TW201240183A - Fluorescent substrate and display device and lighting device using the same - Google Patents

Fluorescent substrate and display device and lighting device using the same Download PDF

Info

Publication number
TW201240183A
TW201240183A TW101104092A TW101104092A TW201240183A TW 201240183 A TW201240183 A TW 201240183A TW 101104092 A TW101104092 A TW 101104092A TW 101104092 A TW101104092 A TW 101104092A TW 201240183 A TW201240183 A TW 201240183A
Authority
TW
Taiwan
Prior art keywords
light
layer
substrate
phosphor
blue
Prior art date
Application number
TW101104092A
Other languages
Chinese (zh)
Inventor
Hisanori Bessho
Yoshimasa Fujita
Yuhki Kobayashi
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW201240183A publication Critical patent/TW201240183A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A fluorescent substrate includes a substrate, a first fluorescent substance layer, and a first intermediate layer. The first fluorescent substance layer generates fluorescence by incident excitation light and emits the generated light from a light emitting surface. The first intermediate layer is provided between the first fluorescent substance layer and the substrate and has a refractive index sloping from a vicinity of the first fluorescent substance layer to a vicinity of the substrate.

Description

201240183 六、發明說明: 【發明所屬之技标領域】 本發明係關於一種.螢光體基板、及使用其之顯示裝置、 照明裝置。 【先前技術】 近年來,伴隨社會之高度資訊化,平板顯示器之需求不 斷增大。作為平板顯示器’熟知有非自發光型之液晶顯示 器(LCD ’ Liquid Crystal Display)、自發光型之電漿顯示器 (PDP ’ Plasma Display Panel)、無機電致發光(無機 EL(Electroluminescence))顯示器、有機電致發光(以下亦稱 為「有機EL」或「有機LED」)顯示器等。該等平板顯示 器中,有機EL顯示器因可自發光而尤其受到關注。關於有 機EL顯示器而言,熟知有藉由單純矩陣驅動而進行動畫顯 示之技術、或者藉由使用薄膜電晶體(Thin Film Transistor,以下亦簡稱為TFT)之主動式矩陣驅動而進行 動畫顯示的技術。於先前之有機EL顯示器中,將發出紅色 光、綠色光、藍色光之像素作為1個單位並排設置,做出 以白色為首之各種顏色而進行全彩顯示。 為實現此種有機EL顯示器,通常係採用藉由使用蔽陰遮 罩之遮罩蒸鐘法分別塗佈有機發光層材料,藉此形成紅 色、綠色、藍色之各像素之方法。然而,該方法中遮罩之 加工精度之提南、遮罩與基板之對準精度之提高、遮罩之 大型化成為問題。尤其係以電視為代表之大型顯示器之領 域中’基板尺寸自所謂之G6代(1800 mmx 1500 mm)向G8代 161804.doc 201240183 (2460 mmx2160 _)、G1〇代(3〇5〇 _χ285〇 叫大型化。 於先前之製造方法t ’需要與基板尺寸為同等以上之遮 罩,故需要與大型基板相應的遮罩之製作、加工。 遮罩之基材係由非常薄之金屬(一般膜厚:5〇 nm〜i〇〇 nm)構成,故遮罩之大型化較為困難。又,由於與大型基 板相應之遮罩之製#、加工_,故於產±遮罩之加工精 度之下降、遮罩與基板t對準精度之下降的情形時,由於 不同發光層材料混合而引起像素間之混色。為防止該等現 象,需要使設於像素間之絕緣層之寬度變大,而當像素面 積固疋時發光部之面積會變少。即,該等現象會導致像素 之開口率之下降,且導致有機EL元件之亮度之下降、耗電 之上升、壽命之下降。又,於先前之製造方法中,蒸鍍源 係配置於較基板更下側,自下方朝向上方蒸鍍有機材料而 使有機層成膜’故隨著基板及遮罩之大型化,產生中央部 之遮罩之撓曲。該遮罩之撓曲亦成為上述混色之原因。於 極端之情形時’出現未形成有機層之部分,產生上下電極 之漏電。又’於先前之方法中,遮罩經過特定之使用次數 後’遮罩劣化而無法使用,故遮罩之大型化導致顯示器之 製造成本之增大。 因此’提出有一種EL元件,其包括發出藍色域至藍綠色 域之光之有機EL材料部、發出紫外域之光之有機EL材料 部、以有機EL材料部之藍色域至藍綠色域之光作為激發光 而發出、红色光之螢光材料部、以藍色域至藍綠色域之光為 激發光而發出綠色光之螢光材料部、以及以紫外域之光為 I61804.doc 201240183 激發光而發出藍色光的螢光材料部(參照下述專利文獻ι)β 該EL元件與上述分別塗佈方式之有機£乙元件相比可簡單 製造,於成本方面優異。同樣地,提出有一種有機^元 件,其包括EL發光元件部及勞光層,且於勞光層之側面上 設有反射膜,藉此可將朝向側面之光有效地向正面掠出 (參照下述專利文獻2)。 又,提出有一種彩色顯示裝置’其係將出射發光峰值波 長為400 nm〜500 nm之光之光源 '液晶顯示元件、及包含 螢光體之波長轉換部組合而成者(參照下述專利文獻3、非 專利文獻1)。例如,於專利文獻3中記載有下内容:於該 裝置中係藉由設於液晶層之外側之r、G、B之登光體層發 光’故可實現光利用效率高且明亮之彩色顯示裝置。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利第2795932號公報 [專利文獻2]曰本專利特開平11-329726號公報 [專利文獻3]日本專利特開2000-131683號公報 [非專利文獻] [非專利文獻 1]IDW,09,p.1001(2009) 【發明内容】 [發明所欲解決之問題] 然而,於上述先前之技術中產生如下之現象。 於專利文獻1所記載之EL元件中,自螢光材料層發出之 光係各向同性地擴散。因此,入射至折射率與螢光材料層 161804.doc 201240183 不同之基板材料部之光之—卹八、^ μ w 尤之。卩分破S玄基板材料部之界面反 射,不向外部而變成損耗,使得所得之發光效率下降。 因此’為獲传特定之發光效率而必須增大接通電力,變 成耗電上升之主要原因。 於專利文獻2所記載之有機EL元件中,亦無法使朝向光 源側發出之光有效地掠出,難以充分提高發光效率。 於專利文獻3所記載之彩色顯示裝置中,亦與上述專利 文獻1、專利文獻2同樣地,由於自螢光體層發出之光為各 向同1± ’故來自螢光體層之光向外部掠出時&光損耗較 大’所得之發光效率較低。 本發明之一形態之目的在於提供一種螢光體基板,可使 自螢光體層向基板侧、即出光方向發出之螢光不被與基板 之界面反射而有效地掠出,藉此可提高來自螢光體層之光 之掠出效率,從而提高轉換效率。又,本發明之其他形態 之目的在於提供一種顯示裝置,藉由將上述螢光體基板與 有機EL元件、液晶元件等組合而使視角特性優異且可實 現低耗電化。又,本發明之其他形態之目的在於提供一種 明亮且可實現低耗電化之照明裝置。 [解決問題之技術手段] 本發明之一形態之螢光體基板包括:基板;第一榮光體 層’其構成為藉由入射之激發光產生螢光,自出光面射出 產生之光;及第一中間層,其係設於上述第一螢光體層與 上述基板之間’且自上述第一螢光體層附近直至上述基板 附近具有折射率梯度。 161804.doc 201240183 本發明之一形態之螢光體基板亦可為於將上述第一螢光 體層之折射率設為nl、上述基板之折射率設為“之情形 時,上述第一中間層具有其折射率自上述螢光體層朝向上 述基板,於與上述出光面正交之厚度方向上在“至心之範 圍内變化的梯度。 本發明之一形態之螢光體基板亦可為上述第一中間層係 由1個以上之微小構造體形成,且具有自上述螢光體層附 近朝向上述基板附近,上述微小構造體之截面積變小之形 狀。 本發明之一形態之勞光體基板亦可為上述微小構造體係 大致圓錐形狀,且上述大致圓錐形狀之頂點部所成之頂角 為4 5 °以下。 本發明之一形態之螢光體基板亦可為設有保護層,該保 護層係設於上述基板之外表面,且於自上述基板之外表面 遠離之方向上具有上述折射率梯度。 本發明之一形態之螢光體基板亦可為於將上述基板之折 射率設為n3、空氣之折射率設為n4之情形時,上述保護層 具有其折射率於自上述基板之外表面遠離之方向且與上述 出光面正交之厚度方向上在n3至n4之範圍内變化的梯度。 本發明之一形態之螢光體基板亦可為上述保護層係由1 個以上之微小構造體形成,且具有自上述基板附近至上述 外部層附近,上述微小構造體之截面積變小之形狀。 本發明之一形態之螢光體基板亦可為上述微小構造體係 大致圓錐形狀’且上述大致圓錐形狀之頂點部所成之頂角 161804.doc 201240183 為45°以下。 本發明之一形態之螢光體基板亦可為於上述螢光體層之 1個以上之侧面設有反射層。 本發明之一形態之螢光體基板亦可為於上述第一螢光體 層之使上述激發光入射的面上具備波長選擇透過反射層, 該波長選擇透過反射層構成為至少透過上述激發光之峰值 波長之光,且至少反射上述第一螢光體層之發光峰值波長 之光。 本發明之一形態之螢光體基板亦可為上述第一螢光體層 包含對應特定區域分割為複數個之複數之第二螢光體層, 且上述第一中間層係形成於上述複數之第二螢光體層與上 述基板之間。 本發明之一形態之螢光體基板亦可為上述複數之第二螢 光體層具有互不相同之折射率,上述第一中間層包含對應 特定區域分割之複數之第二中㈣,上述複數之第二中間 層分別係設於上述複數之第二螢光體層與上述基板之間, 且上述複數之第二中間層具有互不相同之折射率梯度。 本發明之其他形態之顯示裝置包括上述本發明之一形態 之螢光體基板、以及具有射出照射於上述第―螢光體層之 激發光之第一發光元件的光源。 本發明之其他形態之顯示裝置進而包含至少含有進行紅 色光顯示之紅色像素、進行綠色光顯示之綠色像素、及進 行藍色光顯示之藍色像素的複數之像素,自上述光源射出 作為上錢發光之紫外光,作為上述第二螢光體層,係於 161804.doc 201240183 上述紅色像素設置將上述紫外光作為上述激發光而發出紅 色光之紅色螢光體層’於上述綠色像素設置將上述紫外光 作為上述激發光而發出綠色光之綠色螢光體層,且於上述 藍色像素設置將上述紫外光作為上述激發光而發出藍色光 的藍色螢光體層。 本發明之其他形態之顯示裝置亦可進而包括:複數之像 素’其至少包含進行紅色光顯示之紅色像素、進行綠色光 顯示之綠色像素、及進行藍色光顯示之藍色像素;及散射 層,其係設於上述藍色像素而使上述藍色光散射;自上述 光源射出作為上述激發光之藍色光,且作為上述第二螢光 體層,係於上述紅色像素設置將上述藍色光作為上述激發 光而發出紅色光之紅色勞光體層。 本發明之其他形態之顯示裝置亦可為上述光源係包括至 少對應於上述紅色像素、上述綠色像素、及上述藍色像素 之各者而„又的複數之第一發光元件、以及分別驅動上述複 數之第二發光元件之複數之驅動元件的主動式矩陣驅動方 式之光源。 本發明之其他形態之顯示裝置亦可為上述複數之驅動元 件係配置於上述紅色螢光體層、上述綠色螢光體層、及上 述藍色勞光體層之任·者、與形成有上述複數之驅動元件 之基板之間,且上述紅色螢光體層、上述綠色螢光體層、 及上述藍色螢光體層之各者係向與上述複數之驅動元件為 反方向射出光。 … 本發明之其他形態之顯示裝置亦可為上述光源包含發光 161S04.doc 201240183 -極體、有機電致發光元件、無機電致發光元件中之任— 者。 本發明之其他形態之顯示裝置亦可㈣而於上述光源與 上述螢光體基板之間,設置構成為對應上述紅色像素、綠 色像素、及藍色像素而控制自上述光源射出之光之透過率 的液晶元件’且上述光源係自光射出面射出光之面狀光 源。 本發明之it而其他形態之照明裝置包括±述本發明一形 態之螢光體基板、以及具有射出照射於上述螢光體層之激 發光之發光元件的光源。 [發明之效果] 根據本發明之形態,可實現使自螢光體層發出之螢光中 向基板方向射出之光不被螢光體層與基板之界面反射而有 效掠出之螢光基板。又,可實現使入射至基板内之光不被 基板與外部層之界面反射而有效向外部層側掠出的螢光體 基板。進而,可實現提高自螢光體之光之掠出效率且提高 轉換效率之螢光體基板。又,藉由將上述螢光體基板與有 機ELtg件、液晶元件等組合而可實現視角特性優異、顯示 品質較兩且低耗電化之顯示裝置。又,可實現明亮且低耗 電化之照明裝置。 【實施方式】 以下’列舉實施形態及實施例而更詳細地說明本發明之 形態’但本發明之形態並不限定於該等實施形態及實施 例0 161804.doc 201240183 [第1實施形態] 圖1A及1B係表示本發明之顯示裝置之第1實施形態之概 略構成的圖。圖1A係表示本實施形態之顯示袭置之全體的 剖面圖。圖1B係表示有機EL元件基板之要部之剖面圖。 再者’以下之各圖式中為便於觀察各構成要素,有時使構 成要素之尺寸比例尺不同。 圖1A中符號1係顯示裝置,該顯示裝置1包括螢光體基板 2、以及經由平坦化膜3貼合於螢光體基板2上的有機El元 件基板4(光源)。本實施形態之顯示裝置1中,分別進行紅 色、綠色、藍色顯示之3個點構成作為構成圖像之最小單 位的1個像素。然而,以下之說明中將進行紅色顯示之點 稱為紅色像素PR、將進行綠色顯示之點稱為綠色像素 PG、將進行藍色顯示之點稱為藍色像素pb ^本實施形態 之顯示裝置1中,自作為光源之有機EL元件基板4射出紫外 光’將該紫外光作為激發光而入射至螢光體基板2。藉由 該激發光’紅色像素PR產生紅色之螢光、綠色像素PG產 生綠色之螢光、藍色像素PB產生藍色之螢光,藉由該等各 色光而進行全彩顯示。 (螢光體基板) 以下’對本實施形態之螢光體基板進行詳細說明。 於本實施形態之螢光體基板2中,在基板5内面側(第i 面)介隔中間層10而形成有光吸收層6及螢光體層7R、7G、 7B °以覆蓋該等光吸收層6及螢光體層7R、7G、7B之方式 形成有平坦化膜3。又,於基板5外表面側(第2面),在上述 161804.doc201240183 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a phosphor substrate, a display device using the same, and a lighting device. [Prior Art] In recent years, with the high level of informationization in society, the demand for flat panel displays has been increasing. As a flat panel display, it is well known as a liquid crystal display (LCD ' Liquid Crystal Display), a self-luminous type plasma display panel (PDP 'Plasma Display Panel), an inorganic electroluminescence (inorganic EL (Electroluminescence)) display, Electroluminescence (hereinafter also referred to as "organic EL" or "organic LED") displays. Among these flat panel displays, organic EL displays are particularly attracting attention due to self-luminescence. Regarding an organic EL display, a technique of performing animation display by simple matrix driving or an animation display using an active matrix driving using a thin film transistor (hereinafter also referred to as TFT) is known. . In the conventional organic EL display, pixels emitting red light, green light, and blue light are arranged side by side as one unit, and various colors including white are displayed for full color display. In order to realize such an organic EL display, a method of separately coating the respective organic light-emitting layer materials by a masking method using a masking mask to form respective pixels of red, green, and blue is employed. However, in this method, the processing accuracy of the mask is increased, the alignment accuracy of the mask and the substrate is improved, and the size of the mask is increased. Especially in the field of large-scale displays represented by televisions, the 'substrate size' is from the so-called G6 generation (1800 mmx 1500 mm) to the G8 generation 161804.doc 201240183 (2460 mmx2160 _), G1 generation (3〇5〇_χ285〇) In the prior manufacturing method t 'requires a mask equal to or larger than the substrate size, it is necessary to manufacture and process a mask corresponding to a large substrate. The substrate of the mask is made of a very thin metal (general film) Thickness: 5〇nm~i〇〇nm), it is difficult to enlarge the mask. Moreover, due to the masking and processing of the mask corresponding to the large substrate, the processing precision of the mask is reduced. In the case where the alignment accuracy of the mask and the substrate t is lowered, the color mixture between the pixels is caused by the mixing of the different light-emitting layer materials. To prevent such phenomena, it is necessary to increase the width of the insulating layer provided between the pixels. When the pixel area is fixed, the area of the light-emitting portion is reduced. That is, these phenomena cause a decrease in the aperture ratio of the pixel, and the luminance of the organic EL element is lowered, the power consumption is increased, and the lifetime is lowered. Manufacturing method The vapor deposition source is disposed on the lower side of the substrate, and the organic material is deposited from the lower side toward the upper side to form the organic layer. Thus, as the substrate and the mask are enlarged, the mask of the central portion is deflected. The deflection of the mask also becomes the cause of the above-mentioned color mixing. In the extreme case, 'the portion where the organic layer is not formed is generated, and the leakage of the upper and lower electrodes occurs. In the previous method, the mask is covered after a certain number of uses. Since the cover is deteriorated and cannot be used, the enlargement of the mask leads to an increase in the manufacturing cost of the display. Therefore, there has been proposed an EL element including an organic EL material portion that emits light in a blue to blue-green region, and emits an ultraviolet region. The organic EL material portion of the light, the light from the blue region to the blue-green region of the organic EL material portion is emitted as the excitation light, the phosphor material portion of the red light, and the light from the blue region to the blue-green region are the excitation light. A fluorescent material portion that emits green light and a fluorescent material portion that emits blue light by using the light in the ultraviolet region as the excitation light of I61804.doc 201240183 (see Patent Document 1 below). The EL element is coated separately from the above. Compared with the organic element of the type, it can be easily manufactured and is excellent in cost. Similarly, an organic element is proposed which includes an EL light-emitting element portion and a light-resistant layer, and a reflective film is provided on the side of the working layer. Thereby, the light toward the side can be efficiently swept forward (see Patent Document 2 below). Further, a color display device is proposed which is a light source that emits light having a peak wavelength of 400 nm to 500 nm. The liquid crystal display element and the wavelength conversion unit including the phosphor are combined (see Patent Document 3 and Non-Patent Document 1 below). For example, Patent Document 3 describes the following: The light-emitting layer of r, G, and B provided on the outer side of the liquid crystal layer emits light, so that a color display device having high light use efficiency and brightness can be realized. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Non-Patent Document 1] [Non-Patent Document 1] IDW, 09, p. 1001 (2009) [Disclosure] [Problems to be Solved by the Invention] However, the following phenomenon occurs in the above prior art. In the EL element described in Patent Document 1, the light emitted from the phosphor layer is isotropically diffused. Therefore, it is incident on the substrate of the substrate material having a refractive index different from that of the fluorescent material layer 161804.doc 201240183. The 反 split breaks the interface reflection of the S-base material portion, and does not become loss to the outside, so that the obtained luminous efficiency is lowered. Therefore, in order to transmit a specific luminous efficiency, it is necessary to increase the power-on, which is a major cause of an increase in power consumption. In the organic EL device described in Patent Document 2, light emitted toward the light source side cannot be efficiently swept out, and it is difficult to sufficiently improve the light-emitting efficiency. In the color display device described in Patent Document 3, similarly to the above-described Patent Document 1 and Patent Document 2, since the light emitted from the phosphor layer is the same as 1±', the light from the phosphor layer is swept to the outside. When the light & light loss is large, the resulting luminous efficiency is low. An object of one aspect of the present invention is to provide a phosphor substrate which can efficiently illuminate the phosphor emitted from the phosphor layer toward the substrate side, that is, in the light-emitting direction, without being reflected by the interface with the substrate, thereby improving the efficiency. The efficiency of the light from the phosphor layer increases the conversion efficiency. Further, another aspect of the present invention is to provide a display device which is excellent in viewing angle characteristics and can achieve low power consumption by combining the above-described phosphor substrate with an organic EL element, a liquid crystal element or the like. Further, another object of the present invention is to provide a lighting device which is bright and can achieve low power consumption. [Means for Solving the Problem] A phosphor substrate according to an aspect of the present invention includes: a substrate; the first glory layer ' is configured to generate fluorescence by incident excitation light, and emit light generated from the light-emitting surface; and first The intermediate layer is disposed between the first phosphor layer and the substrate and has a refractive index gradient from a vicinity of the first phosphor layer to a vicinity of the substrate. 161804.doc 201240183 The phosphor substrate of one embodiment of the present invention may have a first intermediate layer when the refractive index of the first phosphor layer is n1 and the refractive index of the substrate is "" The refractive index is from the phosphor layer toward the substrate, and is in a gradient in the thickness direction orthogonal to the light-emitting surface in a range of "to the center of the heart." In the phosphor substrate according to the aspect of the invention, the first intermediate layer may be formed of one or more microstructures, and the vicinity of the phosphor layer may be adjacent to the substrate, and the cross-sectional area of the microstructure may be changed. Small shape. The work piece substrate according to one aspect of the present invention may have a substantially conical shape of the minute structure system, and an apex angle of the apex portion of the substantially conical shape may be 45 or less. The phosphor substrate according to one aspect of the present invention may be provided with a protective layer which is provided on the outer surface of the substrate and which has the refractive index gradient in a direction away from the outer surface of the substrate. In the case where the refractive index of the substrate is n3 and the refractive index of air is n4, the protective layer has a refractive index which is away from the outer surface of the substrate. The direction and the gradient in the thickness direction orthogonal to the above-mentioned light-emitting surface in the range of n3 to n4. In the phosphor substrate of the present invention, the protective layer may be formed of one or more microstructures, and may have a shape in which the cross-sectional area of the microstructure is small from the vicinity of the substrate to the vicinity of the outer layer. . The phosphor substrate of one embodiment of the present invention may have a substantially conical shape of the fine structure system and an apex angle 161804.doc 201240183 of the apex portion of the substantially conical shape is 45 or less. In the phosphor substrate of one embodiment of the present invention, a reflective layer may be provided on one or more side surfaces of the phosphor layer. In the phosphor substrate of the first aspect of the present invention, the surface of the first phosphor layer on which the excitation light is incident may be provided with a wavelength selective transmission reflection layer, and the wavelength selective transmission reflection layer may be configured to transmit at least the excitation light. The light of the peak wavelength reflects at least the light of the peak wavelength of the emission of the first phosphor layer. In the phosphor substrate of one aspect of the present invention, the first phosphor layer may include a plurality of second phosphor layers divided into a plurality of corresponding regions, and the first intermediate layer may be formed in the second plurality. The phosphor layer is between the substrate and the substrate. In the phosphor substrate of one aspect of the present invention, the plurality of second phosphor layers may have refractive indices different from each other, and the first intermediate layer may include a second (four) of a plurality of plural regions corresponding to a specific region, the plurality of The second intermediate layer is respectively disposed between the plurality of second phosphor layers and the substrate, and the plurality of second intermediate layers have refractive index gradients different from each other. A display device according to another aspect of the present invention includes the above-described phosphor substrate of one embodiment of the present invention and a light source having a first light-emitting element that emits excitation light that is incident on the first phosphor layer. Further, the display device according to another aspect of the present invention further includes a plurality of pixels including at least a red pixel for performing red light display, a green pixel for performing green light display, and a blue pixel for performing blue light display, and emitting light from the light source as an upward light. The ultraviolet light is used as the second phosphor layer in 161804.doc 201240183. The red pixel is provided with a red phosphor layer that emits red light as the excitation light as the excitation light, and the ultraviolet light is disposed on the green pixel. The excitation light emits a green phosphor layer of green light, and the blue pixel is provided with a blue phosphor layer that emits blue light as the excitation light. The display device according to another aspect of the present invention may further include: a plurality of pixels including at least a red pixel for performing red light display, a green pixel for performing green light display, and a blue pixel for performing blue light display; and a scattering layer. The blue pixel is provided on the blue pixel to scatter the blue light; the blue light as the excitation light is emitted from the light source, and the second phosphor layer is provided with the blue light as the excitation light. The red light layer of red light is emitted. In a display device according to another aspect of the present invention, the light source may include a plurality of first light-emitting elements corresponding to at least each of the red pixel, the green pixel, and the blue pixel, and drive the plural The light source of the active matrix driving method of the plurality of driving elements of the second light emitting element. The display device according to another aspect of the present invention may be configured such that the plurality of driving elements are disposed on the red phosphor layer and the green phosphor layer. And each of the blue working layer and the substrate on which the plurality of driving elements are formed, and each of the red phosphor layer, the green phosphor layer, and the blue phosphor layer The plurality of driving elements emit light in opposite directions. The display device according to another aspect of the present invention may be any one of the above-mentioned light sources including the light source 161S04.doc 201240183 - a polar body, an organic electroluminescent element, or an inorganic electroluminescent element. The display device according to another aspect of the present invention may be configured between (4) between the light source and the phosphor substrate. The liquid crystal element ′ is configured to control the transmittance of light emitted from the light source corresponding to the red pixel, the green pixel, and the blue pixel, and the light source is a planar light source that emits light from the light exit surface. The illuminating device of another aspect includes a phosphor substrate of one embodiment of the present invention and a light source having a light-emitting element that emits excitation light that is irradiated onto the phosphor layer. [Effect of the Invention] According to the aspect of the present invention, it is possible to realize The fluorescent substrate which is emitted from the phosphor layer and which is emitted from the phosphor layer in the direction of the substrate is not reflected by the interface between the phosphor layer and the substrate, and is effectively detached from the substrate. Further, the light incident into the substrate can be prevented from being externally applied to the substrate. A phosphor substrate which is reflected by the interface of the layer and is effectively swept out to the outer layer side. Further, a phosphor substrate which improves the light-pumping efficiency of the phosphor and improves the conversion efficiency can be realized. When a light-emitting board is combined with an organic ELtg device, a liquid crystal element, or the like, a display device having excellent viewing angle characteristics and two display qualities and low power consumption can be realized, and bright and low-cost can be realized. [Embodiment] Hereinafter, the embodiment of the present invention will be described in more detail with reference to the embodiments and examples. However, the embodiment of the present invention is not limited to the embodiments and the embodiment 0 161804.doc 201240183 [ 1A and 1B are views showing a schematic configuration of a display device according to a first embodiment of the present invention. Fig. 1A is a cross-sectional view showing the entire display of the present embodiment. Fig. 1B is a view showing an organic EL device. The cross-sectional view of the main part of the substrate. In the following drawings, in order to facilitate observation of each component, the size scale of the components may be different. The symbol 1 in Fig. 1A is a display device, and the display device 1 includes fluorescent light. The body substrate 2 and the organic EL element substrate 4 (light source) bonded to the phosphor substrate 2 via the planarizing film 3. In the display device 1 of the present embodiment, three of the red, green, and blue displays are respectively displayed. The dot constitutes one pixel as the smallest unit constituting the image. However, in the following description, a point in which red is displayed is referred to as a red pixel PR, a point in which green display is to be referred to as a green pixel PG, and a point in which a blue display is to be referred to as a blue pixel pb. In the first embodiment, the ultraviolet light is emitted from the organic EL element substrate 4 as a light source, and the ultraviolet light is incident on the phosphor substrate 2 as excitation light. The red light of the excitation light 'red pixel PR produces red fluorescence, the green pixel PG produces green fluorescent light, and the blue pixel PB produces blue fluorescent light, and the full color display is performed by the respective color lights. (Fluorescent Substrate) Hereinafter, the phosphor substrate of the present embodiment will be described in detail. In the phosphor substrate 2 of the present embodiment, the light absorbing layer 6 and the phosphor layers 7R, 7G, and 7B are formed by interposing the intermediate layer 10 on the inner surface side (i-th surface) of the substrate 5 to cover the light absorption. The planarizing film 3 is formed in the form of the layer 6 and the phosphor layers 7R, 7G, and 7B. Further, on the outer surface side (second surface) of the substrate 5, in the above 161804.doc

