the display device 100 before forming the alignment film.
  • an alignment film-less having an insulating substrate 1, a TFT layer 2, a light emitting element layer 3, an insulating layer 4, and a pixel electrode 52 as an array substrate.
  • the array substrate 10 is formed (S1, array substrate forming step).
  • the alignment film-less array substrate 10 refers to the array substrate 10 before the alignment film 53 is formed.
  • an alignment filmless facing substrate 70 having an insulating substrate 7, a color conversion layer 6, and a common electrode 56 is formed (S2, facing substrate forming step).
  • the facing substrate 70 without the alignment film refers to the facing substrate 70 before the alignment film 55 is formed.
  • the array substrate forming step (S1) includes a TFT layer forming step (S11), a light emitting element layer forming step (S12), an insulating layer forming step (S13), and a pixel electrode forming step (S14) shown in FIG. , Including.
  • the TFT layer 2 is formed on the insulating substrate 1 (S11).
  • a light emitting element layer 3 including a plurality of top emission type light emitting elements 31 is formed on the TFT layer 2 (S12).
  • a translucent insulating layer 4 that covers the light emitting element layer 3 is formed (S13).
  • a pixel electrode 52 is formed for each pixel P on the insulating layer 4 (S14).
  • the array substrate 10 having the insulating substrate 1, the TFT layer 2, the light emitting element layer 3, the insulating layer 4, and the pixel electrode 52 is formed.
  • the facing substrate forming step (S2) includes a color conversion layer forming step (S21) and a common electrode forming step (S22) shown in FIG.
  • the facing substrate forming step (S2) first, the color conversion layer 6 is formed on the insulating substrate 7 (S21).
  • the common electrode 56 is formed on the color conversion layer 6 (S22).
  • the facing substrate 70 having the insulating substrate 7, the color conversion layer 6, and the common electrode 56 is formed.
  • the array substrate 10 and the opposed substrate 70 are bonded together with a certain gap.
  • a liquid crystal aligning agent (monomer 57) containing a liquid crystal material (liquid crystal molecule 54a), a first monomer, and at least one of a second monomer and a third monomer in the gap.
  • a liquid crystal composition containing at least. That is, in the gap, a liquid crystal composition containing at least a liquid crystal material (liquid crystal molecule 54a), a first monomer, and at least one of the second monomer and the third monomer as the monomer 57 is contained. Encapsulate.
  • the liquid crystal layer 54 is formed in the gap between the array substrate 10 and the opposed substrate 70 (S3, liquid crystal layer forming step). As a result, a liquid crystal cell formed by sandwiching the liquid crystal layer 54 between the array substrate 10 and the opposed substrate 70 is formed.
  • the liquid crystal injection method may be used or the liquid crystal dropping method may be used to form the liquid crystal layer 54.
  • the liquid crystal injection method is used to form the liquid crystal layer 54, first, the array substrate 10 and the facing substrate 70 are bonded together with a sealant, leaving the liquid crystal injection port. Next, the liquid crystal composition is injected from the liquid crystal injection port, and then the liquid crystal injection port is closed.
  • the sealant may be formed on either the array substrate 10 or the opposing substrate 70.
  • liquid crystal dropping method When the liquid crystal dropping method is used to form the liquid crystal layer 54, first, a sealant is applied to the surface of either one of the array substrate 10 and the opposed substrate 70, and the liquid crystal composition is formed in the region surrounded by the sealant. Drop things. After that, the array substrate 10 and the opposed substrate 70 are bonded together with the sealant.
  • the content of the first monomer in the liquid crystal composition at this time (in other words, the content of the first monomer in the liquid crystal composition before forming the alignment film 53.55 in the alignment film forming step (S4)).
  • the amount is preferably 0.3 wt% or more and 5 wt% or less.
  • the content of the first monomer in the liquid crystal composition is less than 0.3 wt%, it may be difficult to obtain a state in which the liquid crystal molecules 54a are uniformly and stably vertically aligned in the liquid crystal layer 54.
  • the content of the first monomer in the liquid crystal composition is more than 5 wt%, the probability that the unreacted monomer 57 remains in the liquid crystal layer 54 increases, causing a decrease in reliability in the long term.
  • the alignment film forming step (S4) described later it takes time for the first monomer to be completely polymerized. As a result, the unreacted monomer 57 may remain, causing a decrease in the voltage retention rate due to the remaining unreacted material.
  • the total content of the second monomer and the third monomer in the liquid crystal composition before forming the alignment film 53.55 in the alignment film forming step (S4) is 0.01 wt% or more. It is preferably 0.3 wt% or less.
  • the second monomer or the third monomer is used in the alignment film forming step (S4) described later. It is difficult to exert the polymerization initiation function of the monomer of the above, and it may take time to complete the polymerization reaction.
  • the probability that the unreacted monomer 57 remains in the liquid crystal layer 54 increases. causes a loss of reliability in the long run. Further, in the alignment film forming step (S4) described later, when the alignment films 53 and 55 are formed, the polymerization rate is increased due to the generation of a large number of radicals, but the voltage retention rate due to the remaining unreacted material is increased. May cause a drop.
  • the content of the first monomer is preferably equal to or greater than the total content of the second monomer and the third monomer.
  • the weight ratio of the first monomer to the second monomer and the third monomer in the monomer 57 is preferably 50: 1 to 1: 1.
  • “the weight ratio of the first monomer to the second monomer and the third monomer” is "weight of the first monomer: total of the second monomer and the third monomer”. "Weight" is shown.
  • the liquid crystal composition may contain at least a first monomer and at least one of a second monomer and a third monomer. Therefore, the total weight of the second monomer and the third monomer includes the case where the weight of any one of the second monomer and the third monomer is 0 (zero).
  • the liquid crystal composition in addition to at least one of the liquid crystal material, the first monomer, the second monomer, and the third monomer, as the monomer 57, another monomer copolymerizable with these monomers is further added. It may be included. That is, when forming the alignment films 53 and 55, the first monomer, at least one of the second monomer and the third monomer, and other monomers other than these monomers are copolymerized. May be good. As a result, the copolymer constituting the alignment films 53 and 55 is added to the structural unit derived from the first monomer, the structural unit derived from at least one of the second monomer and the third monomer, and the structural unit. It may further contain structural units derived from the other monomers.
  • the array substrate 10 is in contact with the liquid crystal layer 54 to form the alignment film 53, while the facing substrate 70 is in contact with the liquid crystal layer 54 to form the alignment film 55 (S4, alignment film forming step). ).
  • the alignment films 53 and 55 are formed by copolymerizing at least the first monomer, the second monomer, and at least one of the third monomers to form a liquid crystal layer. It is a layer formed by phase separation from 54. At least one of the second monomer and the third monomer has a polymerization initiation function of absorbing near-ultraviolet to blue light to initiate polymerization. Therefore, by causing the light emitting element 31 to emit light, at least the copolymerization reaction between the first monomer and at least one of the second monomer and the third monomer is started.
  • the copolymer phase-separated from the liquid crystal layer 54 is deposited in a film shape on the contact surfaces of the array substrate 10 and the opposed substrate 70 with the liquid crystal layer 54. As a result, the alignment films 53 and 55 are formed.
  • the liquid crystal layer 54 contains the unreacted monomer 57 as shown in FIG.
  • the unreacted monomer 57 includes at least a first monomer and at least one of the second monomer and the third monomer.
  • the first monomer and at least one of the second monomer and the third monomer are 0.0001 wt% to 0.2 wt, respectively. Included in%.
  • 0.0001 wt% is a detection limit value
  • 0.2 wt% indicates a case where the light irradiation time is short.
  • the unreacted monomer 57 can be detected by gas chromatography, liquid chromatography or the like, respectively.
  • alkyl chains are deposited in a certain direction, and liquid crystal molecules 54a are oriented accordingly.
  • the alignment films 53 and 55 cause the liquid crystal molecules 54a in the liquid crystal material of the liquid crystal layer 54 to be applied to the surfaces of the array substrate 10 and the opposing substrate 70 by the action of the structural unit derived from the first monomer in the copolymer. Can be oriented vertically.
  • the sealing material is the array substrate 10 and the opposing substrate 70. It is possible to realize a contacting configuration. Therefore, since the adhesive strength between the sealing material and the array substrate 10 and the opposing substrate 70 is sufficiently ensured, even if the width of the sealing material is reduced in order to narrow the frame, the array substrate 10 and the opposing substrate 70 can be attached to each other. There is also an advantage that it is difficult to peel off between them.
  • a circularly polarizing plate 8 is formed on the outside of the facing substrate 70 constituting the liquid crystal cell (that is, the side of the facing substrate 70 opposite to the surface facing the array substrate 10) (S5, polarizing plate forming step). ). As a result, the display device 100 shown in FIG. 1 is completed.
  • the insulating substrate 1 is a resin film
  • a resin film (resin layer) is first formed on the supporting substrate (for example, a glass substrate such as mother glass) as the insulating substrate 1.
  • the TFT layer 2 is formed on the insulating substrate 1.
  • the insulating substrate 7 is a resin film
  • a resin film (resin layer) is formed as the insulating substrate 7 on the supporting substrate (for example, a glass substrate such as mother glass). After the formation, the color conversion layer 6 is formed on the insulating substrate 7.
  • the support substrate is provided on the surface of the array substrate 10 opposite to the opposing substrate 70.
  • the support substrate 7 is a resin film
  • the support substrate is provided on the surface of the facing substrate 70 opposite to the array substrate 10. Therefore, in the polarizing plate forming step (S5), when the support substrate is provided on the surface of the opposed substrate 70 opposite to the array substrate 10, at least the support substrate provided on the opposed substrate 70 is peeled off and then the support substrate is peeled off.
  • the circular polarizing plate 8 is formed.
  • a polyimide layer was formed as a resin film to be an insulating substrate (flexible substrate) on a glass substrate as a support substrate.
  • a TFT layer on the polyimide layer, a blue OLED layer provided with a plurality of blue OLEDs as light emitting elements, an insulating layer, and an ITO electrode as a pixel electrode were formed in this order.
  • an alignment film-less array substrate was produced as the array substrate.
  • a polyimide layer was formed as a resin film to be an insulating substrate (flexible substrate) on a glass substrate as a support substrate, and a color conversion layer and an ITO electrode as a common electrode were formed on the polyimide layer in this order.
  • a facing substrate without an alignment film was produced as a facing substrate.
  • a red color conversion layer 6R was formed corresponding to the pixel RP, and a green color conversion layer 6G was formed corresponding to the pixel GP.
  • a blue color filter was formed on the remaining portion of the color conversion layer 6 corresponding to the pixel BP.
  • the liquid crystal composition the liquid crystal material, the first monomer, the vertically oriented monomer represented by the structural formula (1-1), and the anthracene-based monomer represented by the structural formula (2-1) (polymerization).
  • a mixture with the initiator) was prepared.
  • the content of the vertically oriented monomer in the liquid crystal composition is 2 wt%
  • the content of the anthracene-based monomer in the liquid crystal composition is 0.1 wt%. It was mixed so as to be.
  • liquid crystal composition was vacuum-injected into the gap, and the liquid crystal composition was sealed between the array substrate and the facing substrate to form a liquid crystal layer.
  • the blue OLED was lit at room temperature (25 ° C.) for 10 minutes to perform photopolymerization, and an alignment film was formed on each of the contact surfaces of the array substrate and the facing substrate with the liquid crystal layer.
  • the glass substrate on the outside of the liquid crystal cell composed of the array substrate, the liquid crystal layer, and the opposed substrate was peeled off by laser peeling the glass substrate from the array substrate and the opposed substrate, respectively.
  • the display device according to this embodiment was produced by laminating a circularly polarizing plate on the polyimide layer on the opposite substrate side in the liquid crystal cell from which the glass substrate was peeled off.
  • FIG. 6 shows the emission spectrum of the blue OLED used in this example. Note that FIG. 6 shows an emission spectrum when standardized with the maximum intensity set to 1.
  • FIG. 7 shows the absorption spectrum of the anthracene-based monomer used in this example.
  • liquid crystal element and the OLED obtained in this manner have high brightness when displayed by the OLED and high contrast when displayed by the liquid crystal element, so that long-term reliability is improved and the appearance when displayed by the liquid crystal element is improved. Turned out to be better.
  • Example 2 in this embodiment, the liquid crystal material, the first monomer, the vertically oriented monomer represented by the structural formula (1-1), and the benzyl system represented by the structural formula (3-1) are used. A mixture with a monomer (polymerization initiator) was prepared. At this time, the liquid crystal material and each of the monomers have a content of the vertically oriented monomer of 1.2 wt% in the liquid crystal composition, and the content of the benzyl-based monomer in the liquid crystal composition is 0. It was mixed so as to be 1 wt%.
  • Example 1 Except that, in Example 1, a liquid crystal layer is formed by bonding the array substrate and the opposing substrate with a sealant with a certain gap and then enclosing the liquid crystal composition in the gap. , A display device according to this example was produced in the same manner as in Example 1.
  • FIG. 9 shows the absorption spectrum of the benzyl-based monomer used in this example.
  • the emission spectrum of the blue OLED used in this example is the same as the emission spectrum of the blue OLED shown in FIG. 7 used in Example 1.
  • the absorption spectrum of the vertically oriented monomer used in this example is the same as the absorption spectrum of the vertically oriented monomer shown in FIG. 8 used in Example 1.
  • the liquid crystal cell obtained in this example before peeling the glass substrate is sandwiched between the cross Nicol polarizers whose transmission axis directions are orthogonal to each other, and the light transmitting state of the liquid crystal cell is sandwiched.
  • the orientation state of the liquid crystal molecules in the liquid crystal layer was confirmed by observing.
  • the light transmission states of the liquid crystal cells before and after lighting of the blue OLED (in other words, before and after the formation of the alignment film) observed in this manner when no voltage is applied are shown side by side in FIG.
  • the vertically-aligned monomer and the benzyl-based monomer can be copolymerized with the blue light of the blue OLED to form a vertically oriented film. I was able to do it.
  • liquid crystal element and the OLED obtained in this manner have high brightness when displayed by the OLED and high contrast when displayed by the liquid crystal element, so that long-term reliability is improved and the appearance when displayed by the liquid crystal element is improved. Turned out to be better.
  • the content of the vertically oriented monomer in the liquid crystal composition is 2 wt%
  • the content of the biphenyl-based monomer in the liquid crystal composition is 0.1 wt%. It was mixed so as to be.
  • the biphenyl-based monomer is an ultraviolet-polymerizable monomer used in PSA (Polymer Sustained Alignment) technology.
  • PSA Polymer Sustained Alignment
  • a liquid crystal material containing a photopolymerizable monomer is sealed in a liquid crystal panel, and a voltage is applied to the liquid crystal layer, and an active energy ray such as ultraviolet rays is irradiated to obtain the photopolymerizable monomer. It is a technique to polymerize.
  • Example 1 Except that, in Example 1, a liquid crystal layer is formed by bonding the array substrate and the opposing substrate with a sealant with a certain gap and then enclosing the liquid crystal composition in the gap. , A display device according to this comparative example was produced in the same manner as in Example 1.
  • the liquid crystal cell obtained in this comparative example before peeling the glass substrate is sandwiched between the cross Nicol polarizers whose transmission axis directions are orthogonal to each other, and the light transmitting state of the liquid crystal cell is sandwiched.
  • the orientation state of the liquid crystal molecules in the liquid crystal layer was confirmed by observing.
  • the light transmission states of the liquid crystal cells before and after lighting of the blue OLED (in other words, before and after the formation of the alignment film) observed in this manner when no voltage is applied are shown side by side in FIG.
  • liquid crystal material and the vertically oriented monomer were mixed so that the content of the vertically oriented monomer in the liquid crystal composition was 2 wt%.
  • Example 1 Except that, in Example 1, a liquid crystal layer is formed by bonding the array substrate and the opposing substrate with a sealant with a certain gap and then enclosing the liquid crystal composition in the gap. , A display device according to this comparative example was produced in the same manner as in Example 1.
  • the liquid crystal cell obtained in this comparative example before peeling the glass substrate is sandwiched between the cross Nicol polarizers whose transmission axis directions are orthogonal to each other, and the light transmitting state of the liquid crystal cell is sandwiched.
  • the orientation state of the liquid crystal molecules in the liquid crystal layer was confirmed by observing.
  • the light transmission states of the liquid crystal cells before and after lighting of the blue OLED (in other words, before and after the formation of the alignment film) observed in this manner when no voltage is applied are shown side by side in FIG.
  • Example 3 First, in the same manner as in Example 1, the polyimide layer, the TFT layer, the blue OLED layer, the insulating layer, and the ITO electrode are formed on the glass substrate in this order, so that the array substrate is oriented in the same manner as in Example 1. A filmless array substrate was produced. Then, in order to form an alignment film, a polyamic acid solvent was spin-coated on the surface of the array substrate on the ITO electrode forming side, and the surface was heated and fired at 230 ° C. for 60 minutes. As a result, an alignment film was formed on the surface of the array substrate.
  • an alignment film-less facing substrate similar to that in Example 1 can be formed as the facing substrate.
  • a polyamic acid solvent was spin-coated on the surface of the facing substrate on the ITO electrode forming side, and the surface was heated and fired at 230 ° C. for 60 minutes. As a result, an alignment film was formed on the surface of the facing substrate.
  • a sealant is applied to the surface of the array substrate on the alignment film forming side, a liquid crystal material is dropped into the region surrounded by the sealant, and then the opposing substrates are bonded to each other to form a vertically oriented liquid crystal. A layer was formed.
  • the outer glass substrate of the liquid crystal cell composed of the array substrate, the liquid crystal layer, and the opposing substrate was peeled by laser.
  • the liquid crystal molecules 54a can be vertically aligned without high-temperature firing and without irradiating light from the array substrate 10 side or the opposing substrate 70 side.
  • the films 53 and 55 can be formed.
  • the display device 100 it is possible to manufacture the display device 100 that displays the liquid crystal element 51 by the vertical alignment method (for example, the VA method).
  • the light emitting element 31 is an OLED
  • the light emitting element 31 may be a QLED (quantum dot light emitting diode) using quantum dots (QD) as a light emitting material.
  • QLED quantum dot light emitting diode
  • QD quantum dots
  • the light emitting element 31 is a QLED
  • a QD light emitting layer containing a QD made of semiconductor nanoparticles is used as the light emitting layer.
  • an inorganic layer is preferably used as the layer other than the light emitting layer in the functional layer 33.
  • the light emitting element 31 is an OLED
  • holes and electrons are recombined in the light emitting layer by the driving current between the first electrode 32 and the second electrode 34, and the excitons generated thereby transition to the basal state. Light is emitted in the process.
  • the light emitting element 31 is a QLED
  • holes and electrons are recombined in the light emitting layer by the driving current between the first electrode 32 and the second electrode 34, and the excitons generated by this are the QD.
  • Light is emitted in the process of transitioning from the conduction band level to the valence band level.
  • a light emitting element other than the OLED and the QLED for example, an inorganic light emitting diode or the like may be formed.
  • the case where the color conversion layer 6 is provided on the array substrate 10 side of the opposed substrate 70 has been described as an example, but the present embodiment is not limited to this.
  • the color conversion layer 6 may be provided, for example, directly above the light emitting element layer 3 on the array substrate 10.
  • the insulating layer 4 is an inorganic layer, it is difficult to form a uniform color conversion layer 6 due to the influence of unevenness due to the formation of the light emitting element 31, which causes display unevenness. Therefore, in this case, it is desirable that the insulating layer 4 is a flattening layer.
  • the color conversion layer 6 can also be provided on the side of the facing substrate 70 opposite to the array substrate 10 (in other words, the side of the insulating substrate 7 opposite to the surface facing the insulating substrate 1).
  • the thickness of the insulating substrate 7 is usually 0.1 mm or more, and the distance from the light emitting layer of the light emitting element 31 to the color conversion layer 6 becomes long. Therefore, the color viewing angle characteristic is deteriorated. Therefore, it is desirable that the color conversion layer 6 is provided on the array substrate 10 side of the opposed substrate 70.
  • a circularly polarizing plate 8 is provided on the outside of the opposing substrate 70 as a polarizing plate has been described as an example.
  • the present embodiment is not limited to this, and a linear polarizing plate may be provided with the liquid crystal element layer 5 interposed therebetween.
  • the light emitting element 31 needs to be always on.
  • the display device 100 includes a reflective liquid crystal element as the liquid crystal element 51 has been described as an example.
  • the present embodiment is not limited to this, and the display device 100 according to the present embodiment may include alignment films 53 and 55 using the liquid crystal alignment agent. Therefore, the display device 100 according to the present embodiment may be a display device having a light emitting element 31 as a backlight, or may include a transmissive liquid crystal element as the liquid crystal element 51.
  • liquid crystal element 51 is, for example, a liquid crystal element that displays by the VA method has been described as an example.
  • the liquid crystal element 51 has a higher contrast in the vertical orientation than in the horizontal orientation, and there is less discomfort with the light emitting element 31 such as an OLED which originally has a high contrast. As described above, since the light emitting element 31 emits only blue light, there is no need to divide the color pixels in the light emitting element 31, and a large area in the pixel P can be used as the light emitting element 31.
  • the liquid crystal element 51 may be, for example, a liquid crystal element that displays by an IPS (inplane switching) method.
  • the liquid crystal molecules 54a are rotated in parallel to the array substrate 10 and the facing substrate 70 by a transverse electric field in the in-plane direction.
  • the liquid crystal alignment agent can be suitably used as an alignment film material even when the liquid crystal element 51 is oriented by a transverse electric field in this way.
  • the liquid crystal material a liquid crystal material in which the liquid crystal molecules 54a have positive dielectric anisotropy is used.
  • the light emitting element layer 3 may further include, as the light emitting element 31, a red light emitting element that emits red light and a green light emitting element that emits green light, in addition to the above light emitting element.
  • the alignment films 53 and 55 are polymerization orientation layers that polymerize with near-ultraviolet to blue light.
  • the alignment films 53 and 55 are difficult to polymerize with the light emitted from the red light emitting element and the green light emitting element. Therefore, it is desirable that the entire light emitting area of the light emitting element layer 3 emits near-ultraviolet to blue light, and it is desirable that the entire liquid crystal layer 54 is uniformly irradiated with blue light.
  • the monomer 57 in the liquid crystal layer 54 is uniformly polymerized when the alignment films 53 and 55 are formed. It can be carried out.