S 12 201240183 基板5與作為該基板5之外部層之外氣側之間形成㈣㈣ 11。即,於基板5之第2面上形成有保護層u。 每一像素設置有複數之螢光體層7R、7G、7B。複數之 螢光體層7R、7G、7B由不同螢光體材料構成,以根據不 同像素發iiJ不同色的光。再者,構成料複數之螢光體層 7R、7G、7B之螢光體材料彼此之折射率亦可互不相同。 光吸收層6係由具有光吸收性之材料構成,且對應於鄰 接之像素間之區域而形成。藉由該光吸收層6可提高顯示 之對比度。又,藉由平坦化膜3而使螢光體層7R、7(}、7B 上平坦化,可防止下述有機EL元件12與螢光體層7R、 7G、7B之間出現空乏,且可提高有機£[元件基板4與螢光 體基板2之密著性。 螢光體層7R、7G、7B包含例如俯視矩形狀之薄膜,其 側面上在上述營光體層7R、7G、7B之所有側面上形成有 反射層8。再者,反射層8即便僅形成於至少一個側面而並 非形成於螢光體層7R、7G、7B之所有側面,亦可獲得下 述反射效果。 又,於螢光體層7R、7G、7B上、即如下述般來自有機 EL元件基板4(光源)之激發光入射的入射面(外表面側)之 上,形成有波長選擇透過反射層9。 以下,對本實施形態之螢光體基板2之構成構件進行具 體說明。 「基板」 本實施形態中使用之螢光體基板2用之基板5 ’由於需要 161804.doc 13 201240183 將來自螢光體層7R、7G、7B之光掠出至外部’故螢光體 之發光波長區域内必須透過光°因此’作為基板5之材 料,可列舉例如包含玻璃、石英等之無機材料基板、包含 聚對苯二甲酸乙二酯、聚咔唑、聚醯亞胺等之塑膠基板 等。然而,如上所述,本實施形態並不限定於該等基板。 此處,就能夠不產生應力而彎曲或者折曲之觀點而言,較 佳使用塑膠基板。又,就提高阻氣性之觀點而言,更佳使 用於塑膠基板上塗佈有無機材料而成之基板。藉此,可消 除使用塑膠基板作為有機EL之基板時可能產生之水分之透 過所致的有機EL元件之劣化。 「螢光體層」 本實施形態之螢光體層7R、7G、7B係由吸收自發出紫 外光之有機EL元件12發出之激發光,且分別發出紅色光、 綠色光、藍色光的紅色螢光體層7R、綠色螢光體層7G, 藍色螢光體層7B構成。又,視需要,亦可於像素上添加發 出藍綠色光、黃色光之螢光體層。該情形時,發出藍綠色 光、黃色光之各像素之色純度係設定於較色度圖上之表示 發出紅色光、綠色光、藍色光之像素之色純度的點連結而 成之三角形更外側,藉此較使用發出紅色、綠色、藍色之 3原色光之像素的顯示裝置而言可增大色再現性。 螢光體層7R、7G、7B亦可僅由以下例示之螢光體材料 構成。螢光體層7R、7G、7B亦可於以下例示之螢光體材 料中包含任意添加劑等。螢光體層7r、7G、7B亦可構成 為使該等螢光體材料分散於高分子材料(黏合用樹脂)或無 161804.doc 201240183 機材料中。作為本實施形態之螢光體材料,可使用周知榮 光體材料。此種螢光體材料分為有機系螢光體材料及無機 系螢光體材料。該等具體的化合物於以下例示,但本實施 形態並不限定於該等材料。 作為有機系螢光體材料而言,作為將紫外之激發光轉換 ^ 成藍色光之螢光色素,可列舉苯乙烯基苯系色素:1,4_雙 (2-曱基苯乙烯基)苯、反-4,4·-二苯基苯乙烯基苯、香豆素 系色素:7-經基-4-曱基香豆素等。又,作為將紫外、藍色 之激發光轉換成綠色光之登光色素,可列舉香豆素系色 素.2,3,5,6·1Η、4H-四氫-8-三氟甲基喧嗪(9,9a、Ι-gh)香 豆素(香豆素153)、3-(2’-苯并噻唑)_7_二乙胺基香豆素(香 豆素6)、3-(2’-苯并咪唑)-7-]^,;^-二乙胺基香豆素(香豆素 7)、萘二曱亞胺系色素:驗性黃51、溶劑黃11、溶劑黃 116等。又’作為將紫外、藍色之激發光轉換成紅色光之 螢光色素,可列舉花青系色素:4-二氰基亞曱基-2-甲基_ 6-(對一甲胺基苯乙稀)-4H-〇比味、°比咬系色素:i_乙基_2_ [4-(對二曱胺基苯基)-i,3-丁二烯基]-吡啶鑌·過氣酸鹽、及 玫瑰紅系色素:玫瑰紅B、玫瑰紅6G、玫瑰紅3B、玫塊紅 101、玫瑰紅110、鹼性紫11、酸性玫瑰紅1〇1等。 又,作為無機系螢光體材料而言,作為將紫外之激發光 轉換成藍色光的螢光體,可列舉Sr2P2〇7 : Sn4+、S 12 201240183 A substrate (4) is formed between the substrate 5 and the gas side outside the outer layer of the substrate 5. That is, the protective layer u is formed on the second surface of the substrate 5. Each pixel is provided with a plurality of phosphor layers 7R, 7G, 7B. The plurality of phosphor layers 7R, 7G, and 7B are composed of different phosphor materials to emit light of different colors according to different pixels. Further, the refractive indices of the phosphor materials of the phosphor layers 7R, 7G, and 7B constituting the plurality of materials may be different from each other. The light absorbing layer 6 is made of a material having light absorbing properties and is formed corresponding to a region between adjacent pixels. The contrast of the display can be improved by the light absorbing layer 6. Moreover, by flattening the phosphor layers 7R, 7 (}, and 7B by the planarization film 3, it is possible to prevent the occurrence of a lack of space between the organic EL element 12 and the phosphor layers 7R, 7G, and 7B, and to improve organic £ [Adhesiveness between the element substrate 4 and the phosphor substrate 2. The phosphor layers 7R, 7G, and 7B include, for example, a film having a rectangular shape in plan view, and the side surface thereof is formed on all sides of the above-mentioned camp layer 7R, 7G, and 7B. There is a reflective layer 8. Further, even if the reflective layer 8 is formed only on at least one side surface and not on all of the side faces of the phosphor layers 7R, 7G, and 7B, the following reflection effect can be obtained. Further, in the phosphor layer 7R, In the case of the incident surface (outer surface side) from which the excitation light of the organic EL element substrate 4 (light source) is incident, the wavelength selective transmission and reflection layer 9 is formed on the 7G and 7B. Hereinafter, the fluorescent light of the embodiment is formed. The constituent members of the bulk substrate 2 will be specifically described. "Substrate" The substrate 5' for the phosphor substrate 2 used in the present embodiment is required to 161804.doc 13 201240183 to illuminate the light from the phosphor layers 7R, 7G, and 7B. To the external 'the light-emitting wavelength region of the phosphor For example, the material of the substrate 5 can be transmitted, and examples thereof include an inorganic material substrate containing glass, quartz, or the like, and a plastic substrate including polyethylene terephthalate, polycarbazole, and polyimide. As described above, the present embodiment is not limited to the substrates. Here, it is preferable to use a plastic substrate from the viewpoint of bending or bending without generating stress, and to improve gas barrier properties. In addition, it is more preferable to use a substrate in which an inorganic material is coated on a plastic substrate, thereby eliminating deterioration of the organic EL element due to the passage of moisture which may occur when the plastic substrate is used as the substrate of the organic EL. The phosphor layer 7R, 7G, and 7B of the present embodiment are red phosphor layers 7R which are emitted from the excitation light emitted from the organic EL element 12 that emits ultraviolet light, and emit red light, green light, and blue light, respectively. The green phosphor layer 7G and the blue phosphor layer 7B are formed. Further, if necessary, a phosphor layer emitting blue-green light or yellow light may be added to the pixel. In this case, blue-green light is emitted. The color purity of each pixel of the yellow light is set to a triangle on the chromaticity diagram indicating a color purity of a pixel emitting red light, green light, or blue light, thereby emitting a red color, The display device of the pixels of the green and blue primary colors can increase the color reproducibility. The phosphor layers 7R, 7G, and 7B can be composed only of the phosphor materials exemplified below. The phosphor layers 7R and 7G, 7B may include any additive or the like in the phosphor material exemplified below. The phosphor layers 7r, 7G, and 7B may be configured to disperse the phosphor materials in a polymer material (adhesive resin) or no. 161804. Doc 201240183 In the machine material, as the phosphor material of the present embodiment, a well-known glory material can be used. Such a phosphor material is classified into an organic phosphor material and an inorganic phosphor material. These specific compounds are exemplified below, but the present embodiment is not limited to these materials. Examples of the organic fluorescent material include a styryl-based dye: 1,4-bis(2-mercaptostyryl)benzene, which is a fluorescent dye that converts ultraviolet excitation light into blue light. , trans-4,4·-diphenylstyrylbenzene, coumarin pigment: 7- mercapto-4-mercaptocoumarin. Further, examples of the coloring pigment which converts ultraviolet and blue excitation light into green light include coumarin dyes. 2,3,5,6·1Η, 4H-tetrahydro-8-trifluoromethyl喧Oxazine (9,9a, Ι-gh) coumarin (coumarin 153), 3-(2'-benzothiazole)_7_diethylamine coumarin (coumarin 6), 3-(2 '-Benzimidazole)-7-]^,;^-diethylamine coumarin (coumarin 7), naphthalene diimine pigment: yellow (51), solvent yellow 11, solvent yellow 116, etc. . Further, as a fluorescent pigment which converts ultraviolet and blue excitation light into red light, a cyanine dye: 4-dicyanodecyl-2-methyl-6-(p-monomethylaminobenzene) Ethyl)-4H-〇 〇, ° ratio bite pigment: i_ethyl_2_ [4-(p-diaminophenyl)-i,3-butadienyl]-pyridinium·overgas Acid salt, and rose red pigment: rose red B, rose red 6G, rose red 3B, rose red 101, rose red 110, alkaline purple 11, acid rose red 1〇1 and so on. Further, as the inorganic phosphor material, as a phosphor that converts ultraviolet excitation light into blue light, Sr2P2〇7: Sn4+,

Sr4Al丨4025 : Eu2+、BaMgAl10O17 : Eu2+、SrGa2S4 : Ce3+、 CaGa2S4 : Ce3+、(Ba,Sr)(Mg、Mn)Al1Q〇17 : Eu2+、 (Sr,Ca,Ba2,OMg)10(PO4)6Cl2 : Eu2+、BaAl2Si08 : Eu2+、 161804.doc 15· 201240183Sr4Al丨4025 : Eu2+, BaMgAl10O17 : Eu2+, SrGa2S4 : Ce3+, CaGa2S4 : Ce3+, (Ba, Sr)(Mg, Mn)Al1Q〇17 : Eu2+, (Sr, Ca, Ba2, OMg)10(PO4)6Cl2 : Eu2+ , BaAl2Si08 : Eu2+, 161804.doc 15· 201240183

Sr2P207 : Eu2+、Sr5(P〇4)3Cl : Eu2+、(Sr,Ca,Ba)5(P04)3Cl : Eu2+、BaMg2Al丨6〇27 : Eu2+、(Ba,Ca)5(P04)3Cl : Eu2+、 Ba3MgSi208 : Eu2+、Sr3MgSi208 : Eu2+等。又,作為將紫 外、藍色之激發光轉換成綠色光之螢光體,可列舉 (BaMg)Al16027 : Eu2+ ,Mn2+ 、Sr4Al14025 : Eu2+ 、 (SrBa)Al12Si208 : Eu2+、(BaMg)2Si04 : Eu2+、Y2Si05 : Ce3+, Tb3+、Sr2P207-Sr2B205 : Eu2+、(BaCaMg)5(P04)3Cl : Eu2+、 Sr2Si308-2SrCl2 : Eu2+、Zr2Si04、MgAlu019 : Ce3+,Tb3+、 Ba2Si04 : Eu2+、Sr2Si04 : Eu2+、(BaSr)Si04 : Eu2+等。又,作 為將紫外、藍色之激發光轉換成紅色光之螢光體,可列舉 Y202S : Eu3+、YAl〇3 : Eu3+、Ca2Y2(Si〇4)6 : Eu3+、 LiY9(Si04)602 : Eu3+、γν〇4 : Eu3+、CaS : Ειι3+、Gd2〇3 : Eu3+、Gd202S : Eu3+、Y(p,V)04 : Eu3+、Mg4Ge05 5F : Mn4+、Sr2P207 : Eu2+, Sr5(P〇4)3Cl : Eu2+, (Sr, Ca, Ba)5(P04)3Cl : Eu2+, BaMg2Al丨6〇27 : Eu2+, (Ba,Ca)5(P04)3Cl : Eu2+, Ba3MgSi208 : Eu2+, Sr3MgSi208 : Eu2+ and the like. Further, examples of the phosphor that converts ultraviolet and blue excitation light into green light include (BaMg)Al16027: Eu2+, Mn2+, Sr4Al14025: Eu2+, (SrBa)Al12Si208: Eu2+, (BaMg)2Si04: Eu2+, and Y2Si05. : Ce3+, Tb3+, Sr2P207-Sr2B205 : Eu2+, (BaCaMg)5(P04)3Cl : Eu2+, Sr2Si308-2SrCl2 : Eu2+, Zr2Si04, MgAlu019 : Ce3+, Tb3+, Ba2Si04 : Eu2+, Sr2Si04 : Eu2+, (BaSr)Si04 : Eu2+ Wait. Further, examples of the phosphor that converts ultraviolet and blue excitation light into red light include Y202S: Eu3+, YAl〇3: Eu3+, Ca2Y2(Si〇4)6: Eu3+, and LiY9(Si04)602: Eu3+. Γν〇4 : Eu3+, CaS : Ειι3+, Gd2〇3 : Eu3+, Gd202S : Eu3+, Y(p, V)04 : Eu3+, Mg4Ge05 5F : Mn4+,

Mg4Ge06 : Mn4+、K5Eu25(W04)6.25、Na5Eu25(W〇4)6 25、 K5Eu2 5(Mo04)6.25、Na5Eu2 5(Mo〇4)6 25 等。 又’上述無機系螢光體亦可視需要而實施表面改質處 理。作為表面改質方法,可列舉利用矽烷偶合劑等之化學 處理者、利用次微米級之微粒子等之添加之物理處理者、 進而將該等併用者等。若考慮激發光之劣化、發光之劣化 等之穩定性’較佳使用無機材料。進而,於使用無機材料 之情形時,平均粒徑(d5。)較佳為〇.5㈣〜5〇 μιηβ若平均粒 徑為1 μιη以下,,光體之發光效率急劇下I又若平 均粒徑為50 μπι以上,則非常難以形成平坦之膜,且螢光 體層與有機件之間會形成空乏H㈣如折射率 161804.doc _Mg4Ge06 : Mn4+, K5Eu25 (W04) 6.25, Na5Eu25 (W〇4) 6 25, K5Eu2 5 (Mo04) 6.25, Na5Eu2 5 (Mo〇4) 6 25 and the like. Further, the above-mentioned inorganic phosphor may be subjected to surface modification treatment as needed. Examples of the surface modification method include a chemical processor using a decane coupling agent or the like, a physical processor using a submicron-sized fine particle or the like, and the like. In consideration of the stability of the deterioration of the excitation light, the deterioration of the light emission, etc., an inorganic material is preferably used. Further, in the case of using an inorganic material, the average particle diameter (d5.) is preferably 〇5 (4) to 5 〇μιηβ. If the average particle diameter is 1 μηη or less, the luminous efficiency of the light body is sharply lower and the average particle diameter is When it is 50 μπι or more, it is very difficult to form a flat film, and a deficiency H (four) is formed between the phosphor layer and the organic member, such as a refractive index of 161804.doc _

S 201240183 為力2 _ 3之無機螢光體層與折射率為約i. 7之有機元件u 之間出現折射率為1.0之空乏(空氣層)之情形時,來自有機 EL元件12之光無法有效到達無機螢光體層(螢光體層7r、 7G 7B),螢光體層7R、7G、78之發光效率下降。又’難 以實現螢光體層7R、7G、巧之平坦化,故如下述般與液 晶元件組合而成之構成中,夾持液晶層之電極間之距離不 均,無法施加均勻之電場,故產生液晶層未均勻動作等之 現象。 又,螢光體層7R、7G、7B可使用將上述螢光體材料與 樹脂材料熔解且分散於溶劑而成之螢光體層形成用塗液, 藉由方疋塗法、次潰法、到刀法、吐出塗佈法、喷塗法等塗 佈法、喷墨法、凸版印刷法、凹版印刷法、網版印刷法、 微凹印塗佈法等印刷法等之周知濕式製程而形成、或者將 上述材料藉由電阻加熱蒸錢法、電子束(EB,ElectronS 201240183 When the inorganic phosphor layer of the force 2 _ 3 and the organic element u having a refractive index of about 0.7 have a depletion (air layer) having a refractive index of 1.0, the light from the organic EL element 12 cannot be effective. When the inorganic phosphor layer (phosphor layer 7r, 7G 7B) is reached, the luminous efficiency of the phosphor layers 7R, 7G, and 78 is lowered. Further, it is difficult to realize the flattening of the phosphor layers 7R and 7G, and the liquid crystal element is combined as described below. The distance between the electrodes sandwiching the liquid crystal layer is not uniform, and a uniform electric field cannot be applied. The phenomenon that the liquid crystal layer does not operate uniformly. In addition, as the phosphor layer 7R, 7G, and 7B, a coating liquid for forming a phosphor layer obtained by melting the above-described phosphor material and a resin material and dispersing it in a solvent can be used, and the coating method can be carried out by a square coating method, a secondary collapse method, or a knife. Formed by a known wet process such as a coating method such as a coating method, a discharge coating method, or a spray coating method, an inkjet method, a letterpress printing method, a gravure printing method, a screen printing method, or a micro gravure coating method. Or the above materials by electric resistance heating method, electron beam (EB, Electron

Beam) 4 鍍法、分子束磊晶(MBE,Molecular· Beam Epitaxy)法、減鐘法、有機氣相蒸鍛⑴法等之周知乾 式製程、或雷射轉印法等而形成。 可藉由㈣感光性樹脂作為上述樹㈣料,㈣光微影 法使螢光體層7R、7G、则案化。作為感光性樹脂,可 使用丙稀酸系樹脂、甲基丙稀酸系系樹脂、聚乙婦醇肉桂 酸I系樹脂、硬橡膠系樹脂等具有反應性苯乙烯基之感光 性樹脂(光硬化型抗_材料)之—種或複數種之混合物。 ”可藉由上述噴墨法、凸版印刷法、凹版印刷法、網 版印刷法等之濕式製程、使用蔽陰遮罩之電阻加熱蒸链 161804.doc -17- 201240183 法、電子束(EB)蒸鍍法、分子束磊晶(MBE)法、濺鍍法、 有機氣相蒸鍍(OVPD)法等之周知乾式製程、或雷射轉印 法:等’使螢光體材料直接圖案化。 上述螢光體層7R、7G、7B之膜厚較佳為1〇〇 nm〜100 μιη 左右,更佳為1 μιη〜100 μηι左右。若膜厚未滿10〇 nm,則 尤其如下述變形例般有機EL發出藍色光之情形時,無法充 分吸收上述有機EL之光,故發光效率下降、或者因所需色 光中混入藍色之透過光而導致色純度下降。因此,為提高 有機EL元件12之發光之吸收’以不造成色純度之惡劣影響 之程度減少藍色之透過光’較佳為將膜厚設為1 μηι以上。 又’若膜厚超過100 μηι,則有機EL元件12之藍色發光被充 分吸收’不會帶來效率上升,僅使材料消耗而導致材料成 本上升。 「光吸收層」 本實施形態之勞光體基板2中,較佳於各螢光體層7R、 7G、7Β之間形成光吸收層6。藉此,可提高對比度。光吸 收層6可藉由例如鉻等金屬材料或黑色樹脂等形成。光吸 收層6之膜厚較佳為1〇〇 nm~ 10 0 μηι左右,更佳為1〇〇 nm〜10 μηι左右。又,為使朝向螢光體層7R、7G、7Β側面 之光藉由反射層8而有效地掠出至外部,光吸收層6之膜厚 較佳為薄於榮光體層7R ' 7G、7Β之膜厚。 「反射層」 本實施形態之反射層8係設於各螢光體層、7G、78之 光入射側之面及光射出側之面以外的側面上。反射層8具Beam) is formed by a known dry process such as a plating method, a molecular beam epitaxy (MBE, Molecular Beam Epitaxy) method, a clock reduction method, an organic vapor phase forging (1) method, or a laser transfer method. The phosphor layers 7R and 7G can be formed by (4) photosensitive resin as the above-mentioned tree (four) material and (iv) photolithography. As the photosensitive resin, a photosensitive resin having a reactive styrene group such as an acrylic resin, a methyl acrylate resin, a polyglycol cinnamic acid I resin, or a hard rubber resin can be used (photohardening) Type or combination of a plurality of types of anti-materials. "The wet process can be performed by the above-described inkjet method, letterpress printing method, gravure printing method, screen printing method, etc., and the resistance heating steaming chain using a shadow mask 161804.doc -17-201240183 method, electron beam (EB ) Known dry process such as vapor deposition method, molecular beam epitaxy (MBE) method, sputtering method, organic vapor phase vapor deposition (OVPD) method, or laser transfer method: etc. Direct patterning of phosphor material The film thickness of the phosphor layers 7R, 7G, and 7B is preferably about 1 〇〇 nm to 100 μηη, more preferably about 1 μηη to 100 μηη. If the film thickness is less than 10 〇 nm, the following modification is particularly preferable. When the organic EL emits blue light, the organic EL light is not sufficiently absorbed, so that the light-emitting efficiency is lowered or the color light is mixed by the blue light transmitted through the desired color light. Therefore, the organic EL element 12 is improved. The absorbing of the illuminating light 'reducing the transmitted light of blue to the extent that the color purity is not adversely affected' is preferably set to a film thickness of 1 μηι or more. Further, if the film thickness exceeds 100 μηι, the blue of the organic EL element 12 Color luminescence is fully absorbed 'will not bring efficiency , Only the material consumption resulting in increased material costs. "Light absorbing layer" of the present embodiment, the labor of the light in the substrate 2, preferably in each of the phosphor layer 7R, 7G, the light absorbing layer 6 is formed between the 7p. Thereby, the contrast can be improved. The light absorbing layer 6 can be formed by a metal material such as chrome or a black resin or the like. The film thickness of the light absorbing layer 6 is preferably about 1 〇〇 nm to 10 0 μηι, more preferably about 1 〇〇 nm to 10 μηι. Further, in order to efficiently illuminate the side faces of the phosphor layers 7R, 7G, and 7 藉 to the outside by the reflective layer 8, the film thickness of the light absorbing layer 6 is preferably thinner than the film of the glory body layer 7R '7G, 7Β. thick. "Reflective layer" The reflective layer 8 of the present embodiment is provided on the side surfaces of the respective phosphor layers, 7G, 78 on the light incident side and the light exit side. Reflective layer 8

161804.doc •18· S 201240183 有使螢光體層7R、7G、7B内向上述側面側發光之光掠出 至正面方向(出光方向)的功能。具體而言,作為反射層8, 可列舉例如Al、Ag、Au、Cr或其合金等之反射性之金屬 粉、或者形成由含有該等金屬粒子之樹脂構成的反射性之 樹脂膜的構造等,但本實施形態並不限定於該等層。 「波長選擇透過反射層」 本實施形態之波長選擇透過反射層9係設於螢光體層 7R、7G、7B上,即波長選擇透過反射層9係設於上述螢光 體層7R、7G、7B之入射面之外表面側(有機EL元件基板4 側)。波長選擇透過反射層9具有透過激發光而反射來自螢 光體層7R、7G、7B之發光之性質。此處,所謂透過激發 光’於本實施形態中係指至少透過激發光之峰值波長之 光。又,所謂反射來自螢光體層7R、7G、7B之發光,係 指反射來自螢光體層7R、7G、7B之各發光峰值波長之 光。 作為此種波長選擇透過反射層,可列舉包含例如介電體 多層膜、金屬薄膜玻璃、石英等之無機材料基板、包含聚 對苯二甲酸乙二酯、聚味唾、聚醯亞胺等之塑膠基板等, 但本實施形態並不限定於該等層。 又’螢光體層7R、7G、7B上、即波長選擇透過反射層9 上如上述般藉由平坦化膜3而實施平坦化。藉此,可防止 有機EL元件12與螢光體層7R、7G、7B之間出現空乏,且 可提高有機EL元件基板4與螢光體基板2之密著性。作為此 種平坦化膜3之形成法,在作為平坦化膜發揮功能之前提 161804.doc -19- 201240183 下較佳採用旋塗法β 「中間層」 本實施形態之中間層1 〇如上述般係設於螢光體層7R、 7G、7B與基板5之間。中間層1〇於螢光體層7R、7g、7B 側與基板5側之間具有折射率梯度。即,中間層丨〇中,螢 光體層7R、7G、7B附近之折射率、與基板5附近之折射率 不同,中間層10自螢光體層7R、7G、7B附近直至基板5附 近具有折射率梯度。該折射率梯度較佳為如下者:於將螢 光體層7R' 7G、7B之折射率設為nl、將基板5之折射率設 為n2之情形時,自螢光體層7R、7G、7B朝向基板5,於與 上述螢光體層7R、7G、7B之出光面(基板5側之面)正交的 厚度方向上’在nl至n2之範圍内緩緩變化。具體而言,中 間層10之折射率較佳具有階段性或者連續變化之梯度。 此處,螢光體層7R、7G、7B之折射率nl為例如2.〇〜2 3 左右。基板5之折射率n2例如於玻璃基板之情形時為15左 右。因此,作為中間層1〇之折射率梯度,較佳為如下者: 自螢光體層7R、7G、7B朝向基板5之方向上,以2·〇〜2.3左 右至1.5左右呈階段性或者連續地變小。 藉由此種構成’中間層10可將如先前般相對於螢光體層 7R、7G、7B之出光面之法線方向之角度較大的螢光成 分’因螢光體層7R、7G、7B與基板5之間之存在折射率差 的界面全反射所產生之光損耗抑制在最小限度。 作為具有此種折射率梯度之中間層1 〇,例如(丨)可將折 射率不同之複數之層(材料)階段性層疊、或者連續層曼而 161804.doc •20· 201240183 =二(2)可形成厚度方向上具有微小傾斜之1個以上 :小構w’、使該構造體所占之比率在厚度方向上連續 從而形成具有折射率梯度之中間層丨〇。 於⑴之情形時,可列舉例如Ti02層與sio2層之層疊構 造。又,亦可列舉Mgo層與sio2層、Zr02層與Si02層、 p黯層與石夕油層等組合之層疊構造'然而,本實施形態 並不限定於該等材料之組合。 於⑺之情形時,作為上述微小構造體之形成材料,可 列舉例如聚乙烯、聚丙烯、聚碳酸酯、環氧化物等透明樹 脂、Si02、Si3N4等透明無機物。進而,料材料巾較佳添 加折射率較高之化合物、例如Ti〇2、Cu2〇、Fe2〇3等之金 屬氧化物。然而,本實施形態並不限定於該等材料。 又,作為上述微小構造體,具體而言較佳形成為微小構 造體之戴面積自螢光體層7R、7G、7B朝向基板5而變小之 形狀。例如,如圖2A之立體圖所示,較佳包含圓錐形狀之 微小構造體10a。微小構造體1〇a亦可為大致圓錐形狀。形 成有多個此種圓錐形狀之微小構造體1〇a之中間層1〇如圖 1A所不般配置為頂點變成基板5側,可使折射率於螢光體 層7R、7G、7B附近較高、於基板5附近較低。又,根據該 構造’由於圓錐形狀之微小構造體1〇3之截面積(與螢光體 7R、7G、7B之出光面平行之面之截面積)自螢光體層7R、 7G、7B朝向基板5而連續變小’故中間層丨〇之折射率亦自 螢光體層7R、7G、7B附近朝向基板5附近而連續變小。 此處’作為微小構造體10a所成之圓錐形狀,如圖2B所 161804.doc •21· 201240183 示,較佳為頂點部所成之頂角θ、即圓錐沿中心軸切斷後 之縱剖面之二角形的頂角Θ形成為大於〇〇、且45。以下。若 以此方式使頂角Θ形成為45。以下,則微小構造體丨〇a之截 面積自螢光體層7R、7G、7B朝向基板5連續且緩緩變小, 故中間層10之折射率亦自螢光體層7R、7G、7]8朝向基板5 連續且緩緩變小。因此,透過中間層1〇内之光因中間層1〇 内之折射率差引起之全反射等所致的損耗基本上沒有,而 有效地出射至基板5侧。然而,本實施形態之微小構造體 並不限定於該等圓錐形狀,例如微小構造體之剖面傾斜亦 可為曲線。 又,包含此種微小構造體1〇a之中間層1〇與基板5之間之 接合,可使用具有與基板5之折射率大致相等之折射率的 材料、例> Μ透明之光學接合用聚石夕氧油混合物等進 行。 「保護層」 本實施形態之保護層丨丨如上述般係設於基板5與外部層 (例如外氣)之間。保護層11自基板5附近朝向外部層附近而 具有折射率梯度。該折射率梯度較佳為如下者:於將基板 5之折射率設為n3(=n2)、外部層之折射率設為^之情形 時,自基板5朝向外部層,於與上述營光體層7r、7g、π 之出光面(基板5側之面)正交的厚度方向上,在nun4之範 圍内緩緩變化。gp , & # a + 即保濩層11亦可於自基板之外表面遠離 之方向上具有折射率梯度。具體而言,保護層11之折射率 較佳具有階段性或者連續變化之梯度。 161804.doc161804.doc •18· S 201240183 The function of illuminating the light emitted from the phosphor layers 7R, 7G, and 7B toward the side surface side to the front direction (light-emitting direction). Specifically, examples of the reflective layer 8 include a reflective metal powder such as Al, Ag, Au, Cr, or an alloy thereof, or a structure of a reflective resin film formed of a resin containing the metal particles. However, the embodiment is not limited to the layers. "Wavelength selective transmission reflection layer" The wavelength selective transmission reflection layer 9 of the present embodiment is provided on the phosphor layers 7R, 7G, and 7B, that is, the wavelength selective transmission reflection layer 9 is provided in the phosphor layers 7R, 7G, and 7B. The outer surface side of the incident surface (the side of the organic EL element substrate 4). The wavelength selective transmission reflection layer 9 has a property of transmitting excitation light and reflecting the light emission from the phosphor layers 7R, 7G, and 7B. Here, the term "permeation excitation light" means, in the present embodiment, light that transmits at least the peak wavelength of the excitation light. Further, the reflection of the light emitted from the phosphor layers 7R, 7G, and 7B refers to the reflection of the wavelengths of the respective emission peaks from the phosphor layers 7R, 7G, and 7B. Examples of such a wavelength-selective transmission-reflecting layer include inorganic material substrates including, for example, a dielectric multilayer film, a metal thin film glass, and quartz, and polyethylene terephthalate, polystyrene, polyamidiamine, and the like. A plastic substrate or the like is used, but the embodiment is not limited to the layers. Further, the phosphor layers 7R, 7G, and 7B, i.e., the wavelength selective transmission/reflection layer 9, are planarized by the planarization film 3 as described above. Thereby, it is possible to prevent the organic EL element 12 from being depleted between the phosphor layers 7R, 7G, and 7B, and to improve the adhesion between the organic EL element substrate 4 and the phosphor substrate 2. As a method of forming the planarizing film 3, it is preferable to use a spin coating method β "intermediate layer" before the function as a planarizing film. 161804.doc -19-201240183 The intermediate layer 1 of the present embodiment is as described above. It is disposed between the phosphor layers 7R, 7G, and 7B and the substrate 5. The intermediate layer 1 has a refractive index gradient between the side of the phosphor layers 7R, 7g, and 7B and the side of the substrate 5. That is, in the intermediate layer, the refractive index in the vicinity of the phosphor layers 7R, 7G, and 7B is different from the refractive index in the vicinity of the substrate 5, and the intermediate layer 10 has a refractive index from the vicinity of the phosphor layers 7R, 7G, and 7B to the vicinity of the substrate 5. gradient. The refractive index gradient is preferably such that when the refractive indices of the phosphor layers 7R' 7G and 7B are n1 and the refractive index of the substrate 5 is n2, the phosphor layers 7R, 7G, and 7B are oriented. The substrate 5 gradually changes in the thickness direction orthogonal to the light-emitting surface (surface on the substrate 5 side) of the phosphor layers 7R, 7G, and 7B in the range of n1 to n2. Specifically, the refractive index of the intermediate layer 10 preferably has a stepwise or continuously varying gradient. Here, the refractive index nl of the phosphor layers 7R, 7G, and 7B is, for example, about 2. 〇 to 2 3 . The refractive index n2 of the substrate 5 is, for example, about 15 in the case of a glass substrate. Therefore, the refractive index gradient of the intermediate layer 1 is preferably as follows: from the phosphor layers 7R, 7G, and 7B toward the substrate 5, in a stepwise or continuous manner from about 2·〇 to about 2.3 to about 1.5. Become smaller. With such a configuration, the intermediate layer 10 can have a fluorescent component having a larger angle with respect to the normal direction of the light-emitting surfaces of the phosphor layers 7R, 7G, and 7B as a result of the phosphor layers 7R, 7G, and 7B. The optical loss caused by the total reflection of the interface having the difference in refractive index between the substrates 5 is suppressed to a minimum. As the intermediate layer 1 having such a refractive index gradient, for example, a plurality of layers (materials) having different refractive indices may be laminated in stages or in a continuous layer. 161804.doc • 20· 201240183 = two (2) One or more having a slight inclination in the thickness direction may be formed: a small structure w', and the ratio occupied by the structure is continuous in the thickness direction to form an intermediate layer having a refractive index gradient. In the case of (1), for example, a laminated structure of a TiO 2 layer and a SiO 2 layer can be cited. Further, a laminated structure in which a Mgo layer and a SiO 2 layer, a Zr02 layer and a SiO 2 layer, a p 黯 layer and a Shih ole oil layer are combined may be mentioned. However, the present embodiment is not limited to the combination of these materials. In the case of (7), examples of the material for forming the fine structure include transparent resins such as polyethylene, polypropylene, polycarbonate, and epoxy, and transparent inorganic materials such as SiO 2 and Si 3 N 4 . Further, it is preferable to add a compound having a relatively high refractive index, for example, a metal oxide such as Ti 2 , Cu 2 〇, or Fe 2 〇 3 to the material material towel. However, this embodiment is not limited to these materials. Further, as the above-mentioned fine structure, it is preferable that the wearing area of the minute structure is reduced from the phosphor layers 7R, 7G, and 7B toward the substrate 5. For example, as shown in the perspective view of Fig. 2A, it is preferable to include the conical-shaped minute structure 10a. The minute structure 1〇a may have a substantially conical shape. The intermediate layer 1 having a plurality of such conical-shaped microstructures 1a is formed such that the apex becomes the substrate 5 side as shown in FIG. 1A, and the refractive index is higher in the vicinity of the phosphor layers 7R, 7G, and 7B. It is lower near the substrate 5. In addition, according to the structure, the cross-sectional area of the conical-shaped micro-structure 1〇3 (the cross-sectional area of the surface parallel to the light-emitting surfaces of the phosphors 7R, 7G, and 7B) is directed toward the substrate from the phosphor layers 7R, 7G, and 7B. 5 and continuously smaller, the refractive index of the intermediate layer 连续 is also continuously reduced from the vicinity of the phosphor layers 7R, 7G, and 7B toward the vicinity of the substrate 5. Here, the conical shape formed as the microstructure 10a is as shown in Fig. 2B, 161804.doc • 21·201240183, preferably the apex angle θ formed by the apex portion, that is, the longitudinal section after the cone is cut along the central axis. The apex angle 二 of the square is formed to be larger than 〇〇 and 45. the following. If the apex angle Θ is formed to 45 in this way. Hereinafter, the cross-sectional area of the microstructures 丨〇a is continuously and gradually decreased from the phosphor layers 7R, 7G, and 7B toward the substrate 5, so that the refractive index of the intermediate layer 10 is also from the phosphor layers 7R, 7G, and 7]8. The substrate 5 is continuously and gradually reduced in size. Therefore, the light transmitted through the intermediate layer 1 is substantially absent due to total reflection or the like due to the difference in refractive index in the intermediate layer 1 , and is efficiently emitted to the substrate 5 side. However, the minute structure of the present embodiment is not limited to the conical shape, and for example, the cross section of the microstructure may be curved. Further, a material having a refractive index substantially equal to the refractive index of the substrate 5, and an example of the bonding between the intermediate layer 1A including the fine structure 1A and the substrate 5 can be used. A polysulfuric acid mixture or the like is carried out. "Protective layer" The protective layer of this embodiment is provided between the substrate 5 and the outer layer (e.g., outside air) as described above. The protective layer 11 has a refractive index gradient from the vicinity of the substrate 5 toward the vicinity of the outer layer. The refractive index gradient is preferably such that when the refractive index of the substrate 5 is n3 (=n2) and the refractive index of the outer layer is ^, the substrate 5 faces the outer layer and the above-mentioned camp layer The light-emitting surfaces of 7r, 7g, and π (surfaces on the substrate 5 side) are gradually changed in the thickness direction in the range of nun4. Gp , &# a + The protective layer 11 may also have a refractive index gradient in a direction away from the outer surface of the substrate. Specifically, the refractive index of the protective layer 11 preferably has a gradient of a stepwise or continuous change. 161804.doc

S -22- 201240183 此處’基板5之折射率n3(=n2)例如於玻璃基板之情形時 為1 · 5左右。外部層之折射率n4例如於空氣層之情形時為 1.0左右。因此,作為保護層U之折射率梯度較佳為自基 板5朝向外部層以15左右至1〇左右呈階段性或者連續變 藉由此種構成,保護層丨i可將自基板5朝向外部層側、 即於出光方向上發光之螢光中之、如先前般相對於基板5 之出光面之法線方向角度較大的螢光成分,因基板5與外 P層之間之存在折射率差的界面全反射所產生之光損耗抑 制為最小限度。 作為具有此種折射率梯度之保護層u,與上述中間層ι〇 ,情形同樣地’例如⑴可將折射率不同之複數層(材料)階 &性層疊、或者連續層疊而形成。又,⑺可形成於厚度方 向上具有微小傾斜之⑽以上之微小構造體,使上述構造 體所占之比率在厚度方向上連續變化,從而形成具有折射 率梯度之保護層1 i。 广⑴之情形時’可列舉例如叫層與Si〇2層的層疊構 化又’亦可列舉Mg0層與Si〇2層、Zr02層與Si〇2層、 PMMA層與矽油層等之組合而成的層疊構造 '然而,本實 施形態並不限定於該等材料之組合。 ;()之If形時作為上述微小構造體之形成材料,可 列舉例如聚乙稀、聚 聚丙烯'聚奴酸酯、環氧化物等透明樹 脂、Si〇2、SisN4等透明& m^ ,^ 月…機物。進而,較佳為於該等材料 中添加折射率較高之化合 J 切如 Ti02、Cu2〇、Fe2〇3 等 161804.doc •23- s 201240183 之金屬氧化物。然而,本實施形態並不限定於該等材料。 又,作為上述微小構造體,具體而言,與上述中間層1〇 之微小構造體同樣地,較佳形成為微小構造體之截面積自 基板5附近朝向外部層附近變小之形狀。例如,與圖2八所 示之微小構造體10a同樣地,較佳包含圓錐形狀之微小構 造體。上述微小構造體亦可為大致圓錐形狀。形成有多個 此種圓錐形狀之微小構造體之保護層〗〗如圖1A所示般配置 為頂點側變成外部層側,而可使折射率於基板5側較高、 於外4層側較低。又,根據該構造,圓錐形狀之微小構造 體之截面積(與基板5之外表面平行之面之截面積)自基板5 朝向外部層連續變小,故保護層u之折射率亦自基板5朝 向外部層連續變小。 此處,關於該保護層11之微小構造體所成之圓錐形狀, 亦與中間層10之微小構造體10a同樣地,較佳形成為頂點 部所成之頂角Θ大於〇。、且45。以下。若以此方式使頂角θ 形成為45。以下,則微小構造體之截面積自基板5朝向外部 層而連續且緩緩變小,故保護層u之折射率亦自基板5朝 向外部層而連續且緩緩變小。因此,透過保護層丨丨内之光 因保護層1丨内之折射率差引起之全反射等所致的損耗基本 上沒有,而有效地出射至外部層側。 再者,關於此種保護層U與基板5之間之接合,亦較佳 使用具有與基板5之折射率大致相等之折射率的材料、例 如無色透明之光學接合用聚矽氧油混合物等進行。 其次’關於上述構成之螢光體基板2之製造方法之一 161804.doc •24· 201240183 例’使用模式性表示製造步驟之圖从〜31進行說明。再 者,此處說明之例中,係採用將中間層10、保護層u均形 成為包含圓錐形狀之微小構造體之構造者的方法。 形成螢光體基板2時’首先,如圖3A所示,使用具備具 有上述圓錐形狀之微小構造體(例如頂角為30。)之凹形狀之 鋁模具30的射出成形機,形成作為中間層10前驅物之薄板 狀之中間層形成材料31。藉此,如圖3B所示形成具有多個 微小圓錐形狀且具有折射率梯度之中間層1〇。 其次,將所形成之中間層1 〇使用例如具有與形成之基板 5之折射率大致相等的折射率之無色透明之光學接合用材 料而貼合於基板5上。 其次,如圖3C所示於中間層1〇上使用分配器形成螢光體 層 7R、7G、7B。 繼而’如圖3D所示,於螢光體層7R、7G、7B上藉由真 空蒸鐘法而形成反射層8a。繼而,如圖3E所示於反射層8a 上藉由旋塗法而形成光阻層32。並且,如圖3F所示使用光 罩33對光阻層32進行UV曝光’其後藉由顯影液進行顯 影’如圖3G所示形成抗蝕劑圖案34。 繼而’使用上述抗蝕劑圖案34進行濕式蝕刻,如圖3H所 不將螢光體層7R、7G、7B之與基板5為相反之側的反射層 8a除去。即,將螢光體層7R、、7B之頂部附近所形成 之反射層8a除去。藉此,將反射層“設為如圖丨八所示之覆 蓋螢光體層7R、7G、7B之側面的反射層8。 繼而’如圖31所示於螢光體層7R、7g、7B及反射層8上 161804.doc -25· 201240183 藉由旋塗法而形成波長選擇透過反射層9。 其後,於基板5之與形成有螢光體層7R、7G、7B之面為 相反之面(第2面)上’貼附與中間層1 〇同樣地製作的保護層 11。 藉此,獲得螢光體基板2。 (有機EL元件基板) 其次,針對本實施形態之顯示裝置1中,作為光源發揮 功能之有機EL元件基板4進行說明。 本實施形態之有機EL元件基板4如圖1B所示於基板22之 一面具有構成為依序層疊有陽極13、電洞注入層14、電洞 輸送層15、發光層16、電洞阻隔層17、電子輸送層18、電 子注入層19、陰極20而成的複數之有機EL元件12。並且, 上述有機EL元件1 2構成圖1A所示之激發光源4。再者,以 覆蓋陽極13之端面之方式形成有邊緣護罩21。 本實施形態之有機EL元件基板4之有機EL元件12發出紫 外光,且紫外光之發光峰值較理想為360 nm〜410 nm。其 中,有機EL元件12可使用周知者。有機EL元件12於陽極 13與陰極20之間至少包含含有有機發光材料之有機el層便 可’具體構成並不限於上述者。再者,以下之說明中,有 時亦將電洞注入層14至電子注入層19之層稱為有機EL層。 又,複數之有機EL元件12係對應於紅色像素PR、綠色 像素PG、藍色像素PB之各者而設為矩陣狀,且個別地控 制接通及斷開。 複數之有機EL元件12之驅動方法既可為主動式矩陣驅S -22- 201240183 Here, the refractive index n3 (= n2) of the substrate 5 is about 1,500, for example, in the case of a glass substrate. The refractive index n4 of the outer layer is, for example, about 1.0 in the case of the air layer. Therefore, the refractive index gradient of the protective layer U is preferably from about 15 to about 1 自 from the substrate 5 toward the outer layer. The protective layer 丨i can be from the substrate 5 toward the outer layer. The side, that is, the fluorescent component having a larger angle with respect to the normal direction of the light-emitting surface of the substrate 5 in the fluorescent light emitted in the light-emitting direction, due to the difference in refractive index between the substrate 5 and the outer P-layer The optical loss caused by the total reflection of the interface is suppressed to a minimum. The protective layer u having such a refractive index gradient is formed in the same manner as the above-described intermediate layer ι, for example, (1) by laminating or laminating a plurality of layers (materials) having different refractive indices. Further, (7) a microstructure having a slight inclination (10) or more in the thickness direction may be formed, and the ratio of the structure may be continuously changed in the thickness direction to form a protective layer 1 i having a refractive index gradient. In the case of the wide (1), it may be mentioned, for example, that the layered layer and the Si〇2 layer are laminated, and the combination of the Mg0 layer and the Si〇2 layer, the Zr02 layer and the Si〇2 layer, the PMMA layer and the eucalyptus layer, and the like may be mentioned. The laminated structure is formed 'However, the present embodiment is not limited to the combination of these materials. In the case of the If form, the material for forming the above-mentioned minute structure may, for example, be a transparent resin such as polyethylene, polyacrylic acid polyacrylate or epoxide, or a transparent resin such as Si 〇 2 or Sis N 4 . , ^ month... machine. Further, it is preferred to add a compound having a high refractive index to the materials such as Ti02, Cu2, Fe2〇3, etc. 161804.doc • 23- s 201240183 metal oxide. However, this embodiment is not limited to these materials. In addition, as for the fine structure of the intermediate layer 1A, it is preferable that the cross-sectional area of the minute structure is reduced from the vicinity of the substrate 5 toward the vicinity of the outer layer. For example, similarly to the microstructure 10a shown in Fig. 2, it is preferable to include a conical-shaped minute structure. The above-mentioned minute structure may have a substantially conical shape. As shown in FIG. 1A, the protective layer formed with a plurality of such conical-shaped microstructures is arranged such that the vertex side becomes the outer layer side, and the refractive index is higher on the substrate 5 side and on the outer 4 layer side. low. Further, according to this configuration, the cross-sectional area of the conical-shaped minute structure (the cross-sectional area of the surface parallel to the outer surface of the substrate 5) continuously decreases from the substrate 5 toward the outer layer, so that the refractive index of the protective layer u is also from the substrate 5. The outer layer is continuously smaller. Here, the conical shape formed by the minute structure of the protective layer 11 is preferably formed so that the vertex of the apex portion is larger than 〇, similarly to the microstructure 10a of the intermediate layer 10. And 45. the following. If the apex angle θ is formed to 45 in this way. In the following, the cross-sectional area of the microstructure is continuously and gradually decreased from the substrate 5 toward the outer layer. Therefore, the refractive index of the protective layer u is continuously and gradually decreased from the substrate 5 toward the outer layer. Therefore, the light transmitted through the protective layer is substantially free from loss due to total reflection caused by the difference in refractive index in the protective layer 1 and is efficiently emitted to the outer layer side. Further, for the bonding between the protective layer U and the substrate 5, a material having a refractive index substantially equal to the refractive index of the substrate 5, for example, a colorless transparent optical bonding polyoxyxene oil mixture or the like is preferably used. . Next, one of the methods for producing the phosphor substrate 2 having the above configuration is 161804.doc • 24· 201240183 Example A diagram showing the manufacturing steps using the mode is described from ~31. Further, in the example described here, a method of forming the intermediate layer 10 and the protective layer u into a structure including a conical microstructure is employed. When the phosphor substrate 2 is formed, first, as shown in FIG. 3A, an injection molding machine having a concave mold having a concave structure having a conical shape (for example, a apex angle of 30) is used as an intermediate layer. A thin plate-like intermediate layer forming material 31 of 10 precursors. Thereby, an intermediate layer 1 having a plurality of minute conical shapes and having a refractive index gradient is formed as shown in Fig. 3B. Next, the formed intermediate layer 1 is bonded to the substrate 5 by using, for example, a colorless and transparent optical joining material having a refractive index substantially equal to the refractive index of the formed substrate 5. Next, as shown in Fig. 3C, phosphor layers 7R, 7G, and 7B are formed on the intermediate layer 1A using a dispenser. Then, as shown in Fig. 3D, the reflective layer 8a is formed on the phosphor layers 7R, 7G, and 7B by a vacuum evaporation method. Then, the photoresist layer 32 is formed on the reflective layer 8a by spin coating as shown in FIG. 3E. Further, as shown in Fig. 3F, the photoresist layer 32 is subjected to UV exposure using a mask 33, and then developed by a developing solution. A resist pattern 34 is formed as shown in Fig. 3G. Then, wet etching is performed using the above-described resist pattern 34, and the reflective layer 8a on the side opposite to the substrate 5 of the phosphor layers 7R, 7G, and 7B is not removed as shown in Fig. 3H. That is, the reflective layer 8a formed in the vicinity of the top of the phosphor layers 7R, 7B is removed. Thereby, the reflective layer is "set to the reflective layer 8 covering the side faces of the phosphor layers 7R, 7G, 7B as shown in Fig. 8. Then, as shown in Fig. 31, the phosphor layers 7R, 7g, 7B and the reflection are shown. On the layer 8 161804.doc -25· 201240183, the wavelength selective transmission reflection layer 9 is formed by spin coating. Thereafter, the surface of the substrate 5 opposite to the surface on which the phosphor layers 7R, 7G, and 7B are formed is opposite. The protective layer 11 which is produced in the same manner as the intermediate layer 1 贴 is attached to the surface of the phosphor layer substrate 2. (Organic EL element substrate) Next, the display device 1 of the present embodiment is used as a light source. The organic EL element substrate 4 of the present embodiment will be described. The organic EL element substrate 4 of the present embodiment has an anode 13, a hole injection layer 14, and a hole transport layer laminated on one surface of the substrate 22 as shown in FIG. 1B. 15. A plurality of organic EL elements 12 formed by a light-emitting layer 16, a hole blocking layer 17, an electron transport layer 18, an electron injection layer 19, and a cathode 20. The organic EL element 12 constitutes an excitation light source as shown in Fig. 1A. 4. Further, an edge guard is formed to cover the end surface of the anode 13. 21. The organic EL element 12 of the organic EL element substrate 4 of the present embodiment emits ultraviolet light, and the emission peak of the ultraviolet light is preferably 360 nm to 410 nm. Among them, the organic EL element 12 can be used by a known person. The specific configuration of the organic el layer containing at least the organic light-emitting material between the anode 13 and the cathode 20 is not limited to the above. Further, in the following description, the hole injection layer 14 to the electron injection layer may be used in some cases. The layer of 19 is referred to as an organic EL layer. Further, the plurality of organic EL elements 12 are arranged in a matrix corresponding to each of the red pixel PR, the green pixel PG, and the blue pixel PB, and are individually controlled to be turned on and off. The driving method of the plurality of organic EL elements 12 can be an active matrix drive