  • Insulated substrate first insulated substrate
  • TFT layer thin film transistor layer
  • Light emitting element layer 3
  • Insulation layer 4
  • Insulation layer 5
  • Liquid crystal element layer 6R, 6G, 6B color conversion layer
  • Insulation substrate second insulation substrate
  • 8-circular polarizing plate 10
  • Array substrate 31
  • Light emitting element 32
  • First electrode 33
  • Functional layer 33
  • Second electrode 51
  • Liquid crystal element 52
  • Pixel electrode 54 Liquid crystal layer
  • Alignment film first alignment film
  • Alignment film second alignment film
  • Common electrode 57
  • Monomer 70 Opposing substrate 100 Display device

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The liquid crystal alignment film (53 · 55) comprises a copolymer of a prescribed vertical alignment monomer and monomer that is a prescribed anthracene-type monomer and/or a prescribed benzil-type monomer.

Description

配向膜、表示装置、表示装置の製造方法、液晶配向剤、および液晶組成物Alignment film, display device, manufacturing method of display device, liquid crystal alignment agent, and liquid crystal composition
 本開示は、配向膜、表示装置、表示装置の製造方法、液晶配向剤、および液晶組成物に関する。 The present disclosure relates to an alignment film, a display device, a method for manufacturing a display device, a liquid crystal alignment agent, and a liquid crystal composition.
 反射型液晶表示装置は、周囲環境が暗いと、表示が見難い。一方、OLED(有機発光ダイオード)等の自発光素子を用いた表示装置は、高輝度である反面、周辺輝度の高い環境(明るい環境)では、視認性が低下する。 The display of the reflective liquid crystal display device is difficult to see when the surrounding environment is dark. On the other hand, a display device using a self-luminous element such as an OLED (organic light emitting diode) has high brightness, but its visibility is deteriorated in an environment with high peripheral brightness (bright environment).
 そこで、このような課題に対する解決策として、反射型液晶表示装置と、自発光素子である例えばOLEDとを組み合わせた表示装置の開発が行われている。 Therefore, as a solution to such a problem, a display device that combines a reflective liquid crystal display device and a self-luminous element such as an OLED is being developed.
日本国特許登録公報「特許第6437697号公報」Japanese Patent Registration Gazette "Patent No. 6437697 Gazette"
 しかしながら、液晶表示装置では、液晶を配向させるための配向膜を成膜する必要がある。配向膜の成膜方法としては、配向剤として、ポリアミック酸等のポリマー溶液を塗布後、溶媒を取り除くために200℃以上の高温で焼成する方法が一般的である。しかしながら、このような高温焼成は、熱により発光輝度が低下する等のダメージを自発光素子に与える。また、支持体として、ポリイミド、ポリカーボネート等からなるフレキシブル基板を用いる場合、高温焼成を行うと、反射型液晶表示装置の表示時にコントラストが出なくなるおそれもある。これは、ポリイミド、ポリカーボネート等が僅かに持つリタデーション値が、高温焼成により変化するためである。 However, in the liquid crystal display device, it is necessary to form an alignment film for aligning the liquid crystal. As a method for forming an alignment film, a method of applying a polymer solution such as polyamic acid as an alignment agent and then firing at a high temperature of 200 ° C. or higher to remove the solvent is common. However, such high-temperature firing causes damage such as a decrease in emission brightness due to heat to the self-luminous element. Further, when a flexible substrate made of polyimide, polycarbonate or the like is used as the support, if high-temperature firing is performed, there is a possibility that contrast will not be obtained when the reflective liquid crystal display device is displayed. This is because the retardation value slightly possessed by polyimide, polycarbonate, etc. changes due to high-temperature firing.
 なお、配向膜を形成する方法として、高温焼成を必要としない、PSA(Polymer Sustained Alignment)技術と称される方法も知られている。PSA技術とは、光重合性モノマーを含む液晶材料を、液晶セルを構成する一対の基板間に封入し、液晶層に電圧を印加した状態で、紫外線等の活性エネルギー線を照射して上記光重合性モノマーを重合させる技術である。 As a method for forming an alignment film, a method called PSA (Polymer Sustained Alignment) technology, which does not require high-temperature firing, is also known. In PSA technology, a liquid crystal material containing a photopolymerizable monomer is sealed between a pair of substrates constituting a liquid crystal cell, and a voltage is applied to the liquid crystal layer, and an active energy ray such as ultraviolet rays is irradiated to the above light. This is a technique for polymerizing a polymerizable monomer.
 しかしながら、反射型液晶表示装置は、一方の基板に反射板(例えばOLED等の自発光素子)を含み、他方の基板にカラーフィルタ等の色変換層を導入することで、カラー表示を行う。OLED等の自発光素子が設けられたアレイ基板(アクティブ基板)には、薄膜トランジスタ、配線等の形成に金属を用いていることから、アレイ基板側から紫外線照射を行うことはできない。また、色変換層が設けられた基板側からも紫外線照射を行うことはできない。このため、液晶セルの外側から紫外光を照射することにより配向膜を形成することは不可能である。 However, the reflective liquid crystal display device performs color display by including a reflecting plate (for example, a self-luminous element such as an OLED) on one substrate and introducing a color conversion layer such as a color filter on the other substrate. Since metal is used for forming thin film transistors, wiring, and the like on an array substrate (active substrate) provided with a self-luminous element such as an OLED, it is not possible to irradiate ultraviolet rays from the array substrate side. Further, it is not possible to irradiate ultraviolet rays from the substrate side provided with the color conversion layer. Therefore, it is impossible to form an alignment film by irradiating ultraviolet light from the outside of the liquid crystal cell.
 したがって、高温焼成を行わずに配向膜を形成するには、液晶セル内部において、可視光~近紫外光を照射することで、液晶層中に導入したモノマーを重合させるしかない。 Therefore, in order to form an alignment film without high-temperature firing, there is no choice but to polymerize the monomer introduced into the liquid crystal layer by irradiating the inside of the liquid crystal cell with visible light to near-ultraviolet light.
 しかしながら、従来、可視光~近紫外光の照射で垂直配向させることのできるモノマー、あるいは、複数のモノマーの組み合わせは、知られていない。本願発明者らが鋭意検討したところ、可視光で重合できる材料はあっても、その材料では、液晶分子を配向させられなかった。 However, conventionally, a monomer that can be vertically oriented by irradiation with visible light to near-ultraviolet light, or a combination of a plurality of monomers is not known. As a result of diligent studies by the inventors of the present application, although there was a material that could be polymerized with visible light, the liquid crystal molecules could not be oriented with that material.
 本開示の一態様は、上記問題点に鑑みてなされたものであり、高温焼成を行わずに形成することができる配向膜および表示装置、該表示装置の製造方法、並びに、上記配向膜および表示装置の製造に用いられる液晶配向剤および液晶組成物を提供することを目的とする。 One aspect of the present disclosure is made in view of the above problems, and an alignment film and a display device that can be formed without high-temperature firing, a method for manufacturing the display device, and the alignment film and display. It is an object of the present invention to provide a liquid crystal alignment agent and a liquid crystal composition used in the manufacture of an apparatus.
 本願発明者らは、上記課題を解決すべく鋭意検討した結果、近紫外光~可視光で共重合可能であり、かつ、共重合により液晶分子を配向させることができるモノマーの組み合わせを見出して本発明を完成させるに至った。 As a result of diligent studies to solve the above problems, the inventors of the present application have found a combination of monomers that can be copolymerized with near-ultraviolet light to visible light and that can orient liquid crystal molecules by copolymerization. The invention was completed.
 上記の課題を解決するために、本開示の一態様に係る配向膜は、液晶を配向させる配向膜であって、上記配向膜は、少なくとも、下記一般式(1)で示される第1のモノマーと、下記一般式(2)で示される第2のモノマーおよび下記一般式(3)で示される第3のモノマーのうち少なくとも一方のモノマーとの共重合体を含む。 In order to solve the above problems, the alignment film according to one aspect of the present disclosure is an alignment film that orients a liquid crystal, and the alignment film is at least a first monomer represented by the following general formula (1). And a copolymer with at least one of the second monomer represented by the following general formula (2) and the third monomer represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000012
 上記一般式(1)中、XおよびXは、それぞれ独立して、-H、-CH、または-Cを表し、Zは、-O-、-S-、-NH-、-CO-、-COO-、-OCO-、または直接結合を表し、YおよびYは、それぞれ独立して、-H、-F、-Cl、-Br、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基、または、炭素数1~6の直鎖状、分岐状もしくは環状のアルキルオキシを表し、mは、6~16の整数を表し、nは、8~24の整数を表す。
Figure JPOXMLDOC01-appb-C000012
In the above general formula (1), X 1 and X 2 independently represent -H, -CH 3 , or -C 2 H 5 , and Z is -O-, -S-, and -NH-. , -CO -, - COO -, - OCO-, or a direct bond, Y 1 and Y 2 are each independently, -H, -F, -Cl, -Br, straight having 1 to 6 carbon atoms It represents a chain, branched or cyclic alkyl group, or a linear, branched or cyclic alkyloxy having 1 to 6 carbon atoms, m represents an integer of 6 to 16, and n represents 8 to 24. Represents an integer of.
Figure JPOXMLDOC01-appb-C000013
 上記一般式(2)中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表す。
Figure JPOXMLDOC01-appb-C000013
In the above general formula (2), R 1 and R 2 independently represent a hydrogen atom or a methyl group, respectively.
Figure JPOXMLDOC01-appb-C000014
 上記一般式(3)中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表す。
Figure JPOXMLDOC01-appb-C000014
In the above general formula (3), R 3 and R 4 independently represent a hydrogen atom or a methyl group, respectively.
 上記の課題を解決するために、本開示の一態様に係る表示装置は、第1の絶縁基板と、第2の絶縁基板との間に、複数の薄膜トランジスタを備える薄膜トランジスタ層と、複数の発光素子を備える発光素子層と、第1の配向膜と、液晶層と、第2の配向膜とを、上記第1の絶縁基板側からこの順に備え、上記第1の配向膜および上記第2の配向膜のうち、少なくとも一方が、本開示の一態様に係る上記配向膜である。 In order to solve the above problems, the display device according to one aspect of the present disclosure includes a thin film transistor layer including a plurality of thin film transistors between the first insulating substrate and the second insulating substrate, and a plurality of light emitting elements. The light emitting element layer, the first alignment film, the liquid crystal layer, and the second alignment film are provided in this order from the first insulating substrate side, and the first alignment film and the second alignment film are provided in this order. At least one of the films is the alignment film according to one aspect of the present disclosure.
 上記の課題を解決するために、本開示の一態様に係る表示装置の製造方法は、本開示の一態様に係る上記表示装置の製造方法であって、上記第1の絶縁基板と、上記薄膜トランジスタ層と、上記発光素子層とを有するアレイ基板を形成する工程と、上記第2の絶縁基板を有する対向基板を形成する工程と、上記アレイ基板と上記対向基板との間に、液晶材料と、上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーと、を少なくとも含む液晶組成物を封入して液晶層を形成する工程と、上記発光素子を発光させることによって、少なくとも、上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーと、を共重合させて、上記アレイ基板に、上記液晶層に接して、上記第1の配向膜を形成する一方、上記対向基板に、上記液晶層に接して、上記第1の配向膜を形成する工程と、を含む。 In order to solve the above-mentioned problems, the method for manufacturing the display device according to one aspect of the present disclosure is the method for manufacturing the above-mentioned display device according to one aspect of the present disclosure, wherein the first insulating substrate and the thin film transistor are used. Between the step of forming the array substrate having the layer and the light emitting element layer, the step of forming the opposed substrate having the second insulating substrate, and the liquid crystal material between the array substrate and the opposed substrate, A step of forming a liquid crystal layer by encapsulating a liquid crystal composition containing at least the first monomer, the second monomer, and at least one of the third monomers, and causing the light emitting element to emit light. Thereby, at least the first monomer, the second monomer, and at least one of the third monomers are copolymerized, and the array substrate is brought into contact with the liquid crystal layer to obtain the above. While forming the first alignment film, the facing substrate includes a step of contacting the liquid crystal layer to form the first alignment film.
 上記の課題を解決するために、本開示の一態様に係る液晶配向剤は、上記一般式(1)で示される第1のモノマーと、上記一般式(2)で示される第2のモノマーおよび上記一般式(3)で示される第3のモノマーのうち少なくとも一方のモノマーと、を含む。 In order to solve the above problems, the liquid crystal alignment agent according to one aspect of the present disclosure includes a first monomer represented by the general formula (1), a second monomer represented by the general formula (2), and a second monomer represented by the general formula (2). It contains at least one of the third monomers represented by the general formula (3).
 上記の課題を解決するために、本開示の一態様に係る液晶組成物は、本開示の一態様に係る上記液晶配向剤と、液晶材料と、を含む。 In order to solve the above problems, the liquid crystal composition according to one aspect of the present disclosure includes the above liquid crystal alignment agent according to one aspect of the present disclosure and a liquid crystal material.
 上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーとは、近紫外光~可視光で共重合可能であり、かつ、共重合により液晶分子を配向させることができる。したがって、本開示の一態様によれば、高温焼成を行わずに形成することができる配向膜および表示装置、該表示装置の製造方法、並びに、上記配向膜および表示装置の製造に用いられる液晶配向剤および液晶組成物を提供することができる。 The first monomer and at least one of the second monomer and the third monomer can be copolymerized with near-ultraviolet light to visible light, and the liquid crystal molecules are oriented by the copolymerization. be able to. Therefore, according to one aspect of the present disclosure, an alignment film and a display device that can be formed without high-temperature firing, a method for manufacturing the display device, and a liquid crystal alignment used for manufacturing the alignment film and the display device. Agents and liquid crystal compositions can be provided.
一実施形態に係る表示装置の要部の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the main part of the display device which concerns on one Embodiment. 一実施形態に係る表示装置の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the display device which concerns on one Embodiment. 図2に示すアレイ基板形成工程を示すフローチャートである。It is a flowchart which shows the array substrate forming process shown in FIG. 図2に示す対向基板形成工程を示すフローチャートである。It is a flowchart which shows the facing substrate forming process shown in FIG. 一実施形態に係る表示装置の配向膜形成前の要部の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the main part before forming the alignment film of the display device which concerns on one Embodiment. 実施例1で用いた青色OLEDの発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of the blue OLED used in Example 1. 実施例1で用いたアントラセン系モノマーの吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of the anthracene-based monomer used in Example 1. 実施例1で得られた液晶セルの青色OLEDの点灯前後における、電圧無印加時の液晶セルの光透過状態を並べて示す図である。It is a figure which shows side by side the light transmission state of the liquid crystal cell at the time of no voltage application before and after lighting of the blue OLED of the liquid crystal cell obtained in Example 1. 実施例2で用いたベンジル系モノマーの吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of the benzyl-based monomer used in Example 2. 実施例2で得られた液晶セルの青色OLEDの点灯前後における、電圧無印加時の液晶セルの光透過状態を並べて示す図である。It is a figure which shows side by side the light transmission state of the liquid crystal cell at the time of no voltage application before and after lighting of the blue OLED of the liquid crystal cell obtained in Example 2. 比較例1で得られた液晶セルの青色OLEDの点灯前後における、電圧無印加時の液晶セルの光透過状態を並べて示す図である。It is a figure which shows side by side the light transmission state of the liquid crystal cell at the time of no voltage application before and after lighting of the blue OLED of the liquid crystal cell obtained in Comparative Example 1. 比較例2で得られた液晶セルの青色OLEDの点灯前後における、電圧無印加時の液晶セルの光透過状態を並べて示す図である。It is a figure which shows side by side the light transmission state of the liquid crystal cell at the time of no voltage application before and after lighting of the blue OLED of the liquid crystal cell obtained in the comparative example 2.
 本開示の一実施形態について、図1~図12を参照して説明すれば、以下の通りである。 An embodiment of the present disclosure will be described with reference to FIGS. 1 to 12.
 <表示装置の概略構成>
 図1は、本実施形態に係る表示装置100の要部の概略構成を示す断面図である。なお、図1では、液晶分子54aの配向状態として、電圧無印加時の配向状態を示している。
<Outline configuration of display device>
FIG. 1 is a cross-sectional view showing a schematic configuration of a main part of the display device 100 according to the present embodiment. Note that FIG. 1 shows the orientation state of the liquid crystal molecules 54a when no voltage is applied.
 図1に示すように、表示装置100は、アレイ基板10と、対向基板70と、これらアレイ基板10と対向基板70との間に挟持された液晶層54と、対向基板70におけるアレイ基板10とは反対側に設けられた円偏光板8と、を備えている。 As shown in FIG. 1, the display device 100 includes an array substrate 10, an opposing substrate 70, a liquid crystal layer 54 sandwiched between the array substrate 10 and the opposing substrate 70, and an array substrate 10 on the opposing substrate 70. Is provided with a circular polarizing plate 8 provided on the opposite side.
 アレイ基板10は、画素P毎に、発光素子31および画素電極52がそれぞれ形成された電極基板(素子基板)である。アレイ基板10は、絶縁基板1(第1の絶縁基板)上に、薄膜トランジスタ層(以下、「TFT層」と記す)2、発光素子層3、絶縁層4、複数の画素電極52、配向膜53(第1の配向膜)が、この順に積層された構成を有している。発光素子層3には、複数の発光素子31が設けられている。 The array substrate 10 is an electrode substrate (element substrate) in which a light emitting element 31 and a pixel electrode 52 are formed for each pixel P. The array substrate 10 has a thin film transistor layer (hereinafter referred to as “TFT layer”) 2, a light emitting element layer 3, an insulating layer 4, a plurality of pixel electrodes 52, and an alignment film 53 on an insulating substrate 1 (first insulating substrate). (First alignment film) has a structure in which they are laminated in this order. The light emitting element layer 3 is provided with a plurality of light emitting elements 31.
 一方、対向基板70は、液晶層54を挟んで画素電極52に対向する対向電極として、全画素Pに共通な共通電極56を有する電極基板である。対向基板70は、絶縁基板7(第2の絶縁基板)上に、色変換層6、共通電極56、配向膜55(第2の配向膜)が、この順に積層された構成を有している。 On the other hand, the counter substrate 70 is an electrode substrate having a common electrode 56 common to all pixels P as a counter electrode facing the pixel electrode 52 with the liquid crystal layer 54 interposed therebetween. The facing substrate 70 has a configuration in which a color conversion layer 6, a common electrode 56, and an alignment film 55 (second alignment film) are laminated in this order on an insulating substrate 7 (second insulating substrate). ..
 アレイ基板10と対向基板70とは、一対の絶縁基板1・7間に液晶素子51が形成されるように、これらアレイ基板10と対向基板70とに形成された上記各層の形成面を内側にして、互いに対向配置されている。アレイ基板10と対向基板70とは、一定の間隙をあけて、図示しないシール剤によって、それぞれの外周部において接着されている。 The array substrate 10 and the opposing substrate 70 have the forming surfaces of the layers formed on the array substrate 10 and the opposing substrate 70 inside so that the liquid crystal element 51 is formed between the pair of insulating substrates 1 and 7. They are arranged so as to face each other. The array substrate 10 and the facing substrate 70 are adhered to each other at their outer peripheral portions with a sealant (not shown) with a certain gap.
 液晶素子51は、画素電極52、配向膜53、液晶層54、配向膜55、および共通電極56で構成されている。これら画素電極52、配向膜53、液晶層54、配向膜55、および共通電極56が設けられた層が液晶素子層5である。液晶素子層5には、複数の液晶素子51が設けられている。 The liquid crystal element 51 is composed of a pixel electrode 52, an alignment film 53, a liquid crystal layer 54, an alignment film 55, and a common electrode 56. The layer provided with the pixel electrode 52, the alignment film 53, the liquid crystal layer 54, the alignment film 55, and the common electrode 56 is the liquid crystal element layer 5. A plurality of liquid crystal elements 51 are provided on the liquid crystal element layer 5.
 したがって、表示装置100は、一対の絶縁基板1・7間に、TFT層2、発光素子層3、絶縁層4、液晶素子層5、および色変換層6が挟持され、絶縁基板7における絶縁基板1とは反対側の面に円偏光板8が設けられた構成を有していると言うこともできる。 Therefore, in the display device 100, the TFT layer 2, the light emitting element layer 3, the insulating layer 4, the liquid crystal element layer 5, and the color conversion layer 6 are sandwiched between the pair of insulating substrates 1 and 7, and the insulating substrate in the insulating substrate 7 is sandwiched. It can also be said that it has a configuration in which the circular polarizing plate 8 is provided on the surface opposite to 1.
 絶縁基板1・7は、絶縁性を有する支持体(ベース基板)である。絶縁基板1・7のうち、少なくとも光取り出し側の絶縁基板7には、透明な絶縁基板が用いられる。絶縁基板1・7は、例えば、ガラス基板であってもよいが、プラスチック基板、樹脂フィルム等のフレキシブル基板であることが好ましい。これらフレキシブル基板の材料(つまり、上記プラスチック基板の材料あるいは上記樹脂フィルムの材料)としては、例えば、ポリイミドまたはポリカーボネートが挙げられる。特に、絶縁基板1・7に、樹脂フィルムを用いることで、薄膜化が可能であり、表示装置100として、折り畳み可能な表示装置を得ることができる。 Insulating substrates 1 and 7 are supports (base substrates) having insulating properties. Of the insulating substrates 1 and 7, a transparent insulating substrate is used for at least the insulating substrate 7 on the light extraction side. The insulating substrates 1 and 7 may be, for example, glass substrates, but are preferably flexible substrates such as plastic substrates and resin films. Examples of the material of these flexible substrates (that is, the material of the plastic substrate or the material of the resin film) include polyimide and polycarbonate. In particular, by using a resin film for the insulating substrates 1 and 7, a thin film can be formed, and a foldable display device can be obtained as the display device 100.
 表示装置100には、複数の画素Pが、例えばマトリクス状に設けられている。TFT層2は、発光素子層3における各発光素子31を制御する発光素子用画素回路と、液晶素子層5における液晶素子51を画素P毎に制御する液晶素子用画素回路と、これら発光素子用画素回路および液晶素子用画素回路を覆う平坦化膜23と、を備えている。 The display device 100 is provided with a plurality of pixels P, for example, in a matrix. The TFT layer 2 includes a light emitting element pixel circuit that controls each light emitting element 31 in the light emitting element layer 3, a liquid crystal element pixel circuit that controls the liquid crystal element 51 in the liquid crystal element layer 5 for each pixel P, and these light emitting elements. A flattening film 23 that covers the pixel circuit and the pixel circuit for the liquid crystal element is provided.