161804.doc •26· S 201240183 動’亦可為被動式矩陣驅動。使用主動式矩陣方式之有機 EL元件基板之構成例於下文第2實施形態中詳細敍述。 以下,詳細說明有機EL元件基板之各構成要素。 作為基板22可使用與螢光體基板2之基板5大致相同之材 料。即,作為基板22之材料,可列舉例如包含玻璃、石英 等之無機材料基板、包含聚對苯二甲酸乙二酯、聚咔唑、' 聚醯亞胺#之塑膠基板、包含氧化料之陶究基板等絕緣 性基板、或包含鋁(AI)、鐵(Fe)等之金屬基板、或於其他 基板上表面塗佈有包含氧化矽(Si〇2)、有機絕緣材料等之 絕緣物而成的基板、藉由陽極氧化各向同性法對包含Μ等 之金屬基板之表面實施絕緣化處理的基板等,但本實施形 態並不限定於該等基板。 其中,就不產生應力、且可彎曲或折曲之觀點而言,較 佳使用塑膠基板、或者金屬基板。進而,更佳為於塑膠基 板上塗佈有無機材料之基板、於金屬基板上塗佈有無機絕 緣材料之基板。藉此,可消除使用塑膠基板作為有機EIj之 基板之情形時可能產生之水分透過所致的有機El劣化。 又’可消除使用金屬基板作為有機EL之基板之情形時可能 產生之金屬基板突起所致的漏電(短路)》再者,通常有機 EL層之膜厚非常薄,為1〇〇 nm〜200 nm左右,故眾所周知 突起會引起像素部之漏電或者短路。 構成為來自有機EL層之光自與基板相反侧射出,故基板 22既可為透明亦可為不透明。 其次’作為形成陽極13及陰極20之電極材料,可使用周 161804.doc •27- 201240183 知電極材料。於陽極13之情形時,就可更有效地向發光層 16注入電洞之觀點而言,作為透明電極材料可列舉功函數 為4.5 eV以上之金(Au)、箔(pt)、鎳(Ni)等金屬、及含銦 (In)與錫(Sn)之氧化物(ιτο)、錫(Sn)之氧化物(Sn〇2)、含 銦(In)與辞(Zn)之氧化物(ιζο)等。又,於陰極2〇之情形 時,就更有效地向發光層16注入電子之觀點而言,可列舉 功函數為4.5 eV以下之鋰(U)、鈣(Ca)、铯(Ce)、鋇(Ba)、 鋁(A1)等金屬、或含有該等金屬之MgAg合金、合金 等合金。 陽極13及陰極20可使用上述材料藉由EB蒸鍍法、濺鍍 法、離子佈植法、電阻加熱蒸鍍法等周知方法而形成但 本實施形態並不限定於該等形成方法。又,視需要,亦可 藉由光微影法、雷射剝離法使形成之電極圖案化,亦可藉 由與蔽陰遮罩組合而直接形成圖案化之電極。陽極13及陰 極20之膜厚較佳為50 nm以上。於膜厚未滿5〇 nm之情形 時,由於配線電阻變高,有可能產生驅動電壓之上升。 為色純度之提高、發光效率之提高、正面亮度之提高等 目的而使用微空腔效應的情形時,來自發光層16之光自陽 極13側(陰極20側)掠出時,較佳使用半透明電極作為陽極 13(陰極20)。此處使用之材料可使用金屬之半透明電極單 體、或者金屬之半透明電極與透明電極材料之組合。作為 半透明電極材料,就反射率及透過率之觀點而言較佳為 銀。半透明電極之膜厚較佳為5 nm〜30 nm。於膜厚未滿5 nm 之情形時’光並未充分反射,無法獲得充分的干涉效應。 161804.doc -28 - 201240183 又’於膜厚超過3〇 nm之情形時’由於光之透過率急劇下 降,故有可能導致亮度、效率下降。又,與出光側為相反 側之電極較佳使用光反射率較高之電極。 此時所使用之電極材料可列舉例如鋁、銀、金、鋁-鋰 口金鋁-敍合金、鋁-石夕合金等反射性金屬電極、透明電 極與反射性金屬電極(反射電極)組合而成之電極等。 本實施形態中使用之有機EL層既可為有機發光層之單層 構造,亦可為有機發光層與電荷輸送層、電荷注入層之多 層構造,具體而言可列舉下述構成,但本實施形態並非由 該專限定者。 0)有機發光層 (2) 電洞輸送層/有機發光層 (3) 有機發光層/電子輸送層 (4) 電洞輸送層/有機發光層/電子輸送層 (5) 電洞注入層/電洞輸送層/有機發光層/電子輪送層 (6) 電洞注入層/電洞輸送層/有機發光層/電子輸送層/電 子注入層 (7) 電洞注入層/電洞輸送層/有機發光層/電洞阻隔層/電 子輸送層 (8) 電洞注入層/電洞輸送層/有機發光層/電洞阻隔層/電 子輸送層/電子注入層 (9) 電洞注入層/電洞輸送層/電子阻隔層/有機發光層/電 洞阻隔層/電子輸送層/電子注入層 再者,於本貫施形態中如圖1B所示係採用上述(8)。 161804.doc -29- 201240183 於上述構成例中,發光層、電洞注入層、電洞輸送層、 電洞阻隔層、電子阻隔層、電子輸送層及電子注入層之各 層既可為單層構造亦可為多層構造,有機發光層亦可僅由 以下例示之有機發光材料構成。有機發光層亦可由發光性 之摻雜劑與主體材料之組合而構成。又,有機發光層亦可 任意包含電洞輸送材料、電子輸送材料、添加劑(予體、 受體等)等。有機發光層亦可構成為使該等材料分散於高 分子材料(黏合用樹脂)或無機材料中。就發光效率、壽命 之觀點而言,較佳為於主體材料中分散有發光性之摻雜劑 者。 作為有機發光材料可使用有機EL用之周知發光材料。此 種發光材料係分類為低分子發光材料、高 等,以下例示該等之具趙化合物,但本實施形態發並= 於該等材料。λ,上述發光材料亦可分類為螢光材料、碟 光材料等。於此情料’就低耗電化之觀點而言較佳使用 發光效率較高之磷光材料。 作為發光層中任意包含之發光性之摻雜劑,可使用有機 EL用之周知摻雜劑材料。作為此種摻雜劑材料而言,例如 作為紫外發光材料可列舉對四聯苯、3,5 3 5四第= 六聯苯、3,5,3’5四-第三丁基_對聯五笨等螢四光發 等。作為藍色發光材料’可列舉苯乙締衍生物等螢光發光 材料、雙Κ4,6-二氟苯基)·π比咬.N,C2,]n比咬甲酸鹽銀 雙(4,’6,·二氟苯基^定)叫“比铜酸鹽銀 (III)(FIr6)等碟光發光有機金屬錯合物等。 161804.doc161804.doc •26· S 201240183 “ can also be a passive matrix drive. A configuration example of an organic EL element substrate using an active matrix method will be described in detail in the second embodiment below. Hereinafter, each constituent element of the organic EL element substrate will be described in detail. As the substrate 22, substantially the same material as the substrate 5 of the phosphor substrate 2 can be used. In other words, examples of the material of the substrate 22 include an inorganic material substrate containing glass or quartz, a plastic substrate containing polyethylene terephthalate, polycarbazole, polystyrene, and a ceramic containing oxidized material. An insulating substrate such as a substrate or a metal substrate containing aluminum (AI) or iron (Fe) or the like, or an insulating material containing yttrium oxide (Si〇2) or an organic insulating material is applied onto the other substrate. The substrate or the substrate on which the surface of the metal substrate including ruthenium or the like is subjected to an insulating treatment by anodization isotropic method is not limited to the substrate. Among them, a plastic substrate or a metal substrate is preferably used from the viewpoint of no stress and being bendable or bendable. Further, it is more preferably a substrate coated with an inorganic material on a plastic substrate or a substrate coated with an inorganic insulating material on the metal substrate. Thereby, the deterioration of the organic EL due to the permeation of moisture which may occur when the plastic substrate is used as the substrate of the organic EIj can be eliminated. Further, it can eliminate the leakage (short circuit) caused by the protrusion of the metal substrate which may occur when the metal substrate is used as the substrate of the organic EL. Furthermore, the film thickness of the organic EL layer is usually very thin, ranging from 1 nm to 200 nm. Left and right, it is well known that the protrusions cause leakage or short circuit of the pixel portion. Since the light from the organic EL layer is emitted from the side opposite to the substrate, the substrate 22 may be transparent or opaque. Next, as the electrode material for forming the anode 13 and the cathode 20, the electrode material can be used for the period 161804.doc • 27-201240183. In the case of the anode 13, from the viewpoint of more efficiently injecting a hole into the light-emitting layer 16, as the transparent electrode material, gold (Au), foil (pt), and nickel (Ni) having a work function of 4.5 eV or more can be cited. And other metals, and oxides containing indium (In) and tin (Sn) (ιτο), tin (Sn) oxide (Sn〇2), indium (In) and Zn (Zn) oxide (ιζο) )Wait. Further, in the case of the cathode 2, lithium (U), calcium (Ca), cesium (Ce), cesium having a work function of 4.5 eV or less can be cited from the viewpoint of more efficiently injecting electrons into the light-emitting layer 16 . (Ba), a metal such as aluminum (A1), or an alloy such as a MgAg alloy or alloy containing the metal. The anode 13 and the cathode 20 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion implantation method, or a resistance heating vapor deposition method, but the present embodiment is not limited to these formation methods. Further, if necessary, the formed electrode may be patterned by a photolithography method or a laser lift-off method, or a patterned electrode may be directly formed by combining with a shadow mask. The film thickness of the anode 13 and the cathode 20 is preferably 50 nm or more. When the film thickness is less than 5 〇 nm, the wiring voltage is increased, and the driving voltage may rise. When the microcavity effect is used for the purpose of improving the color purity, improving the luminous efficiency, and improving the front luminance, when the light from the light-emitting layer 16 is swept from the anode 13 side (the cathode 20 side), it is preferable to use half. The transparent electrode serves as the anode 13 (cathode 20). The material used herein may be a metal translucent electrode unit or a combination of a metal translucent electrode and a transparent electrode material. As the semi-transparent electrode material, silver is preferable from the viewpoint of reflectance and transmittance. The film thickness of the translucent electrode is preferably from 5 nm to 30 nm. When the film thickness is less than 5 nm, the light is not sufficiently reflected, and sufficient interference effect cannot be obtained. 161804.doc -28 - 201240183 In the case where the film thickness exceeds 3 〇 nm, the light transmittance is drastically lowered, which may cause a decrease in brightness and efficiency. Further, it is preferable to use an electrode having a high light reflectance as the electrode on the opposite side to the light exiting side. The electrode material used at this time may, for example, be a combination of a reflective metal electrode such as aluminum, silver, gold, aluminum-lithium gold-aluminum-salt alloy, aluminum-lithium alloy, or a transparent electrode and a reflective metal electrode (reflective electrode). Electrodes, etc. The organic EL layer used in the present embodiment may have a single layer structure of an organic light-emitting layer, or a multilayer structure of an organic light-emitting layer, a charge transport layer, and a charge injection layer. Specifically, the following configuration may be mentioned. The form is not limited by this. 0) Organic light-emitting layer (2) Hole transport layer/organic light-emitting layer (3) Organic light-emitting layer/electron transport layer (4) Hole transport layer/organic light-emitting layer/electron transport layer (5) Hole injection layer/electricity Hole transport layer/organic light-emitting layer/electron transfer layer (6) Hole injection layer/hole transport layer/organic light-emitting layer/electron transport layer/electron injection layer (7) Hole injection layer/hole transport layer/organic Light Emitting Layer / Hole Barrier Layer / Electron Transport Layer (8) Hole Injection Layer / Hole Transport Layer / Organic Light Emitting Layer / Hole Barrier Layer / Electron Transport Layer / Electron Injection Layer (9) Hole Injection Layer / Hole Transport layer/electron barrier layer/organic light-emitting layer/hole barrier layer/electron transport layer/electron injection layer Further, in the present embodiment, the above (8) is employed as shown in FIG. 1B. 161804.doc -29- 201240183 In the above configuration example, each layer of the light-emitting layer, the hole injection layer, the hole transport layer, the hole barrier layer, the electron barrier layer, the electron transport layer, and the electron injection layer may be a single layer structure Alternatively, the organic light-emitting layer may be composed of only the organic light-emitting material exemplified below. The organic light-emitting layer may also be composed of a combination of a light-emitting dopant and a host material. Further, the organic light-emitting layer may optionally contain a hole transporting material, an electron transporting material, an additive (precursor, acceptor, etc.). The organic light-emitting layer may be configured to disperse the materials in a high molecular material (adhesive resin) or an inorganic material. From the viewpoint of luminous efficiency and life, it is preferred that a dopant having luminescent properties is dispersed in the host material. As the organic light-emitting material, a well-known light-emitting material for organic EL can be used. Such a light-emitting material is classified into a low molecular light-emitting material and a high-grade material, and the above-mentioned compounds are exemplified below, but the present embodiment is derived from these materials. λ, the above luminescent material may also be classified into a fluorescent material, a ray material, or the like. In this case, it is preferable to use a phosphorescent material having a high luminous efficiency from the viewpoint of low power consumption. As the dopant for luminescence which is arbitrarily contained in the light-emitting layer, a well-known dopant material for organic EL can be used. As such a dopant material, for example, as an ultraviolet luminescent material, p-terphenyl, 3,5 3 5 4 hexaphenyl, 3,5,3'5 tetra-t-butyl _ couplet 5 may be mentioned. Stupid and so on. Examples of the blue light-emitting material include a fluorescent material such as a styrene derivative, a bismuth 4,6-difluorophenyl group, a π ratio bite, and a N, C2,]n ratio than a bite formate silver double (4, '6, · Difluorophenyl group is called "battery-emitting organic metal complexes such as cuprate silver (III) (FIr6), etc. 161804.doc

S -30- 201240183 又’作為使用摻雜劑時之主體材料,可使用有機el用之 周知主體材料。作為此種主體材料,可列舉上述低分子發 光材料、高分子發光材料、4,4,.雙(n卡唾)聯苯、99•二(4_ 一味唾基)第(CPF)、3,6_雙(三苯碎基)味嗤(mCP)、 (PCF)P卡唾衍生物、4-(二苯基磷唾)·Ν,Ν-二苯基苯胺 (ΗΜ-Α1)等之苯胺衍生物、13雙(9苯基|第冬基)苯 (mDPFB)、1,4-雙(9-苯基_9Η务9_基)苯(pDpFB)等第衍生 物等® 電荷注入輸送層以更有效地電荷(電洞、電子)之自電極 之注入及向發光層之輸送(注入)為目的,而分類為電荷注 人層(m入層 '電子注入層)及電荷輸送層(電洞輸送 層電子輸送層)。電荷注入輸送層亦可僅由以下例示之 電荷注入輸送材料構成。電荷注入輪送層亦可於以下例示 之電何注入輸送材料中包含任意添加劑(予體、受體等) 等:電荷注入輸送層亦可構成為使該等材料分散於高分子 材料(黏合用樹脂)或無機材料中。 作為電荷注人輸送材料,可使用有機咖、有機光導電 =用之周知電荷輸送材料。此種電荷注入輸送材料係分類 為電岡注入輸送材料及電子注入輸送材料,以下例示該等 之具體化合物,但本實施形態並不限定於該等材料。 作為電洞注入電洞輸送材料,可列舉例如氧化鈒 办)、氧化錮(Mo〇2)等之氧化物、無機p型半導體材 Μ化合物、N,N,·雙(3_甲基苯基)·Ν, 本胺(TPD)H (伸萘基-卜W二苯基-聯苯胺 161804.doc •31- 201240183 ()專之方香族二級胺化合物、膝化合物、啥。丫咬嗣化 合物、苯乙烯胺化合物等之低分子材料、聚苯胺(PANI)、 聚笨胺-樟腦磺酸(PANI_CSA)、3,4_聚乙烯二氧噻吩/聚苯 乙烯磺酸鹽(PED〇T/pss)、聚(三笨胺)衍生物(p〇iy_ TPD)、聚苯乙烯咔唑(pvCz)、聚(對笨乙炔乂ppv)、聚⑼ 伸萘基乙炔)(PNV)等之高分子材料等。 又’以更有效地進行自陽極之電洞之注入及輸送為目 的,作為電洞注入層使用之材料較佳使用較電洞輸送層使 用之電洞注入輸送材料而言,最高佔用分子軌域(H〇M〇,S -30- 201240183 Further, as a host material when a dopant is used, a known host material for organic EL can be used. Examples of such a host material include the above-mentioned low molecular light-emitting materials, polymer light-emitting materials, 4, 4, bis (n-caloric) biphenyl, 99•2 (4_monosyl) (CPF), 3, 6 _ bis (triphenylpyrazine) miso (mCP), (PCF) P card saliva derivative, 4-(diphenylphosphine) hydrazine, hydrazine-diphenylaniline (ΗΜ-Α1) and other aniline derivatives , 13 bis(9phenyl | epoxide) benzene (mDPFB), 1,4-bis(9-phenyl -9 quinone 9 yl) benzene (pDpFB), etc., etc., charge injection layer More efficient charge (hole, electron) from the injection of the electrode and transport (injection) to the light-emitting layer, and is classified into a charge injection layer (m-input 'electron injection layer) and charge transport layer (hole) Transport layer electron transport layer). The charge injection transport layer may also be composed only of the charge injection transport material exemplified below. The charge injection transfer layer may also include any additives (precursors, acceptors, etc.) in the electroporation transport material exemplified below: the charge injection transport layer may be configured to disperse the materials in the polymer material (for bonding) Resin) or inorganic material. As the charge injection material, organic coffee, organic light conduction, and a known charge transport material can be used. Such a charge injection transport material is classified into a plasma injection transport material and an electron injection transport material, and specific compounds are exemplified below, but the present embodiment is not limited to these materials. Examples of the hole injection hole transporting material include an oxide such as yttrium oxide, yttrium oxide (Mo〇2), an inorganic p-type semiconductor material Μ compound, and N,N,·bis (3-methylphenyl). )·Ν, the present amine (TPD)H (Naphthyl-Bu W diphenyl-benzidine 161804.doc • 31- 201240183 () Specialized in the aromatic secondary amine compound, knee compound, 啥. Low molecular materials such as compounds, styrylamine compounds, polyaniline (PANI), polyphenylamine-camphorsulfonic acid (PANI_CSA), 3,4_polyethylenedioxythiophene/polystyrene sulfonate (PED〇T/ Pss), poly(trimamine) derivatives (p〇iy_TPD), polystyrene carbazole (pvCz), poly(p-acetylene 乂 ppv), poly(9) stilbene acetylene (PNV), etc. Materials, etc. In order to more efficiently perform the injection and transport of the holes from the anode, the material used as the hole injection layer is preferably the most occupied molecular orbital region than the hole injection transport material used for the hole transport layer. (H〇M〇,

Highest Occupied Molecular Orbital)之能階較低的材料。 又,作為電洞輸送層較佳使用較電洞注入層使用之電洞注 入輸送材料而言,電洞之移動率較高之材料。 又,為進而提高電洞之注入及輸送性,較佳為對上述電 洞注入輸送材料摻雜受體。作為受體,可使用有機EL用之 周知受體材料。以下例示該等之具體化合物,但本實施形 態並不限定於該等材料。 作為受體材料,可列舉Au、Pt、W、Ir、P0C13、AsF6、 Cl、Br、I、氧化釩(v2〇5)、氧化鉬(m〇02)等之無機材料、 TCNQ(7,7,8,8,·四氰基奎諾二甲烷)、TCNQF4(四氟四氰基 奎諾二曱烷)、TCNE(四氰乙烯)、HCNB(六氰丁二烯)、 DDQ(二環二氰苯醌)等之具有氰基之化合物、TNF(三硝基 第_)、DNF(二硝基苐酮)等之具有硝基之化合物、四氟苯 酿、四氣苯醌、四溴苯醌等之有機材料。其中,TCNQ ' TCNQF4、TCNE、HCNB、DDQ等之具有氰基之化合物由 •32- 161804.doc 5 201240183 於可更有效地增加載體濃度而更佳。 作為電子注入電子輸送材料,可列舉例如η型半導體之 無機材料、噁二唑衍生物、三唑衍生物、噻喃二氧化物衍 生物、苯醌衍生物、㈣衍生物、蒽酿衍生物、聯苯酿衍 生物、苐酮衍生物、二苯并呋喃衍生物等之低分子材料; 聚(噁二唑)(P〇ly-〇XZ)、聚苯乙烯衍生物(pss)等之高分子 材料。尤其係作為電子注入材料,尤其可列舉氟化鋰 (LiF)、氟化鋇(BaFd等之氟化物、氧化鋰(Li2〇)等之氧化 物等。 以更有效地進行自陰極之電子之注入及輸送為目的,作 為電子/主入層使用之材料較佳使用較電子輸送層使用之電 子注入輸送材料而言,最低未佔用分子軌域(LUm〇, lowest unoccupied molecular orbital)之能階較高的材料。 又’作為電子輸送層使用之材料較佳使用較電子注入層使 用之電子注入輸送材料而言,電子之移動率較高之材料。 又’為進而提高電子之注入及輸送性,較佳為對上述電 子注入輸送材料摻雜予體。作為予體可使用有機EL用之周 知予體材料。以下例示該等之具體化合物,但本實施形態 並不限定於該等材料。 作為予體材料’可列舉驗金屬、驗土類金屬、稀土類元 素、A卜Ag、Cu、In等之無機材料、苯胺類、笨二胺類、 聯苯胺類(Ν,Ν,Ν·,Ν·-四苯聯苯胺、N,N’-雙-(3-甲基苯基)-N,N'-雙-(苯基)聯苯胺、ν,Ν·-二(伸萘基-1-基)-N,N’-二苯 基-聯苯胺等)、三苯胺類(三苯胺、4,4'4Π-三(N,N-二苯基- 161804.doc •33· 201240183 胺基)-三苯胺、4,4’4'-:(N_3_甲基苯基_N_苯基胺基)·三笨 胺、4,4’4’-三(Ν-(1·萘基)·Ν_苯基_胺基)_三苯胺等)、三笨 二胺類(Ν,Ν’-二-(4-甲基-笨基)·Ν,Ν,_二苯基],4_笨二胺)等 之骨I上具有芳香族3級胺之化合物、菲、花、花、某 稠四苯、稠五苯等之縮合多環化合物(其中,縮合多環化 合物亦可具有取代基)、TTF(四硫富瓦烯)類、二苯并呋 喃、酚噻嗪、咔唑等之有機材料。 該等之中,A其係骨架上具有芳香族3級胺之化合物、 縮合多環化合物、驗金屬由於可更有效地增加載體漠度而 更佳。 包含發光層、電洞輸送層、電子輸送層、電洞注入層、 及電子注人層等之有機EL層可藉由使用將上述材料溶解、 分散於溶劑之有機EL層形成用塗液,藉由旋塗法、浸潰 法、刮刀法、吐出塗佈法、喷塗法等之塗佈法、喷墨法、 凸版印刷法、凹版印刷法、網版印刷法、微凹印塗佈法等 之印刷法等的周知濕式製程、使用上述材料之電阻加熱蒸 鍍法、電子束(EB)蒸鍍法、分子束磊晶(MBE)法濺鍍 法、有機氣相蒸鑛(OVPD)法等之周知乾式製程、或雷射 轉印法等而形成。再者,於藉由濕式製程形成有機el層之 情形時’有機EL層形成用塗液亦可包含均化劑、黏度調整 劑等之用以調整塗液物性之添加劑。 上述有機EL層之各層之膜厚較佳為! nm〜i〇〇〇 nm& 2,更佳為10 nm〜200 若膜厚未滿1〇 nm,則無法獲 得原本必須之物性(電荷之注入特性、輸送特性、封閉特 161804.docHighest Occupied Molecular Orbital) is a lower energy material. Further, as the hole transport layer, it is preferable to use a material having a higher mobility of the hole than the hole injection transport material used for the hole injection layer. Further, in order to further improve the injection and transportability of the holes, it is preferable to inject the transport material doping receptor into the holes. As the acceptor, a known acceptor material for organic EL can be used. The specific compounds are exemplified below, but the embodiment is not limited to the materials. Examples of the acceptor material include inorganic materials such as Au, Pt, W, Ir, P0C13, AsF6, Cl, Br, I, vanadium oxide (v2〇5), and molybdenum oxide (m〇02), and TCNQ (7, 7). ,8,8,·tetracyanoquinol dimethane), TCNQF4 (tetrafluorotetracyanoquinolidine dioxane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (bicyclodene) a compound having a cyano group such as cyanobenzoquinone or the like, a compound having a nitro group such as TNF (trinitro--), DNF (dinitrofluorenone), tetrafluorobenzene, tetra-p-benzoquinone, tetrabromobenzene Organic materials such as 醌. Among them, a compound having a cyano group such as TCNQ 'TCNQF4, TCNE, HCNB, DDQ or the like is more preferably added by 32-161804.doc 5 201240183 to more effectively increase the concentration of the carrier. Examples of the electron injecting electron transporting material include an inorganic material of an n-type semiconductor, an oxadiazole derivative, a triazole derivative, a thiopyran dioxide derivative, a benzoquinone derivative, a (tetra) derivative, a brewing derivative, and Low molecular materials such as biphenyl brewed derivatives, anthrone derivatives, dibenzofuran derivatives; polymers such as poly(oxadiazole) (P〇ly-〇XZ) and polystyrene derivatives (pss) material. In particular, examples of the electron injecting material include lithium fluoride (LiF), cesium fluoride (fluoride such as BaFd, and oxides such as lithium oxide (Li 2 〇), etc., and more efficient injection of electrons from the cathode. For the purpose of transporting, the material used as the electron/main layer is preferably used in comparison with the electron injecting and transporting material used in the electron transporting layer, and the lowest unoccupied molecular orbital (LUm〇, lowest unoccupied molecular orbital) has a higher energy level. The material used as the electron transport layer is preferably a material having a higher electron mobility than the electron injecting and transporting material used for the electron injecting layer. Further, in order to further improve the injection and transportability of electrons, It is preferable to dope the above-mentioned electron injecting and transporting material. As the precursor, a known precursor material for organic EL can be used. The specific compounds are exemplified below, but the present embodiment is not limited to these materials. The material 'can be enumerated as a metal, a metal such as a rare earth element, an inorganic material such as Ag, Cu, or In, an aniline, a stupid diamine, or a benzidine. Ν,Ν·,Ν·-Tetraphenylbenzidine, N,N'-bis-(3-methylphenyl)-N,N'-bis-(phenyl)benzidine, ν,Ν·-二( (Naphthyl-1-yl)-N,N'-diphenyl-benzidine, etc., triphenylamines (triphenylamine, 4,4'4Π-tris(N,N-diphenyl-161804.doc • 33· 201240183 Amino)-triphenylamine, 4,4'4'-:(N_3_methylphenyl_N_phenylamino)·Trisamine, 4,4′4′-tris(Ν-( 1·naphthyl)·Ν_phenyl-amino)-triphenylamine, etc., tris-diamines (Ν,Ν'-di-(4-methyl-phenyl)·Ν,Ν,_diphenyl a compound having an aromatic tertiary amine on the bone I, a condensed polycyclic compound such as phenanthrene, a flower, a flower, a condensed tetraphenyl or a fused pentabenzene (wherein a condensed polycyclic compound) It may also have an organic material such as a substituent, TTF (tetrathiafulvalene), dibenzofuran, phenothiazine, carbazole, etc. Among them, A has an aromatic tertiary amine on its skeleton. The compound, the condensed polycyclic compound, and the metal test are more preferable because the carrier inversion can be more effectively increased. The light-emitting layer, the hole transport layer, the electron transport layer, and the hole injection are included. And the organic EL layer such as the electron-injecting layer can be applied by a spin coating method, a dipping method, a doctor blade method, a discharge coating method, or the like, by using a coating liquid for forming an organic EL layer in which the above materials are dissolved and dispersed in a solvent. A well-known wet process such as a coating method such as a spray coating method, an inkjet method, a relief printing method, a gravure printing method, a screen printing method, or a micro gravure coating method, or a resistance heating steam using the above materials It is formed by a plating method, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) sputtering method, an organic vapor phase distillation (OVPD) method, or the like, or a laser transfer method. When the organic EL layer is formed by a wet process, the coating liquid for forming an organic EL layer may further contain an additive for adjusting the physical properties of the coating liquid, such as a leveling agent or a viscosity modifier. The film thickness of each layer of the above organic EL layer is preferably! Nm~i〇〇〇 nm& 2, more preferably 10 nm~200 If the film thickness is less than 1 〇 nm, the original physical properties cannot be obtained (charge injection characteristics, transport characteristics, and closure characteristics).