 発光素子用画素回路は、各発光素子31を駆動する、複数の第1薄膜トランジスタ(以下、「第1TFT」と記す)21を含んでいる。液晶素子用画素回路は、液晶素子51を画素P毎に駆動する、複数の第2薄膜トランジスタ(以下、「第2TFT」と記す)22を含んでいる。また、TFT層2には、これら第1TFT21および第2TFT22に電気的に接続された、図示しない複数のバスラインが設けられている。これら複数のバスラインは、複数のゲートバスラインおよび複数のソースバスラインを含んでいる。 The pixel circuit for a light emitting element includes a plurality of first thin film transistors (hereinafter, referred to as "first TFT") 21 for driving each light emitting element 31. The pixel circuit for a liquid crystal element includes a plurality of second thin film transistors (hereinafter, referred to as “second TFTs”) 22 that drive the liquid crystal element 51 for each pixel P. Further, the TFT layer 2 is provided with a plurality of bus lines (not shown) electrically connected to the first TFT 21 and the second TFT 22. These plurality of bus lines include a plurality of gate bus lines and a plurality of source bus lines.
 ゲートバスラインは、表示領域における行方向に複数設けられている。ソースバスラインは、各ゲートバスラインと交差するように、表示領域における列方向に複数設けられている。これらゲートバスラインとソースバスラインとで囲まれた各領域が画素Pである。第1TFT21および第2TFT22は、それぞれ、画素P毎に設けられている。 Multiple gate bus lines are provided in the row direction in the display area. A plurality of source bus lines are provided in the column direction in the display area so as to intersect each gate bus line. Each region surrounded by these gate bus lines and source bus lines is a pixel P. The first TFT 21 and the second TFT 22 are provided for each pixel P, respectively.
 第2TFT22のゲート電極はゲートバスラインに接続され、第2TFT22のソース電極(もしくはドレン電極)はソースバスラインに接続されている。また、第2TFT22のドレイン電極(もしくはソース電極)は第1TFT21のゲート電極および液晶素子51の画素電極52に接続されている。また、第1TFT21のソース電極(もしくはドレン電極)は、発光素子31に電流を供給する、図示しない電流供給バスラインに接続されている。第1TFT21のドレイン電極(もしくはソース電極)は、発光素子31における、後述する第1電極32に接続されている。 The gate electrode of the second TFT 22 is connected to the gate bus line, and the source electrode (or drain electrode) of the second TFT 22 is connected to the source bus line. Further, the drain electrode (or source electrode) of the second TFT 22 is connected to the gate electrode of the first TFT 21 and the pixel electrode 52 of the liquid crystal element 51. Further, the source electrode (or drain electrode) of the first TFT 21 is connected to a current supply bus line (not shown) that supplies a current to the light emitting element 31. The drain electrode (or source electrode) of the first TFT 21 is connected to the first electrode 32 described later in the light emitting element 31.
 したがって、第2TFT22は、ゲートバスラインの電位に基づいて、第1TFT21および液晶素子51と、ソースバスラインとを電気的に接続する。 Therefore, the second TFT 22 electrically connects the first TFT 21 and the liquid crystal element 51 with the source bus line based on the potential of the gate bus line.
 第1TFT21は、ソースバスラインの電位に基づいて、発光素子31に供給される電流の大きさを変化させる。第1TFT21がON(オン)することによって、電流供給バスラインおよび第1TFT21のドレイン電極(もしくはソース電極)を通して発光素子31に駆動電流が流れて発光層が発光する。 The first TFT 21 changes the magnitude of the current supplied to the light emitting element 31 based on the potential of the source bus line. When the first TFT 21 is turned ON, a drive current flows through the current supply bus line and the drain electrode (or source electrode) of the first TFT 21 to the light emitting element 31, and the light emitting layer emits light.
 平坦化膜23は、これら複数の第1TFT21、複数の第2TFT22、および複数のバスラインを覆っている。平坦化膜23は、アクリル樹脂またはポリイミド等の有機絶縁材料からなる絶縁膜である。平坦化膜23は、これら第1TFT21、第2TFT22、およびバスライン上の凹凸を平坦化する。平坦化膜23には、例えば、アクリル樹脂、ポリイミド等の有機絶縁膜が用いられる。 The flattening film 23 covers the plurality of first TFTs 21, the plurality of second TFTs 22, and the plurality of bus lines. The flattening film 23 is an insulating film made of an organic insulating material such as acrylic resin or polyimide. The flattening film 23 flattens the irregularities on the first TFT 21, the second TFT 22, and the bus line. For the flattening film 23, for example, an organic insulating film such as an acrylic resin or polyimide is used.
 発光素子層3は、TFT層2の平坦化膜23上に設けられている。発光素子層3は、複数の発光素子31と、バンク35と、を備えている。 The light emitting element layer 3 is provided on the flattening film 23 of the TFT layer 2. The light emitting element layer 3 includes a plurality of light emitting elements 31 and a bank 35.
 発光素子31は、第1電極32と第2電極34とで、少なくとも発光層を含む機能層33が挟持された構成を有している。以下では、一例として、発光素子31がOLED(有機発光ダイオード)である場合を例に挙げて説明する。 The light emitting element 31 has a configuration in which at least a functional layer 33 including a light emitting layer is sandwiched between the first electrode 32 and the second electrode 34. In the following, as an example, a case where the light emitting element 31 is an OLED (organic light emitting diode) will be described as an example.
 第1電極32は、平坦化膜23上に、画素P毎に島状に形成されている。第2電極34は、全画素Pに共通に設けられた、ベタ状の電極(共通電極)である。 The first electrode 32 is formed on the flattening film 23 in an island shape for each pixel P. The second electrode 34 is a solid electrode (common electrode) commonly provided on all pixels P.
 発光素子31はトップエミッション型の発光素子である。このため、上層である第2電極34を、透光性材料からなる透光性電極で形成し、下層である第1電極32を、光反射性材料からなる反射電極で形成する。 The light emitting element 31 is a top emission type light emitting element. Therefore, the upper second electrode 34 is formed of a translucent electrode made of a light-transmitting material, and the lower first electrode 32 is formed of a reflective electrode made of a light-reflecting material.
 透光性材料としては、例えば、透明導電膜材料を用いることができる。透明導電膜材料には、例えば、ITO(インジウムスズ酸化物)、IZO(インジウム亜鉛酸化物)等を用いることができる。これらの材料は可視光の透過率が高いため、発光効率が向上する。 As the translucent material, for example, a transparent conductive film material can be used. As the transparent conductive film material, for example, ITO (indium tin oxide), IZO (indium zinc oxide) and the like can be used. Since these materials have high visible light transmittance, the luminous efficiency is improved.
 光反射性材料としては、例えば、Al(アルミニウム)、Ag(銀)、Cu(銅)、Au(金)、APC(AgPdCu)等の金属材料を用いることができる。これらの材料は、可視光の反射率が高いため、発光効率が向上する。 As the light-reflecting material, for example, a metal material such as Al (aluminum), Ag (silver), Cu (copper), Au (gold), APC (AgPdCu) can be used. Since these materials have high visible light reflectance, the luminous efficiency is improved.
 また、第1電極32を、透光性材料からなる層と光反射性材料からなる層との積層体とすることで、光反射性を有する反射電極としてもよい。また、平坦化膜23上に、例えばAPC等からなる反射膜を例えばベタ状に形成し、その上に、透光性材料からなる層を島状に形成することで、光反射性を有する反射電極としてもよい。 Further, the first electrode 32 may be a reflective electrode having light reflectivity by forming a laminate of a layer made of a translucent material and a layer made of a light-reflecting material. Further, by forming a reflective film made of, for example, APC or the like in a solid shape on the flattening film 23 and forming a layer made of a translucent material in an island shape on the reflective film, the reflection having light reflectivity is obtained. It may be used as an electrode.
 機能層33は、発光層であってもよく、発光層と、発光層にキャリアを輸送するキャリア輸送層と、を含む多層構造の積層膜であってもよい。また、機能層33は、キャリア輸送層にキャリアを注入するキャリア注入層をさらに備えていてもよい。例えば、第1電極32が陽極であり、第2電極34が陰極である場合、機能層33は、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層が積層された構成を有していてよい。なお、第1電極32が陰極であり、第2電極34が陽極である場合、これら正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の積層順が反転する。勿論、正孔注入層、正孔輸送層、電子輸送層、電子注入層のうち1つ以上の層を形成しない構成も可能である。 The functional layer 33 may be a light emitting layer, or may be a laminated film having a multilayer structure including a light emitting layer and a carrier transport layer that transports carriers to the light emitting layer. Further, the functional layer 33 may further include a carrier injection layer that injects carriers into the carrier transport layer. For example, when the first electrode 32 is an anode and the second electrode 34 is a cathode, the functional layer 33 has a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection in this order from the lower layer side. It may have a structure in which layers are laminated. When the first electrode 32 is a cathode and the second electrode 34 is an anode, the stacking order of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer is reversed. Of course, a configuration that does not form one or more of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer is also possible.
 バンク35は、例えば、格子状に形成されている。バンク35は、発光素子31を画素P毎に分離する画素分離壁として機能するとともに、第1電極32の各エッジを覆うエッジカバーとして機能する。バンク35には、例えば、アクリル樹脂、ポリイミド等の有機絶縁材料が用いられる。 Bank 35 is formed in a grid pattern, for example. The bank 35 functions as a pixel separation wall that separates the light emitting element 31 for each pixel P, and also functions as an edge cover that covers each edge of the first electrode 32. For the bank 35, for example, an organic insulating material such as acrylic resin or polyimide is used.
 発光層は、バンク35の開口35a毎(言い替えれば、画素P毎)に、島状に形成される。機能層33における発光層以外の層は、バンク35の開口35a毎に島状に形成されていてもよく、全画素Pに共通な共通層としてベタ状に形成されていてもよい。 The light emitting layer is formed in an island shape for each opening 35a of the bank 35 (in other words, for each pixel P). The layers other than the light emitting layer in the functional layer 33 may be formed in an island shape for each opening 35a of the bank 35, or may be formed in a solid shape as a common layer common to all pixels P.
 このように、第1電極32および機能層33における少なくとも発光層は、バンク35によって、画素P毎に島状に分離されている。これにより、表示装置100には、画素Pに対応して、複数の発光素子31が設けられている。 As described above, at least the light emitting layer in the first electrode 32 and the functional layer 33 is separated into islands for each pixel P by the bank 35. As a result, the display device 100 is provided with a plurality of light emitting elements 31 corresponding to the pixels P.
 発光素子31がOLEDである場合、機能層33には、有機層が用いられる。発光素子31は、全て、360nm以上、500nm以下の波長帯域に発光ピーク波長を有する、近紫外~青色の光を発光する発光素子であり、発光素子31に通電したときに、近紫外~青色の発光が得られるように、発光層の発光材料が選択されている。このため、本実施形態では、発光素子31は、それぞれ、各画素Pに共通する色で発光する。このため、発光素子層3全体から、同じ色の光が出射される。 When the light emitting element 31 is an OLED, an organic layer is used for the functional layer 33. The light emitting elements 31 are all light emitting elements that emit near-ultraviolet to blue light having emission peak wavelengths in the wavelength band of 360 nm or more and 500 nm or less, and when the light emitting element 31 is energized, the light emitting elements 31 are near-ultraviolet to blue. The light emitting material of the light emitting layer is selected so that light emission can be obtained. Therefore, in the present embodiment, each of the light emitting elements 31 emits light in a color common to each pixel P. Therefore, light of the same color is emitted from the entire light emitting element layer 3.
 なお、本実施形態において、近紫外の光(近紫外光)とは、360nm以上、400nm未満の波長帯域に発光ピーク波長を有する光を示す。また、青色の光(青色光)とは、400nm以上、500nm以下の波長帯域に発光ピーク波長を有する光を示す。なお、発光素子31は、420nm以上、490nm以下の波長帯域に発光ピーク波長を有することがより好ましい。 In the present embodiment, the near-ultraviolet light (near-ultraviolet light) refers to light having an emission peak wavelength in a wavelength band of 360 nm or more and less than 400 nm. Further, blue light (blue light) refers to light having an emission peak wavelength in a wavelength band of 400 nm or more and 500 nm or less. It is more preferable that the light emitting element 31 has an emission peak wavelength in a wavelength band of 420 nm or more and 490 nm or less.
 発光素子31は、発光素子層3上に形成された、透光性を有する絶縁層4で被覆されている。絶縁層4は、無機層を含み、水分や酸素の浸入による発光素子31の劣化を防止する封止層として機能する。また、絶縁層4は、発光素子31上の凹凸を平坦化する平坦化層として機能することが望ましく、有機層をさらに含んでいることが望ましい。 The light emitting element 31 is covered with a translucent insulating layer 4 formed on the light emitting element layer 3. The insulating layer 4 contains an inorganic layer and functions as a sealing layer for preventing deterioration of the light emitting element 31 due to the infiltration of moisture and oxygen. Further, it is desirable that the insulating layer 4 functions as a flattening layer for flattening the unevenness on the light emitting element 31, and it is desirable that the insulating layer 4 further contains an organic layer.
 このため、絶縁層4は、無機層、または、無機層と有機層との積層体で形成される。絶縁層4は、例えば、第1の無機層、有機層、第2の無機層が、この順に積層された構成を有していることが望ましい。無機層(例えば、第1の無機層および第2の無機層)は、水分や酸素の浸入を防ぐ防湿機能を有し、バリア層(防湿層)として機能する。一方、有機層は、バッファ層として機能する。有機層は、無機層の応力緩和、発光素子31の表面の段差部を埋めることによる平坦化、ピンホールの打消し、無機層積層時のクラックや膜剥がれの発生の抑制、等を行う。 Therefore, the insulating layer 4 is formed of an inorganic layer or a laminate of an inorganic layer and an organic layer. It is desirable that the insulating layer 4 has a structure in which, for example, a first inorganic layer, an organic layer, and a second inorganic layer are laminated in this order. The inorganic layer (for example, the first inorganic layer and the second inorganic layer) has a moisture-proof function of preventing the infiltration of water and oxygen, and functions as a barrier layer (moisture-proof layer). On the other hand, the organic layer functions as a buffer layer. The organic layer relaxes the stress of the inorganic layer, flattens it by filling the stepped portion on the surface of the light emitting element 31, cancels out pinholes, suppresses the occurrence of cracks and film peeling during lamination of the inorganic layer, and the like.
 上記無機層には、例えば、窒化シリコン(SiN)、酸化シリコン(SiO)等の、透光性を有する無機絶縁膜が用いられる。上記有機層には、例えば、アクリル樹脂、ポリイミド等の、透光性を有する有機絶縁膜が用いられる。 For the inorganic layer, for example, a translucent inorganic insulating film such as silicon nitride (SiN) or silicon oxide (SiO 2) is used. For the organic layer, for example, an organic insulating film having translucency such as acrylic resin or polyimide is used.
 絶縁層4上には、液晶素子層5が形成されている。液晶素子層5には、液晶素子51が、画素P毎に設けられている。前述したように、液晶素子51における画素電極52および配向膜53は、アレイ基板10に形成されている。画素電極52は、絶縁層4上に、画素P毎に島状に形成されている。画素電極52は、絶縁層4に設けられたコンタクトホール4aおよびバンク35に設けられたコンタクトホール35bを介して第2TFT22に接続されている。配向膜53は、全画素Pに共通した共通層として、全画素電極52を覆うように、絶縁層4上にベタ状に形成されている。 A liquid crystal element layer 5 is formed on the insulating layer 4. The liquid crystal element layer 5 is provided with a liquid crystal element 51 for each pixel P. As described above, the pixel electrode 52 and the alignment film 53 in the liquid crystal element 51 are formed on the array substrate 10. The pixel electrodes 52 are formed on the insulating layer 4 in an island shape for each pixel P. The pixel electrode 52 is connected to the second TFT 22 via a contact hole 4a provided in the insulating layer 4 and a contact hole 35b provided in the bank 35. The alignment film 53 is formed solidly on the insulating layer 4 so as to cover all the pixel electrodes 52 as a common layer common to all the pixels P.
 一方、配向膜55および共通電極56は、対向基板70に形成されている。前述したように、共通電極56は、対向基板70における色変換層6上に、全画素Pに共通した共通層として、ベタ状に形成されている。また、配向膜55は、共通電極56上に、全画素Pに共通した共通層として、ベタ状に形成されている。配向膜53と配向膜55とは、液晶層54を挟んで、液晶層54に接して設けられている。液晶層54は、アレイ基板10と対向基板70との間に形成された間隙に液晶を封入することで、アレイ基板10と対向基板70とで挟持されている。 On the other hand, the alignment film 55 and the common electrode 56 are formed on the facing substrate 70. As described above, the common electrode 56 is formed in a solid shape on the color conversion layer 6 of the opposed substrate 70 as a common layer common to all pixels P. Further, the alignment film 55 is formed in a solid shape on the common electrode 56 as a common layer common to all pixels P. The alignment film 53 and the alignment film 55 are provided in contact with the liquid crystal layer 54 with the liquid crystal layer 54 interposed therebetween. The liquid crystal layer 54 is sandwiched between the array substrate 10 and the opposing substrate 70 by enclosing the liquid crystal in the gap formed between the array substrate 10 and the opposing substrate 70.
 画素電極52および共通電極56は、透光性材料により形成された透光性電極である。上記透光性材料としては、ITO、IZO等の透明導電膜材料を用いることができる。 The pixel electrode 52 and the common electrode 56 are translucent electrodes formed of a translucent material. As the translucent material, a transparent conductive film material such as ITO or IZO can be used.
 液晶層54には、画素電極52と共通電極56とに印加された電圧によって電界が印加され、これにより、画像が形成される。 An electric field is applied to the liquid crystal layer 54 by the voltage applied to the pixel electrode 52 and the common electrode 56, whereby an image is formed.
 液晶素子51は、垂直配向方式(例えば、VA方式)により表示を行う液晶素子であり、液晶層54は、垂直配向型の液晶層である。液晶分子54aは、負の誘電異方性を有している。 The liquid crystal element 51 is a liquid crystal element that displays by a vertically oriented method (for example, a VA method), and the liquid crystal layer 54 is a vertically oriented liquid crystal layer. The liquid crystal molecule 54a has a negative dielectric anisotropy.
 配向膜53・55は、液晶層54の液晶分子54aを、電圧無印加時に、アレイ基板10および対向基板70の表面に垂直な方向(具体的には、絶縁基板1・7の基板面に垂直な方向)に配向させる垂直配向膜である。 The alignment films 53 and 55 direct the liquid crystal molecules 54a of the liquid crystal layer 54 in a direction perpendicular to the surfaces of the array substrate 10 and the opposing substrate 70 (specifically, perpendicular to the substrate surfaces of the insulating substrates 1.7) when no voltage is applied. It is a vertically oriented film that is oriented in the above direction.
 本実施形態では、電圧無印加時に液晶分子54aが絶縁基板1・7の基板面に垂直に配向(垂直配向)し、電圧印加時に液晶分子54aを倒れ込ませることで表示を行う。なお、配向膜53・55については、後で詳述する。 In the present embodiment, the liquid crystal molecules 54a are vertically oriented (vertically oriented) with respect to the substrate surface of the insulating substrates 1 and 7 when no voltage is applied, and the liquid crystal molecules 54a are collapsed when the voltage is applied to display the display. The alignment films 53 and 55 will be described in detail later.
 上記アレイ基板10と対向基板70とで液晶層54を挟持してなる液晶セルの外側には、円偏光板8が設けられている。円偏光板8は、全画素Pに共通した共通層として、絶縁基板7における絶縁基板1とは反対側の面に、ベタ状に形成されている。 A circularly polarizing plate 8 is provided on the outside of the liquid crystal cell formed by sandwiching the liquid crystal layer 54 between the array substrate 10 and the facing substrate 70. The circularly polarizing plate 8 is formed in a solid shape on the surface of the insulating substrate 7 opposite to the insulating substrate 1 as a common layer common to all pixels P.
 円偏光板8は、入射する外光のなかから特定の円偏光のみを透過する機能を有している。円偏光板8は例えば、直線偏光板と、λ/4波長板とを、互いの光軸を一定の角度だけ傾けて積層することにより構成されている。 The circularly polarizing plate 8 has a function of transmitting only specific circularly polarized light from the incident external light. The circular polarizing plate 8 is formed by, for example, laminating a linear polarizing plate and a λ / 4 wave plate with their optical axes tilted by a certain angle.
 液晶素子51は、例えば、電圧無印加時に暗表示となり、黒を表示する一方、電圧印加により徐々に反射率が増加して、明表示となり、白表示を行なう。外光の反射を抑えるため、このように、液晶素子51は、円偏光板8、配向膜53・55、および液晶層54の協働によってNB(ノーマリブラック)モードとなるように構成されていることが望ましい。液晶層54は、電圧無印加時に液晶分子54aが垂直配向となるように、液晶材料の誘電異方性が選択される。 For example, the liquid crystal element 51 becomes a dark display and displays black when no voltage is applied, while the reflectance gradually increases due to the voltage application, becomes a bright display, and displays white. In order to suppress the reflection of external light, the liquid crystal element 51 is configured to be in the NB (normally black) mode by the cooperation of the circularly polarizing plate 8, the alignment film 53 and 55, and the liquid crystal layer 54. It is desirable to be there. In the liquid crystal layer 54, the dielectric anisotropy of the liquid crystal material is selected so that the liquid crystal molecules 54a are vertically oriented when no voltage is applied.
 液晶素子51は、反射型の液晶素子であり、円偏光板8を透過して液晶素子51に入射された外光は、液晶素子51および発光素子31の第2電極34を透過して発光素子31の第1電極32で反射される。そして、第1電極32で反射され、第2電極34および液晶素子51を透過した後、円偏光板8を透過した光が、外部に出射される。 The liquid crystal element 51 is a reflective liquid crystal element, and external light transmitted through the circular polarizing plate 8 and incident on the liquid crystal element 51 passes through the liquid crystal element 51 and the second electrode 34 of the light emitting element 31 and emits light. It is reflected by the first electrode 32 of 31. Then, the light reflected by the first electrode 32, transmitted through the second electrode 34 and the liquid crystal element 51, and then transmitted through the circularly polarizing plate 8 is emitted to the outside.
 表示装置100は、画素Pとして、赤色光を発光する赤色の画素RP、緑色光を発光する緑色の画素GP、青色光を発光する青色の画素BPを有している。 The display device 100 has, as the pixel P, a red pixel RP that emits red light, a green pixel GP that emits green light, and a blue pixel BP that emits blue light.
 このため、表示装置100は、液晶素子51および発光素子31ともにカラー表示を可能とするように、色変換層6が設けられている。前述したように、各画素Pには、それぞれ、発光素子31として、近紫外~青色の光を発光する発光素子が設けられている。発光素子31が、青色光を発光する発光素子(青色発光素子)である場合、画素RPには、色変換層6として、該画素RPに設けられた発光素子31の発光層から発せられる青色光を赤色光に変換する色変換層6Rが設けられる。画素GPには、色変換層6として、該画素GPに設けられた発光素子31の発光層から発せられる青色光を緑色光に変換する色変換層6Gが設けられる。画素BPには、該画素BPに設けられた発光素子31の発光層から発せられる青色光をそのまま透過させる色変換層6Bが設けられていてもよいし、青色の光を透過させる通常の青色カラーフィルタが設けられていてもよい。勿論、色変換層6Bには、色変換層が設けられていなくても構わない。 Therefore, the display device 100 is provided with a color conversion layer 6 so that both the liquid crystal element 51 and the light emitting element 31 can display colors. As described above, each pixel P is provided with a light emitting element that emits near-ultraviolet to blue light as a light emitting element 31. When the light emitting element 31 is a light emitting element (blue light emitting element) that emits blue light, the pixel RP has blue light emitted from the light emitting layer of the light emitting element 31 provided on the pixel RP as a color conversion layer 6. Is provided with a color conversion layer 6R that converts light into red light. As the color conversion layer 6, the pixel GP is provided with a color conversion layer 6G that converts blue light emitted from the light emitting layer of the light emitting element 31 provided in the pixel GP into green light. The pixel BP may be provided with a color conversion layer 6B that transmits blue light emitted from the light emitting layer of the light emitting element 31 provided in the pixel BP as it is, or a normal blue color that transmits blue light. A filter may be provided. Of course, the color conversion layer 6B may not be provided with the color conversion layer.
 発光素子31が、近紫外光を発光する発光素子(近紫外光発光素子)である場合、画素RPには、色変換層6として、該画素RPに設けられた発光素子31の発光層から発せられる近紫外光を赤色光に変換する色変換層6Rが設けられる。画素GPには、色変換層6として、該画素GPに設けられた発光素子31の発光層から発せられる近紫外光を緑色光に変換する色変換層6Gが設けられる。画素BPには、色変換層6として、該画素BPに設けられた発光素子31の発光層から発せられる近紫外光を青色光に変換する色変換層6Bが設けられる。 When the light emitting element 31 is a light emitting element (near ultraviolet light emitting element) that emits near-ultraviolet light, the pixel RP is emitted from the light emitting layer of the light emitting element 31 provided in the pixel RP as a color conversion layer 6. A color conversion layer 6R for converting the near-ultraviolet light to be red light is provided. As the color conversion layer 6, the pixel GP is provided with a color conversion layer 6G that converts near-ultraviolet light emitted from the light emitting layer of the light emitting element 31 provided in the pixel GP into green light. As the color conversion layer 6, the pixel BP is provided with a color conversion layer 6B that converts near-ultraviolet light emitted from the light emitting layer of the light emitting element 31 provided in the pixel BP into blue light.
 なお、ここで、赤色光とは、600nm以上、780nm以下の波長帯域に発光ピーク波長を有する光を示す。また、緑色光とは、500nm以上、600nm以下の波長帯域に発光ピーク波長を有する光を示す。 Here, red light refers to light having an emission peak wavelength in a wavelength band of 600 nm or more and 780 nm or less. Further, green light refers to light having an emission peak wavelength in a wavelength band of 500 nm or more and 600 nm or less.
 このような色変換層6には、例えば、量子ドットを用いた色変換層が用いられる。例えば、色変換層6Rには、発光素子31が発する青色光または近紫外光を吸収して赤色光を発する赤色ペロブスカイト結晶構造を有する量子ドットを備えた色変換層が用いられる。色変換層6Gには、発光素子31が発する青色光または近紫外光を吸収して緑色光を発する緑色ペロブスカイト結晶構造を有する量子ドットを備えた色変換層が用いられる。色変換層6Bには、発光素子31が発する青色光または近紫外光を吸収して青色光を発する青色ペロブスカイト結晶構造を有する量子ドットを備えた色変換層が用いられる。 For such a color conversion layer 6, for example, a color conversion layer using quantum dots is used. For example, as the color conversion layer 6R, a color conversion layer having quantum dots having a red perovskite crystal structure that absorbs blue light or near-ultraviolet light emitted by the light emitting element 31 and emits red light is used. As the color conversion layer 6G, a color conversion layer having quantum dots having a green perovskite crystal structure that absorbs blue light or near-ultraviolet light emitted by the light emitting element 31 and emits green light is used. As the color conversion layer 6B, a color conversion layer having quantum dots having a blue perovskite crystal structure that absorbs blue light or near-ultraviolet light emitted by the light emitting element 31 and emits blue light is used.
 <配向膜53・55>
 次に、配向膜53・55について説明する。配向膜53・55は、近紫外もしくは青色光で重合する重合配向層である。
<Orientation film 53.55>
Next, the alignment films 53 and 55 will be described. The alignment films 53 and 55 are polymerization orientation layers that polymerize with near-ultraviolet or blue light.
 配向膜53・55は、少なくとも、第1のモノマーと、第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマー(つまり、第2のモノマーおよび第3のモノマーのうち一方もしくは両方のモノマー)と、を含む液晶配向剤により形成される。具体的には、配向膜53・55は、少なくとも、上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマー(つまり、上記第2のモノマーおよび上記第3のモノマーのうち一方もしくは両方のモノマー)と、を共重合させることにより形成することができる。 The alignment films 53 and 55 include at least one of the first monomer and the second monomer and the third monomer (that is, one or both of the second monomer and the third monomer). And are formed by a liquid crystal aligning agent containing. Specifically, the alignment film 53.55 has at least one of the first monomer, the second monomer, and the third monomer (that is, the second monomer and the third monomer). It can be formed by copolymerizing with one or both of the monomers of the above.
 上記第1のモノマーは、下記一般式(1)で示される垂直配向モノマー(第1のモノマー)である。 The first monomer is a vertically oriented monomer (first monomer) represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000015
 なお、上記一般式(1)中、XおよびXは、それぞれ独立して、-H、-CH、または-Cを表す。Zは、-O-、-S-、-NH-、-CO-、-COO-、-OCO-、または直接結合を表す。YおよびYは、それぞれ独立して、-H、-F、-Cl、-Br、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基、または、炭素数1~6の直鎖状、分岐状もしくは環状のアルキルオキシを表す。mは、6~16の整数を示し、nは、8~24の整数を表す。
Figure JPOXMLDOC01-appb-C000015
In the above general formula (1), X 1 and X 2 independently represent -H, -CH 3 , or -C 2 H 5. Z represents -O-, -S-, -NH-, -CO-, -COO-, -OCO-, or direct binding. Y 1 and Y 2 are independently each of -H, -F, -Cl, -Br, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. Represents a linear, branched or cyclic alkyloxy. m represents an integer of 6 to 16, and n represents an integer of 8 to 24.
 上記第2のモノマーは、下記一般式(2)で示されるアントラセン系モノマーである。 The second monomer is an anthracene-based monomer represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000016
 なお、上記一般式(2)中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表す。
Figure JPOXMLDOC01-appb-C000016
In the above general formula (2), R 1 and R 2 independently represent a hydrogen atom or a methyl group, respectively.
 上記第3のモノマーは、下記一般式(3)で示されるベンジル系モノマーである。 The third monomer is a benzyl-based monomer represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000017
 なお、上記一般式(3)中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表す。
Figure JPOXMLDOC01-appb-C000017
In the above general formula (3), R 3 and R 4 independently represent a hydrogen atom or a methyl group, respectively.
 このため、配向膜53・55は、少なくとも、上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーとの共重合体を含んでいる。したがって、上記共重合体は、少なくとも、上記第1のモノマーに由来する構造単位と、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーに由来する構造単位と、を含んでいる。 Therefore, the alignment films 53 and 55 contain at least a copolymer of the first monomer and at least one of the second monomer and the third monomer. Therefore, the copolymer contains at least a structural unit derived from the first monomer and a structural unit derived from at least one of the second monomer and the third monomer. ..
 上記第1のモノマーに由来する構造単位は、例えば、下記一般式(1-A)または(1-B)で示される構造を有している。 The structural unit derived from the first monomer has, for example, a structure represented by the following general formula (1-A) or (1-B).
Figure JPOXMLDOC01-appb-C000018
 上記第2のモノマーに由来する構造単位は、例えば、下記一般式(2-A)または(2-B)で示される構造を有している。
Figure JPOXMLDOC01-appb-C000018
The structural unit derived from the second monomer has, for example, a structure represented by the following general formula (2-A) or (2-B).
Figure JPOXMLDOC01-appb-C000019
 上記第3のモノマーに由来する構造単位は、例えば、下記一般式(3-A)または(3-B)で示される構造を有している。
Figure JPOXMLDOC01-appb-C000019
The structural unit derived from the third monomer has, for example, a structure represented by the following general formula (3-A) or (3-B).
Figure JPOXMLDOC01-appb-C000020
 なお、一般式(1-A)および(1-B)におけるX、X、Y、Y、m、n、R、R、R、Rは、一般式(1)におけるX、X、Y、Y、m、nと同じである。また、一般式(2-A)および(2-B)におけるR、Rは、一般式(2)におけるR、Rと同じである。一般式(3-A)および(3-B)におけるR、Rは、一般式(3)におけるR、Rと同じである。
Figure JPOXMLDOC01-appb-C000020
In the general formulas (1-A) and (1-B), X 1 , X 2 , Y 1 , Y 2 , m, n, R 1 , R 2 , R 3 , and R 4 are the general formulas (1). It is the same as X 1 , X 2 , Y 1 , Y 2 , m, and n in. Further, R 1, R 2 in the formula (2-A) and (2-B) is the same as R 1, R 2 in the general formula (2). R 3, R 4 in the formula (3-A) and (3-B) is the same as R 3, R 4 in the general formula (3).
 上記第1のモノマーに由来する構造単位と、上記第2のモノマーに由来する構造単位と、を含む共重合体としては、例えば、下記構造式(4)で示される共重合体が挙げられる。 Examples of the copolymer containing the structural unit derived from the first monomer and the structural unit derived from the second monomer include the copolymer represented by the following structural formula (4).
Figure JPOXMLDOC01-appb-C000021
 なお、上記構造式(4)におけるX、X、Y、Y、m、n、R、R、R、Rは、一般式(1)におけるX、X、Y、Y、m、nと同じである。また、上記構造式(4)におけるR、Rは、一般式(2)におけるR、Rと同じである。なお、上記構造式(4)中、pは、1~100の整数を表し、qは、1~50の整数を表し、rは、1~100の整数を表し、sは、1~100の整数を表す。
Figure JPOXMLDOC01-appb-C000021
Incidentally, X 1, X 2, Y 1, Y 2, m, n, R 1, R 2, R 3, R 4 in the structural formula (4) is, X 1 in the general formula (1), X 2, Same as Y 1 , Y 2 , m, n. Further, R 1, R 2 in the structural formula (4) is the same as R 1, R 2 in the general formula (2). In the structural formula (4), p represents an integer of 1 to 100, q represents an integer of 1 to 50, r represents an integer of 1 to 100, and s represents an integer of 1 to 100. Represents an integer.
 また、上記第1のモノマーに由来する構造単位と、上記第3のモノマーに由来する構造単位と、を含む共重合体としては、例えば、下記構造式(5)で示される共重合体が挙げられる。 Further, examples of the copolymer containing the structural unit derived from the first monomer and the structural unit derived from the third monomer include the copolymer represented by the following structural formula (5). Be done.
Figure JPOXMLDOC01-appb-C000022
 なお、上記構造式(5)におけるX、X、Y、Y、m、n、R、R、R、Rは、一般式(1)におけるX、X、Y、Y、m、nと同じである。また、上記構造式(5)におけるR、Rは、一般式(3)におけるR、Rと同じである。なお、上記構造式(5)中、pは、1~100の整数を表し、qは、1~50の整数を表し、rは、1~100の整数を表し、sは、1~100の整数を表す。
Figure JPOXMLDOC01-appb-C000022
Incidentally, X 1, X 2, Y 1, Y 2, m, n, R 1, R 2, R 3, R 4 in the structural formula (5) is, X 1 in the general formula (1), X 2, Same as Y 1 , Y 2 , m, n. Also, R 3, R 4 in the structural formula (5) is the same as R 3, R 4 in the general formula (3). In the structural formula (5), p represents an integer of 1 to 100, q represents an integer of 1 to 50, r represents an integer of 1 to 100, and s represents an integer of 1 to 100. Represents an integer.
 なお、上述したように、配向膜53・55を構成する共重合体は、少なくとも、上記第1のモノマーに由来する構造単位と、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーに由来する構造単位と、を含んでいればよい。 As described above, the copolymer constituting the alignment films 53 and 55 includes at least one of the structural unit derived from the first monomer and at least one of the second monomer and the third monomer. It may contain a structural unit derived from a monomer.
 したがって、配向膜53・55を構成する共重合体は、上記第1のモノマーに由来する構造単位と、上記第2のモノマーに由来する構造単位と、上記第3のモノマーに由来する構造単位と、を含んでいてもよい。そのような共重合体としては、例えば、上記構造式(4)で示される構造と、上記構造式(5)で示される構造と、を併せ持つ共重合体が挙げられる。 Therefore, the copolymer constituting the alignment films 53 and 55 includes a structural unit derived from the first monomer, a structural unit derived from the second monomer, and a structural unit derived from the third monomer. , May be included. Examples of such a copolymer include a copolymer having both the structure represented by the structural formula (4) and the structure represented by the structural formula (5).
 また、配向膜53・55は、該配向膜53・55を構成する共重合体として、上記構造式(4)で示される共重合体および上記構造式(5)で示される共重合体のうち少なくとも一方の共重合体を含んでいてもよい。言い替えれば、上記配向膜53・55を構成する共重合体は、上記構造式(4)で示される共重合体および上記構造式(5)で示される共重合体のうち少なくとも一方の共重合体を含んでいてもよい。 Further, the alignment films 53 and 55 are the copolymers represented by the structural formula (4) and the copolymers represented by the structural formula (5) as the copolymers constituting the alignment films 53 and 55. It may contain at least one copolymer. In other words, the copolymer constituting the alignment films 53 and 55 is a copolymer of at least one of the copolymer represented by the structural formula (4) and the copolymer represented by the structural formula (5). May include.
 上記第1のモノマーとしては、具体的には、例えば、下記構造式(1-1)~(1-8)で示されるモノマーが挙げられる。 Specific examples of the first monomer include the monomers represented by the following structural formulas (1-1) to (1-8).
Figure JPOXMLDOC01-appb-C000023
 これらモノマーは、一種類のみを用いてもよく、適宜二種類以上を混合して用いてもよい。したがって、上記第1のモノマーは、上記構造式(1-1)~(1-8)で示されるモノマーのうち少なくとも一種のモノマーを含んでいてもよい。言い替えれば、上記共重合体は、第1のモノマーに由来する構造単位として、上記構造式(1-1)~(1-8)で示されるモノマーのうち少なくとも一種のモノマーに由来する構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000023
Only one type of these monomers may be used, or two or more types may be mixed and used as appropriate. Therefore, the first monomer may contain at least one of the monomers represented by the structural formulas (1-1) to (1-8). In other words, the copolymer has a structural unit derived from at least one of the monomers represented by the structural formulas (1-1) to (1-8) as a structural unit derived from the first monomer. It may be included.
 上記第1のモノマーは、垂直配向型のモノマーである。配向膜53・55は、上記共重合体中の第1のモノマーに由来する構造単位の作用により、液晶層54の液晶分子54aを、アレイ基板10および対向基板70の表面に対して垂直方向に配向(垂直配向)させることができる。 The first monomer is a vertically oriented monomer. The alignment films 53 and 55 move the liquid crystal molecules 54a of the liquid crystal layer 54 in the direction perpendicular to the surfaces of the array substrate 10 and the opposing substrate 70 by the action of the structural unit derived from the first monomer in the copolymer. It can be oriented (vertically oriented).
 前述したように、液晶素子51は、垂直配向方式(VA方式)により表示を行う液晶素子である。 As described above, the liquid crystal element 51 is a liquid crystal element that displays by a vertical alignment method (VA method).
 液晶素子51において、液晶層54への印加電圧が閾値電圧未満である場合(電圧無印加時を含む)の液晶分子54aの配向制御は、配向膜53・55により行われる。ここで、液晶分子54aがアレイ基板10および対向基板70の表面に対して垂直配向するとは、液晶分子54aのプレチルト角が、アレイ基板10および対向基板70の表面に対して86~90°であることを意味する。好ましいプレチルト角は88.5~90°である。 In the liquid crystal element 51, when the voltage applied to the liquid crystal layer 54 is less than the threshold voltage (including when no voltage is applied), the orientation control of the liquid crystal molecules 54a is performed by the alignment films 53 and 55. Here, the fact that the liquid crystal molecules 54a are vertically oriented with respect to the surfaces of the array substrate 10 and the opposing substrate 70 means that the pretilt angle of the liquid crystal molecules 54a is 86 to 90 ° with respect to the surfaces of the array substrate 10 and the opposing substrate 70. Means that. The preferred pretilt angle is 88.5 to 90 °.
 液晶分子54aのプレチルト角は、液晶層54への印加電圧が閾値電圧未満である場合(電圧無印加時を含む)に、液晶分子54aの長軸が、アレイ基板10および対向基板70の表面に対して傾斜する角度を意味する。 The pretilt angle of the liquid crystal molecules 54a is such that when the voltage applied to the liquid crystal layer 54 is less than the threshold voltage (including when no voltage is applied), the long axis of the liquid crystal molecules 54a is on the surfaces of the array substrate 10 and the facing substrate 70. It means the angle of inclination.
 第1のモノマー中のアルキレン基(垂直配向基)の末端には、ビフェニル基(芳香族基)が導入されているため、液晶分子54aを垂直配向させる配向規制力が充分に得られる。さらに、構造式(1-1)~(1-8)で示されるモノマーのように、ビフェニル基にハロゲン基(-F、-Cl、-Br)が導入されていると、液晶分子54aを垂直配向させる配向規制力がより強まる。これに対して、アルキレン基の末端にビフェニル基が導入されていないモノマーでは、液晶分子54aを垂直配向させる配向規制力が比較的弱くなり、配向規制力が不充分となる。 Since a biphenyl group (aromatic group) is introduced at the end of the alkylene group (vertically oriented group) in the first monomer, a sufficient orientation regulating force for vertically orienting the liquid crystal molecule 54a can be obtained. Further, when a halogen group (-F, -Cl, -Br) is introduced into the biphenyl group as in the monomers represented by the structural formulas (1-1) to (1-8), the liquid crystal molecule 54a is vertically inserted. Orientation control force for orientation is strengthened. On the other hand, in the monomer in which the biphenyl group is not introduced at the end of the alkylene group, the orientation regulating force for vertically aligning the liquid crystal molecule 54a becomes relatively weak, and the orientation regulating force becomes insufficient.
 第1のモノマーは、側鎖の末端以外が脂肪族化合物で構成されており、柔軟性に優れた分子構造を有している。そのため、配向膜53・55の形成において、少なくとも第1のモノマーと、第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーとを共重合させる際に、液晶層54の液晶材料のネマティック相-等方相転移温度未満の環境下(例えば、常温環境下)で光を照射しても、液晶分子54aを垂直配向させる配向規制力が充分に得られる。つまり、配向膜53・55を形成する際には、光の照射を、液晶材料のネマティック相-等方相転移温度以上の高温環境下で行う必要がないため、製造効率が高まる。ここで、常温とは、15~45℃を意味する。 The first monomer is composed of an aliphatic compound except for the end of the side chain, and has a molecular structure having excellent flexibility. Therefore, in the formation of the alignment films 53 and 55, when at least the first monomer and at least one of the second monomer and the third monomer are copolymerized, the nematic phase of the liquid crystal material of the liquid crystal layer 54 is formed. -Even if light is irradiated in an environment lower than the isotropic phase transition temperature (for example, in a normal temperature environment), a sufficient orientation regulating force for vertically aligning the liquid crystal molecules 54a can be obtained. That is, when forming the alignment films 53 and 55, it is not necessary to irradiate the liquid crystal material in a high temperature environment equal to or higher than the nematic phase-isotropic phase transition temperature of the liquid crystal material, so that the production efficiency is improved. Here, the normal temperature means 15 to 45 ° C.
 第1のモノマーは、重合性基としてアクリロイル基を2つ有する二官能モノマーであるため、配向膜53・55を形成する際に、重合速度が速くなり、液晶層54中に未重合状態のモノマーが残存し難くなる。その結果、電圧保持率が高い表示装置100が得られる。これに対して、重合性基を1つのみ有する単官能モノマーを用いると、重合速度が遅くなり、液晶層54中に未重合状態のモノマーが多く残存することになるため、電圧保持率が大きく低下してしまう。 Since the first monomer is a bifunctional monomer having two acryloyl groups as polymerizable groups, the polymerization rate becomes high when the alignment films 53 and 55 are formed, and the monomer in a non-polymerized state in the liquid crystal layer 54. Is hard to remain. As a result, a display device 100 having a high voltage holding ratio can be obtained. On the other hand, when a monofunctional monomer having only one polymerizable group is used, the polymerization rate becomes slow and a large amount of unpolymerized monomers remain in the liquid crystal layer 54, so that the voltage retention rate is large. It will drop.
 第2のモノマーとしては、具体的には、例えば、下記構造式(2-1)および(2-2)で示されるモノマーが挙げられる。 Specific examples of the second monomer include monomers represented by the following structural formulas (2-1) and (2-2).
Figure JPOXMLDOC01-appb-C000024
 これらモノマーは、一種類のみを用いてもよく、適宜二種類以上を混合して用いてもよい。したがって、上記第2のモノマーは、上記構造式(2-1)および(2-2)で示されるモノマーのうち少なくとも一種のモノマーを含んでいてもよい。言い替えれば、上記共重合体は、第2のモノマーに由来する構造単位として、上記構造式(2-1)および(2-2)で示されるモノマーのうち少なくとも一種のモノマーに由来する構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000024
Only one type of these monomers may be used, or two or more types may be mixed and used as appropriate. Therefore, the second monomer may contain at least one of the monomers represented by the structural formulas (2-1) and (2-2). In other words, the copolymer has a structural unit derived from at least one of the monomers represented by the structural formulas (2-1) and (2-2) as a structural unit derived from the second monomer. It may be included.
 また、第3のモノマーとしては、具体的には、例えば、下記構造式(3-1)および(3-2)で示されるモノマーが挙げられる。 Further, as the third monomer, specifically, for example, the monomers represented by the following structural formulas (3-1) and (3-2) can be mentioned.