S -34· 201240183 (·生等)。又,存在因灰塵等異物產生像素缺陷之可能。 又,若膜厚超過200 nm,則因有機££層之電阻成分使得驅 動電壓上升’從而導致耗電上升。 於本實施形態之情形時,以於陽極13端部防止陽極13與 陰極20之間產生漏電為目的,而形成有邊緣護罩21。邊緣 護罩21可藉由使用絕緣材料之£]6蒸鍍法、濺鍍法、離子佈 植法、電阻加熱蒸鍍法等之周知方法形成,且可藉由周知 乾式法及濕式法之光微影法而經圖案化,但本實施形態並 不限定於該等形成方法。構成邊緣護罩21之材料可使用周 知絕緣材料,但本實施形態並無特別限定,由於需要使光 透過’可列舉例如 Si〇 ' Si〇N、SiN、SiOC、SiC、S -34· 201240183 (·sheng, etc.). Moreover, there is a possibility that pixel defects occur due to foreign matter such as dust. Further, when the film thickness exceeds 200 nm, the driving voltage rises due to the resistance component of the organic layer, resulting in an increase in power consumption. In the case of the present embodiment, the edge shield 21 is formed for the purpose of preventing leakage between the anode 13 and the cathode 20 at the end of the anode 13. The edge shield 21 can be formed by a known method using an insulating material such as a vapor deposition method, a sputtering method, an ion implantation method, a resistance heating vapor deposition method, or the like, and can be known by a dry method or a wet method. The photolithography method is patterned, but the embodiment is not limited to the formation methods. The material constituting the edge shield 21 can be a known insulating material. However, the present embodiment is not particularly limited, and it is necessary to transmit light. For example, Si〇 'Si〇N, SiN, SiOC, SiC,

HfSiON、ZrO、HfO、La〇等。作為邊緣護罩21之膜厚較 佳為100 nm〜2000 nm。若膜厚為1〇〇 nm以下,則絕緣性不 充分,陽極13與陰極20之間產生漏電,變成耗電上升、不 發光之原因。又,若膜厚為2〇〇〇 nm以上,則成膜製程較 費時,變成生產性下降、邊緣護罩21處之電極產生斷線之 原因。 有機EL元件12較佳包含由用作陽極13、陰極2〇之反射電 極及半透明電極之干涉效應所致、或者由介電體多層膜所 致的微空腔構造(光微小共振器構造)。藉此,可使來自有 機EL元件12之光向正面方向聚光(具有指向性)^其結果 為’可減少向周圍散逸之光’從而可提高正面之發光效 率。藉此’可將有機EL元件12之發光層16中產生之發光能 里更有效地傳輸至螢光體層7R、7G、7B,從而可提高正 161804.doc •35- 201240183 面亮度。又,藉由干涉效應,亦可調整發光光譜,藉由調 整為所需之發光峰值波長、半值寬而進行發光光譜之調 整。藉此’可控制為能夠更有效地激發發出各色光之勞光 體之光譜。 (本實施形態之效果) 本發明者等人對使用螢光體之先前之顯示裝置進行了研 討’著眼於如何使自螢光體層向基板側、即出光方向發光 之螢光不被與基板之界面反射地有效掠出,經過銳意努力 後,想到了以下構成。 即’根據本實施形態之螢光體基板2及使用其之顯示裝 置1’而於螢光體層7R、7G、7B與基板5之間設置具有折 射率梯度的中間層10。 藉此’例如構成為使該中間層1 〇之折射率梯度自螢光體 層7R、7G ' 7B朝向基板5在厚度方向上在nl至n2之範圍内 緩緩變化。藉此,可將如先前般相對於螢光體層7R、 7G、7B之出光面之法線方向角度較大的螢光成分,因螢 光體層7R、7G、7B與基板5之間之存在折射率差之界面全 反射而產生的光之損耗抑制為最小限度。由此,可提高來 自螢光體層7R、7G、7B之光之掠出效率,從而可提高轉 換效率。又,藉由使螢光體基板2與有機EL元件組合,而 可提供視角特性優異且可實現低耗電化之優異的顯示裝 置。 此處’如圖13A之先前之顯示裝置之一例之模式圖所 示’一般自外部(例如有機EL元件12)對螢光體層7入射激 161804.doc •36·HfSiON, ZrO, HfO, La〇, and the like. The film thickness of the edge shield 21 is preferably from 100 nm to 2000 nm. When the film thickness is 1 〇〇 nm or less, the insulating property is insufficient, and electric leakage occurs between the anode 13 and the cathode 20, which causes an increase in power consumption and no light emission. Further, when the film thickness is 2 〇〇〇 nm or more, the film forming process is time consuming, and the productivity is lowered, and the electrode at the edge shroud 21 is broken. The organic EL element 12 preferably includes a microcavity structure (light microresonator structure) caused by an interference effect of a reflective electrode and a translucent electrode serving as the anode 13, the cathode 2, or a dielectric multilayer film. . Thereby, the light from the organic EL element 12 can be concentrated in the front direction (having directivity), and as a result, the light which is dissipated to the surroundings can be reduced, and the luminous efficiency of the front side can be improved. Thereby, the luminescence energy generated in the luminescent layer 16 of the organic EL element 12 can be more efficiently transmitted to the phosphor layers 7R, 7G, and 7B, thereby improving the surface luminance of the positive 161804.doc • 35 - 201240183. Further, by the interference effect, the luminescence spectrum can be adjusted, and the luminescence spectrum can be adjusted by adjusting the desired luminescence peak wavelength and half value width. Thereby, it can be controlled to more effectively excite the spectrum of the work light emitting the respective colors of light. (Effects of the present embodiment) The inventors of the present invention have studied the prior art display device using a phosphor, and have focused on how to make the phosphor emitted from the phosphor layer to the substrate side, that is, the light emitting direction, not to be bonded to the substrate. The interface was effectively reflected off, and after careful efforts, the following composition was considered. In other words, the intermediate layer 10 having a refractive index gradient is provided between the phosphor layers 7R, 7G, and 7B and the substrate 5 according to the phosphor substrate 2 of the present embodiment and the display device 1' using the same. Thus, for example, the refractive index gradient of the intermediate layer 1 缓 is gradually changed from the phosphor layers 7R and 7G' 7B toward the substrate 5 in the thickness direction in the range of n1 to n2. Thereby, the fluorescent component having a larger angle with respect to the normal direction of the light-emitting surface of the phosphor layers 7R, 7G, and 7B as before can be refracted by the phosphor layer 7R, 7G, and 7B and the substrate 5 The loss of light generated by total reflection at the interface of the rate difference is suppressed to a minimum. Thereby, the grazing efficiency of light from the phosphor layers 7R, 7G, and 7B can be improved, and the conversion efficiency can be improved. Moreover, by combining the phosphor substrate 2 and the organic EL element, it is possible to provide an excellent display device which is excellent in viewing angle characteristics and can achieve low power consumption. Here, the pattern diagram of an example of the display device of the prior art as shown in Fig. 13A is generally incident on the phosphor layer 7 from the outside (e.g., the organic EL element 12). 161804.doc • 36·

S 201240183 發光之情形時,來自螢弁舻1 赏元體層7之發光自各螢光體各向同 性地發光。因此,向正而士 a上, 面方向之出光側(基板5側)發光之成 分C1(圖13A中貫線表示)可作兔古从技土二 J J 1下為有效發光而掠出至外部。 然而’向侧面方向及與出光側為相反側(光源侧)發光之成 刀C2(圖13 A中一點鏈線表示)無法掠出至外部,而變成發 . 光之損耗。又,自螢光體層7向JL面方向發光之勞光之 中,相對於法線方向角度較大之螢光成分C3亦由折射率不 同之勞光體層7與基板5之界面反射(圖nA中—點鍵線表 示)、或者由基板5與外部層之界面反射(圖nA中虛線表 不)。如此,該等螢光成分亦無法掠出至外部,而變成發 光之損耗。若考慮該等損耗,則實際上可掠出至出光側之 發光為全體發光之20%左右。 相對於此,如圖13B之先前之顯示裝置之其他例之模式 圖所示,若藉由金屬等反射層8覆蓋螢光體7之側面,則向 側面方向發光之成分(圖13B中實線表示)之一部分C1藉由 被反射層8反射而有效地導.出至外部被掠出。然而,向與 出光側為相反側(光源側)發光之成分C2無法掠出至正面方 向。又,與圖13A之構造同樣地,自螢光體層7向正面方向 發光之螢光之中’相對於法線方向角度較大之螢光成分C3 •由折射率不同之螢光體層7與基板5之界面反射(圖13A中一 點鏈線表示)、或者由基板5與外部層之界面反射(圖13A中 虛線表示),而變成發光之損耗。 因此’於圖13A及13B所示之先前之構造中,將來自螢 光體層7之光掠出至外部時之光之損耗較大,可獲得之發 161804.doc -37- 201240183 光效率較低。 又,對於本實施形態之螢光體基板2而言,螢光體層 7R、7G、7B係由對應基板5上之各特定區域而分割之折射 率不同的複數種螢光體層構成,該等各個螢光體層7r、’ 7G、7B與基板5之間較佳設有中間層1〇。藉此,對於折射 率不同之各勞光體層7R、7G、7B,可將相對於螢光體層 7R、7G、7B之出光面之法線方向角度較大之螢光成分, 因螢光體層7R、7G、7B與基板5之間之存在折射率差的界 面全反射而產生的光之損耗抑制為最小限度從而可提高 光之掠出效率。 Π 又,對於本實施形態之螢光體基板2而言,較佳為中間 ㈣由!個以上之微小構造體形成,且具有微小構造體之 截面積自上述螢光體層朝向上述基板而變小之形狀。藉 此’可於勞光體層7R、7G、7B與基板5之間設置較緩之折 射率梯度。因此,可將因螢光體層7R、7G、7b與基板5之 間之存在折射率差之界面全反射所產生的光之損耗抑制為 最小限度,從而可顯著提高光之掠出效率。 广對於本實施形態之螢光體基板2而t,較佳為上述 微小構造體為81錐形狀’且該圓錐形狀之頂點部所成之頂 角形成為45°以下。藉此’可於登光體層7r、%、π與基 板5之間設置較緩之折射率梯度。㈣,可將因螢光體^ 7R 7G、7B與基板5之間之存在折射率差之界面全反射所 產生的光之損耗抑制為最小限度,從而可更顯著地提高光 之掠出效率。 161804.docS 201240183 In the case of illuminating, the luminescence from the fluorescing layer 1 is emitted isotropically from the respective phosphors. Therefore, on the positive side, the component C1 (shown by the line in Fig. 13A) which emits light on the light-emitting side (substrate 5 side) in the plane direction can be swept out to the outside for effective illumination from the technical field J J 1 . However, the cutter C2 (indicated by the one-dot chain line in Fig. 13A) which emits light in the side direction and on the opposite side (light source side) from the light exiting side cannot be swept out to the outside, and becomes a loss of light. Further, among the light-emitting light emitted from the phosphor layer 7 in the JL plane direction, the fluorescent component C3 having a large angle with respect to the normal direction is also reflected by the interface between the working layer 7 having a different refractive index and the substrate 5 (Fig. nA) The middle-point key line is indicated, or is reflected by the interface between the substrate 5 and the outer layer (not shown by the broken line in FIG. nA). In this way, the fluorescent components cannot be swept out to the outside, and become a loss of light. When these losses are considered, the light that can actually be swept out to the light-emitting side is about 20% of the total light emission. On the other hand, as shown in the schematic diagram of another example of the display device of the prior art of FIG. 13B, when the side surface of the phosphor 7 is covered by the reflective layer 8 such as metal, the component which emits light in the side direction (solid line in FIG. 13B) One of the portions C1 is effectively guided out to the outside by being reflected by the reflective layer 8. However, the component C2 that emits light toward the opposite side (light source side) from the light exiting side cannot be swept out to the front direction. Further, similarly to the structure of FIG. 13A, among the fluorescent light emitted from the phosphor layer 7 in the front direction, the fluorescent component C3 having a large angle with respect to the normal direction is composed of the phosphor layer 7 and the substrate having different refractive indices. The interface reflection of 5 (indicated by a dotted line in Fig. 13A) or the interface reflection between the substrate 5 and the outer layer (indicated by a broken line in Fig. 13A) becomes a loss of light emission. Therefore, in the previous configuration shown in Figs. 13A and 13B, the light loss when the light from the phosphor layer 7 is swept out to the outside is large, and the light 161804.doc -37-201240183 is available. . Further, in the phosphor substrate 2 of the present embodiment, the phosphor layers 7R, 7G, and 7B are composed of a plurality of phosphor layers having different refractive indices divided by respective specific regions on the substrate 5, and each of the phosphor layers An intermediate layer 1 is preferably provided between the phosphor layers 7r, '7G, 7B and the substrate 5. Thereby, for each of the working layers 7R, 7G, and 7B having different refractive indices, a fluorescent component having a larger angle with respect to the normal direction of the light-emitting surfaces of the phosphor layers 7R, 7G, and 7B can be formed by the phosphor layer 7R. The loss of light generated by the total reflection of the interface between the 7G, 7B and the substrate 5 having a refractive index difference is minimized, thereby improving the light-pumping efficiency. Further, in the phosphor substrate 2 of the present embodiment, it is preferable that the intermediate portion (four) is formed of one or more minute structures, and that the cross-sectional area of the minute structure is smaller from the phosphor layer toward the substrate. The shape. By this, a gentle refractive index gradient can be provided between the working layers 7R, 7G, and 7B and the substrate 5. Therefore, the loss of light generated by the total reflection of the interface having the refractive index difference between the phosphor layers 7R, 7G, and 7b and the substrate 5 can be minimized, and the light pulsation efficiency can be remarkably improved. In the phosphor substrate 2 of the present embodiment, it is preferable that the microstructure is 81-cone shape and the apex portion of the conical shape is formed to have a vertex angle of 45 or less. Thereby, a gentle refractive index gradient can be provided between the light-receiving layer 7r, %, π and the substrate 5. (4) The loss of light generated by the total reflection of the interface between the phosphors 7R 7G and 7B and the substrate 5 with the refractive index difference can be minimized, and the light pick-up efficiency can be more significantly improved. 161804.doc