Figure JPOXMLDOC01-appb-C000025
 これらモノマーは、一種類のみを用いてもよく、適宜二種類以上を混合して用いてもよい。したがって、上記第3のモノマーは、上記構造式(3-1)および(3-2)で示されるモノマーのうち少なくとも一種のモノマーを含んでいてもよい。言い替えれば、上記共重合体は、第3のモノマーに由来する構造単位として、上記構造式(3-1)および(3-2)で示されるモノマーのうち少なくとも一種のモノマーに由来する構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000025
Only one type of these monomers may be used, or two or more types may be mixed and used as appropriate. Therefore, the third monomer may contain at least one of the monomers represented by the structural formulas (3-1) and (3-2). In other words, the copolymer has a structural unit derived from at least one of the monomers represented by the structural formulas (3-1) and (3-2) as a structural unit derived from the third monomer. It may be included.
 第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーは、少なくとも、第1のモノマーと、第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーとの共重合反応を開始させる重合開始機能を有する重合開始剤である。第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーは、近紫外~青色の光(言い替えれば、360nm以上、500nm以下の波長帯域の波長の光)を吸収して重合を開始する。 At least one of the second monomer and the third monomer initiates polymerization to initiate a copolymerization reaction between at least the first monomer and at least one of the second and third monomers. It is a functioning polymerization initiator. At least one of the second monomer and the third monomer absorbs near-ultraviolet to blue light (in other words, light having a wavelength band of 360 nm or more and 500 nm or less) to initiate polymerization.
 本実施形態では、液晶配向剤として、上記垂直配向モノマーと、上記重合開始剤としてのモノマーとを、液晶材料とともに、前記液晶セル内に導入する。上記垂直配向モノマーと、上記重合開始剤としてのモノマーとを含む液晶配向剤は、上述したように、近紫外光~青色の可視光で共重合可能であり、かつ、共重合により液晶分子54aを配向させることができる。このため、本実施形態によれば、液晶セル内部の発光素子31の発光を利用して上記液晶配向剤を光重合させる(言い替えれば、上記モノマーを共重合させる)ことで、高温焼成を行わずに、配向膜53・55を形成することができる。 In the present embodiment, the vertically oriented monomer and the monomer as the polymerization initiator are introduced into the liquid crystal cell together with the liquid crystal material as the liquid crystal aligning agent. As described above, the liquid crystal aligning agent containing the vertically oriented monomer and the monomer as the polymerization initiator can be copolymerized with near-ultraviolet to blue visible light, and the liquid crystal molecules 54a can be copolymerized to form the liquid crystal molecules 54a. Can be oriented. Therefore, according to the present embodiment, the liquid crystal aligning agent is photopolymerized (in other words, the monomer is copolymerized) by utilizing the light emission of the light emitting element 31 inside the liquid crystal cell, so that high temperature firing is not performed. The alignment films 53 and 55 can be formed on the surface.
 上述したように、上記重合開始剤としてのモノマーは、近紫外~青色光で重合を開始することができる。このため、発光素子31には、前述したように、近紫外~青色光を発光する発光素子のみを使用する。このため、本実施形態によれば、発光素子31の色画素分割の必要は無く、画素領域中の広い面積を発光領域とすることが可能である。 As described above, the monomer as the polymerization initiator can initiate polymerization with near-ultraviolet to blue light. Therefore, as described above, only the light emitting element that emits near-ultraviolet to blue light is used as the light emitting element 31. Therefore, according to the present embodiment, it is not necessary to divide the color pixels of the light emitting element 31, and a wide area in the pixel area can be used as the light emitting region.
 このように発光領域を広くする方が、発光素子31を超高輝度にする必要がなくなり、信頼性面で有利となる。また、発光領域を広くすることで、液晶層54中のモノマーの重合を均一に行うことができるので、表示領域全面で、配向膜53・55として、均一に重合配向層を形成することができ、表示領域全面が均一な垂直配向領域の液晶素子層5を作製することができる。 Widening the light emitting region in this way eliminates the need for the light emitting element 31 to have ultra-high brightness, which is advantageous in terms of reliability. Further, by widening the light emitting region, the monomers in the liquid crystal layer 54 can be uniformly polymerized, so that the polymerization oriented layer can be uniformly formed as the alignment films 53 and 55 over the entire display region. , The liquid crystal element layer 5 having a vertically oriented region in which the entire display region is uniform can be produced.
 また、反射型の液晶素子51は、暗いところでは反射がないので表示が見難い。しかしながら、本実施形態によれば、それを発光素子31で補うことで、暗いところでも視認性を向上させることができる。本実施形態によれば、上述したように、各画素Pが、発光素子31および反射型の液晶素子51の両方を含むことで、発光素子31の使用時に、明るい表示が可能となる。また、明るいだけでなく、個々の発光素子31の輝度を低くすることができるので、耐久性(長期信頼性)を向上させることもできる。 Also, the reflective liquid crystal element 51 has no reflection in a dark place, so the display is difficult to see. However, according to the present embodiment, by supplementing it with the light emitting element 31, the visibility can be improved even in a dark place. According to the present embodiment, as described above, each pixel P includes both the light emitting element 31 and the reflective liquid crystal element 51, so that a bright display can be achieved when the light emitting element 31 is used. In addition to being bright, the brightness of each light emitting element 31 can be lowered, so that durability (long-term reliability) can be improved.
 本実施に係る表示装置100は、上述したように、発光素子31と反射型の液晶素子51とを備えたハイブリッド型の表示装置であるため、周囲環境の明るいところでも視認性が良好である。また、配向膜53・55の形成に高温焼成を必要としないため、該高温焼成により発光素子31の発光輝度が低下する等のダメージを受けることがない。また、高温焼成による、ポリイミド、ポリカーボネート等のリタデーション値の変化を回避することができるので、上述したように、絶縁基板1・7(支持体)として、フレキシブル基板を使用することが可能となる。 As described above, the display device 100 according to the present embodiment is a hybrid type display device including the light emitting element 31 and the reflective liquid crystal element 51, and therefore has good visibility even in a bright surrounding environment. Further, since the formation of the alignment films 53 and 55 does not require high-temperature firing, the high-temperature firing does not cause damage such as a decrease in the emission brightness of the light emitting element 31. Further, since it is possible to avoid changes in the retardation values of polyimide, polycarbonate and the like due to high-temperature firing, it is possible to use a flexible substrate as the insulating substrate 1.7 (support) as described above.
 <表示装置100の表示動作>
 次に、上記表示装置100の表示動作について説明する。
<Display operation of display device 100>
Next, the display operation of the display device 100 will be described.
 上記表示装置100を外光下で使用する場合(言い替えれば、外光が強い場合)、外光が円偏光板8の上方から入射すると、外光は、円偏光板8を通過することで円偏光となり、例えば、右円偏光のみが円偏光板8を透過する。このとき、第2TFT22のドレイン電圧が液晶用閾値電圧以下である場合(言い替えれば、液晶層54への印加電圧が閾値電圧未満である場合(電圧無印加時を含む))、右円偏光となった外光は、垂直配向状態の液晶層54に入射する。液晶層54の複屈折は略ゼロであるため、第2電極34に電圧を印加しない場合には、液晶素子51に入射した右円偏光は、そのまま右円偏光として、絶縁層4を介して発光素子31に入射し、第1電極32に到達する。この右円偏光が、第1電極32により反射されると左円偏光になり、それまでとは逆の経路を辿って円偏光板8に到達する。このとき、液晶層54によって偏光状態は変化しない。このため、円偏光板8に到達した左円偏光は、円偏光板8によって吸収され、円偏光板8を透過しない。このため、表示装置100は、暗表示(黒表示)となる。また、このとき、第2TFT22のドレイン電圧は、第1TFT21が動作する発光素子用閾値電圧未満であり、発光素子31には電流は供給されず、非発光状態(言い替えれば、オフ状態)を維持している。この場合、液晶素子51で階調表示が行われる。 When the display device 100 is used under external light (in other words, when the external light is strong), when the external light is incident from above the circularly polarizing plate 8, the external light passes through the circularly polarizing plate 8 to form a circle. It becomes polarized light, and for example, only right circularly polarized light passes through the circularly polarizing plate 8. At this time, when the drain voltage of the second TFT 22 is equal to or less than the threshold voltage for the liquid crystal (in other words, when the voltage applied to the liquid crystal layer 54 is less than the threshold voltage (including when no voltage is applied)), the polarized light is right circularly polarized. The external light is incident on the liquid crystal layer 54 in the vertically oriented state. Since the birefringence of the liquid crystal layer 54 is substantially zero, when no voltage is applied to the second electrode 34, the right circularly polarized light incident on the liquid crystal element 51 is directly converted into right circularly polarized light and emits light through the insulating layer 4. It enters the element 31 and reaches the first electrode 32. When this right-handed circularly polarized light is reflected by the first electrode 32, it becomes left-handed circularly polarized light, and reaches the circularly polarizing plate 8 by following a path opposite to that up to that point. At this time, the polarization state does not change depending on the liquid crystal layer 54. Therefore, the left circularly polarized light that has reached the circularly polarizing plate 8 is absorbed by the circularly polarizing plate 8 and does not pass through the circularly polarizing plate 8. Therefore, the display device 100 becomes a dark display (black display). Further, at this time, the drain voltage of the second TFT 22 is less than the threshold voltage for the light emitting element in which the first TFT 21 operates, no current is supplied to the light emitting element 31, and the non-light emitting state (in other words, the off state) is maintained. ing. In this case, the liquid crystal element 51 performs gradation display.
 外光下で表示装置100を使用する場合、第2TFT22のドレイン電圧が液晶用閾値電圧よりも大きく、第1TFT21が動作する発光素子用閾値電圧よりも小さいと、円偏光板8を透過して右円偏光となった外光は、液晶層54を透過して直線偏光になる。その後、第1電極32に到達した直線偏光は、第1電極32で反射され、それまでとは逆の経路を辿り、液晶層54を透過することで右円偏光となり、円偏光板8を透過する。このため、表示装置100は、明表示となり、色変換層6で決まる波長の色を表示する。また、このとき、第2TFT22のドレイン電圧は、第1TFT21が動作する発光素子用閾値電圧未満であり、発光素子31には電流は供給されず、非発光状態(言い替えれば、オフ状態)を維持している。このため、この場合にも、液晶素子51で階調表示が行われる。 When the display device 100 is used under external light, if the drain voltage of the second TFT 22 is larger than the threshold voltage for the liquid crystal and smaller than the threshold voltage for the light emitting element on which the first TFT 21 operates, it passes through the circularly polarizing plate 8 and is on the right. The circularly polarized external light passes through the liquid crystal layer 54 and becomes linearly polarized light. After that, the linearly polarized light that has reached the first electrode 32 is reflected by the first electrode 32, follows a path opposite to that up to that point, and is transmitted through the liquid crystal layer 54 to become right-handed circularly polarized light, which is transmitted through the circularly polarizing plate 8. To do. Therefore, the display device 100 becomes a bright display and displays a color having a wavelength determined by the color conversion layer 6. Further, at this time, the drain voltage of the second TFT 22 is less than the threshold voltage for the light emitting element in which the first TFT 21 operates, no current is supplied to the light emitting element 31, and the non-light emitting state (in other words, the off state) is maintained. ing. Therefore, even in this case, the liquid crystal element 51 performs gradation display.
 室内等、外光の強度が弱い場合には、第2TFT22のドレイン電圧を、第1TFT21が動作する発光素子用閾値電圧以上とする。これにより、発光素子31に電流が供給され、発光素子31が発光する。この場合、発光素子31で階調表示が行われる。液晶素子51のオン・オフ状態は問わない。但し、外光を抑えるノーマリーブラックモードが好ましい。この場合、液晶分子54aの配向状態により、液晶層54を透過した光は直線偏光になる。第1電極32に到達した直線偏光は、第1電極32で反射され、それまでとは逆の経路を辿り、液晶層54を廊下することで右円偏光となり、円偏光板8を透過する。このため、この場合にも、表示装置100は、色変換層6で決まる波長の色を表示する。表示装置100は、個々の第1電極32の電位を制御することで、任意のカラー画像を表示することができる。 When the intensity of outside light is weak, such as indoors, the drain voltage of the second TFT 22 is set to be equal to or higher than the threshold voltage for the light emitting element in which the first TFT 21 operates. As a result, a current is supplied to the light emitting element 31, and the light emitting element 31 emits light. In this case, the light emitting element 31 performs gradation display. The on / off state of the liquid crystal element 51 does not matter. However, the normally black mode that suppresses external light is preferable. In this case, the light transmitted through the liquid crystal layer 54 becomes linearly polarized light depending on the orientation state of the liquid crystal molecules 54a. The linearly polarized light that has reached the first electrode 32 is reflected by the first electrode 32, follows a path opposite to that up to that point, becomes right-handed circularly polarized light by corriding the liquid crystal layer 54, and passes through the circularly polarizing plate 8. Therefore, also in this case, the display device 100 displays the color of the wavelength determined by the color conversion layer 6. The display device 100 can display an arbitrary color image by controlling the potentials of the individual first electrodes 32.
 <表示装置100の製造方法>
 次に、表示装置100の製造方法について説明する。
<Manufacturing method of display device 100>
Next, a method of manufacturing the display device 100 will be described.
 図2は本実施形態に係る表示装置100の製造方法を示すフローチャートである。図3は、図2に示すアレイ基板形成工程(S1)を示すフローチャートである。図4は、図2に示す対向基板形成工程(S2)を示すフローチャートである。図5は、配向膜形成前の表示装置100の要部の概略構成を示す断面図である。 FIG. 2 is a flowchart showing a manufacturing method of the display device 100 according to the present embodiment. FIG. 3 is a flowchart showing the array substrate forming step (S1) shown in FIG. FIG. 4 is a flowchart showing the facing substrate forming step (S2) shown in FIG. FIG. 5 is a cross-sectional view showing a schematic configuration of a main part of the display device 100 before forming the alignment film.
 本実施形態では、まず、図2に示すように、アレイ基板として、絶縁基板1と、TFT層2と、発光素子層3と、絶縁層4と、画素電極52と、を有する配向膜レスのアレイ基板10を形成する(S1、アレイ基板形成工程)。なお、ここで、配向膜レスのアレイ基板10とは、配向膜53を形成する前のアレイ基板10を示す。 In the present embodiment, first, as shown in FIG. 2, an alignment film-less having an insulating substrate 1, a TFT layer 2, a light emitting element layer 3, an insulating layer 4, and a pixel electrode 52 as an array substrate. The array substrate 10 is formed (S1, array substrate forming step). Here, the alignment film-less array substrate 10 refers to the array substrate 10 before the alignment film 53 is formed.
 一方で、対向基板として、絶縁基板7と、色変換層6と、共通電極56と、を有する配向膜レスの対向基板70を形成する(S2、対向基板形成工程)。なお、ここで、配向膜レスの対向基板70とは、配向膜55を形成する前の対向基板70を示す。 On the other hand, as the facing substrate, an alignment filmless facing substrate 70 having an insulating substrate 7, a color conversion layer 6, and a common electrode 56 is formed (S2, facing substrate forming step). Here, the facing substrate 70 without the alignment film refers to the facing substrate 70 before the alignment film 55 is formed.
 アレイ基板形成工程(S1)は、図3に示す、TFT層形成工程(S11)と、発光素子層形成工程(S12)と、絶縁層形成工程(S13)と、画素電極形成工程(S14)と、を含んでいる。アレイ基板形成工程(S1)では、まず、絶縁基板1上に、TFT層2を形成する(S11)。次いで、TFT層2上に、トップエミッション型の複数の発光素子31を備える発光素子層3を形成する(S12)。次いで、発光素子層3を覆う透光性を有する絶縁層4を形成する(S13)。次いで、絶縁層4上に、画素P毎に画素電極52を形成する(S14)。これにより、絶縁基板1と、TFT層2と、発光素子層3と、絶縁層4と、画素電極52と、を有するアレイ基板10を形成する。 The array substrate forming step (S1) includes a TFT layer forming step (S11), a light emitting element layer forming step (S12), an insulating layer forming step (S13), and a pixel electrode forming step (S14) shown in FIG. , Including. In the array substrate forming step (S1), first, the TFT layer 2 is formed on the insulating substrate 1 (S11). Next, a light emitting element layer 3 including a plurality of top emission type light emitting elements 31 is formed on the TFT layer 2 (S12). Next, a translucent insulating layer 4 that covers the light emitting element layer 3 is formed (S13). Next, a pixel electrode 52 is formed for each pixel P on the insulating layer 4 (S14). As a result, the array substrate 10 having the insulating substrate 1, the TFT layer 2, the light emitting element layer 3, the insulating layer 4, and the pixel electrode 52 is formed.
 対向基板形成工程(S2)は、図4に示す、色変換層形成工程(S21)と、共通電極形成工程(S22)と、を含んでいる。対向基板形成工程(S2)では、まず、絶縁基板7上に、色変換層6を形成する(S21)。次いで、色変換層6上に、共通電極56を形成する(S22)。これにより、絶縁基板7と、色変換層6と、共通電極56と、を有する対向基板70を形成する。 The facing substrate forming step (S2) includes a color conversion layer forming step (S21) and a common electrode forming step (S22) shown in FIG. In the facing substrate forming step (S2), first, the color conversion layer 6 is formed on the insulating substrate 7 (S21). Next, the common electrode 56 is formed on the color conversion layer 6 (S22). As a result, the facing substrate 70 having the insulating substrate 7, the color conversion layer 6, and the common electrode 56 is formed.
 次いで、図5に示すように、上記アレイ基板10と上記対向基板70とを、一定の間隙をあけて貼り合わせる。図5に示すように、上記間隙には、液晶材料(液晶分子54a)と、第1のモノマーと、第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーを含む液晶配向剤(モノマー57)と、を少なくとも含む液晶組成物を封入する。つまり、上記間隙には、液晶材料(液晶分子54a)と、モノマー57として、第1のモノマーと、第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーと、を少なくとも含む液晶組成物を封入する。これにより、上記アレイ基板10と上記対向基板70との間の間隙に、液晶層54を形成する(S3、液晶層形成工程)。これにより、上記アレイ基板10と上記対向基板70とで液晶層54を挟持してなる液晶セルが形成される。 Next, as shown in FIG. 5, the array substrate 10 and the opposed substrate 70 are bonded together with a certain gap. As shown in FIG. 5, a liquid crystal aligning agent (monomer 57) containing a liquid crystal material (liquid crystal molecule 54a), a first monomer, and at least one of a second monomer and a third monomer in the gap. ), And a liquid crystal composition containing at least. That is, in the gap, a liquid crystal composition containing at least a liquid crystal material (liquid crystal molecule 54a), a first monomer, and at least one of the second monomer and the third monomer as the monomer 57 is contained. Encapsulate. As a result, the liquid crystal layer 54 is formed in the gap between the array substrate 10 and the opposed substrate 70 (S3, liquid crystal layer forming step). As a result, a liquid crystal cell formed by sandwiching the liquid crystal layer 54 between the array substrate 10 and the opposed substrate 70 is formed.
 なお、液晶層54の形成には、液晶注入法を用いてもよく、液晶滴下法を用いてもよい。 The liquid crystal injection method may be used or the liquid crystal dropping method may be used to form the liquid crystal layer 54.
 液晶層54の形成に液晶注入法を用いる場合、まず、上記アレイ基板10と上記対向基板70とを、液晶注入口を残して、シール剤で貼り合わせる。次いで、液晶注入口から液晶組成物を注入し、その後、液晶注入口を閉塞する。なお、シール剤は、上記アレイ基板10および上記対向基板70の何れに形成してもよい。 When the liquid crystal injection method is used to form the liquid crystal layer 54, first, the array substrate 10 and the facing substrate 70 are bonded together with a sealant, leaving the liquid crystal injection port. Next, the liquid crystal composition is injected from the liquid crystal injection port, and then the liquid crystal injection port is closed. The sealant may be formed on either the array substrate 10 or the opposing substrate 70.
 液晶層54の形成に液晶滴下法を用いる場合、まず、上記アレイ基板10および上記対向基板70のうち何れか一方の基板の表面にシール剤を塗布し、シール剤で囲まれた領域に液晶組成物を滴下する。その後、上記アレイ基板10と上記対向基板70とを上記シール剤で貼り合わせる。 When the liquid crystal dropping method is used to form the liquid crystal layer 54, first, a sealant is applied to the surface of either one of the array substrate 10 and the opposed substrate 70, and the liquid crystal composition is formed in the region surrounded by the sealant. Drop things. After that, the array substrate 10 and the opposed substrate 70 are bonded together with the sealant.
 このときの上記液晶組成物中の第1のモノマーの含有量(言い替えれば、配向膜形成工程(S4)で配向膜53・55を形成する前の上記液晶組成物中の第1のモノマーの含有量)は、0.3wt%以上、5wt%以下であることが好ましい。液晶組成物中の第1のモノマーの含有量が0.3wt%よりも少ない場合、液晶分子54aが液晶層54中で均一かつ安定して垂直配向する状態が得られ難いことがある。上記液晶組成物中の第1のモノマーの含有量が5wt%よりも多い場合、未反応のモノマー57が液晶層54中に残存する確率が高くなり、長期的に信頼性の低下を引き起こす。また、後述する配向膜形成工程(S4)において、第1のモノマーが完全に重合するのに時間がかかる。その結果、未反応のモノマー57が残存し、残存した未反応物に起因する電圧保持率の低下が引き起こされることがある。 The content of the first monomer in the liquid crystal composition at this time (in other words, the content of the first monomer in the liquid crystal composition before forming the alignment film 53.55 in the alignment film forming step (S4)). The amount) is preferably 0.3 wt% or more and 5 wt% or less. When the content of the first monomer in the liquid crystal composition is less than 0.3 wt%, it may be difficult to obtain a state in which the liquid crystal molecules 54a are uniformly and stably vertically aligned in the liquid crystal layer 54. When the content of the first monomer in the liquid crystal composition is more than 5 wt%, the probability that the unreacted monomer 57 remains in the liquid crystal layer 54 increases, causing a decrease in reliability in the long term. Further, in the alignment film forming step (S4) described later, it takes time for the first monomer to be completely polymerized. As a result, the unreacted monomer 57 may remain, causing a decrease in the voltage retention rate due to the remaining unreacted material.
 また、配向膜形成工程(S4)で配向膜53・55を形成する前の上記液晶組成物中の上記第2のモノマーおよび上記第3のモノマーの合計の含有量は、0.01wt%以上、0.3wt%以下であることが好ましい。上記液晶組成物中の上記第2のモノマーおよび上記第3のモノマーの合計の含有量が0.01wt%よりも少ない場合、後述する配向膜形成工程(S4)において、第2のモノマーまたは第3のモノマーの重合開始機能が発揮され難く、重合反応が完了するのに時間がかかることがある。上記液晶組成物中の上記第2のモノマーおよび上記第3のモノマーの合計の含有量が0.3wt%よりも多い場合、未反応のモノマー57が液晶層54中に残存する確率が高くなり、長期的に信頼性の低下を引き起こす。また、後述する配向膜形成工程(S4)において、配向膜53・55を形成する際に、ラジカルが多く発生することによって重合速度は速くなるが、残存した未反応物に起因する電圧保持率の低下が引き起こされることがある。 Further, the total content of the second monomer and the third monomer in the liquid crystal composition before forming the alignment film 53.55 in the alignment film forming step (S4) is 0.01 wt% or more. It is preferably 0.3 wt% or less. When the total content of the second monomer and the third monomer in the liquid crystal composition is less than 0.01 wt%, the second monomer or the third monomer is used in the alignment film forming step (S4) described later. It is difficult to exert the polymerization initiation function of the monomer of the above, and it may take time to complete the polymerization reaction. When the total content of the second monomer and the third monomer in the liquid crystal composition is more than 0.3 wt%, the probability that the unreacted monomer 57 remains in the liquid crystal layer 54 increases. Causes a loss of reliability in the long run. Further, in the alignment film forming step (S4) described later, when the alignment films 53 and 55 are formed, the polymerization rate is increased due to the generation of a large number of radicals, but the voltage retention rate due to the remaining unreacted material is increased. May cause a drop.
 なお、液晶組成物において、第1のモノマーの含有量は、第2のモノマーと上記第3のモノマーとの合計の含有量以上であることが好ましい。具体的には、モノマー57中、第1のモノマーと、第2のモノマーおよび上記第3のモノマーとの重量比は、50:1~1:1であることが好ましい。なお、ここで、「第1のモノマーと、第2のモノマーおよび上記第3のモノマーとの重量比」とは、「第1のモノマーの重量:第2のモノマーと第3のモノマーとの合計の重量」を示す。また、液晶組成物は、少なくとも、第1のモノマーと、第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーと、を含んでいればよい。したがって、第2のモノマーと第3のモノマーとの合計の重量は、第2のモノマーおよび第3のモノマーのうち何れか一方のモノマーの重量が0(ゼロ)である場合を含む。 In the liquid crystal composition, the content of the first monomer is preferably equal to or greater than the total content of the second monomer and the third monomer. Specifically, the weight ratio of the first monomer to the second monomer and the third monomer in the monomer 57 is preferably 50: 1 to 1: 1. Here, "the weight ratio of the first monomer to the second monomer and the third monomer" is "weight of the first monomer: total of the second monomer and the third monomer". "Weight" is shown. Further, the liquid crystal composition may contain at least a first monomer and at least one of a second monomer and a third monomer. Therefore, the total weight of the second monomer and the third monomer includes the case where the weight of any one of the second monomer and the third monomer is 0 (zero).
 なお、液晶組成物は、液晶材料、第1のモノマー、第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーに加えて、モノマー57として、これらモノマーと共重合可能な他のモノマーをさらに含んでいてもよい。つまり、配向膜53・55を形成する際に、第1のモノマーと、第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーと、これらモノマー以外の他のモノマーと、を共重合させてもよい。その結果、配向膜53・55を構成する共重合体は、第1のモノマーに由来する構造単位、第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーに由来する構造単位に加えて、上記他のモノマーに由来する構造単位をさらに含んでいてもよい。 In the liquid crystal composition, in addition to at least one of the liquid crystal material, the first monomer, the second monomer, and the third monomer, as the monomer 57, another monomer copolymerizable with these monomers is further added. It may be included. That is, when forming the alignment films 53 and 55, the first monomer, at least one of the second monomer and the third monomer, and other monomers other than these monomers are copolymerized. May be good. As a result, the copolymer constituting the alignment films 53 and 55 is added to the structural unit derived from the first monomer, the structural unit derived from at least one of the second monomer and the third monomer, and the structural unit. It may further contain structural units derived from the other monomers.
 次いで、図5に示すように、発光素子31を発光させることによって、上述したように、少なくとも、上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーと、を共重合させる。これにより、上記アレイ基板10に、液晶層54に接して、配向膜53を形成する一方、上記対向基板70に、液晶層54に接して、配向膜55を形成する(S4、配向膜形成工程)。 Then, as shown in FIG. 5, by causing the light emitting element 31 to emit light, at least the first monomer and at least one of the second monomer and the third monomer are used as described above. , Are copolymerized. As a result, the array substrate 10 is in contact with the liquid crystal layer 54 to form the alignment film 53, while the facing substrate 70 is in contact with the liquid crystal layer 54 to form the alignment film 55 (S4, alignment film forming step). ).
 配向膜53・55は、少なくとも、上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーと、が共重合して生成された共重合体が、液晶層54から相分離することで形成された層である。第2のモノマーおよび第3のモノマーのうち少なくとも一方のモノマーは、近紫外~青色の光を吸収して重合を開始する重合開始機能を有している。このため、発光素子31を発光させることによって、少なくとも、上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーと、の共重合反応が開始される。上記共重合反応が開始されると、上記アレイ基板10および上記対向基板70における、液晶層54との接触面に、液晶層54から相分離された上記共重合体が膜状に堆積する。これにより、上記配向膜53・55が形成される。 The alignment films 53 and 55 are formed by copolymerizing at least the first monomer, the second monomer, and at least one of the third monomers to form a liquid crystal layer. It is a layer formed by phase separation from 54. At least one of the second monomer and the third monomer has a polymerization initiation function of absorbing near-ultraviolet to blue light to initiate polymerization. Therefore, by causing the light emitting element 31 to emit light, at least the copolymerization reaction between the first monomer and at least one of the second monomer and the third monomer is started. When the copolymerization reaction is started, the copolymer phase-separated from the liquid crystal layer 54 is deposited in a film shape on the contact surfaces of the array substrate 10 and the opposed substrate 70 with the liquid crystal layer 54. As a result, the alignment films 53 and 55 are formed.
 配向膜53・55形成後、液晶層54には、図1に示すように、未反応のモノマー57が含まれる。上記未反応のモノマー57には、少なくとも、第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーと、が含まれる。具体的には、液晶層54は、モノマー57として、第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーとを、それぞれ、0.0001wt%~0.2wt%の割合で含んでいる。なお、0.0001wt%は、検出限界値であり、0.2wt%は、光照射時間が短い場合を示している。上記未反応のモノマー57は、それぞれ、ガスクロマトグラフィー、液体クロマトグラフィー等により検出することができる。 After the alignment films 53 and 55 are formed, the liquid crystal layer 54 contains the unreacted monomer 57 as shown in FIG. The unreacted monomer 57 includes at least a first monomer and at least one of the second monomer and the third monomer. Specifically, in the liquid crystal layer 54, as the monomer 57, the first monomer and at least one of the second monomer and the third monomer are 0.0001 wt% to 0.2 wt, respectively. Included in%. In addition, 0.0001 wt% is a detection limit value, and 0.2 wt% indicates a case where the light irradiation time is short. The unreacted monomer 57 can be detected by gas chromatography, liquid chromatography or the like, respectively.
 上記共重合体は、アルキル鎖が一定の方向を向いて堆積し、それに応じて液晶分子54aが配向する。配向膜53・55は、上記共重合体中の第1のモノマーに由来する構造単位の作用により、液晶層54の液晶材料中の液晶分子54aを、アレイ基板10および対向基板70の表面に対して垂直方向に配向させることができる。 In the above copolymer, alkyl chains are deposited in a certain direction, and liquid crystal molecules 54a are oriented accordingly. The alignment films 53 and 55 cause the liquid crystal molecules 54a in the liquid crystal material of the liquid crystal layer 54 to be applied to the surfaces of the array substrate 10 and the opposing substrate 70 by the action of the structural unit derived from the first monomer in the copolymer. Can be oriented vertically.
 また、本実施形態では、上述したように、アレイ基板10と対向基板70とをシール材によって貼り合わせた後で配向膜53・55を形成するため、シール材がアレイ基板10および対向基板70と接する構成を実現することができる。したがって、シール材とアレイ基板10および対向基板70との接着強度が充分に確保されるため、狭額縁化を図るためにシール材の幅を小さくしても、アレイ基板10と対向基板70との間で剥離し難くなるという利点もある。 Further, in the present embodiment, as described above, since the alignment films 53 and 55 are formed after the array substrate 10 and the opposing substrate 70 are bonded together with the sealing material, the sealing material is the array substrate 10 and the opposing substrate 70. It is possible to realize a contacting configuration. Therefore, since the adhesive strength between the sealing material and the array substrate 10 and the opposing substrate 70 is sufficiently ensured, even if the width of the sealing material is reduced in order to narrow the frame, the array substrate 10 and the opposing substrate 70 can be attached to each other. There is also an advantage that it is difficult to peel off between them.
 その後、上記液晶セルを構成する対向基板70の外側(つまり、上記対向基板70における、アレイ基板10との対向面とは反対側)に、円偏光板8を形成する(S5、偏光板形成工程)。これにより、図1に示す表示装置100が完成する。 After that, a circularly polarizing plate 8 is formed on the outside of the facing substrate 70 constituting the liquid crystal cell (that is, the side of the facing substrate 70 opposite to the surface facing the array substrate 10) (S5, polarizing plate forming step). ). As a result, the display device 100 shown in FIG. 1 is completed.
 なお、絶縁基板1が樹脂フィルムである場合、TFT層形成工程(S11)では、まず、支持基板(例えば、マザーガラス等のガラス基板)上に、絶縁基板1として、樹脂フィルム(樹脂層)を形成した後、該絶縁基板1上にTFT層2を形成する。 When the insulating substrate 1 is a resin film, in the TFT layer forming step (S11), first, a resin film (resin layer) is first formed on the supporting substrate (for example, a glass substrate such as mother glass) as the insulating substrate 1. After the formation, the TFT layer 2 is formed on the insulating substrate 1.
 同様に、絶縁基板7が樹脂フィルムである場合、色変換層形成工程(S21)では、支持基板(例えば、マザーガラス等のガラス基板)上に、絶縁基板7として、樹脂フィルム(樹脂層)を形成した後、該絶縁基板7上に色変換層6を形成する。 Similarly, when the insulating substrate 7 is a resin film, in the color conversion layer forming step (S21), a resin film (resin layer) is formed as the insulating substrate 7 on the supporting substrate (for example, a glass substrate such as mother glass). After the formation, the color conversion layer 6 is formed on the insulating substrate 7.
 したがって、絶縁基板1が樹脂フィルムである場合、アレイ基板10における対向基板70とは反対側の表面には、上記支持基板が設けられている。また、絶縁基板7が樹脂フィルムである場合、対向基板70におけるアレイ基板10とは反対側の表面には、上記支持基板が設けられている。したがって、偏光板形成工程(S5)では、対向基板70におけるアレイ基板10とは反対側の表面に上記支持基板が設けられている場合、少なくとも対向基板70に設けられた支持基板を剥離した後、上記円偏光板8が形成される。 Therefore, when the insulating substrate 1 is a resin film, the support substrate is provided on the surface of the array substrate 10 opposite to the opposing substrate 70. When the insulating substrate 7 is a resin film, the support substrate is provided on the surface of the facing substrate 70 opposite to the array substrate 10. Therefore, in the polarizing plate forming step (S5), when the support substrate is provided on the surface of the opposed substrate 70 opposite to the array substrate 10, at least the support substrate provided on the opposed substrate 70 is peeled off and then the support substrate is peeled off. The circular polarizing plate 8 is formed.
 次に、実施例および比較例を挙げて本実施形態についてより詳細に説明する。但し、本実施形態は、以下の実施例に限定されるものではない。
 〔実施例1〕
 まず、支持基板としてのガラス基板上に、絶縁基板(フレキシブル基板)となる樹脂フィルムとしてポリイミド層を形成した。次いで、上記ポリイミド層上に、TFT層、発光素子として青色OLEDが複数設けられた青色OLED層、絶縁層、画素電極としてのITO電極を、この順に形成した。これにより、アレイ基板として、配向膜レスのアレイ基板を作製した。
Next, the present embodiment will be described in more detail with reference to Examples and Comparative Examples. However, this embodiment is not limited to the following examples.
[Example 1]
First, a polyimide layer was formed as a resin film to be an insulating substrate (flexible substrate) on a glass substrate as a support substrate. Next, on the polyimide layer, a TFT layer, a blue OLED layer provided with a plurality of blue OLEDs as light emitting elements, an insulating layer, and an ITO electrode as a pixel electrode were formed in this order. As a result, an alignment film-less array substrate was produced as the array substrate.
 一方、支持基板としてのガラス基板上に、絶縁基板(フレキシブル基板)となる樹脂フィルムとしてポリイミド層を形成し、その上に、色変換層、共通電極としてのITO電極を、この順に形成した。これにより、対向基板として、配向膜レスの対向基板を作製した。色変換層6には、画素RPに対応して赤色の色変換層6Rを形成し、画素GPに対応して緑色の色変換層6Gを形成した。色変換層6における残りの部分には、画素BPに対応して、青色カラーフィルタを形成した。 On the other hand, a polyimide layer was formed as a resin film to be an insulating substrate (flexible substrate) on a glass substrate as a support substrate, and a color conversion layer and an ITO electrode as a common electrode were formed on the polyimide layer in this order. As a result, a facing substrate without an alignment film was produced as a facing substrate. In the color conversion layer 6, a red color conversion layer 6R was formed corresponding to the pixel RP, and a green color conversion layer 6G was formed corresponding to the pixel GP. A blue color filter was formed on the remaining portion of the color conversion layer 6 corresponding to the pixel BP.
 続いて、上記アレイ基板と対向基板とを、一定の間隙をあけてシール剤で貼り合わせた。一方、液晶組成物として、液晶材料と、第1のモノマーである、前記構造式(1-1)で示される垂直配向モノマーと、前記構造式(2-1)で示されるアントラセン系モノマー(重合開始剤)との混合物を調製した。このとき、上記液晶材料と上記各モノマーとは、上記液晶組成物中における上記垂直配向モノマーの含有量が2wt%であり、上記液晶組成物中における上記アントラセン系モノマーの含有量が0.1wt%となるように混合した。 Subsequently, the array substrate and the facing substrate were bonded together with a sealant with a certain gap. On the other hand, as the liquid crystal composition, the liquid crystal material, the first monomer, the vertically oriented monomer represented by the structural formula (1-1), and the anthracene-based monomer represented by the structural formula (2-1) (polymerization). A mixture with the initiator) was prepared. At this time, in the liquid crystal material and each of the monomers, the content of the vertically oriented monomer in the liquid crystal composition is 2 wt%, and the content of the anthracene-based monomer in the liquid crystal composition is 0.1 wt%. It was mixed so as to be.
 次いで、上記間隙に上記液晶組成物を真空注入し、上記液晶組成物を、上記アレイ基板と上記対向基板との間に封入することにより、液晶層を形成した。 Next, the liquid crystal composition was vacuum-injected into the gap, and the liquid crystal composition was sealed between the array substrate and the facing substrate to form a liquid crystal layer.
 続いて、上記青色OLEDを室温(25℃)で10分間点灯することにより、光重合を行い、上記アレイ基板および上記対向基板における上記液晶層との接触面に、それぞれ配向膜を形成させた。次いで、上記アレイ基板および上記対向基板から上記ガラス基板をそれぞれレーザ剥離することで、上記アレイ基板と上記液晶層と上記対向基板とからなる液晶セルの外側のガラス基板をそれぞれ剥離した。最後に、上記ガラス基板が剥離された上記液晶セルにおける上記対向基板側のポリイミド層上に円偏光板を貼り合わせることにより、本実施例に係る表示装置を作製した。 Subsequently, the blue OLED was lit at room temperature (25 ° C.) for 10 minutes to perform photopolymerization, and an alignment film was formed on each of the contact surfaces of the array substrate and the facing substrate with the liquid crystal layer. Next, the glass substrate on the outside of the liquid crystal cell composed of the array substrate, the liquid crystal layer, and the opposed substrate was peeled off by laser peeling the glass substrate from the array substrate and the opposed substrate, respectively. Finally, the display device according to this embodiment was produced by laminating a circularly polarizing plate on the polyimide layer on the opposite substrate side in the liquid crystal cell from which the glass substrate was peeled off.
 図6に、本実施例で用いた青色OLEDの発光スペクトルを示す。なお、図6は、最大強度を1として規格化したときの発光スペクトルを示している。 FIG. 6 shows the emission spectrum of the blue OLED used in this example. Note that FIG. 6 shows an emission spectrum when standardized with the maximum intensity set to 1.
 また、図7に、本実施例で用いた上記アントラセン系モノマーの吸収スペクトルを示す。 Further, FIG. 7 shows the absorption spectrum of the anthracene-based monomer used in this example.
 また、透過軸方向が互いに直交するクロスニコル偏光子間に、ガラス基板を剥離する前の上記液晶セルを挟み、該液晶セルの光透過状態を観察することで、上記液晶層における液晶分子の配向状態を確認した。このようにして観察した、青色OLEDの点灯前後(言い替えれば、配向膜形成前後)の上記液晶セルの電圧無印加時の光透過状態を、図8に並べて示す。 Further, by sandwiching the liquid crystal cell before peeling the glass substrate between cross Nicol polarizers whose transmission axis directions are orthogonal to each other and observing the light transmission state of the liquid crystal cell, the orientation of the liquid crystal molecules in the liquid crystal layer is observed. I checked the status. The light transmission states of the liquid crystal cells before and after lighting of the blue OLED (in other words, before and after the formation of the alignment film) observed in this manner when no voltage is applied are shown side by side in FIG.
 図8に示すように、上記液晶セルの真上から観察したときに、青色OLEDの点灯後は、光が透過せず、液晶分子が垂直配向していることが判る。したがって、上記の結果から、青色OLEDの青色光で、上記垂直配向モノマーと上記アントラセン系モノマーとが共重合し、垂直配向膜が形成されたことが判る。 As shown in FIG. 8, when observed from directly above the liquid crystal cell, it can be seen that after the blue OLED is lit, no light is transmitted and the liquid crystal molecules are vertically oriented. Therefore, from the above results, it can be seen that the vertically oriented monomer and the anthracene-based monomer were copolymerized with the blue light of the blue OLED to form a vertically oriented film.
 また、このようにして得られた液晶素子およびOLEDは、OLEDによる表示時は輝度が高く、液晶素子による表示時はコントラストが高いため、長期信頼性が改善され、また液晶素子による表示時の見栄えも良くなることが判った。 Further, the liquid crystal element and the OLED obtained in this manner have high brightness when displayed by the OLED and high contrast when displayed by the liquid crystal element, so that long-term reliability is improved and the appearance when displayed by the liquid crystal element is improved. Turned out to be better.
 〔実施例2〕
 本実施例では、液晶組成物として、液晶材料と、第1のモノマーである、前記構造式(1-1)で示される垂直配向モノマーと、前記構造式(3-1)で示されるベンジル系モノマー(重合開始剤)との混合物を調製した。このとき、上記液晶材料と上記各モノマーとは、上記液晶組成物中における上記垂直配向モノマーの含有量が1.2wt%であり、上記液晶組成物中における上記ベンジル系モノマーの含有量が0.1wt%となるように混合した。
[Example 2]
In this embodiment, as the liquid crystal composition, the liquid crystal material, the first monomer, the vertically oriented monomer represented by the structural formula (1-1), and the benzyl system represented by the structural formula (3-1) are used. A mixture with a monomer (polymerization initiator) was prepared. At this time, the liquid crystal material and each of the monomers have a content of the vertically oriented monomer of 1.2 wt% in the liquid crystal composition, and the content of the benzyl-based monomer in the liquid crystal composition is 0. It was mixed so as to be 1 wt%.
 そして、実施例1において、アレイ基板と対向基板とを、一定の間隙をあけてシール剤で貼り合わせた後、上記間隙に上記液晶組成物を封入することにより液晶層を形成したことを除けば、実施例1と同様にして、本実施例に係る表示装置を作製した。 Except that, in Example 1, a liquid crystal layer is formed by bonding the array substrate and the opposing substrate with a sealant with a certain gap and then enclosing the liquid crystal composition in the gap. , A display device according to this example was produced in the same manner as in Example 1.
 図9に、本実施例で用いた上記ベンジル系モノマーの吸収スペクトルを示す。なお、本実施例で用いた青色OLEDの発光スペクトルは、実施例1で用いた、図7に示す青色OLEDの発光スペクトルと同じである。また、本実施例で用いた上記垂直配向モノマーの吸収スペクトルは、実施例1で用いた、図8に示す垂直配向モノマーの吸収スペクトルと同じである。 FIG. 9 shows the absorption spectrum of the benzyl-based monomer used in this example. The emission spectrum of the blue OLED used in this example is the same as the emission spectrum of the blue OLED shown in FIG. 7 used in Example 1. Further, the absorption spectrum of the vertically oriented monomer used in this example is the same as the absorption spectrum of the vertically oriented monomer shown in FIG. 8 used in Example 1.
 また、実施例1と同様に、透過軸方向が互いに直交するクロスニコル偏光子間に、本実施例で得られた、ガラス基板を剥離する前の液晶セルを挟み、該液晶セルの光透過状態を観察することで、上記液晶層における液晶分子の配向状態を確認した。このようにして観察した、青色OLEDの点灯前後(言い替えれば、配向膜形成前後)の上記液晶セルの電圧無印加時の光透過状態を、図10に並べて示す。 Further, as in the first embodiment, the liquid crystal cell obtained in this example before peeling the glass substrate is sandwiched between the cross Nicol polarizers whose transmission axis directions are orthogonal to each other, and the light transmitting state of the liquid crystal cell is sandwiched. The orientation state of the liquid crystal molecules in the liquid crystal layer was confirmed by observing. The light transmission states of the liquid crystal cells before and after lighting of the blue OLED (in other words, before and after the formation of the alignment film) observed in this manner when no voltage is applied are shown side by side in FIG.
 図10に示すように、上記液晶セルの真上から観察したときに、青色OLEDの点灯後は、光が透過せず、黒表示状態であり、液晶分子が垂直配向していることが判る。このように、重合開始剤として上記ベンジル系モノマーを用いた場合にも、青色OLEDの青色光で、上記垂直配向モノマーと上記ベンジル系モノマーとを共重合させることができ、垂直配向膜を形成することができた。 As shown in FIG. 10, when observed from directly above the liquid crystal cell, it can be seen that after the blue OLED is lit, no light is transmitted and the display state is black, and the liquid crystal molecules are vertically oriented. As described above, even when the benzyl-based monomer is used as the polymerization initiator, the vertically-aligned monomer and the benzyl-based monomer can be copolymerized with the blue light of the blue OLED to form a vertically oriented film. I was able to do it.