S -38- 201240183 又,對於本實施形態之螢光體基板2而言,於基板5之外 表面與位於上述外表面側之外部層之間,設置有在基板$ 側與外部層側之間具有折射率梯度的保護層i i。藉此,可 將自基板5向外部層側、即出光方向發光之螢光之中、相 對於法線方向角度較大之螢光成分,@基板5與外部層之 間之存在折射率差之界面全反射所產生的&之損耗抑制為 最小限度,從而可將螢光有效地掠出至外部。 . 又,對於本實施形態之螢光體基板2而言,於將基板5之 折射率設為n3、外部層之折射率設為n4之情形時保護層 11之折射率較佳具有自基板5朝向外部層,於與出光面正 交之厚度方向上在“至以之範圍内緩緩變化的梯度。藉 此,可將自基板5朝向外部層側、即出光方向發光之螢光 之中、相對於法線方向角度較大之螢光成分,因基板5與 外部層之間之存在折射率差之界面全反射而產生的光之損 耗抑制為最小限度,從而可有效地將螢光掠出至外部。 又,對於本實施形態之螢光體基板2而言,較佳為保護 層11由1個以上之微小構造體形成,且具有微小構造體之 截面積自基板5朝向外部層變小之形狀。藉此,可於基板$ 與外部層之間設置較緩之折射率梯度。因此,可將自基板 5朝向外部層側、#出光方向發光之螢光之中、相對二法 線方向角度較大之螢光成分,因基板5與外部層之間之存 在折射率差之界面全反射而產生的光之損耗抑制為最小限 度’從而可將螢光有效地掠出至外部。 又,對於本實施形態之螢光體基板2而言,較佳為微小 161804.doc •39- 201240183 構造體為®錐形狀,且該gj錐形狀之頂點料成之頂角形 成為45。以下。藉此,可於基板5與外部層之間設置較緩之 折射率梯度。因此,可將自基板5朝向外部層側、即出光 方向發光之螢光之中、相對於法線方向角度較大之螢光成 分,因基板5與外部層之間之存在折射率差之界面全反射 所產生的光之損耗抑制為最小限度,從而可將螢光極有效 地掠出至外部》 又,對於本實施形態之螢光體基板2而言,由於螢光體 層7R、7G、7B之側面設有反射層8,故可將自螢光體層 7R、7G、7B向所有方向各向同性地發光之螢光之中之朝 向側面側的螢光,藉由反射層8而有效地導引至正面方 向。因此’可提高發光效率(提高正面方向之亮度於如 勞光體之發光體之情形時,掠出至正面方向之光為全體之 20%左右,故將漏向側面側發光之光掠出至正面側,會有 效提南發光效率。 又’對於本貫施形態之榮光體基板2而言,於勞光體層 7R、7G、7B中之使激發光入射之入射面之外表面側,具 備具有至少透過激發光之峰值波長之光、且至少反射螢光 體層7R、7G、7B之發光峰值波長之光之特性的波長選擇 透過反射層9。由此,可將自螢光體層7R、7G、7B向所有 方向各向同性地發光之螢光之中的朝向背面側(激發光側) 之螢光,藉由波長選擇透過反射層9而有效地導引至正面 方向。因此,可提高發光效率(提高正面方向之亮度)。於 如螢光體層之發光體層之情形時,掠出至正面方向之光為 161804.doc -40- § 201240183 全體之20%左右,故漏向背面側發光之光掠出至正面側, 會有效提高發光效率。 [第1實施形態之第1變形例] 以下,使用圖4說明上述實施形態之第1變形例。 本變形例之顯示裝置之基本構成係與第1實施形態相 同,與第1實施形態不同之處在於將發出藍色光之有機EL 元件基板作為光源。 圖4係表示本變形例之顯示裝置之剖面圖。圖4中,對與 第1實施形態使用之圖1A共通之構成要素附加相同符號, 且省略說明。 如圖4所示’本變形例之顯示裝置25係由螢光體基板 26、及經由平坦化膜3貼合於螢光體基板26上之有機el元 件基板27(光源)構成。本變形例之顯示裝置25中,自作為 光源之有機EL元件基板27射出藍色光。藍色光之主發光峰 值較理想為例如410 nm〜470 nm。 又’於螢光體基板26中,紅色像素PR上設有將藍色光作 為激發光而發出紅色光之紅色螢光體層7r,於綠色像素 PG上設有將藍色光作為激發光而發出綠色光之綠色螢光體 層7G。相對於此’於藍色像素pB上設有用以使入射之藍 色光散射而射出至外部之光散射層28。光散射層28構成為 於例如具有透光性之無機材料或者有機材料中分散有與該 等材料折射率不同的粒子等’且入射至光散射層28之光於 層内係各向同性地散射。關於紅色像素PR與綠色像素 PG ’與第1實施形態同樣地,在各螢光體層7R、之側面 161804.doc •41 · 201240183 形成有反射層8’於背面(與光源對向之面)形成有波長選擇 透過反射層9。又,關於藍色像素叩,亦於其側面形成有 反射層8 ’於背面(與光源對向之面)形成有波長選擇透過反 射層9。關於顯示裝置25之其他構成係與第i實施形態相 同。 本變形例之顯示裝置25中,將來自有機£1^元件基板27之 藍色光作為激發光入射至螢光體基板26,於紅色像素?11藉 由紅色螢光體層7R而產生紅色之螢光,於綠色像素pG中 藉由綠色勞光體層7G而產生綠色之勞光。於藍色像素pB 中藉由光散射層28使入射之藍色光散射後直接射出,利用 該等各色光而進行全彩顯示。如此,藍色像素PB之顯示原 理雖與第1實施形態不同’但本變形例亦可提高光之掠出 效率從而提高轉換效率,能夠獲得實現視角特性優異且可 實現低耗電化之優異的顯示裝置這一與第1實施形態相同 之效果。 [第1實施形態之第2變形例] 以下,使用圖5 A及5B對上述實施形態之第2變形例進行 說明。 本變形例之顯示裝置之基本構成係與第1實施形態相 同’與第1實施形態不同之處在於使用LED基板作為光 源。 圖5A係表示本變形例之顯示裝置之全體構成的剖面圖。 圖5B係表示作為光源之LED基板之剖面圖。於圖5A及5B 中’對與第1實施形態使用之圖1A及1B共通之構成要素附 161804.doc -42- $ 201240183 加相同符號,且省略說明。 於本變形例之顯示裝置51中,螢光體基板2之構成係與 第1實施形態相同,不同之處在於光源之構成。如圖5B所 示’ LED基板52(光源)具有LED(發光二極體)64。LED64構 成為於基板53之一面依序層疊有第!緩衝層54、η型接觸層 55、第2η型包覆層56、第In型包覆層57、活化層58、第1ρ 型包覆層59、第2p型包覆層60'第2緩衝層61,且於η型接 觸層55上形成有陰極62’於第2緩衝層61上形成有陽極 63。再者’作為LED可使用其他周知LED、例如紫外發光 無機LED、藍色發光無機LED等,但具體構成並不限於上 述者。 以下,詳細說明LED基板52之各構成要素。 本變形例中使用之活化層58係藉由電子與電洞之再結合 而進行發光之層。作為活化層材料,可使用led用之周知 活化層材料。作為此種活化層材料而言,例如作為紫外活 化層材料可列舉 AlGaN、InAIN、InaAlbGa^bl^OSa、〇$b、a + 1) ’作為藍色活化層材料可列舉< z< i作, 但本實施形態並不限定於該等β 又,作為活化層58係使用單一量子井構造或多重量子井 構造者。量子井構造之活化層可為η型、ρ型之任一者,尤 其係未摻雜(無雜質添加)之活化層’由於發光波長之半值 寬因頻帶間發光變窄,可獲得色純度良好之發光而較佳。 又,活化層58中亦可摻雜予體雜質、受體雜質之至少一 者。若摻雜有雜質之活化層之結晶性與未摻雜雜質者相 161804.doc -43· 201240183 同’則可藉由摻雜予體雜質而使頻帶間發光強度進而強於 未摻雜雜質者。若摻雜受體雜質,則可以較頻帶間發光之 峰值波長相差約0.5 eV之程度向低能量側使峰值波長移 位’而半值寬變廣。若摻雜受體雜質與予體雜質之兩者, 則與僅摻雜受體雜質之活化層之發光強度相比,可進而增 大其發光強度。尤其係,於形成摻雜有受體雜質之活化層 之情形時’活化層之導電型較佳為亦摻雜si等之予體雜質 而設為η型》 本變形例中使用之η型包覆層56、57可使用LED用之周 知η型包覆層材料,既可為單層亦可為多層構成。於以帶 隙能大於活化層58之η型半導體構成η型包覆層56、57之情 形時’ η型包覆層56、57與活化層58之間出現針對電洞之 電位障壁’可將電洞封閉於活化層58内。例如,可藉由η 型InxGai.xN(0$ 1)而形成η型包覆層56、57,但本實施 形態並非限定於該等者。 本變形例中使用之ρ型包覆層59、60可使用LED用之周 知P型包覆層材料,既可為單層亦可為多層構成。於藉由 帶隙能大於活化層58之ρ型半導體構成ρ型包覆層59、6〇之 情形時,ρ型包覆層59、6〇與活化層58之間出現針對電子 之電位障壁,而可將電子封閉於活化層58内。例如,可藉 由AlyGaNyN(〇SyS 1)而形成ρ型包覆層59、6〇,但本實施 形態並非限定於該等者β 本變形例中使用之η型接觸層55可使用LED用之周知接 觸層材料。例如,可形成η型GaN之η型接觸層55作為連接 161804.doc 201240183 於η型包覆層56、57而形成電極之層。又,作為連接 包覆層59、60而形成電極之層,亦可形成包含㈣⑽ 型接觸層。其中’若第2η型包覆層56、第邛型包覆層6〇係 由GaN形成,則該接觸層無須特別形成,亦可將第2包覆 層設為接觸層。 本變形例中使用之上述各層可使用咖用之周知成膜製 程形成’但本實施形態並不特別限定於該等。例如,可使 用MOWE(有貞金屬氣相纟日日日法)、_(分子束氣相蟲晶 法)、HDVPE(氫化物氣相m)等氣相蟲曰曰曰法而於例如 藍寶石(包含C面、A面、尺面)、Sic(亦包含6Hsic、4η· SiC)、尖晶石(MgAl2〇4、尤其係其⑴^面)、Ζη〇、&、 GaAs、或者其他氧化物單晶基板(NG〇等)等基板上形成。 本變形例亦能夠獲得與第丨實施形態相同之效果,即可 實現能提高光掠出效率而提高轉換效率、視角特性優異且 實現低耗電化之顯示裝置。 [第1實施形態之第3變形例] 以下,使用圖6Α及6Β說明上述實施形態之第3變形例。 本變形例之顯示裝置之基本構成係與第〗實施形態相 同,與第1實施形態之不同之處在於使用無機eL基板作為 光源。 圖6A係表示本變形例之顯示裝置之全體構成的剖面圖。 圖6Β係表示作為光源側基板之無機el基板之剖面圖。於 圖6A及6B中’對與第1實施形態中使用之圖1A及1B共通之 構成要素附加相同符號,且省略說明。 161804.doc •45· 201240183 於本變形例之顯示裝置67中,如圖6B所示,無機el元 件基板68(光源)包含無機EL元件75。無機EL元件75構成為 於基板69之一面上依序層疊有第1電極70、第1介電體層 71、發光層72、第2介電體層73、及第2電極74。再者,作 為無機EL元件75可使用周知無機EL、例如紫外發光無機 EL、藍色發光無機EL專’具體構成並不限於上述者。 以下,詳細說明無機EL元件基板68之各構成要素。 作為基板69可使用與上述有機l子基板4相同者。 本變形例中使用之第1電極70及第2電極74,可列舉紹 (A1)、金(Au)、落(Pt)、鎳(Ni)等金屬、及包含銦(In)與錫 (Sn)之氧化物(ITO)、錫(Sn)之氧化物(Sn02)、包含銦(In) 與鋅(Zn)之氧化物(IZ0)等作為透明電極材料,但本變形例 並不限定於該等材料。然而,出光側之電極較佳使用叮〇 4透明電極,與出光方向為相反側之電極較佳使用鋁等之 反射膜。 第1電極70及第2電極74可使用上述材料藉由EB蒸鍍 法、濺鍍法、離子佈植法、電阻加熱蒸鍍法等周知方法形 成,但本變形例並不限定於該等形成方法。又視需要亦 可藉由光微影法、雷射剝離法使形成之電極圖案化,藉由 與蔽陰遮罩組合而直接形成經圖案化之電極。第^電極川 及第2電極74之膜厚較佳為5G nmm膜厚未滿5〇⑽ 之清形時,存在配線電阻變高、驅動電壓上升之可能。 本變形例中使用之第!介電體層71及第2介電體_可使 用無機EL用之周知介電體材料。作為此種介電體材料,可 161804.doc 5 • 46 - 201240183 列舉例如五氧化二钽(Ta2〇s)、氧化矽(Si〇2)、ι化石夕 (Si3N4)、氧化鋁(Al2〇3)、鈦酸鋁(AlTi03)、鈦酸鎖 (BaTi〇3)、及鈦酸锶(SrTi〇3)等,但本實施形態並非限定 於該等者。又’本實施形態之第1介電體層71及第2介電體 層73可由選自上述介電體材料中之一種構成,亦可構成為 使兩種以上之材料層疊》又,各介電體層71、73之膜厚較 佳為200 nm〜500 nm左右。 本變形例中使用之發光層72可使用無機el用之周知發光 材料。作為此種發光材料而言,例如作為紫外發光材料可 列舉ZnF2 : Gd、作為藍色發光材料可列舉BaAi2S4 : Eu、S-38-201240183 Further, the phosphor substrate 2 of the present embodiment is provided between the outer surface of the substrate 5 and the outer layer on the outer surface side between the substrate $ side and the outer layer side. A protective layer ii having a refractive index gradient. Thereby, a fluorescent component having a large angle with respect to the normal direction from the substrate 5 toward the outer layer side, that is, the fluorescent light emitted in the light emitting direction, and the refractive index difference between the substrate 5 and the outer layer can be formed. The loss of the & total reflection caused by the total reflection of the interface is minimized, so that the fluorescent light can be efficiently swept out to the outside. Further, in the case of the phosphor substrate 2 of the present embodiment, when the refractive index of the substrate 5 is n3 and the refractive index of the outer layer is n4, the refractive index of the protective layer 11 preferably has the self-substrate 5 The gradient toward the outer layer in the thickness direction orthogonal to the light-emitting surface is "gradually changed within a range from the substrate 5 to the outer layer side, that is, the light emitted in the light-emitting direction. With respect to the fluorescent component having a large angle in the normal direction, the loss of light generated by the total reflection of the interface having the refractive index difference between the substrate 5 and the external layer is minimized, so that the fluorescent light can be efficiently swept out. Further, in the phosphor substrate 2 of the present embodiment, it is preferable that the protective layer 11 is formed of one or more minute structures, and the cross-sectional area of the minute structure is small from the substrate 5 toward the outer layer. Therefore, a gentle refractive index gradient can be provided between the substrate $ and the outer layer. Therefore, the fluorescence from the substrate 5 toward the outer layer side and the light emitted in the light-emitting direction can be relatively opposite to the normal direction. Fluorescent component with a larger angle The loss of light generated by the total reflection of the interface having the difference in refractive index between the plate 5 and the outer layer is suppressed to a minimum', so that the fluorescent light can be efficiently swept out to the outside. Further, the phosphor substrate of the present embodiment 2, it is preferable that the small 161804.doc •39-201240183 structure is a +-cone shape, and the apex angle of the gj-cone shape is 45 or less. Thereby, the substrate 5 and the outer layer can be formed. A relatively low refractive index gradient is provided between the substrate 5 and the outer layer side, that is, the fluorescent component having a large angle with respect to the normal direction among the fluorescent light emitted from the light emitting direction, that is, the substrate 5 and the outer layer. The loss of light generated by the total reflection of the interface having the difference in refractive index is minimized, so that the fluorescent ray can be efficiently swept out to the outside. Further, with the phosphor substrate 2 of the present embodiment, Since the reflective layer 8 is provided on the side faces of the phosphor layers 7R, 7G, and 7B, the phosphors toward the side surface side among the phosphors that are isotropically emitted from the phosphor layers 7R, 7G, and 7B in all directions can be used. Effectively guided to the positive layer by the reflective layer 8. Direction. Therefore, it can improve the luminous efficiency (increasing the brightness of the front direction in the case of the luminous body such as the luminous body, the light that is swept out to the front direction is about 20% of the total, so the light that leaks to the side side is swept. When it is out to the front side, it is effective to increase the luminous efficiency of the south. In addition, the glory substrate 2 of the present embodiment is on the outer surface side of the incident surface on which the excitation light is incident on the working layers 7R, 7G, and 7B. The wavelength-selective transmission-reflecting layer 9 having a characteristic of transmitting at least the light of the peak wavelength of the excitation light and reflecting at least the light-emitting peak wavelength of the phosphor layers 7R, 7G, and 7B is provided. Thus, the self-phosphor layer 7R, The phosphors toward the back side (excitation light side) among the fluorescent light which is isotropically emitted in all directions in 7G and 7B are efficiently guided to the front direction by the wavelength selective transmission reflecting layer 9. Therefore, the luminous efficiency can be improved (increasing the brightness in the front direction). In the case of an illuminant layer such as a phosphor layer, the light that is swept out to the front direction is about 20% of the total of 161804.doc -40- § 201240183, so that the light that leaks toward the back side is swept out to the front side, which is effective. Improve luminous efficiency. [First Modification of First Embodiment] Hereinafter, a first modification of the above embodiment will be described with reference to Fig. 4 . The basic configuration of the display device of the present modification is the same as that of the first embodiment, and is different from the first embodiment in that an organic EL element substrate that emits blue light is used as a light source. Fig. 4 is a cross-sectional view showing the display device of the modification. In Fig. 4, the same components as those in Fig. 1A used in the first embodiment are denoted by the same reference numerals, and their description is omitted. As shown in Fig. 4, the display device 25 of the present modification is composed of a phosphor substrate 26 and an organic EL element substrate 27 (light source) bonded to the phosphor substrate 26 via the planarizing film 3. In the display device 25 of the present modification, blue light is emitted from the organic EL element substrate 27 as a light source. The main luminescence peak of blue light is preferably, for example, 410 nm to 470 nm. Further, in the phosphor substrate 26, a red phosphor layer 7r that emits red light using blue light as excitation light is provided on the red pixel PR, and blue light is emitted as excitation light on the green pixel PG. The green phosphor layer 7G. On the other hand, the blue pixel pB is provided with a light scattering layer 28 for scattering incident blue light and emitting it to the outside. The light-scattering layer 28 is configured such that, for example, a light-transmitting inorganic material or an organic material is dispersed with particles having a refractive index different from those of the materials, and the light incident on the light-scattering layer 28 is isotropically scattered in the layer. . In the same manner as in the first embodiment, the red pixel PR and the green pixel PG' are formed on the phosphor layer 7R and the side surface 161804.doc • 41 · 201240183, and the reflective layer 8 ′ is formed on the back surface (the surface facing the light source). There is a wavelength selective transmission through the reflective layer 9. Further, with respect to the blue pixel 叩, the reflection layer 8' is formed on the side surface thereof, and the wavelength selective transmission reflection layer 9 is formed on the back surface (the surface facing the light source). The other configuration of the display device 25 is the same as that of the i-th embodiment. In the display device 25 of the present modification, blue light from the organic element substrate 27 is incident on the phosphor substrate 26 as excitation light, and is red pixels. 11 Red fluorescence is generated by the red phosphor layer 7R, and green light is generated by the green working layer 7G in the green pixel pG. In the blue pixel pB, the incident blue light is scattered by the light scattering layer 28, and is directly emitted, and the full color display is performed by the respective color lights. As described above, the display principle of the blue pixel PB is different from that of the first embodiment. However, the present modification can improve the light-pumping efficiency and improve the conversion efficiency, and can achieve excellent viewing angle characteristics and excellent power consumption. The display device has the same effects as those of the first embodiment. [Second Modification of First Embodiment] Hereinafter, a second modification of the above embodiment will be described with reference to Figs. 5A and 5B. The basic configuration of the display device according to the present modification is the same as that of the first embodiment. The difference from the first embodiment is that an LED substrate is used as the light source. Fig. 5A is a cross-sectional view showing the overall configuration of a display device of the present modification. Fig. 5B is a cross-sectional view showing an LED substrate as a light source. 5A and 5B, the same components as those of Figs. 1A and 1B used in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. In the display device 51 of the present modification, the configuration of the phosphor substrate 2 is the same as that of the first embodiment, and the difference is in the configuration of the light source. As shown in Fig. 5B, the LED substrate 52 (light source) has an LED (Light Emitting Diode) 64. The LED 64 is formed by sequentially stacking one surface of the substrate 53 in order! Buffer layer 54, n-type contact layer 55, second n-type cladding layer 56, in-type cladding layer 57, activation layer 58, first p-type cladding layer 59, second p-type cladding layer 60' second buffer layer 61. A cathode 62 is formed on the n-type contact layer 55, and an anode 63 is formed on the second buffer layer 61. Further, as the LED, other well-known LEDs such as an ultraviolet ray-emitting inorganic LED or a blue luminescent inorganic LED may be used, but the specific configuration is not limited to the above. Hereinafter, each component of the LED substrate 52 will be described in detail. The active layer 58 used in the present modification is a layer which emits light by recombination of electrons and holes. As the material of the active layer, a well-known activation layer material for LED can be used. Examples of the material of the active layer include, for example, AlGaN, InAIN, InaAlbGa^bl^OSa, 〇$b, and a + 1) as the material of the blue activation layer, and may be exemplified as <z< However, the present embodiment is not limited to the above-described β, and a single quantum well structure or a multiple quantum well structure is used as the active layer 58. The activation layer of the quantum well structure may be either η-type or ρ-type, especially an undoped (no impurity-added) activation layer'. Since the half-value width of the emission wavelength is narrowed due to the narrowing of the inter-band luminescence, color purity can be obtained. Good luminescence is preferred. Further, at least one of the donor impurity and the acceptor impurity may be doped in the active layer 58. If the crystallinity of the active layer doped with impurities is the same as that of the undoped impurity phase, the inter-band luminescence intensity can be stronger than that of the undoped impurity by doping the host impurity. . When the acceptor impurity is doped, the peak wavelength can be shifted toward the low energy side by a difference of about 0.5 eV from the peak wavelength of the inter-band luminescence, and the half-value width becomes wider. If both the acceptor impurity and the host impurity are doped, the luminescence intensity can be further increased as compared with the luminescence intensity of the activation layer doped only with the acceptor impurity. In particular, in the case of forming an active layer doped with acceptor impurities, the conductive type of the active layer is preferably doped with a donor impurity such as si, and is set to n-type. The n-type package used in the present modification. As the cladding layers 56 and 57, a well-known n-type cladding layer material for LEDs can be used, and it can be composed of a single layer or a plurality of layers. When the n-type cladding layer 56, 57 is formed by an n-type semiconductor having a band gap energy larger than the active layer 58, a potential barrier for the hole between the n-type cladding layers 56, 57 and the active layer 58 may be The holes are enclosed within the active layer 58. For example, the n-type cladding layers 56 and 57 may be formed by n-type InxGai.xN (0$1), but the embodiment is not limited thereto. The p-type cladding layers 59 and 60 used in the present modification can be made of a known P-type cladding layer material for LEDs, and may be composed of a single layer or a plurality of layers. When the p-type cladding layers 59, 6〇 are formed by a p-type semiconductor having a band gap energy larger than the active layer 58, a potential barrier against electrons appears between the p-type cladding layers 59, 6〇 and the active layer 58. The electrons can be enclosed within the active layer 58. For example, the p-type cladding layers 59 and 6 can be formed by AlyGaNyN (〇SyS 1). However, the present embodiment is not limited to the above. The n-type contact layer 55 used in the present modification can be used for LEDs. The contact layer material is known. For example, an n-type contact layer 55 of n-type GaN can be formed as a layer forming an electrode by connecting 161804.doc 201240183 to the n-type cladding layers 56, 57. Further, as the layer in which the electrodes are formed by connecting the cladding layers 59 and 60, a (4) (10) type contact layer may be formed. When the second n-type cladding layer 56 and the second-type cladding layer 6 are formed of GaN, the contact layer does not need to be formed in particular, and the second cladding layer may be used as a contact layer. The above-described respective layers used in the present modification can be formed using a well-known film forming process for coffee makers, but the present embodiment is not particularly limited to these. For example, a gas phase insecticidal method such as MOWE (with a ruthenium metal gas phase 纟 day method), _ (molecular beam gas phase crystal method), HDVPE (hydride gas phase m), or the like can be used, for example, sapphire (for example) Contains C face, A face, ruler), Sic (also includes 6Hsic, 4η·SiC), spinel (MgAl2〇4, especially its (1)^ face), Ζη〇, &, GaAs, or other oxides It is formed on a substrate such as a single crystal substrate (NG〇 or the like). In the present modification, it is possible to obtain the same effect as that of the second embodiment, and it is possible to realize a display device which can improve the light-pumping efficiency, improve the conversion efficiency, and has excellent viewing angle characteristics and realize low power consumption. [Third Modification of First Embodiment] Hereinafter, a third modification of the above embodiment will be described with reference to Figs. 6A and 6B. The basic configuration of the display device according to the present modification is the same as that of the first embodiment, and is different from the first embodiment in that an inorganic eL substrate is used as a light source. Fig. 6A is a cross-sectional view showing the overall configuration of a display device of the present modification. Fig. 6 is a cross-sectional view showing an inorganic el substrate as a light source side substrate. In Figs. 6A and 6B, the same components as those in Figs. 1A and 1B used in the first embodiment are denoted by the same reference numerals, and their description will be omitted. 161804.doc • 45· 201240183 In the display device 67 of the present modification, as shown in FIG. 6B, the inorganic EL element substrate 68 (light source) includes the inorganic EL element 75. The inorganic EL element 75 is formed by sequentially laminating the first electrode 70, the first dielectric layer 71, the light-emitting layer 72, the second dielectric layer 73, and the second electrode 74 on one surface of the substrate 69. Further, as the inorganic EL element 75, a known inorganic EL, for example, an ultraviolet ray-emitting inorganic EL or a blue luminescent inorganic EL can be used. The specific configuration is not limited to the above. Hereinafter, each constituent element of the inorganic EL element substrate 68 will be described in detail. As the substrate 69, the same as the above-described organic sub-substrate 4 can be used. The first electrode 70 and the second electrode 74 used in the present modification include metals such as (A1), gold (Au), falling (Pt), and nickel (Ni), and indium (In) and tin (Sn). Oxide (ITO), tin (Sn) oxide (Sn02), and indium (In) and zinc (Zn) oxide (IZ0) are used as the transparent electrode material, but the present modification is not limited thereto. And other materials. However, it is preferable to use a 叮〇 4 transparent electrode for the electrode on the light-emitting side, and a reflective film of aluminum or the like is preferably used as the electrode on the opposite side to the light-emitting direction. The first electrode 70 and the second electrode 74 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion implantation method, or a resistance heating vapor deposition method, but the present modification is not limited to the formation. method. Alternatively, the formed electrode may be patterned by photolithography or laser lift-off, and the patterned electrode may be directly formed by combining with the mask. When the film thickness of the second electrode and the second electrode 74 is preferably 5 G nmm and the film thickness is less than 5 〇 (10), the wiring resistance may increase and the driving voltage may increase. The first used in this modification! As the dielectric layer 71 and the second dielectric body, a well-known dielectric material for inorganic EL can be used. As such a dielectric material, for example, 161804.doc 5 • 46 - 201240183, for example, tantalum pentoxide (Ta 2 〇 s), yttrium oxide (Si 〇 2 ), eucalyptus (Si 3 N 4 ), alumina (Al 2 〇 3) ), aluminum titanate (AlTi03), titanate lock (BaTi〇3), and barium titanate (SrTi〇3), etc., but the embodiment is not limited thereto. Further, the first dielectric layer 71 and the second dielectric layer 73 of the present embodiment may be composed of one selected from the above dielectric materials, or may be formed by laminating two or more kinds of materials. Further, each dielectric layer The film thickness of 71 and 73 is preferably about 200 nm to 500 nm. As the light-emitting layer 72 used in the present modification, a well-known light-emitting material for inorganic EL can be used. Examples of such a light-emitting material include ZnF2: Gd as an ultraviolet light-emitting material and BaAi2S4: Eu as a blue light-emitting material.

CaAl2S4 : Eu、ZnAl2S4 : Eu、Ba2SiS4 : Ce、ZnS : Tm、 SrS · Ce、SrS : Cu、CaS : Pb、(Ba,Mg)Al2S4 : Eu 等, 但本實施形態並非限定於該等者。又,發光層72之膜厚較 佳為300 nm〜1000 nm左右。 本變形例亦可獲得與第1實施形態相同之效果,即可實 現能提尚光掠出效率而提高轉換效率、視角特性優異且能 實現低耗電化的顯示裝置。 再者’作為光源之構成於上述實施形態中例示有有機el 元件,於第2變形例中例示有LED,於第3變形例中例示有 無機EL元件。該等構成例中’較佳設置將有機el元件、 LED、無機EL元件等發光元件密封的密封膜或密封基板。 也、封膜及密封基板可藉由周知之密封材料及密封方法而形 成。具體而言’亦可藉由於與構成光源之基板本體為相反 側之表面上使用旋塗法、〇DF、層壓法塗佈樹脂而設為密 161804.doc •47· 201240183 封膜。或者,亦可藉由電漿CVD法、離子佈植法、離子束 法、濺鍍法等形成Si0、siON、SiN等之無機膜後,進而 使用旋塗法、ODF、層壓法塗佈或貼合樹脂而設為密封 膜。 藉由此種密封膜或密封基板,可防止自外部向發光元件 内之氧或水分之混入,使得光源之壽命提高。又,將光源 與螢光體基板接合時,可藉由一般之紫外線硬化樹脂、熱 硬化樹脂等進行黏接。又,於螢光體基板上直接形成光源 之情形時,可列舉將例如氮氣、氬氣等惰性氣體密封至玻 璃板、金屬板等之方法。進而,較佳為封入之惰性氣體中 混入氧化銷等吸濕劑等,可更有效地減少水分所致的有機 EL劣化《然而,本實施形態並不限定於該等構件、形成方 法。又,為使光自基板之相反側掠出,密封膜、密封基板 均需要使用透光性之材料。 又’於上述第1實施形態及其變形例中,自螢光體層 7R、7G、7B射出之光係直接出射至基板5,但例如亦可於 該等螢光體層7R、7G、7B與中間層1 〇之間配置彩色遽光 片’提南各色之純度。具體而言,於紅色像素PR上設置紅 色彩色濾光片’於綠色像素PG上設置綠色彩色渡光片,於 藍色像素PB上設置藍色彩色濾光片。作為彩色濾光片可使 用先前一般之彩色濾光片。於螢光體層7R、7G、7B與中 間層10之間配置有彩色濾光片之情形時,紅色彩色遽光片 之折射率較佳為與紅色螢光體層7R之折射率大致相同。綠 色彩色濾光片之折射率較佳為與綠色螢光體層7G之折射率 -48- 161804.doc 5 201240183 大致相同。藍色彩色濾光片之折射率較佳為與藍色螢光體 層7B之折射率大致相同。 又’亦可於中間層10與基板5之間配置彩色濾光片。於 中間層10與基板5之間配置彩色濾光片之情形時,紅色彩 色渡光片、綠色彩色濾光片、及藍色彩色濾光片之折射率 較佳為與基板5之折射率大致相同。 藉由以此方式對應各像素而設置彩色濾光片,可提高紅 色像素PR、綠色像素PG、藍色像素PB之各者之色純度, 從而可擴大顯示裝置之色再現範圍。又,形成於紅色螢光 體層7R下層之紅色彩色濾光片、形成於綠色螢光體層 下層之綠色彩色濾光片、及形成於藍色螢光體層7B下層的 藍色彩色濾光片吸收外部光中所含之激發光成分。因此, 可減少或防止外部光所致之螢光體層7R、7G、7B之發 光,從而可減少或防止對比度之下降。進而,藉由紅色彩 色;慮光片、綠色彩色遽光片、藍色彩色遽光片,可防止未 被螢光體層7R、7G、7B吸收而欲透過之激發光漏出至外 部,故可防止因螢光體層7R、7G、7B之發光與激發光所 致之混色導致顯示之色純度下降。 [第2實施形態] 以下,使用圖7、圖8說明本發明之第2實施形態。 本實施形態之顯示裝置係以主動式矩陣驅動型有機EL元 件基板作為光源之構成例。 圖7係表示本實施形態之顯示裝置之剖面圖。圖8係表示 本實施形態之顯示裝置之平面圖。圖7中,對與第1實施形 161804.doc •49· 201240183 態中使用之圖1A共通之構成要素附加相同符號,且省略說 明。 如圖7所示,本實施形態之顯示裝置82係由螢光體基板 2、及貼合於螢光體基板2上之有機EL元件基板83(光源)構 成。本實施形態之有機EL元件基板83中,作為切換是否對 紅色像素PR、綠色像素PG、藍色像素ΡΒ之各者照射光之 機構,係使用利用TFT之主動式矩陣驅動方式。另一方 面’螢光體基板2之構成係與第1實施形態相同。於本實施 形態之有機EL元件基板83發出紫外光之情形時,藍色像素 PB包含將紫外光作為激發光而發出藍色光之藍色螢光體 層。或者,於本實施形態之有機EL元件基板83發出藍色光 之情形時’藍色像素PB包含使藍色光散射之光散射層。 (主動式矩陣驅動型有機EL元件基板) 以下’詳細說明主動式矩陣驅動型之本實施形態之有機 EL元件基板83。 如圖7所示’本實施形態之有機EL元件基板83於本體84 之一面上形成有TFT85 ^即,形成有閘極電極86及閘極線 87 ’且以覆蓋該等閘極電極86及閘極線87之方式而於基板 84上形成有閘極絕緣膜88。於閘極絕緣膜88上形成有活化 層(省略圖示),於活化層上形成有源極電極89、汲極電極 90及資料線91,且以覆蓋該等源極電極89、沒極電極9〇及 資料線91的方式形成有平坦化膜92。 再者’該平坦化膜92可並非單層構造,亦可構成為將其 他層間絕緣膜與平坦化膜組合而成。又,形成有貫通平土θ 161804.docCaAl2S4 : Eu, ZnAl2S4 : Eu, Ba 2 SiS 4 : Ce, ZnS : Tm, SrS · Ce, SrS : Cu, CaS : Pb, (Ba, Mg) Al 2 S 4 : Eu, etc., but the embodiment is not limited thereto. Further, the film thickness of the light-emitting layer 72 is preferably about 300 nm to 1000 nm. In the present modification, it is possible to obtain the same effect as that of the first embodiment, and it is possible to realize a display device which can improve the conversion efficiency, improve the conversion efficiency, and has excellent viewing angle characteristics and can realize low power consumption. In the above-described embodiment, an organic EL element is exemplified as the configuration of the light source, and an LED is exemplified in the second modification, and an inorganic EL element is exemplified in the third modification. In these constitutional examples, a sealing film or a sealing substrate which seals a light-emitting element such as an organic EL element, an LED, or an inorganic EL element is preferably provided. Also, the sealing film and the sealing substrate can be formed by a known sealing material and sealing method. Specifically, it is also possible to form a film by applying a resin by spin coating, 〇DF, or lamination on the surface opposite to the substrate body constituting the light source, and 161804.doc •47·201240183. Alternatively, an inorganic film such as Si0, SiON, or SiN may be formed by a plasma CVD method, an ion implantation method, an ion beam method, a sputtering method, or the like, and then coated by a spin coating method, ODF, or a lamination method. The resin is bonded and used as a sealing film. By such a sealing film or a sealing substrate, it is possible to prevent the incorporation of oxygen or moisture from the outside into the light-emitting element, so that the life of the light source is improved. Further, when the light source is bonded to the phosphor substrate, it can be bonded by a general ultraviolet curable resin, a thermosetting resin or the like. Further, when a light source is directly formed on the phosphor substrate, a method of sealing an inert gas such as nitrogen or argon to a glass plate, a metal plate or the like can be mentioned. Furthermore, it is preferable to incorporate a moisture absorbent such as an oxidation pin into the inert gas to be enclosed, and it is possible to more effectively reduce the deterioration of the organic EL due to moisture. However, the present embodiment is not limited to these members and the formation method. Further, in order to sweep light from the opposite side of the substrate, it is necessary to use a light-transmitting material for both the sealing film and the sealing substrate. Further, in the first embodiment and its modifications, the light emitted from the phosphor layers 7R, 7G, and 7B is directly emitted to the substrate 5, but may be, for example, in the middle of the phosphor layers 7R, 7G, and 7B. Between the layers 1 and 遽, the color 遽 ' ' 提 提 提 提 提 提 提 提 提 提Specifically, a red color filter is disposed on the red pixel PR. A green color light-passing sheet is disposed on the green pixel PG, and a blue color filter is disposed on the blue pixel PB. As a color filter, a conventional color filter can be used. When a color filter is disposed between the phosphor layers 7R, 7G, and 7B and the intermediate layer 10, the refractive index of the red color light-emitting sheet is preferably substantially the same as the refractive index of the red phosphor layer 7R. The refractive index of the green color filter is preferably substantially the same as the refractive index of the green phosphor layer 7G -48-161804.doc 5 201240183. The refractive index of the blue color filter is preferably substantially the same as the refractive index of the blue phosphor layer 7B. Further, a color filter may be disposed between the intermediate layer 10 and the substrate 5. When a color filter is disposed between the intermediate layer 10 and the substrate 5, the refractive indices of the red color light-emitting sheet, the green color filter, and the blue color filter are preferably approximately the same as the refractive index of the substrate 5. the same. By providing the color filter in correspondence with each pixel in this manner, the color purity of each of the red pixel PR, the green pixel PG, and the blue pixel PB can be improved, and the color reproduction range of the display device can be expanded. Further, a red color filter formed under the red phosphor layer 7R, a green color filter formed under the green phosphor layer, and a blue color filter formed under the blue phosphor layer 7B are externally absorbed. The excitation light component contained in the light. Therefore, the emission of the phosphor layers 7R, 7G, 7B by external light can be reduced or prevented, so that the decrease in contrast can be reduced or prevented. Further, by the red color, the light-receiving sheet, the green color light-emitting sheet, and the blue color light-emitting sheet, it is possible to prevent the excitation light that is not absorbed by the phosphor layers 7R, 7G, and 7B from leaking to the outside, thereby preventing the light from being emitted to the outside. The color purity of the display is lowered due to the color mixture caused by the luminescence of the phosphor layers 7R, 7G, and 7B and the excitation light. [Second Embodiment] Hereinafter, a second embodiment of the present invention will be described with reference to Figs. 7 and 8 . The display device of the present embodiment is an example of a configuration in which an active matrix drive type organic EL element substrate is used as a light source. Fig. 7 is a cross-sectional view showing the display device of the embodiment. Fig. 8 is a plan view showing the display device of the embodiment. In Fig. 7, the same components as those in Fig. 1A used in the first embodiment of the present invention are incorporated with reference numerals, and the description thereof will be omitted. As shown in Fig. 7, the display device 82 of the present embodiment is composed of a phosphor substrate 2 and an organic EL element substrate 83 (light source) bonded to the phosphor substrate 2. In the organic EL element substrate 83 of the present embodiment, an active matrix driving method using TFTs is used as a means for switching whether or not to illuminate each of the red pixel PR, the green pixel PG, and the blue pixel 。. The other configuration of the phosphor substrate 2 is the same as that of the first embodiment. In the case where the organic EL element substrate 83 of the present embodiment emits ultraviolet light, the blue pixel PB includes a blue phosphor layer that emits blue light by using ultraviolet light as excitation light. Alternatively, when the organic EL element substrate 83 of the present embodiment emits blue light, the blue pixel PB includes a light scattering layer that scatters blue light. (Active Matrix Driven Organic EL Device Substrate) Hereinafter, the organic EL device substrate 83 of the present embodiment of the active matrix drive type will be described in detail. As shown in FIG. 7, the organic EL element substrate 83 of the present embodiment has a TFT 85 formed on one surface of the main body 84, that is, a gate electrode 86 and a gate line 87' are formed to cover the gate electrodes 86 and the gates. A gate insulating film 88 is formed on the substrate 84 in the manner of the electrode line 87. An active layer (not shown) is formed on the gate insulating film 88, and a source electrode 89, a drain electrode 90, and a data line 91 are formed on the active layer to cover the source electrode 89 and the electrodeless electrode. A flattening film 92 is formed in a manner of 9 turns and a data line 91. Further, the planarizing film 92 may not be a single layer structure, or may be formed by combining another interlayer insulating film and a planarizing film. Also, there is a through-ground θ 161804.doc

S •50· 201240183 化膜或者層間絕緣膜而到達汲極電極90之接觸孔93,且於 平坦化膜92上形成有經由接觸孔93而與沒極電極90電性連 接之有機EL元件12之陽極13 »有機EL元件12自身之構成 係與第1實施形態相同。S 50. 201240183 The film or the interlayer insulating film reaches the contact hole 93 of the drain electrode 90, and the organic EL element 12 electrically connected to the electrode electrode 90 via the contact hole 93 is formed on the planarizing film 92. The configuration of the anode 13 »organic EL element 12 itself is the same as that of the first embodiment.

作為主動式矩陣驅動型使用之基板84較佳使用於5〇〇。〇 以下之溫度不溶融且亦不產生畸變之基板。又,一般的金 屬基板以與玻璃之熱膨脹係數不同,於先前之生產裝置中 難以於金屬基板上形成TFT ’但藉由使用線性膨脹係數為 1 X 10 5/°C以下之鐵-鎳系合金之金屬基板’使線性膨脹係 數貼合於玻璃,而可使用先前之生產裝置在金屬基板上廉 價地形成TFT。又’於塑膠基板之情形時,由於耐熱溫度 較低,故於玻璃基板上形成TFT之後將TFT轉印至塑膠基 板’藉此可於塑膠基板上轉印形成TFT。由於係使有機EL 層之發光自與基板之相反側射出之構成,故基板既可透明 亦可不透明。 TFT85係於形成有機EL元件12之前形成於基板84上,作 為像素開關用元件及有機EL元件驅動用元件發揮功能。作 為本實施形態中使用之TFT85可列舉周知之TFT,且可使 用周知材料、構造及形成方法而形成。又,本實施形態 中,亦可使用金屬-絕緣體-金屬(MIM)二極體代替TFT85〇 作為TFT85之活化層之材料,可列舉例如非晶矽 (amorphous silicon)、多晶矽(p〇ly_silic〇n)、微晶矽、硒化 锡等無機半導體材料、氧化鋅、氧化銦_氧化鎵_氧化鋅等 氧化物半導體材料、或聚噻吩衍生物、噻吩募聚物、聚 161804.doc 51 201240183 γ對苯乙炔)衍生物、稠四苯、稠五苯等有機半導體材料 等。又,作為TFT85之構造可列舉例如交錯型、逆交錯 型、頂閘型、共面型等。 作為構成TFT85之活化層之形成方法,可列舉:(1)使雜 質離子摻雜至藉由電漿激發化學氣相成長(pECVD)法所成 膜之非晶#之方法;⑺藉由使用钱卿4)氣體之減麼化 學氣相成長(LPCVD)法職非_,#由固相蟲晶法使非 晶石夕結晶化而獲得⑪後,藉由離子打人法進行離子推 雜的方法,(3)藉由使用Si2H6氣體之Lpcvi^或使用叫 氣體之PECVD法形成非晶矽,藉由準分子雷射等之雷射進 行退火,使非晶矽結晶化而獲得多晶矽後,進行離子摻雜 之方法(低溫製程);(4)藉由LPCVD法或pECVD法形成多晶 矽層,以丨(HKTC以上使其熱氧化’藉此形成閘極絕緣膜, 於該閘極絕緣膜上形成n+多晶矽之閘極電極,其後進行離 子掺雜之方法(高溫製程);(5)利用有機半導體材料藉由喷 墨法等而形成之方法;(6)獲得有機半導體材料之單晶膜之 方法等。 本實施形態中使用之TFT85之閘極絕緣膜88可使用周知 材料形成。例如,可列舉使藉由pECVD法、LpcvD法等 所形成之Si〇2或多晶矽膜熱氧化而得之Si〇2等。又本實 施形態中使用之TFT85之資料線91、閘極線87、源極電極 89及汲極電極90可使用周知導電性材料形成,可列舉例如 钽(Ta)、鋁(A1)、銅(Cu)等。本實施形態之TFT85可設為如 上所述之構成,但並不限定於該等材料、構造及形成方 161804.docThe substrate 84 used as an active matrix drive type is preferably used for 5 turns. 〇 The following substrates are not melted and do not cause distortion. Moreover, a general metal substrate differs from the thermal expansion coefficient of glass in that it is difficult to form a TFT on a metal substrate in a prior production apparatus, but by using an iron-nickel alloy having a linear expansion coefficient of 1×10 5 /° C. or less. The metal substrate 'adapts the linear expansion coefficient to the glass, and the TFT can be inexpensively formed on the metal substrate using the prior production apparatus. Further, in the case of a plastic substrate, since the heat-resistant temperature is low, the TFT is transferred to the plastic substrate after the TFT is formed on the glass substrate, whereby the TFT can be transferred onto the plastic substrate. Since the light emitted from the organic EL layer is emitted from the side opposite to the substrate, the substrate can be either transparent or opaque. The TFT 85 is formed on the substrate 84 before forming the organic EL element 12, and functions as a pixel switching element and an organic EL element driving element. The TFT 85 used in the present embodiment is a well-known TFT, and can be formed by using a known material, structure, and formation method. Further, in the present embodiment, a metal-insulator-metal (MIM) diode may be used instead of the TFT 85 as a material of the active layer of the TFT 85, and examples thereof include amorphous silicon and polycrystalline germanium (p〇ly_silic〇n). ), inorganic semiconductor materials such as microcrystalline germanium, tin selenide, oxide semiconductor materials such as zinc oxide, indium oxide, gallium oxide, or zinc oxide, or polythiophene derivatives, thiophene polymer, poly 161804.doc 51 201240183 γ pair An organic semiconductor material such as a phenylacetylene derivative, a thick tetraphenyl or a pentacene. Further, examples of the structure of the TFT 85 include a staggered type, an inverted staggered type, a top gate type, and a coplanar type. Examples of the method for forming the active layer constituting the TFT 85 include: (1) a method of doping impurity ions into amorphous film formed by a plasma-excited chemical vapor phase growth (pECVD) method; (7) by using money. Qing 4) Gas reduction, chemical vapor phase growth (LPCVD) method, non-, ################################################################################ (3) An amorphous germanium is formed by using Lpcvi^ of Si2H6 gas or a PECVD method using a gas, and annealing is performed by a laser such as an excimer laser to crystallize the amorphous germanium to obtain a polycrystalline germanium, and then an ion is obtained. Doping method (low temperature process); (4) forming a polysilicon layer by LPCVD method or pECVD method, forming a gate insulating film by 丨 (heat oxidation above HKTC), forming n+ on the gate insulating film a gate electrode of polycrystalline germanium, followed by a method of ion doping (high temperature process); (5) a method of forming an organic semiconductor material by an inkjet method or the like; (6) a method of obtaining a single crystal film of an organic semiconductor material Etc. The gate of TFT85 used in this embodiment is absolutely The film 88 can be formed using a known material, and examples thereof include Si〇2 obtained by thermally oxidizing Si〇2 or a polycrystalline germanium film formed by a pECVD method, an LpcvD method, etc. Further, information of the TFT 85 used in the present embodiment. The line 91, the gate line 87, the source electrode 89, and the drain electrode 90 can be formed using a well-known conductive material, and examples thereof include tantalum (Ta), aluminum (A1), copper (Cu), etc. The TFT 85 of the present embodiment can be used. The configuration is as described above, but is not limited to the materials, structures, and formations 161804.doc

S •52· 201240183 法。 本實施形態中使用之層間絕緣膜92可使用周知材料。形 成,可列舉例如氧化矽(Si〇2)、氮化矽(SiN或Si3N4)、氧化 鈕(TaO或Ta2〇5)等無機材料、或丙烯酸系樹脂、抗蝕劑材 料等有機材料等。又,作為其形成方法可列舉化學氣相成 長(CVD)法、真空蒸鍍法等乾式製程、旋塗法等濕式製 程。又’亦可視需要藉由光微影法等使其圖案化。 此外’來自有機EL元件12之光係自基板84之相反側掠 出’故為防止外部光入射至基板本體84上形成之灯丁以導 致TFT85之電性特性發生變化’較佳使用兼具遮光性之遮 光性絕緣膜。又,亦可將上述層間絕緣膜92與遮光性絕緣 膜組合使用。作為遮光性層間絕緣膜,可列舉使酞花青、 喹吖啶酮等顏料或染料分散於聚醯亞胺等高分子樹脂而成 者、彩色抗蝕劑、黑矩陣材料、NixZnyFe2〇4等無機絕緣材 料等。然而,本實施形態並不限定於該等材料及形成方 法。 於本實施形態中,因形成於基板84上之TFT85及各種配 線、電極,該基板84之表面形成有凹凸,藉由該凹凸而有 可能於有機EL元件12中產生例如陽極13或陰極2〇之欠缺或 斷線 '有機EL層之欠缺、陽極13與陰極2〇之短路、耐壓之 下降等現象。由此,為防止該等現象較理想為於層間絕緣 膜上設置平坦化膜92。本實施形態中使用之平坦化膜92可 使用周知材料形成,可列舉例如氧化矽、氮化矽、氧化钽 等無機材料、聚醯亞胺、丙烯酸系樹脂、抗蝕劑材料等有 I61804.doc -53- 201240183 機材料等。作為平坦化膜92之形成方法,可列舉CVD法、 真空蒸鍍法等乾式製程、旋塗法等濕式製程,但本實施形 態並不限定於該等材料及形成方法。又,平坦化膜92既可 為單層構造亦可為多層構造。 如圖8所示,本實施形態之顯示裝置82包括形成於有機 EL元件基板83上之像素部94、閘極信號驅動電路95、資料 k號驅動電路96、信號配線97、及電流供給線98、以及連 接於有機EL元件基板83之可撓性印刷電路板99(FPC, Flexible Printed Circuit)及外部驅動電路 111。 本實施形態之有機EL元件基板83為驅動有機EL元件12 而經由FPC99使該有機EL元件12電性連接於包含掃描線電 極電路、資料信號電極電路、電源電路等之外部驅動電路 111上。於本實施形態之情形時,TFT85等開關電路係配置 於像素部94内^ TFT85等係連接於資料線91、閘極線87等 配線上。資料線91、閘極線87上分別連接有用以驅動有機 EL元件12之資料信號驅動電路96、閘極信號驅動電路95。 資料彳§號驅動電路96、閘極信號驅動電路95經由信號配線 97而連接於外部驅動電路丨u。像素部94内配置有複數之 閘極線87及複數之資料線91 ’且於閘極線87與資料線91之 交叉部附近配置有TFT85。 本實施形態之有機EL元件12係藉由電壓驅動數位灰階方 式而進行驅動。每個像素(每個有機EL元件12)配置有開關 用TFT及驅動用TFT之2個TFT。驅動用TFT與有機EL元件 12之陽極13係經由形成於平坦化膜92上之接觸孔93而電性 161804.doc •54· 3 •-α· 201240183 連接。又個像素内以連接於驅動用TFT之閘極電極之 方式’配置有用以使驅動用TFT之閘極電位設為恆定電位 的電谷器(省略圖示)。然而,本實施形態並不特別限定於 該等’驅動方式既可為上述電壓驅動數位灰階方式,亦可 為電流驅動類比灰階方式。又,TFT之數亦無特別限定, 亦可藉由上述2個TFT驅動有機EL元件9 »又,以防止 TFT85之特性(移動率、閾值電壓)不均為目的,亦可使用 像素内内置有補償電路之2個以上之TFT驅動有機EL元件 9 〇 本實施形態亦可獲得與第1實施形態相同之效果,即可 貫現能提尚光之掠出效率而提高轉換效率、視角特性優異 且能實現低耗電化的顯示裝置。 又’尤其係於本實施形態中,採用主動式矩陣驅動型之 光源基板83,故可實現顯示品質優異之顯示裝置。又,與 被動式驅動相比’可延長有機EL元件12之發光時間,從而 可減少用以獲得所需亮度之驅動電流,故而實現低耗電 化。進而’由於構成為自光源基板83之相反側(螢光體基 板側)掠出光’故可無關於TFT及各種配線等之形成區域而 擴大發光區域,從而可提高像素之開口率。 [第3實施形態] 以下,使用圖9說明本發明之第3實施形態。 本實施形態之顯示裝置係於螢光體基板與光源之間裝入 液晶元件而成的構成例。 圖9係表示本實施形態之顯示裝置之剖面圖。圖9中,對 16I804.doc -55- 201240183 與第1實施形態中使用之圖1八共5通之構成要素附加相同符 號,且省略說明。 如圖9所示,本實施形態之顯示裝置113包括螢光體基板 2、有機EL元件基板11 4(光源)、液晶元件11 5。螢光體基 板2之構成係與第1實施形態相同,而省略說明。又,有機 EL元件基板114之層疊構造係與第1實施形態中之圖丨b所 示者相同。然而’於第1實施形態中,係對與各像素對應 之有機EL元件個別地供給驅動信號,控制各有機el元件 獨立地發光、不發光,相對於此’本實施形態中,有機El 元件11 6並未對應每個像素進行分割,而是對於所有像素 而言作為共通之面狀光源發揮功能。又,液晶元件115構 成為可對應每個像素而控制使用一對電極施加至液晶層之 電壓,對應每個像素而控制自有機EL元件116之所有表面 射出的光之透過率。即,液晶元件115具有作為對應每個 像素使來自有機EL元件基板114之光選擇性透過之光閘的 功能。 本實施形態之液晶元件11 5可使用周知之液晶元件,包 括例如一對偏光板117、118、電極119、120、配向膜 121、122、及基板123,且於配向膜121、122之間夾持有 液晶124。進而,有時亦於液晶單元與一方之偏光板117、 11 8之間配置有1層光學各向異性層、或者於液晶單元與雙 方之偏光板117、118之間配置2層光學各向異性層。液晶 單元之種類並無特別限制’可根據目的適當地選擇,可列 舉例如TN模式、VA模式、OCB模式、IPS模式、ECB模式 161804.doc -56- 201240183 :開:元==為被動式驅動’亦可為使用 本實施形態亦可獲得與第1實施形態相同之效果,即可 實現能提高光之掠出效率而提高轉換效率、視角特性優昱 且能實現低耗電化的顯示裝置。 /、 藉由將液晶元件115之像 能之有機EL元件基板114 又’於本貫施形態之情形時, 素之開關與作為面狀光源發揮功 組合,可進而減少耗電。 [第4實施形態] 以下’使用圖12說明本發明之第4實施形態。 於本實施形態之螢光體基板151中,經分割之螢光體層 15 5R、15 5G、15 5B分別具有不同之折射率。該等各個螢 光體層155R、155G、155B與基板151之間,分別設有折射 率梯度不同之中間層153R、153G、153B。 如圖12所示’本實施形態之螢光體基板ι51於基板152之 内面側(第1面)形成有折射率梯度不同之中間層153r、 153G、153B。各中間層153R、153G、153B之間形成有光 吸收層154。中間層153R、153G、153B上分別形成有螢光 體層155R、155G、15 5B。基板152之外表面側(第2面)上, 在上述基板152與作為上述基板1 52之外部層的外氣側之間 形成有保護層156。即,基板152之第2面之上形成有保護 層 1 56。 螢光體層155R、155G、155B係對應每個像素而設有複 數個。複數之螢光體層155R、155G、155B為根據像素而 •57· 161804.docS • 52· 201240183 Act. A well-known material can be used for the interlayer insulating film 92 used in this embodiment. The formation may, for example, be an inorganic material such as yttrium oxide (Si〇2), tantalum nitride (SiN or Si3N4), a oxidized button (TaO or Ta2〇5), or an organic material such as an acrylic resin or a resist material. Further, examples of the method for forming the same include a wet process such as a chemical vapor phase growth (CVD) method or a vacuum vapor deposition method, and a wet process such as a spin coating method. Further, it may be patterned by photolithography or the like as needed. Further, 'the light from the organic EL element 12 is swept out from the opposite side of the substrate 84', so that the external light is prevented from entering the lamp formed on the substrate body 84 to cause a change in the electrical characteristics of the TFT 85. Slightly insulating film. Further, the interlayer insulating film 92 may be used in combination with a light-shielding insulating film. Examples of the light-shielding interlayer insulating film include a pigment or a dye such as phthalocyanine or quinacridone dispersed in a polymer resin such as polyimine, a color resist, a black matrix material, and an inorganic material such as NixZnyFe2〇4. Insulation materials, etc. However, the present embodiment is not limited to these materials and forming methods. In the present embodiment, irregularities are formed on the surface of the substrate 84 by the TFTs 85 and various wirings and electrodes formed on the substrate 84. By the unevenness, for example, the anode 13 or the cathode 2 may be generated in the organic EL element 12. The lack or disconnection 'the lack of the organic EL layer, the short circuit between the anode 13 and the cathode 2, and the drop in withstand voltage. Therefore, in order to prevent such a phenomenon, it is preferable to provide the planarizing film 92 on the interlayer insulating film. The planarizing film 92 used in the present embodiment can be formed using a known material, and examples thereof include inorganic materials such as cerium oxide, cerium nitride, and cerium oxide, and polyimine, acrylic resin, and resist materials. -53- 201240183 Machine materials, etc. The method for forming the planarizing film 92 may be a wet process such as a dry process such as a CVD method or a vacuum vapor deposition method, or a spin coating method. However, the present embodiment is not limited to these materials and a forming method. Further, the planarizing film 92 may have a single layer structure or a multilayer structure. As shown in FIG. 8, the display device 82 of the present embodiment includes a pixel portion 94 formed on the organic EL element substrate 83, a gate signal driving circuit 95, a data k-number driving circuit 96, a signal wiring 97, and a current supply line 98. And a flexible printed circuit board 99 (FPC) and an external drive circuit 111 connected to the organic EL element substrate 83. The organic EL element substrate 83 of the present embodiment drives the organic EL element 12 to electrically connect the organic EL element 12 to an external driving circuit 111 including a scanning line electrode circuit, a data signal electrode circuit, a power supply circuit, and the like via the FPC 99. In the case of the present embodiment, the switching circuit such as the TFT 85 is disposed in the pixel portion 94. The TFT 85 or the like is connected to the wiring such as the data line 91 and the gate line 87. A data signal driving circuit 96 and a gate signal driving circuit 95 for driving the organic EL element 12 are connected to the data line 91 and the gate line 87, respectively. The data drive circuit 96 and the gate signal drive circuit 95 are connected to the external drive circuit 经由u via the signal wiring 97. A plurality of gate lines 87 and a plurality of data lines 91' are disposed in the pixel portion 94, and TFTs 85 are disposed in the vicinity of the intersection of the gate lines 87 and the data lines 91. The organic EL element 12 of the present embodiment is driven by a voltage-driven digital gray scale method. Two TFTs for the switching TFT and the driving TFT are disposed for each pixel (each organic EL element 12). The driving TFT and the anode 13 of the organic EL element 12 are electrically connected to each other via a contact hole 93 formed in the planarizing film 92, and electrically connected to the antenna 161804.doc • 54· 3 •-α· 201240183. In the other pixel, a gate electrode (not shown) for setting the gate potential of the driving TFT to a constant potential is disposed so as to be connected to the gate electrode of the driving TFT. However, the present embodiment is not particularly limited to the above-described 'drive mode', which may be the voltage-driven digital gray scale method or the current drive analog gray scale method. Further, the number of TFTs is not particularly limited, and the organic EL element 9 can be driven by the two TFTs described above, and the characteristics (movability, threshold voltage) of the TFT 85 are prevented from being used for the purpose, and the pixel may be built in. In the present embodiment, it is possible to obtain the same effect as that of the first embodiment, and it is possible to improve the conversion efficiency and the viewing angle characteristics. A display device capable of achieving low power consumption. Further, in particular, in the present embodiment, the active matrix drive type light source substrate 83 is used, so that a display device having excellent display quality can be realized. Further, compared with the passive driving, the light-emitting time of the organic EL element 12 can be lengthened, so that the driving current for obtaining the desired luminance can be reduced, so that the power consumption can be reduced. Further, since the light is swept away from the opposite side (the phosphor substrate side) of the light source substrate 83, the light-emitting region can be enlarged without forming regions of the TFT and various wirings, and the aperture ratio of the pixel can be improved. [Third embodiment] Hereinafter, a third embodiment of the present invention will be described with reference to Fig. 9 . The display device of the present embodiment is a configuration example in which a liquid crystal element is incorporated between a phosphor substrate and a light source. Fig. 9 is a cross-sectional view showing the display device of the embodiment. In Fig. 9, 16I 804.doc - 55 - 201240183 and the components of Fig. 1 which are used in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. As shown in Fig. 9, the display device 113 of the present embodiment includes a phosphor substrate 2, an organic EL element substrate 11 (light source), and a liquid crystal element 11 5 . The configuration of the phosphor substrate 2 is the same as that of the first embodiment, and the description thereof is omitted. Further, the laminated structure of the organic EL element substrate 114 is the same as that shown in the drawing b of the first embodiment. However, in the first embodiment, the organic EL elements corresponding to the respective pixels are individually supplied with drive signals, and the respective organic EL elements are controlled to emit light independently without emitting light. In the present embodiment, the organic EL elements 11 are controlled. 6 does not divide for each pixel, but functions as a common planar light source for all pixels. Further, the liquid crystal element 115 is configured to control the voltage applied to the liquid crystal layer by using a pair of electrodes for each pixel, and control the transmittance of light emitted from all the surfaces of the organic EL element 116 for each pixel. In other words, the liquid crystal element 115 has a function as a shutter that selectively transmits light from the organic EL element substrate 114 for each pixel. The liquid crystal element 11 5 of the present embodiment can use a well-known liquid crystal element including, for example, a pair of polarizing plates 117 and 118, electrodes 119 and 120, alignment films 121 and 122, and a substrate 123, and sandwich between the alignment films 121 and 122. Holds liquid crystal 124. Further, a layer of optical anisotropic layer may be disposed between the liquid crystal cell and one of the polarizing plates 117 and 117, or two layers of optical anisotropy may be disposed between the liquid crystal cell and the polarizing plates 117 and 118. Floor. The type of the liquid crystal cell is not particularly limited 'may be appropriately selected according to the purpose, and examples thereof include TN mode, VA mode, OCB mode, IPS mode, and ECB mode 161804.doc -56-201240183: On: Yuan == is a passive drive' In the present embodiment, it is possible to obtain the same effect as that of the first embodiment, and it is possible to realize a display device which can improve the light-pumping efficiency, improve the conversion efficiency, and has excellent viewing angle characteristics and can realize low power consumption. When the organic EL element substrate 114 having the image of the liquid crystal element 115 is in the form of the present embodiment, the switching of the element and the function as a planar light source can further reduce power consumption. [Fourth embodiment] Hereinafter, a fourth embodiment of the present invention will be described using Fig. 12 . In the phosphor substrate 151 of the present embodiment, the divided phosphor layers 15 5R, 15 5G, and 15 5B have different refractive indices. Intermediate layers 153R, 153G, and 153B having different refractive index gradients are provided between the respective phosphor layers 155R, 155G, and 155B and the substrate 151, respectively. As shown in Fig. 12, the phosphor substrate ι51 of the present embodiment has intermediate layers 153r, 153G, and 153B having different refractive index gradients on the inner surface side (first surface) of the substrate 152. A light absorbing layer 154 is formed between each of the intermediate layers 153R, 153G, and 153B. Phosphor layers 155R, 155G, and 15B are formed on the intermediate layers 153R, 153G, and 153B, respectively. On the outer surface side (second surface) of the substrate 152, a protective layer 156 is formed between the substrate 152 and the outer air side as the outer layer of the substrate 152. That is, a protective layer 156 is formed on the second surface of the substrate 152. The phosphor layers 155R, 155G, and 155B are provided in plural for each pixel. The complex phosphor layers 155R, 155G, and 155B are based on pixels. • 57· 161804.doc