 また、このようにして得られた液晶素子およびOLEDは、OLEDによる表示時は輝度が高く、液晶素子による表示時はコントラストが高いため、長期信頼性が改善され、また液晶素子による表示時の見栄えも良くなることが判った。 Further, the liquid crystal element and the OLED obtained in this manner have high brightness when displayed by the OLED and high contrast when displayed by the liquid crystal element, so that long-term reliability is improved and the appearance when displayed by the liquid crystal element is improved. Turned out to be better.
 〔比較例1〕
 本比較例では、液晶組成物として、液晶材料と、第1のモノマーである、前記構造式(1-1)で示される垂直配向モノマーと、下記構造式(6)で示されるビフェニル系モノマーとの混合物を調製した。
[Comparative Example 1]
In this comparative example, as the liquid crystal composition, the liquid crystal material, the first monomer, the vertically oriented monomer represented by the structural formula (1-1), and the biphenyl-based monomer represented by the following structural formula (6) are used. A mixture of the above was prepared.
Figure JPOXMLDOC01-appb-C000026
 このとき、上記液晶材料と上記各モノマーとは、上記液晶組成物中における上記垂直配向モノマーの含有量が2wt%であり、上記液晶組成物中における上記ビフェニル系モノマーの含有量が0.1wt%となるように混合した。
Figure JPOXMLDOC01-appb-C000026
At this time, in the liquid crystal material and each of the monomers, the content of the vertically oriented monomer in the liquid crystal composition is 2 wt%, and the content of the biphenyl-based monomer in the liquid crystal composition is 0.1 wt%. It was mixed so as to be.
 上記ビフェニル系モノマーは、PSA(Polymer Sustained Alignment)技術で使用されている紫外重合性のモノマーである。なお、PSA技術とは、光重合性モノマーを含む液晶材料を液晶パネル内に封入し、液晶層に電圧を印加した状態で、紫外線等の活性エネルギー線を照射して、上記光重合性モノマーを重合させる技術である。 The biphenyl-based monomer is an ultraviolet-polymerizable monomer used in PSA (Polymer Sustained Alignment) technology. In PSA technology, a liquid crystal material containing a photopolymerizable monomer is sealed in a liquid crystal panel, and a voltage is applied to the liquid crystal layer, and an active energy ray such as ultraviolet rays is irradiated to obtain the photopolymerizable monomer. It is a technique to polymerize.
 そして、実施例1において、アレイ基板と対向基板とを、一定の間隙をあけてシール剤で貼り合わせた後、上記間隙に上記液晶組成物を封入することにより液晶層を形成したことを除けば、実施例1と同様にして、本比較例に係る表示装置を作製した。 Except that, in Example 1, a liquid crystal layer is formed by bonding the array substrate and the opposing substrate with a sealant with a certain gap and then enclosing the liquid crystal composition in the gap. , A display device according to this comparative example was produced in the same manner as in Example 1.
 また、実施例1と同様に、透過軸方向が互いに直交するクロスニコル偏光子間に、本比較例で得られた、ガラス基板を剥離する前の液晶セルを挟み、該液晶セルの光透過状態を観察することで、上記液晶層における液晶分子の配向状態を確認した。このようにして観察した、青色OLEDの点灯前後(言い替えれば、配向膜形成前後)の上記液晶セルの電圧無印加時の光透過状態を、図11に並べて示す。 Further, as in the first embodiment, the liquid crystal cell obtained in this comparative example before peeling the glass substrate is sandwiched between the cross Nicol polarizers whose transmission axis directions are orthogonal to each other, and the light transmitting state of the liquid crystal cell is sandwiched. The orientation state of the liquid crystal molecules in the liquid crystal layer was confirmed by observing. The light transmission states of the liquid crystal cells before and after lighting of the blue OLED (in other words, before and after the formation of the alignment film) observed in this manner when no voltage is applied are shown side by side in FIG.
 図11に示すように、上記液晶セルの真上から観察したとき、青色OLEDの点灯後にも、上記液晶セルを光が透過しており、黒表示状態が実現されていない。このため、液晶分子が垂直配向していないことが判る。このように、本比較例では、上記垂直配向モノマーを上記ビフェニル系モノマーと組みあわせて、可視光照射で配向膜を形成させることを試みたが、液晶分子を垂直配向させることはできず、無配向のままであった。このため、上記垂直配向モノマーを上記ビフェニル系モノマーと組みあわせても、垂直配向膜を形成することはできず、VA方式により表示を行う液晶素子を形成することはできなかったと判断した。 As shown in FIG. 11, when observed from directly above the liquid crystal cell, light is transmitted through the liquid crystal cell even after the blue OLED is lit, and the black display state is not realized. Therefore, it can be seen that the liquid crystal molecules are not vertically oriented. As described above, in this comparative example, an attempt was made to form an alignment film by combining the above-mentioned vertically oriented monomer with the above-mentioned biphenyl-based monomer and irradiating with visible light, but the liquid crystal molecules could not be vertically oriented and none. It remained oriented. Therefore, it was determined that even if the vertically oriented monomer was combined with the biphenyl-based monomer, the vertically oriented film could not be formed, and the liquid crystal element for displaying by the VA method could not be formed.
 〔比較例2〕
 本比較例では、液晶組成物として、液晶材料と、第1のモノマーである、前記構造式(1-1)で示される垂直配向モノマーとの混合物を調製した。
[Comparative Example 2]
In this comparative example, as the liquid crystal composition, a mixture of the liquid crystal material and the vertically oriented monomer represented by the structural formula (1-1), which is the first monomer, was prepared.
 このとき、上記液晶材料と上記垂直配向モノマーとは、上記液晶組成物中における上記垂直配向モノマーの含有量が2wt%となるように混合した。 At this time, the liquid crystal material and the vertically oriented monomer were mixed so that the content of the vertically oriented monomer in the liquid crystal composition was 2 wt%.
 そして、実施例1において、アレイ基板と対向基板とを、一定の間隙をあけてシール剤で貼り合わせた後、上記間隙に上記液晶組成物を封入することにより液晶層を形成したことを除けば、実施例1と同様にして、本比較例に係る表示装置を作製した。 Except that, in Example 1, a liquid crystal layer is formed by bonding the array substrate and the opposing substrate with a sealant with a certain gap and then enclosing the liquid crystal composition in the gap. , A display device according to this comparative example was produced in the same manner as in Example 1.
 また、実施例1と同様に、透過軸方向が互いに直交するクロスニコル偏光子間に、本比較例で得られた、ガラス基板を剥離する前の液晶セルを挟み、該液晶セルの光透過状態を観察することで、上記液晶層における液晶分子の配向状態を確認した。このようにして観察した、青色OLEDの点灯前後(言い替えれば、配向膜形成前後)の上記液晶セルの電圧無印加時の光透過状態を、図12に並べて示す。 Further, as in the first embodiment, the liquid crystal cell obtained in this comparative example before peeling the glass substrate is sandwiched between the cross Nicol polarizers whose transmission axis directions are orthogonal to each other, and the light transmitting state of the liquid crystal cell is sandwiched. The orientation state of the liquid crystal molecules in the liquid crystal layer was confirmed by observing. The light transmission states of the liquid crystal cells before and after lighting of the blue OLED (in other words, before and after the formation of the alignment film) observed in this manner when no voltage is applied are shown side by side in FIG.
 図12に示すように、上記液晶セルの真上から観察したとき、青色OLEDの点灯後にも、上記液晶セルを光が透過しており、黒表示状態が実現されていない。このため、液晶分子が垂直配向していないことが判る。このように、本比較例では、上記垂直配向モノマーを可視光照射で重合させて配向膜を形成させることを試みたが、液晶分子を垂直配向させることはできず、無配向のままであった。このため、上記垂直配向モノマーだけでは垂直配向膜を形成することはできず、VA方式により表示を行う液晶素子を形成することはできなかったと判断した。 As shown in FIG. 12, when observed from directly above the liquid crystal cell, light is transmitted through the liquid crystal cell even after the blue OLED is lit, and the black display state is not realized. Therefore, it can be seen that the liquid crystal molecules are not vertically oriented. As described above, in this comparative example, an attempt was made to polymerize the vertically oriented monomer by irradiation with visible light to form an alignment film, but the liquid crystal molecules could not be vertically oriented and remained unaligned. .. Therefore, it was determined that the vertically oriented monomer could not be used alone to form the vertically oriented film, and the liquid crystal element for displaying by the VA method could not be formed.
 〔比較例3〕
 まず、実施例1と同様にして、ガラス基板上に、ポリイミド層、TFT層、青色OLED層、絶縁層、ITO電極を、この順に形成することで、アレイ基板として、実施例1と同様の配向膜レスのアレイ基板を作製した。その後、配向膜の形成のため、上記アレイ基板における上記ITO電極形成側の表面に、ポリアミック酸溶剤を、スピンコート塗布し、230℃で60分間、加熱焼成した。これにより、上記アレイ基板の表面に配向膜を形成した。
[Comparative Example 3]
First, in the same manner as in Example 1, the polyimide layer, the TFT layer, the blue OLED layer, the insulating layer, and the ITO electrode are formed on the glass substrate in this order, so that the array substrate is oriented in the same manner as in Example 1. A filmless array substrate was produced. Then, in order to form an alignment film, a polyamic acid solvent was spin-coated on the surface of the array substrate on the ITO electrode forming side, and the surface was heated and fired at 230 ° C. for 60 minutes. As a result, an alignment film was formed on the surface of the array substrate.
 一方、実施例1と同様にして、ガラス基板上に、ポリイミド層、色変換層、ITO電極を、この順に形成することで、対向基板として、実施例1と同様の配向膜レスの対向基板を作製した。その後、配向膜の形成のため、上記対向基板における上記ITO電極形成側の表面に、ポリアミック酸溶剤を、スピンコート塗布し、230℃で60分間、加熱焼成した。これにより、上記対向基板の表面に配向膜を形成した。 On the other hand, by forming the polyimide layer, the color conversion layer, and the ITO electrode on the glass substrate in this order in the same manner as in Example 1, an alignment film-less facing substrate similar to that in Example 1 can be formed as the facing substrate. Made. Then, in order to form an alignment film, a polyamic acid solvent was spin-coated on the surface of the facing substrate on the ITO electrode forming side, and the surface was heated and fired at 230 ° C. for 60 minutes. As a result, an alignment film was formed on the surface of the facing substrate.
 次いで、上記アレイ基板における上記配向膜形成側の表面にシール剤を塗布し、上記シール剤で囲まれた領域内に液晶材料を滴下した後、対向基板を貼り合わせることで、垂直配向型の液晶層を形成した。 Next, a sealant is applied to the surface of the array substrate on the alignment film forming side, a liquid crystal material is dropped into the region surrounded by the sealant, and then the opposing substrates are bonded to each other to form a vertically oriented liquid crystal. A layer was formed.
 その後、上記アレイ基板および上記対向基板から上記ガラス基板をそれぞれ剥離することで、上記アレイ基板と上記液晶層と上記対向基板とからなる液晶セルの外側のガラス基板をそれぞれレーザ剥離した。 After that, by peeling the glass substrate from the array substrate and the opposing substrate, the outer glass substrate of the liquid crystal cell composed of the array substrate, the liquid crystal layer, and the opposing substrate was peeled by laser.
 このようにして形成された液晶素子による表示を実施例1と同様にして確認したところ、配向のムラが観測された。この理由としては、フレキシブル基板であるポリイミド層の熱膨張が部分的に起こったものと考えられる。 When the display by the liquid crystal element formed in this way was confirmed in the same manner as in Example 1, uneven orientation was observed. It is considered that the reason for this is that thermal expansion of the polyimide layer, which is a flexible substrate, has partially occurred.
 以上のように、本実施形態によれば、高温焼成を行わず、かつ、アレイ基板10側からも対向基板70側からも光照射を行わずに、液晶分子54aを垂直配向させることができる配向膜53・55を形成することができる。これにより、表示装置100として、垂直配向方式(例えば、VA方式)により液晶素子51の表示を行う表示装置100を製造することができる。 As described above, according to the present embodiment, the liquid crystal molecules 54a can be vertically aligned without high-temperature firing and without irradiating light from the array substrate 10 side or the opposing substrate 70 side. The films 53 and 55 can be formed. As a result, as the display device 100, it is possible to manufacture the display device 100 that displays the liquid crystal element 51 by the vertical alignment method (for example, the VA method).
 <変形例1>
 なお、本実施形態では、発光素子31がOLEDである場合を例に挙げて説明した。しかしながら、発光素子31は、量子ドット(QD)を発光材料とするQLED(量子ドット発光ダイオード)であってもよい。発光素子31がQLEDである場合、発光層には、半導体ナノ粒子からなるQDを含むQD発光層が用いられる。また、機能層33における、発光層以外の層には、好適には無機層が用いられる。
<Modification example 1>
In this embodiment, the case where the light emitting element 31 is an OLED has been described as an example. However, the light emitting element 31 may be a QLED (quantum dot light emitting diode) using quantum dots (QD) as a light emitting material. When the light emitting element 31 is a QLED, a QD light emitting layer containing a QD made of semiconductor nanoparticles is used as the light emitting layer. Further, an inorganic layer is preferably used as the layer other than the light emitting layer in the functional layer 33.
 発光素子31がOLEDである場合、第1電極32と第2電極34との間の駆動電流によって正孔と電子とが発光層内で再結合し、これによって生じたエキシトンが基底状態に遷移する過程で光が放出される。 When the light emitting element 31 is an OLED, holes and electrons are recombined in the light emitting layer by the driving current between the first electrode 32 and the second electrode 34, and the excitons generated thereby transition to the basal state. Light is emitted in the process.
 一方、発光素子31がQLEDである場合、第1電極32と第2電極34との間の駆動電流によって正孔と電子とが発光層内で再結合し、これによって生じたエキシトンが、QDの伝導帯準位から価電子帯準位に遷移する過程で光が放出される。 On the other hand, when the light emitting element 31 is a QLED, holes and electrons are recombined in the light emitting layer by the driving current between the first electrode 32 and the second electrode 34, and the excitons generated by this are the QD. Light is emitted in the process of transitioning from the conduction band level to the valence band level.
 また、発光素子31としては、OLEDおよびQLED以外の発光素子(例えば無機発光ダイオード等)を形成してもよい。 Further, as the light emitting element 31, a light emitting element other than the OLED and the QLED (for example, an inorganic light emitting diode or the like) may be formed.
 <変形例2>
 また、本実施形態では、色変換層6を、対向基板70におけるアレイ基板10側に設ける場合を例に挙げて説明したが、本実施形態は、これに限定されるものではない。色変換層6は、例えば、アレイ基板10における発光素子層3の直上に設けても構わない。但し、この場合、絶縁層4が無機層であると、発光素子31の形成による凹凸の影響で、均一な色変換層6の形成が難しく、表示ムラの原因となる。このため、この場合、絶縁層4は、平坦化層であることが望ましい。
<Modification 2>
Further, in the present embodiment, the case where the color conversion layer 6 is provided on the array substrate 10 side of the opposed substrate 70 has been described as an example, but the present embodiment is not limited to this. The color conversion layer 6 may be provided, for example, directly above the light emitting element layer 3 on the array substrate 10. However, in this case, if the insulating layer 4 is an inorganic layer, it is difficult to form a uniform color conversion layer 6 due to the influence of unevenness due to the formation of the light emitting element 31, which causes display unevenness. Therefore, in this case, it is desirable that the insulating layer 4 is a flattening layer.
 なお、色変換層6は、対向基板70におけるアレイ基板10とは反対側(言い替えれば、絶縁基板7における絶縁基板1との対向面とは反対面側)に設けることも可能である。しかしながら、絶縁基板7の厚みは、通常、0.1mm以上であり、発光素子31の発光層から色変換層6までの距離が長くなる。このため、色視野角特性が低下する。したがって、色変換層6は、対向基板70におけるアレイ基板10側に設けることが望ましい。 The color conversion layer 6 can also be provided on the side of the facing substrate 70 opposite to the array substrate 10 (in other words, the side of the insulating substrate 7 opposite to the surface facing the insulating substrate 1). However, the thickness of the insulating substrate 7 is usually 0.1 mm or more, and the distance from the light emitting layer of the light emitting element 31 to the color conversion layer 6 becomes long. Therefore, the color viewing angle characteristic is deteriorated. Therefore, it is desirable that the color conversion layer 6 is provided on the array substrate 10 side of the opposed substrate 70.
 <変形例3>
 図1では、偏光板として、対向基板70の外側に、円偏光板8が設けられている場合を例に挙げて説明した。しかしながら、本実施形態は、これに限定されるものではなく、液晶素子層5を挟んで直線偏光板が設けられていても構わない。但し、この場合、発光素子31は、常にオン状態とする必要がある。
<Modification example 3>
In FIG. 1, a case where a circularly polarizing plate 8 is provided on the outside of the opposing substrate 70 as a polarizing plate has been described as an example. However, the present embodiment is not limited to this, and a linear polarizing plate may be provided with the liquid crystal element layer 5 interposed therebetween. However, in this case, the light emitting element 31 needs to be always on.
 つまり、本実施形態では、表示装置100が、液晶素子51として反射型の液晶素子を備えている場合を例に挙げて説明した。しかしながら、本実施形態は、これに限定されるものではなく、本実施形態に係る表示装置100は、前記液晶配向剤を用いた配向膜53・55を備えていればよい。したがって、本実施形態に係る表示装置100は、発光素子31をバックライトとして有する表示装置であってもよく、液晶素子51として、透過型の液晶素子を備えていてもよい。 That is, in the present embodiment, the case where the display device 100 includes a reflective liquid crystal element as the liquid crystal element 51 has been described as an example. However, the present embodiment is not limited to this, and the display device 100 according to the present embodiment may include alignment films 53 and 55 using the liquid crystal alignment agent. Therefore, the display device 100 according to the present embodiment may be a display device having a light emitting element 31 as a backlight, or may include a transmissive liquid crystal element as the liquid crystal element 51.
 <変形例4>
 また、本実施形態では、液晶素子51が、例えば、VA方式により表示を行う液晶素子である場合を例に挙げて説明した。
<Modification example 4>
Further, in the present embodiment, the case where the liquid crystal element 51 is, for example, a liquid crystal element that displays by the VA method has been described as an example.
 液晶素子51は、水平配向よりも垂直配向の方が、コントラストが高く、もともとコントラストの高いOLED等の発光素子31との違和感が小さい。前述したように発光素子31の発光は青色のみとするので、発光素子31での色画素分割の必要は無く、画素P中の広い面積を発光素子31にすることが可能である。 The liquid crystal element 51 has a higher contrast in the vertical orientation than in the horizontal orientation, and there is less discomfort with the light emitting element 31 such as an OLED which originally has a high contrast. As described above, since the light emitting element 31 emits only blue light, there is no need to divide the color pixels in the light emitting element 31, and a large area in the pixel P can be used as the light emitting element 31.
 しかしながら、液晶素子51は、例えば、IPS(インプレーンスイッチング)方式により表示を行う液晶素子であってもよい。IPS方式では、アレイ基板10および対向基板70に対して面内方向の横電界で、液晶分子54aをこれら基板に対して平行に回転させる。 However, the liquid crystal element 51 may be, for example, a liquid crystal element that displays by an IPS (inplane switching) method. In the IPS system, the liquid crystal molecules 54a are rotated in parallel to the array substrate 10 and the facing substrate 70 by a transverse electric field in the in-plane direction.
 前記液晶配向剤は、このように液晶素子51が横電界により配向する場合にも、配向膜材料として、好適に用いることができる。なお、この場合、液晶材料として、液晶分子54aが正の誘電異方性を有する液晶材料を使用する。 The liquid crystal alignment agent can be suitably used as an alignment film material even when the liquid crystal element 51 is oriented by a transverse electric field in this way. In this case, as the liquid crystal material, a liquid crystal material in which the liquid crystal molecules 54a have positive dielectric anisotropy is used.
 <変形例5>
 また、本実施形態では、発光素子31が全て近紫外~青色の光を発光する発光素子である場合を例に挙げて説明した。しかしながら、発光素子層3は、発光素子31として、上記発光素子以外に、赤色光を発光する赤色発光素子、緑色光を発光する緑色発光素子をさらに備えていてもよい。
<Modification 5>
Further, in the present embodiment, the case where all the light emitting elements 31 are light emitting elements that emit near-ultraviolet to blue light has been described as an example. However, the light emitting element layer 3 may further include, as the light emitting element 31, a red light emitting element that emits red light and a green light emitting element that emits green light, in addition to the above light emitting element.
 但し、その場合でも、近紫外~青色の光を発光する発光素子の発光領域をできるだけ広くすることが望ましい。近紫外~青色の光を発光する発光素子の発光領域をできるだけ広くすることで、発光素子31を超高輝度とする必要性がなくなり、信頼性面で有利となる。 However, even in that case, it is desirable to make the light emitting region of the light emitting element that emits near-ultraviolet to blue light as wide as possible. By widening the light emitting region of the light emitting element that emits near-ultraviolet to blue light as much as possible, it is not necessary to make the light emitting element 31 have ultra-high brightness, which is advantageous in terms of reliability.