S 201240183 發出不同色之光’而分別以不同螢光體材料及折射率構 成。光吸收層154係由具有光吸收性之材料構成,且對應 於鄰接之像素間之區域而形成。藉由該光吸收層154,可 提高顯示之對比度。 螢光體層155R、155G、155B包含例如俯視矩形狀之薄 膜。螢光體層155R、155G、155B之所有側面上形成有反 射層157。再者,反射層157亦可並不形成於螢光體層 155R、155G,155B之所有側面上》反射層157亦可形成於 螢光體層15 5R、155G、155B之至少一個側面上。 又’螢光體層155R、155G、155B上、即激發光入射之 入射面(外表面側)上形成有波長選擇透過反射膜i 5 8。 本實施形態之螢光體基板15 1之基本構成構件係與第1實 施形態之螢光體基板相同,但與第丨實施形態不同之處在 於’折射率不同之各螢光體層155R、155G、155B上分別 形成有折射率梯度不同之中間層155R、155G、155B。 本實施形態之中間層153R、153G、153B分別如上述般 設置於螢光體層155R、155G、155B與基板152之間。自螢 光體層155R、155G ' 155B遍及基板152,中間層153R, 153G、153B之各層具有不同之折射率梯度。該折射率梯 度較佳為具有如下梯度,於將螢光體層155R之折射率設為 η 1 (R)、基板152之折射率設為n2之情形時,自螢光體層 155R朝向基板152於與上述勞光體層15511之出光面(基板 152側之面)正交的厚度方向上,在111(尺)至112之範圍内緩緩 變化。具體而言,較佳為具有階段性或者連續變化之梯 161804.doc 58· 201240183 度又較佳具有如下梯度,於將螢光體層丨550之折射率 設為nl(G)、將基板152之折射率設為心之情形時,自螢光 體層155G朝向基板152,於與上述榮光體層15犯之出光面 (基板152側之面)正交的厚度方向上,在ni(R)至n2之範圍 内緩緩邊化。具體而言’較佳為具有階段性或者連續變化 之梯度。又,較佳為具有如下梯度,於將螢光體層l55B之 折射率設為nl(B)、基板152之折射率設為心之情形時,自 螢光體層155B朝向基板152,於與上述螢光體層155B之出 光面(基板152侧之面)正交的厚度方向上,在nl(R)至心之 範圍内緩緩變化。具體而言,較佳為具有階段性或者連續 變化之梯度。 此處,螢光體層155R、155G、155B之折射率!^為例如 2.0〜2.3左右。基板152之折射率n2於例如玻璃基板之情形 時為1.5左右。因此,例如螢光體層15511之折射率 2.1之情形時,作為中間層153R之折射率梯度,較佳為自 螢光體層155R朝向基板152之方向上,以2.1左右至1.5左右 呈1¾ 又性或者連續地變小。又,例如於營光體層15 5 g之折 射率nl(R)為2.2之情形時’作為中間層i53g之折射率梯 度’較佳為自螢光體層155G朝向基板152之方向上,以2 2 左右至1.5左右呈階段性或者連續地變小。又,例如於營 光體層155B之折射率ni(R)為2.3之情形時,作為中間層 153B之折射率梯度,較佳為自螢光體層155B朝向基板152 之方向上’以2.3左右至1.5左右呈階段性地或者連續地變 小。藉由此種構成,中間層153R,153G、153B可將先前 161804.doc -59· 201240183 相對於螢光體層155]1、155G、155B之出光面之法線方向 角度較大之螢光成分,因螢光體層155R、155G、155B與 基板152之間之存在折射率差的界面全反射所產生之光之 損耗抑制為最小限度。 作為具有此種折射率梯度之中間層l53R、l53G、 153B,例如(1)可藉由將折射率不同之複數之層(材料)階段 性層疊、或者連續層疊而形成。又,(2)形成厚度方向上具 有微j傾斜之1個以上之微小構造體,使上述微小構造體 所占之比率於厚度方向上連續變化,藉此可形成具有折射 率梯度的中間層。再者’於⑴中改變層疊之材料之折射 率於(2)中改變微小構造體之材料之折射率及傾斜梯度, 藉此可選擇適於中間層職、153G、153b各層的折射率 梯度。 151之製造方法之 層 153R、153G、 其次,說明本實施形態之螢光體基板 例。再者,此處說明之例係作為中間 153B、保護層156而形成為抝 珉马均包含圓錐形狀之微小構造體 的構造者之方法。 勞光體基板151時,首先於作為中間層驗之前 物之中間層形成材料中混入uv效果樹脂而形成膜。 次’使用包括具有圓錐形狀之微小構造體(例如頂角為3。 之凹形狀之鋁模具的別 φ 士、 … 筷异的射出成形機,形成具有多個微小圓 形狀且具有折射率梯度中 152。 -之中間層咖’將其轉印至基; 其次 ,於形成於基板一表面上之中 間層153R上,解開遮 161804.doc • 60 · 3 201240183 光性遮罩而進行UV曝光及顯影,從而於基板152上圖案化 形成中間層153R »繼而,與此相同地’使中間層153G及 153B圖案化形成。 其次,於中間層153R、153G、153B上使用分配器而依 序形成螢光體層155R、155G、155B。 之後,與第1實施形態之螢光體基板同樣地,依序形成 反射層157、波長選擇透過反射層158、保護層156,從而 獲得榮光體基板151。 [電子機器之例] 作為具備上述實施形態之顯示裝置之電子機器之例,可 列舉圖10A所示之行動電話機、圖丨〇B所示之電視接收裝 置等。 圖10A所示之行動電話機127包括本體128、顯示部129、 聲音輸入部130、聲音輸出部13 1、天線132、操作開關133 等’且顯示部129係使用上述實施形態之顯示裝置。 圖1〇B所示之電視接收裝置135包括本體機櫃136、顯示 部137 '揚聲器138、支架139等,且顯示部137係使用上述 實施形態之顯示裝置。 於此種電子機器中使用有上述實施形態之顯示裝置,故 可貫現顯示品質優異之低耗電之電子機器。 [照明裝置] 以下,使用圖11說明具備本發明之形態之螢光體基板的 照明裝置。 如圖11所示,本實施形態之照明裝置141包括光學薄膜 161804.doc -61 - 201240183 142、螢光體基板143、含有陽極144、有機EL層145及陰極 146之有機EL元件147、熱擴散板148、密封基板149、密封 樹脂150、散熱材151、驅動用電路152、配線153、及懸掛 吸頂具154。 於此種照明裝置中’螢光體基板143係使用上述實施形 態之螢光體基板’故可實現明亮且低耗電之照明裝置。 再者’本發明之形態之技術範圍並不限定於上述實施形 態’於不脫離本發明之形態之主旨的範圍内可施加各種變 更。 例如’於上述實施形態所說明之顯示裝置中,較佳於出 光側設置偏光板。作為偏光板,可使用將先前之直線偏光 板與λ/4板組合而成者。藉由設置此種偏光板,可防止自 顯示展置之電極之外部光反射、或者基板或密封基板之表 面之外部光反射,從而可提高顯示裝置之對比度。此外, 關於螢光體基板、顯示裝置之各構成要素之形狀、數量、 配置、材料、形成方法等的具體記載並不限定於上述實施 形態’而可適當地變更。 [實施例] 以下’藉由實施例及比較例而更詳細地說明本發明之形 態’但本發明之形態並不限定於該等例。 (比較例) 使用0.7 mm之玻璃作為基板。將該基板水洗之後,進行 1 〇分鐘之純水超音波清洗、1 〇分鐘之丙酮超音波清洗、5 分鐘之異丙醇蒸氣清洗,且以100。(:乾燥1小時。 16l804.docS 201240183 emits different colors of light' and is composed of different phosphor materials and refractive indices. The light absorbing layer 154 is made of a material having light absorbing properties and is formed corresponding to a region between adjacent pixels. With the light absorbing layer 154, the contrast of the display can be improved. The phosphor layers 155R, 155G, and 155B include, for example, a film having a rectangular shape in plan view. A reflective layer 157 is formed on all sides of the phosphor layers 155R, 155G, and 155B. Furthermore, the reflective layer 157 may not be formed on all sides of the phosphor layers 155R, 155G, 155B. The reflective layer 157 may also be formed on at least one side of the phosphor layers 15 5R, 155G, 155B. Further, a wavelength selective transmission reflection film i 58 is formed on the phosphor layers 155R, 155G, and 155B, that is, on the incident surface (outer surface side) where the excitation light is incident. The basic constituent members of the phosphor substrate 15 1 of the present embodiment are the same as those of the phosphor substrate of the first embodiment, but differ from the second embodiment in that each of the phosphor layers 155R and 155G having different refractive indices Intermediate layers 155R, 155G, and 155B having different refractive index gradients are formed on 155B, respectively. The intermediate layers 153R, 153G, and 153B of the present embodiment are disposed between the phosphor layers 155R, 155G, and 155B and the substrate 152 as described above. The layers from the phosphor layers 155R, 155G' 155B throughout the substrate 152, the intermediate layers 153R, 153G, 153B have different refractive index gradients. The refractive index gradient preferably has a gradient from the phosphor layer 155R toward the substrate 152 when the refractive index of the phosphor layer 155R is η 1 (R) and the refractive index of the substrate 152 is n2. The light-emitting surface (surface on the substrate 152 side) of the above-mentioned working layer 15511 is gradually changed in the thickness direction from 111 (foot) to 112 in the thickness direction. Specifically, it is preferable that the step 161804.doc 58·201240183 degrees with a stepwise or continuous change preferably has a gradient of setting the refractive index of the phosphor layer 550 to n1 (G), and the substrate 152 When the refractive index is set to the center of the core, the phosphor layer 155G faces the substrate 152 in the thickness direction orthogonal to the light-emitting surface (surface on the substrate 152 side) of the glory layer 15, and is in the range of ni(R) to n2. Slowly edged within the range. Specifically, it is preferred to have a gradient of a stepwise or continuous change. Further, it is preferable to have a gradient in which the refractive index of the phosphor layer 155B is n1 (B) and the refractive index of the substrate 152 is set to the center, and the phosphor layer 155B faces the substrate 152. The light-emitting surface of the light-emitting layer 155B (the surface on the substrate 152 side) is gradually changed in the thickness direction from nl (R) to the center of the core. Specifically, it is preferred to have a gradient of a stepwise or continuous change. Here, the refractive indices of the phosphor layers 155R, 155G, and 155B! ^ is for example 2.0~2.3 or so. The refractive index n2 of the substrate 152 is about 1.5 in the case of, for example, a glass substrate. Therefore, for example, when the refractive index of the phosphor layer 15511 is 2.1, the refractive index gradient of the intermediate layer 153R is preferably from the phosphor layer 155R toward the substrate 152, and is about 13 to 1.5 or about 1.5 or Continuously smaller. Further, for example, when the refractive index nl(R) of the camping layer 15 g is 2.2, the refractive index gradient as the intermediate layer i53g is preferably from the phosphor layer 155G toward the substrate 152, to 2 2 From left to right and around 1.5, it is gradually or continuously smaller. Further, for example, when the refractive index ni(R) of the camping body layer 155B is 2.3, the refractive index gradient of the intermediate layer 153B is preferably from about 2.3 to 1.5 in the direction from the phosphor layer 155B toward the substrate 152. The left and right are gradually reduced in stages or continuously. With such a configuration, the intermediate layers 153R, 153G, and 153B can have the fluorescent component having a larger angle in the normal direction of the light-emitting surface of the phosphor layers 155]1, 155G, and 155B than the phosphor layers 155, doc - 59, and 201240183. The loss of light generated by the total reflection of the interface between the phosphor layers 155R, 155G, and 155B and the substrate 152 having a refractive index difference is suppressed to a minimum. As the intermediate layers 153R, 153G, and 153B having such a refractive index gradient, for example, (1) can be formed by laminating a plurality of layers (materials) having different refractive indices or continuously laminating them. Further, (2) one or more minute structures having a slight j-direction in the thickness direction are formed, and the ratio of the minute structures is continuously changed in the thickness direction, whereby an intermediate layer having a refractive index gradient can be formed. Further, in (1), the refractive index of the material to be laminated is changed, and in (2), the refractive index and the gradient of the material of the microstructure are changed, whereby the refractive index gradient suitable for each layer of the intermediate layer, 153G, and 153b can be selected. The layers 153R and 153G of the manufacturing method of 151, and an example of the phosphor substrate of the present embodiment will be described. Further, the example described here is a method in which the intermediate portion 153B and the protective layer 156 are formed as a structure in which the horses and the horses each include a conical micro structure. In the case of the work substrate 151, the uv effect resin is first mixed with the intermediate layer forming material as the intermediate layer to form a film. The second use of a micro-structure having a conical shape (for example, an aluminum mold having a concave shape with a apex angle of 3), an injection molding machine having a chopstick shape, forming a plurality of minute circular shapes and having a refractive index gradient 152. - The intermediate layer is transferred to the base; secondly, on the intermediate layer 153R formed on one surface of the substrate, the 161804.doc • 60 · 3 201240183 optical mask is released for UV exposure and Development is performed to form an intermediate layer 153R on the substrate 152. Then, the intermediate layers 153G and 153B are patterned in the same manner as above. Next, the spacers are sequentially formed on the intermediate layers 153R, 153G, and 153B using a dispenser. After the light-emitting layers 155R, 155G, and 155B are formed, the reflective layer 157, the wavelength selective transmission and reflection layer 158, and the protective layer 156 are sequentially formed in the same manner as the phosphor substrate of the first embodiment, thereby obtaining the glotex substrate 151. Example of the machine As an example of the electronic device including the display device of the above-described embodiment, a mobile phone shown in Fig. 10A and a television receiver shown in Fig. B can be cited. The telephone 127 includes a main body 128, a display unit 129, an audio input unit 130, an audio output unit 13 1 , an antenna 132, an operation switch 133, etc., and the display unit 129 uses the display device of the above-described embodiment. The receiving device 135 includes a main body cabinet 136, a display unit 137 'speaker 138, a bracket 139, and the like, and the display unit 137 uses the display device of the above-described embodiment. The display device of the above embodiment is used in such an electronic device. An electronic device having a low-power consumption with excellent quality is now displayed. [Illumination device] Hereinafter, an illumination device including a phosphor substrate of the embodiment of the present invention will be described with reference to Fig. 11. As shown in Fig. 11, the illumination device 141 of the present embodiment includes Optical film 161804.doc -61 - 201240183 142, phosphor substrate 143, organic EL element 147 including anode 144, organic EL layer 145 and cathode 146, heat diffusion plate 148, sealing substrate 149, sealing resin 150, heat dissipation material 151 The driving circuit 152, the wiring 153, and the suspension ceiling 154. In the illuminating device, the phosphor substrate 143 is the phosphor substrate of the above embodiment. Therefore, it is possible to realize a bright and low-power illuminating device. Further, the technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. In the display device described in the above embodiment, it is preferable to provide a polarizing plate on the light-emitting side. As the polarizing plate, a combination of the previous linear polarizing plate and the λ/4 plate can be used. By providing such a polarizing plate, It is possible to prevent external light reflection from the display-exposed electrode or external light reflection on the surface of the substrate or the sealing substrate, thereby improving the contrast of the display device. In addition, the specific description of the shape, the number, the arrangement, the material, the formation method, and the like of each component of the phosphor substrate and the display device is not limited to the above embodiment, and can be appropriately changed. [Examples] Hereinafter, the form of the present invention will be described in more detail by way of examples and comparative examples, but the form of the invention is not limited to the examples. (Comparative Example) A glass of 0.7 mm was used as the substrate. After the substrate was washed with water, ultraponic cleaning with pure water for 1 minute, acetone ultrasonic cleaning for 1 minute, and isopropanol vapor cleaning for 5 minutes, and 100. (: Dry for 1 hour. 16l804.doc

S -62 - 201240183 其次’於基板上形成臈厚為1〇〇 pm之綠色螢光體層》 此處’綠色螢光體層係以如下方法形成。首先,向平均 粒徑5 nm之氣相法二氧化矽〇 16 g中添加乙醇15 g及縮水 甘油氧基丙基二乙氧基矽烷〇 22 g而於開放系統室溫下攪 拌1小時。將該混合物與綠色螢光體CaQ 97MgG G3: Zr〇3: Ho以20 g轉移至研缽,充分研磨混合後於7(Γ(:之烘箱中加 熱2小時,進而於12〇。(:之烘箱中加熱2小時,獲得經表面 改質之Ba2Si04 : Eu2+。 其次,向實施有表面改質之1〇 giCaowMgow : Zr〇3 : Ho中添加由水/二曱基亞砜=1/1之混合溶液(3〇〇 溶解後 之聚苯乙烯醇30 g,藉由分散機攪拌而製作綠色螢光體形 成用塗液。將以上製作之綠色螢光體形成用塗液藉由網版 印刷法而於上述玻璃上以3 mm寬度塗佈於所需位置。繼而 利用真空烘箱(200 C、10 mmHg之條件)加熱乾燥4小時, 形成綠色螢光體層’從而完成螢光體基板。 最後,對於該登光體基板而言使用市售之亮度計(bm_ 7 :株式會社TOPCON TECHNOHOUSE公司製),將藍色 LED作為激發光而使450 ηπι之光自螢光體基板之背面入射 時’測定自正面出光之螢光之25°C的亮度轉換效率。作為 激發光之藍色LED之亮度為1000 cd/m2,相對於此,通過 螢光體後於547 nm處具有發光峰值之綠色之發光之亮度為 1023 cd/m2且亮度轉換效率為100%。 (實施例1) 於與比較例相同之玻璃基板上,如圖3A及3B所示形成 161804.doc -63- 201240183 具有折射率梯度之由複數之微小圓錐形狀構成的中間層 1 〇。中間層形成材料3 1係使用於透明樹脂(聚乙烯)中添加 有金屬化合物(Ti〇2)而成者。並且,如圖3 A所示,使用具 備銘模具30之射出成形機,將包含該等之混合材料之中間 層形成材料31成形’如圖3B所示形成具有多個微小圓錐形 狀(頂角:30。)且具有折射率梯度之中間層10。 其次’使用具有與上述玻璃基板之折射率大致相等的折 射率之市售無色透明之光學接合用聚矽氧油混合物,如圖 3 B所示於該玻璃基板5上貼合中間層1 〇。 繼而’藉由與比較例相同之方法而於中間層10上形成綠 色螢光體層。 其後’與比較例同樣地,將藍色LED作為激發光而使 45 0 nm之光自螢光體基板之背面入射時,測定自正面出光 之螢光之25°C的亮度轉換效率。作為激發光之藍色LED之 亮度為1000 cd/m2 ’相對於此’通過螢光體後於547 nm處 具有發光峰值的綠色之發光之亮度為1105 cd/m2且亮度轉 換效率為110%,相對於比較例而言觀測到1.1倍之亮度提 高。 (實施例2) 實施例1中製作之螢光體基板之螢光體層上之側面上, 藉由法而以5 0 τι rn之膜厚均勻地形成銘之全反射膜。 其後,與比較例同樣地,將藍色LED作為激發光而使 45 0 nm之光自螢光體基板背面入射時,測定自正面出光之 螢光之25 °C的亮度轉換效率。作為激發光之藍色LED之亮 161804.doc -64- § 201240183 度為1000 cd/m,相對於此,通過螢光體後於547 nm處具 有發光峰值之綠色之發光的亮度為2721 cd/m2、亮度轉換 效率為270%,相對於比較例而言觀測到2·7倍之亮度提 局。 (實施例3) 於實施例2中製作之螢光體基板之螢光體層上之使激發 光入射之側的面上,作為波長選擇透過反射膜,係將使氧 化鈦(1'1〇2:折射率=2.30)與氧化矽(81〇2:折射率=147)藉 由ΕΒ蒸鍍法交替成膜6層所製作之介電體多層膜,藉由濺 鍍法以100 nm之膜厚形成。 其後,與比較例同樣地,將藍色LED作為激發光而使 450 nm之光自螢光體基板背面入射時,測定自正面出光之 螢光之25 C的亮度轉換效率。作為激發光之藍色LED之亮 度為1000 cd/m2,相對於此,通過螢光體後於nm處藉 由發光峰值之綠色之發光的亮度為3512 cd/m2、亮度轉換 效率為350%,相對於比較例而言觀測到3 5倍之亮度提 南。 (實施例4) 於實施例3中製作之螢光體基板之玻璃基板上,如圖31 所示形成具有折射率梯度且由複數之微小圓錐形狀構成的 保護層11。保護層形成材料係使用透明樹脂(聚乙烯)。使 用包括具有如圖3A所示之複數之凹形狀之微小圓錐形狀的 紹模具之射出成形機,使該材料成形,形成如圖31所示具 有多個微小圓錐形狀(頂角:30。)且具有折射率梯度之保護 161804.doc .65- 201240183 層11。 其次’使用具有與玻璃基板之折射率大致相等的折射率 之市售無色透明之光學接合用聚矽氧油混合物,而於破璃 基板上貼附保護層1 1。 其後’與比較例同樣地,將藍色LED作為激發光而使 45〇 nm之光自螢光體基板背面入射時,測定自正面出光之 螢光之25°C的亮度轉換效率。作為激發光之藍色led之亮 度為1000 cd/m2 ’相對於此,通過螢光體後之於547 nm處 具有發光峰值之綠色之發光的亮度為3832 Cd/m2、亮度轉 換效率為380% ’相對於比較例而言觀測到3 8倍之亮度提 尚0 (實施例5) 於與比較例相同之玻璃基板上’藉由電子束蒸鍍法將氟 化鎂(折射率:1.38)與氧化欽(折射率:2.30)—面使蒸鐘速 度略微變化一面同時以2〇〇。(:進行蒸鍍。蒸鍍速度係使氟 化鎖與氧化鈦之蒸鍍速度比自丨〇 : 〇起以1分鐘間隔變化至 〇 : 1〇而成膜。藉由該方法,於玻璃基板側,形成氟化鎂 之濃度較高、於厚度方向上越遠離玻璃基板則氧化鈦之濃 度緩緩變高、具有較緩之折射率梯度的中間層。 其次’藉由與比較例相同之方法而於中間層上形成綠色S -62 - 201240183 Next, a green phosphor layer having a thickness of 1 μm was formed on the substrate. Here, the green phosphor layer was formed as follows. First, 15 g of ethanol and 22 g of glycidoxypropyldiethoxydecane oxime were added to 16 g of the vapor phase cerium oxide having an average particle diameter of 5 nm, and the mixture was stirred at room temperature for 1 hour at room temperature. The mixture was transferred to a mortar with green phosphor CaQ 97MgG G3: Zr〇3: Ho at 20 g, thoroughly ground and mixed, and then heated in an oven (for 2 hours, and further at 12 Torr.) The surface was modified by Ba2Si04: Eu2+ in an oven for 2 hours. Next, a mixture of water/dimercaptosulfoxide = 1/1 was added to the 〇giCaowMgow: Zr〇3: Ho which was subjected to surface modification. The solution (30 g of polystyrene alcohol dissolved in 3 Å was stirred by a disperser to prepare a coating liquid for forming a green phosphor. The coating liquid for green phosphor formation prepared above was subjected to screen printing method. It was applied to the desired position on the above glass at a width of 3 mm, and then dried by heating in a vacuum oven (200 C, 10 mmHg for 4 hours to form a green phosphor layer) to complete the phosphor substrate. In the case of a light-emitting substrate, a commercially available luminance meter (bm_7: manufactured by TOPCON TECHNOHOUSE Co., Ltd.) was used, and when a blue LED was used as excitation light and light of 450 ηπι was incident from the back surface of the phosphor substrate, it was measured from the front side. Luminance conversion efficiency of 25 ° C of fluorescent light The luminance of the blue LED of the excitation light is 1000 cd/m2, whereas the luminance of the green light having the luminescence peak at 547 nm after the phosphor is 1023 cd/m2 and the luminance conversion efficiency is 100%. Example 1) On the same glass substrate as the comparative example, as shown in FIGS. 3A and 3B, an intermediate layer 1 构成 composed of a plurality of minute conical shapes having a refractive index gradient was formed as shown in FIGS. 3A and 3B. The intermediate layer was formed. The material 31 is used for adding a metal compound (Ti〇2) to a transparent resin (polyethylene), and as shown in Fig. 3A, an injection molding machine having a mold 30 is used, and the material is included. The intermediate layer forming material 31 of the mixed material is shaped to form an intermediate layer 10 having a plurality of minute conical shapes (apex angle: 30) and having a refractive index gradient as shown in Fig. 3B. Next, 'the refractive index with the above glass substrate is used. A commercially available colorless transparent optically bonded polyoxyxene oil mixture having substantially the same refractive index, as shown in Fig. 3B, was bonded to the glass substrate 5 with the intermediate layer 1 〇. Then, by the same method as the comparative example In the middle layer 10 The green phosphor layer was formed. Then, in the same manner as in the comparative example, when the blue LED was used as the excitation light and the light of 45 0 nm was incident from the back surface of the phosphor substrate, the fluorescence of the light emitted from the front side was measured at 25 ° C. Luminance conversion efficiency: The luminance of the blue LED as the excitation light is 1000 cd/m2 'relative to the brightness of the green luminescence having a luminescence peak at 547 nm after passing through the phosphor is 1105 cd/m2 and the luminance conversion The efficiency was 110%, and a brightness increase of 1.1 times was observed with respect to the comparative example. (Example 2) On the side surface on the phosphor layer of the phosphor substrate produced in Example 1, a total reflection film of the name was uniformly formed by a film thickness of 5 0 τ rn. Then, in the same manner as in the comparative example, when the blue LED was used as the excitation light and the light of 45 nm was incident from the back surface of the phosphor substrate, the luminance conversion efficiency at 25 °C of the fluorescence emitted from the front surface was measured. The brightness of the blue LED as the excitation light is 161804.doc -64- § 201240183 degrees is 1000 cd/m. In contrast, the luminance of the green luminescence with the luminescence peak at 547 nm after the phosphor is 2721 cd/ The brightness conversion efficiency was 270%, and a brightness improvement of 2.7 times was observed with respect to the comparative example. (Example 3) The surface on the phosphor layer of the phosphor substrate produced in Example 2 on the side on which the excitation light was incident was selected as a wavelength selective transmission reflection film to cause titanium oxide (1'1〇2). : refractive index = 2.30) and yttrium oxide (81 〇 2: refractive index = 147), a dielectric multilayer film produced by alternately forming a film of 6 layers by a vapor deposition method, and a film thickness of 100 nm by sputtering form. Then, in the same manner as in the comparative example, when the blue LED was used as the excitation light and the light of 450 nm was incident from the back surface of the phosphor substrate, the luminance conversion efficiency of 25 C of the fluorescence emitted from the front surface was measured. The luminance of the blue LED as the excitation light is 1000 cd/m 2 , whereas the luminance of the green light by the luminescence peak at the nm after the phosphor is 3512 cd/m 2 and the luminance conversion efficiency is 350%. A luminance of 35 times was observed relative to the comparative example. (Example 4) On the glass substrate of the phosphor substrate produced in Example 3, as shown in Fig. 31, a protective layer 11 having a refractive index gradient and composed of a plurality of minute conical shapes was formed. The protective layer forming material is a transparent resin (polyethylene). The material is formed by using an injection molding machine including a micro-conical shape having a concave shape as shown in FIG. 3A, and has a plurality of minute conical shapes (apex angle: 30) as shown in FIG. Protection with refractive index gradient 161804.doc .65- 201240183 Layer 11. Next, a commercially available colorless transparent optical bonding polyoxyxene oil mixture having a refractive index substantially equal to the refractive index of the glass substrate was used, and a protective layer 11 was attached to the glass substrate. Then, in the same manner as in the comparative example, when the blue LED was used as the excitation light and the light of 45 〇 nm was incident from the back surface of the phosphor substrate, the luminance conversion efficiency at 25 ° C of the fluorescence emitted from the front surface was measured. The luminance of the blue LED as the excitation light is 1000 cd/m 2 'In contrast, the luminance of the green light having the luminescence peak at 547 nm after the phosphor is 3832 Cd/m 2 , and the luminance conversion efficiency is 380%. 'Eight to 8 times the brightness was observed with respect to the comparative example. (Example 5) On the same glass substrate as the comparative example, magnesium fluoride (refractive index: 1.38) was subjected to electron beam evaporation. Oxidation (refractive index: 2.30) - the surface slightly changes the steam speed while simultaneously 2 〇〇. (: vapor deposition is carried out. The vapor deposition rate is such that the vapor deposition rate of the fluorinated lock and the titanium oxide is higher than that of the titanium oxide: the film is formed at a time interval of 1 minute to 〇: 1 〇. The film is formed on the glass substrate by this method. On the side, an intermediate layer having a higher concentration of magnesium fluoride and having a higher concentration of titanium oxide in the thickness direction as the distance from the glass substrate is gradually increased, and a gradient of a refractive index is gradually formed. Next, 'by the same method as the comparative example Forming green on the middle layer

技止SA SL 货无遐層。 其次’藉由與實施例2相同之方法,於螢光體基板之螢 光體層上之側面上’藉由濺鍍法而以5〇 nrn之膜厚均勻地 形成銘全反射膜。 161804.docThe technical SA SL goods have no flaws. Next, by the same method as in Example 2, the in-situ total reflection film was uniformly formed by sputtering on the side surface on the phosphor layer of the phosphor substrate by sputtering. 161804.doc

S • 66 · 201240183 其次,藉由與實施例3相同之方法,而於螢光體基板之 螢光體層上之使激發光入射之側的面上,作為波長選擇透 過反射膜,將使氧化鈦(Ti〇2 :折射率=2.3〇)與氧化矽 (SiCh .折射率=147)藉由EB蒸鍍法交替成膜6層所製作之 "電體多層膜’藉由游:鍵法而以100 nm之膜厚形成。 其後,與比較例同樣地’將藍色LED作為激發光而使 450 nm之光自螢光體基板背面入射時,測定自正面出光之 螢光之25°C