 また、前述したように、配向膜53・55は、近紫外~青色の光で重合する重合配向層である。赤色発光素子および緑色発光素子からの出射光では、配向膜53・55が重合し難い。このため、発光素子層3の発光エリア全体が、近紫外~青色の光で発光することが望ましく、液晶層54全体に均一に青色光が照射されることが望ましい。このように、近紫外~青色の光を発光する発光素子の発光領域を広くすることで、前述したように、配向膜53・55の形成時に、液晶層54中のモノマー57の重合を均一に行うことができる。 Further, as described above, the alignment films 53 and 55 are polymerization orientation layers that polymerize with near-ultraviolet to blue light. The alignment films 53 and 55 are difficult to polymerize with the light emitted from the red light emitting element and the green light emitting element. Therefore, it is desirable that the entire light emitting area of the light emitting element layer 3 emits near-ultraviolet to blue light, and it is desirable that the entire liquid crystal layer 54 is uniformly irradiated with blue light. By widening the light emitting region of the light emitting element that emits near-ultraviolet to blue light in this way, as described above, the monomer 57 in the liquid crystal layer 54 is uniformly polymerized when the alignment films 53 and 55 are formed. It can be carried out.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present disclosure is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present disclosure. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
   1  絶縁基板(第1の絶縁基板)
   2  TFT層(薄膜トランジスタ層)
   3  発光素子層
   4  絶縁層
   5  液晶素子層
   6、6R、6G、6B  色変換層
   7  絶縁基板(第2の絶縁基板)
   8  円偏光板(偏光板)
  10  アレイ基板
  31  発光素子
  32 第1電極
  33  機能層(発光層)
  34  第2電極
  51  液晶素子
  52  画素電極
  54  液晶層
  54a  液晶分子
  53  配向膜(第1の配向膜)
  55  配向膜(第2の配向膜)
  56  共通電極
  57  モノマー
  70 対向基板
 100 表示装置
1 Insulated substrate (first insulated substrate)
2 TFT layer (thin film transistor layer)
3 Light emitting element layer 4 Insulation layer 5 Liquid crystal element layer 6, 6R, 6G, 6B color conversion layer 7 Insulation substrate (second insulation substrate)
8-circular polarizing plate (polarizing plate)
10 Array substrate 31 Light emitting element 32 First electrode 33 Functional layer (light emitting layer)
34 Second electrode 51 Liquid crystal element 52 Pixel electrode 54 Liquid crystal layer 54a Liquid crystal molecule 53 Alignment film (first alignment film)
55 Alignment film (second alignment film)
56 Common electrode 57 Monomer 70 Opposing substrate 100 Display device

Claims (24)

  1.  液晶を配向させる配向膜であって、
     上記配向膜は、少なくとも、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
     (式中、XおよびXは、それぞれ独立して、-H、-CH、または-Cを表し、Zは、-O-、-S-、-NH-、-CO-、-COO-、-OCO-、または直接結合を表し、YおよびYは、それぞれ独立して、-H、-F、-Cl、-Br、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基、または、炭素数1~6の直鎖状、分岐状もしくは環状のアルキルオキシを表し、mは、6~16の整数を表し、nは、8~24の整数を表す)
    で示される第1のモノマーと、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
     (式中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表す)
    で示される第2のモノマーおよび下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
     (式中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表す)
    で示される第3のモノマーのうち少なくとも一方のモノマーとの共重合体を含むことを特徴とする配向膜。
    An alignment film that orients the liquid crystal
    The alignment film has at least the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the equation, X 1 and X 2 independently represent -H, -CH 3 , or -C 2 H 5 , where Z is -O-, -S-, -NH-, -CO-. , -COO-, -OCO-, or a direct bond, where Y 1 and Y 2 are independently -H, -F, -Cl, -Br, linear, branched with 1 to 6 carbon atoms. A linear or cyclic alkyl group or a linear, branched or cyclic alkyloxy having 1 to 6 carbon atoms is represented, m represents an integer of 6 to 16, and n represents an integer of 8 to 24. )
    The first monomer represented by and the following general formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 and R 2 independently represent a hydrogen atom or a methyl group)
    The second monomer represented by and the following general formula (3)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 3 and R 4 independently represent a hydrogen atom or a methyl group)
    An alignment film comprising a copolymer with at least one of the third monomers represented by.
  2.  上記第1のモノマーは、下記構造式(1-1)~(1-8)
    Figure JPOXMLDOC01-appb-C000004
    で示されるモノマーのうち少なくとも一種のモノマーを含むことを特徴とする請求項1に記載の配向膜。
    The first monomer has the following structural formulas (1-1) to (1-8).
    Figure JPOXMLDOC01-appb-C000004
    The alignment film according to claim 1, wherein the alignment film contains at least one of the monomers represented by.
  3.  上記第2のモノマーは、下記構造式(2-1)および(2-2)
    Figure JPOXMLDOC01-appb-C000005
    で示されるモノマーのうち少なくとも一種のモノマーを含むことを特徴とする請求項1または2に記載の配向膜。
    The second monomer has the following structural formulas (2-1) and (2-2).
    Figure JPOXMLDOC01-appb-C000005
    The alignment film according to claim 1 or 2, wherein the alignment film contains at least one of the monomers represented by.
  4.  上記第3のモノマーは、下記構造式(3-1)および(3-2)
    Figure JPOXMLDOC01-appb-C000006
    で示されるモノマーのうち少なくとも一種のモノマーを含むことを特徴とする請求項1~3の何れか1項に記載の配向膜。
    The third monomer has the following structural formulas (3-1) and (3-2).
    Figure JPOXMLDOC01-appb-C000006
    The alignment film according to any one of claims 1 to 3, wherein the alignment film contains at least one of the monomers represented by.
  5.  上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーは、近紫外~青色の光を吸収して重合を開始する重合開始剤であることを特徴とする請求項1~4の何れか1項に記載の配向膜。 Any of claims 1 to 4, wherein at least one of the second monomer and the third monomer is a polymerization initiator that absorbs near-ultraviolet to blue light and initiates polymerization. The alignment film according to item 1.
  6.  上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーは、360nm以上、500nm以下の波長帯域の波長の光を吸収して重合を開始する重合開始剤であることを特徴とする請求項1~5の何れか1項に記載の配向膜。 A claim characterized in that at least one of the second monomer and the third monomer is a polymerization initiator that absorbs light having a wavelength band of 360 nm or more and 500 nm or less to initiate polymerization. Item 2. The alignment film according to any one of Items 1 to 5.
  7.  上記共重合体が、下記構造式(4)
    Figure JPOXMLDOC01-appb-C000007
     (式中、XおよびXは、それぞれ独立して、-H、-CH、または-Cを表し、Zは、-O-、-S-、-NH-、-CO-、-COO-、-OCO-、または直接結合を表し、YおよびYは、それぞれ独立して、-H、-F、-Cl、-Br、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基、または、炭素数1~6の直鎖状、分岐状もしくは環状のアルキルオキシを表し、RおよびRは、それぞれ独立して、水素原子またはメチル基を表し、mは、6~16の整数を表し、nは、8~24の整数を表し、pは、1~100の整数を表し、qは、1~50の整数を表し、rは、1~100の整数を表し、sは、1~100の整数を表す)
    で示される共重合体を含むことを特徴とする請求項1~6の何れか1項に記載の配向膜。
    The above copolymer has the following structural formula (4).
    Figure JPOXMLDOC01-appb-C000007
    (In the equation, X 1 and X 2 independently represent -H, -CH 3 , or -C 2 H 5 , where Z is -O-, -S-, -NH-, -CO-. , -COO-, -OCO-, or a direct bond, where Y 1 and Y 2 are independently -H, -F, -Cl, -Br, linear, branched with 1 to 6 carbon atoms. Represents a linear or cyclic alkyl group or a linear, branched or cyclic alkyloxy having 1 to 6 carbon atoms, and R 1 and R 2 independently represent a hydrogen atom or a methyl group, respectively. Represents an integer of 6 to 16, n represents an integer of 8 to 24, p represents an integer of 1 to 100, q represents an integer of 1 to 50, and r represents an integer of 1 to 100. Represents an integer, s represents an integer from 1 to 100)
    The alignment film according to any one of claims 1 to 6, which comprises a copolymer represented by.
  8.  上記共重合体が、下記構造式(5)
    Figure JPOXMLDOC01-appb-C000008
     (式中、XおよびXは、それぞれ独立して、-H、-CH、または-Cを表し、Zは、-O-、-S-、-NH-、-CO-、-COO-、-OCO-、または直接結合を表し、YおよびYは、それぞれ独立して、-H、-F、-Cl、-Br、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基、または、炭素数1~6の直鎖状、分岐状もしくは環状のアルキルオキシを表し、RおよびRは、それぞれ独立して、水素原子またはメチル基を表し、mは、6~16の整数を表し、nは、8~24の整数を表し、pは、1~100の整数を表し、qは、1~50の整数を表し、rは、1~100の整数を表し、sは、1~100の整数を表す)
    で示される共重合体を含むことを特徴とする請求項1~7の何れか1項に記載の配向膜。
    The above copolymer has the following structural formula (5).
    Figure JPOXMLDOC01-appb-C000008
    (In the equation, X 1 and X 2 independently represent -H, -CH 3 , or -C 2 H 5 , where Z is -O-, -S-, -NH-, -CO-. , -COO-, -OCO-, or a direct bond, where Y 1 and Y 2 are independently -H, -F, -Cl, -Br, linear, branched with 1 to 6 carbon atoms. Represents a linear or cyclic alkyl group or a linear, branched or cyclic alkyloxy having 1 to 6 carbon atoms, and R 3 and R 4 independently represent a hydrogen atom or a methyl group, m. Represents an integer of 6 to 16, n represents an integer of 8 to 24, p represents an integer of 1 to 100, q represents an integer of 1 to 50, and r represents an integer of 1 to 100. Represents an integer, s represents an integer from 1 to 100)
    The alignment film according to any one of claims 1 to 7, wherein the alignment film contains the copolymer represented by.
  9.  第1の絶縁基板と、第2の絶縁基板との間に、複数の薄膜トランジスタを備える薄膜トランジスタ層と、複数の発光素子を備える発光素子層と、第1の配向膜と、液晶層と、第2の配向膜とを、上記第1の絶縁基板側からこの順に備え、
     上記第1の配向膜および上記第2の配向膜のうち、少なくとも一方が、請求項1~8の何れか1項に記載の配向膜であることを特徴とする表示装置。
    Between the first insulating substrate and the second insulating substrate, a thin film transistor layer having a plurality of thin film transistors, a light emitting element layer having a plurality of light emitting elements, a first alignment film, a liquid crystal layer, and a second The alignment film of the above is provided in this order from the first insulating substrate side.
    A display device according to any one of claims 1 to 8, wherein at least one of the first alignment film and the second alignment film is the alignment film according to any one of claims 1 to 8.
  10.  上記液晶層が、上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーと、を含むことを特徴とする請求項9に記載の表示装置。 The display device according to claim 9, wherein the liquid crystal layer contains the first monomer, the second monomer, and at least one of the third monomers.
  11.  上記液晶層が垂直配向型の液晶層であることを特徴とする請求項9または10に記載の表示装置。 The display device according to claim 9 or 10, wherein the liquid crystal layer is a vertically oriented liquid crystal layer.
  12.  さらに偏光板を備えることを特徴とする請求項9~11の何れか1項に記載の表示装置。 The display device according to any one of claims 9 to 11, further comprising a polarizing plate.
  13.  上記偏光板が円偏光板であり、
     上記偏光板は、上記一対の絶縁基板のうち他方の絶縁基板における上記一方の絶縁基板とは反対側に設けられていることを特徴とする請求項12に記載の表示装置。
    The above polarizing plate is a circular polarizing plate.
    The display device according to claim 12, wherein the polarizing plate is provided on the opposite side of the other insulating substrate of the pair of insulating substrates from the one insulating substrate.
  14.  上記発光素子が、近紫外~青色の光を発光する発光素子であることを特徴とする請求項9~13の何れか1項に記載の表示装置。 The display device according to any one of claims 9 to 13, wherein the light emitting element is a light emitting element that emits near-ultraviolet to blue light.
  15.  上記発光素子が、360nm以上、500nm以下の波長帯域の波長の光を発光する発光素子であることを特徴とする請求項9~14の何れか1項に記載の表示装置。 The display device according to any one of claims 9 to 14, wherein the light emitting element is a light emitting element that emits light having a wavelength band of 360 nm or more and 500 nm or less.
  16.  複数の画素を含み、
     上記発光素子は、上記画素毎に形成されているとともに、上記複数の画素に共通する色で発光することを特徴とする請求項9~15の何れか1項に記載の表示装置。
    Contains multiple pixels
    The display device according to any one of claims 9 to 15, wherein the light emitting element is formed for each of the pixels and emits light in a color common to the plurality of pixels.
  17.  上記発光素子は、青色光を発光する発光素子であり、
     上記複数の画素は、赤色光を発光する赤色の画素と、緑色光を発光する緑色の画素と、青色光を発光する青色の画素とを備え、
     上記赤色の画素は、上記発光素子から発光された光を赤色光に変換する赤色の色変換層を備え、
     上記緑色の画素は、上記発光素子から発光された光を緑色光に変換する緑色の色変換層を備えていることを特徴とする請求項16に記載の表示装置。
    The light emitting element is a light emitting element that emits blue light.
    The plurality of pixels include a red pixel that emits red light, a green pixel that emits green light, and a blue pixel that emits blue light.
    The red pixel includes a red color conversion layer that converts the light emitted from the light emitting element into red light.
    The display device according to claim 16, wherein the green pixel includes a green color conversion layer that converts light emitted from the light emitting element into green light.
  18.  上記発光素子は、近紫外光を発光する発光素子であり、
     上記複数の画素は、赤色光を発光する赤色の画素と、緑色光を発光する緑色の画素と、青色光を発光する青色の画素とを備え、
     上記赤色の画素は、上記発光素子から発光された光を赤色光に変換する赤色の色変換層を備え、
     上記緑色の画素は、上記発光素子から発光された光を緑色光に変換する緑色の色変換層を備え、
     上記青色の画素は、上記発光素子から発光された光を青色光に変換する青色の色変換層を備えていることを特徴とする請求項16に記載の表示装置。
    The light emitting element is a light emitting element that emits near-ultraviolet light.
    The plurality of pixels include a red pixel that emits red light, a green pixel that emits green light, and a blue pixel that emits blue light.
    The red pixel includes a red color conversion layer that converts the light emitted from the light emitting element into red light.
    The green pixel includes a green color conversion layer that converts the light emitted from the light emitting element into green light.
    The display device according to claim 16, wherein the blue pixel includes a blue color conversion layer that converts light emitted from the light emitting element into blue light.
  19.  上記第2の配向膜と、上記第2の絶縁基板との間に、上記色変換層を備えることを特徴とする請求項17または18に記載の表示装置。 The display device according to claim 17 or 18, wherein a color conversion layer is provided between the second alignment film and the second insulating substrate.
  20.  請求項9~19の何れか1項に記載の表示装置の製造方法であって、
     上記第1の絶縁基板と、上記薄膜トランジスタ層と、上記発光素子層とを有するアレイ基板を形成する工程と、
     上記第2の絶縁基板を有する対向基板を形成する工程と、
     上記アレイ基板と上記対向基板との間に、液晶材料と、上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーと、を少なくとも含む液晶組成物を封入して液晶層を形成する工程と、
     上記発光素子を発光させることによって、少なくとも、上記第1のモノマーと、上記第2のモノマーおよび上記第3のモノマーのうち少なくとも一方のモノマーと、を共重合させて、上記アレイ基板に、上記液晶層に接して、上記第1の配向膜を形成する一方、上記対向基板に、上記液晶層に接して、上記第1の配向膜を形成する工程と、を含むことを特徴とする表示装置の製造方法。
    The method for manufacturing a display device according to any one of claims 9 to 19.
    A step of forming an array substrate having the first insulating substrate, the thin film transistor layer, and the light emitting element layer.
    The step of forming the facing substrate having the second insulating substrate and
    A liquid crystal composition containing at least a liquid crystal material, the first monomer, and at least one of the second monomer and the third monomer is encapsulated between the array substrate and the facing substrate. And the process of forming a liquid crystal layer
    By causing the light emitting element to emit light, at least the first monomer, the second monomer, and at least one of the third monomers are copolymerized, and the liquid crystal is formed on the array substrate. A display device comprising a step of contacting a layer to form the first alignment film, while the opposing substrate includes a step of contacting the liquid crystal layer to form the first alignment film. Production method.
  21.  上記第1の配向膜および上記第2の配向膜を形成する前の上記液晶組成物中の上記第1のモノマーの含有量が、0.3wt%以上、5wt%以下であることを特徴とする請求項20に記載の表示装置の製造方法。 The content of the first monomer in the liquid crystal composition before forming the first alignment film and the second alignment film is 0.3 wt% or more and 5 wt% or less. The method for manufacturing a display device according to claim 20.
  22.  上記第1の配向膜および上記第2の配向膜を形成する前の上記液晶組成物中の上記第2のモノマーおよび上記第3のモノマーの合計の含有量が、0.01wt%以上、0.3wt%以下であることを特徴とする請求項20または21に記載の表示装置の製造方法。 The total content of the second monomer and the third monomer in the liquid crystal composition before forming the first alignment film and the second alignment film is 0.01 wt% or more, 0. The method for manufacturing a display device according to claim 20 or 21, wherein the content is 3 wt% or less.
  23.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000009
     (式中、XおよびXは、それぞれ独立して、-H、-CH、または-Cを表し、Zは、-O-、-S-、-NH-、-CO-、-COO-、-OCO-、または直接結合を表し、YおよびYは、それぞれ独立して、-H、-F、-Cl、-Br、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基、または、炭素数1~6の直鎖状、分岐状もしくは環状のアルキルオキシを表し、mは、6~16の整数を表し、nは、8~24の整数を表す)
    で示される第1のモノマーと、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000010
     (式中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表す)
    で示される第2のモノマーおよび下記一般式(3)
    Figure JPOXMLDOC01-appb-C000011
     (式中、RおよびRは、それぞれ独立して、水素原子またはメチル基を表す)
    で示される第3のモノマーのうち少なくとも一方のモノマーと、を含むことを特徴とする液晶配向剤。
    The following general formula (1)
    Figure JPOXMLDOC01-appb-C000009
    (In the equation, X 1 and X 2 independently represent -H, -CH 3 , or -C 2 H 5 , where Z is -O-, -S-, -NH-, -CO-. , -COO-, -OCO-, or a direct bond, where Y 1 and Y 2 are independently -H, -F, -Cl, -Br, linear, branched with 1 to 6 carbon atoms. A linear or cyclic alkyl group or a linear, branched or cyclic alkyloxy having 1 to 6 carbon atoms is represented, m represents an integer of 6 to 16, and n represents an integer of 8 to 24. )
    The first monomer represented by and the following general formula (2)
    Figure JPOXMLDOC01-appb-C000010
    (In the formula, R 1 and R 2 independently represent a hydrogen atom or a methyl group)
    The second monomer represented by and the following general formula (3)
    Figure JPOXMLDOC01-appb-C000011
    (In the formula, R 3 and R 4 independently represent a hydrogen atom or a methyl group)
    A liquid crystal alignment agent comprising at least one of the third monomers represented by.
  24.  請求項23に記載の液晶配向剤と、液晶材料と、を含むことを特徴とする液晶組成物。 A liquid crystal composition comprising the liquid crystal alignment agent according to claim 23 and a liquid crystal material.
PCT/JP2019/048128 2019-12-09 2019-12-09 Alignment film, display device, method for producing display device, liquid crystal alignment agent, and liquid crystal composition WO2021117104A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/048128 WO2021117104A1 (en) 2019-12-09 2019-12-09 Alignment film, display device, method for producing display device, liquid crystal alignment agent, and liquid crystal composition
US17/781,338 US20230046964A1 (en) 2019-12-09 2019-12-09 Alignment film, display device, method for producing display device, liquid crystal alignment agent, and liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048128 WO2021117104A1 (en) 2019-12-09 2019-12-09 Alignment film, display device, method for producing display device, liquid crystal alignment agent, and liquid crystal composition

Publications (1)

Publication Number Publication Date
WO2021117104A1 true WO2021117104A1 (en) 2021-06-17

Family

ID=76329943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048128 WO2021117104A1 (en) 2019-12-09 2019-12-09 Alignment film, display device, method for producing display device, liquid crystal alignment agent, and liquid crystal composition

Country Status (2)

Country Link
US (1) US20230046964A1 (en)
WO (1) WO2021117104A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070434A1 (en) * 2021-10-28 2023-05-04 华为技术有限公司 Electrode assembly and manufacturing method therefor, and display apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069487A1 (en) * 2011-11-08 2013-05-16 シャープ株式会社 Liquid crystal display device and method for manufacturing same
WO2013133082A1 (en) * 2012-03-05 2013-09-12 シャープ株式会社 Liquid crystal display device and method for manufacturing liquid crystal display device
WO2019009166A1 (en) * 2017-07-05 2019-01-10 シャープ株式会社 Liquid crystal display device and method for manufacturing liquid crystal display device
WO2019064575A1 (en) * 2017-09-29 2019-04-04 シャープ株式会社 Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069487A1 (en) * 2011-11-08 2013-05-16 シャープ株式会社 Liquid crystal display device and method for manufacturing same
WO2013133082A1 (en) * 2012-03-05 2013-09-12 シャープ株式会社 Liquid crystal display device and method for manufacturing liquid crystal display device
WO2019009166A1 (en) * 2017-07-05 2019-01-10 シャープ株式会社 Liquid crystal display device and method for manufacturing liquid crystal display device
WO2019064575A1 (en) * 2017-09-29 2019-04-04 シャープ株式会社 Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070434A1 (en) * 2021-10-28 2023-05-04 华为技术有限公司 Electrode assembly and manufacturing method therefor, and display apparatus

Also Published As

Publication number Publication date
US20230046964A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP3852931B2 (en) Luminescent display device
KR101339000B1 (en) Organic light emitting display device and method of fabricating thereof
CN1192276C (en) Electrooptical device, its mfg. method and electronic machine thereof
KR102055004B1 (en) Display device and method for manufacturing of the same
JP2011512558A (en) Brightness improving polarizing plate for organic light emitting devices
US10038168B2 (en) Photoactive birefringent materials in OLEDs
TW201240183A (en) Fluorescent substrate and display device and lighting device using the same
KR101503313B1 (en) Organic light emitting display device and method of fabricatin thereof
TW201108849A (en) Organic electroluminescence device
JP2011175244A (en) Flat panel display and method of manufacturing flat panel display
CN108132569A (en) Mirror unit and the display device including the mirror unit
KR20060079241A (en) Liquid crystal panel, manufacturing method thereof, and electronic device using the liquid crystal panel
KR20180062295A (en) Optical unit and display device having the same
KR101950813B1 (en) Coatable phase retardation film and electroluminescence display device having thereof
WO2021117104A1 (en) Alignment film, display device, method for producing display device, liquid crystal alignment agent, and liquid crystal composition
KR20090005770A (en) Polarizer and display device comprising the same
Tsai et al. A flexible transparent organic light‐emitting display with high‐transmittance cathode and high‐contrast electrochromic shutter
CN100495176C (en) OEL display emitting light on top and bottom
KR20180000913A (en) Organic electronic device for virtual reality display
JP5136844B2 (en) Backlight and liquid crystal display device
KR20190047153A (en) Liquid crystal composition, liquid crystal display device using the same, and method of manufacturing liquid crystal display device
KR101830612B1 (en) Organic light emitting display device
KR20180074856A (en) Mirror cell and display device comprising the same
JP2007178912A (en) Liquid crystal display device and method for manufacturing the same
CN112909201B (en) Display panel, preparation method thereof and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP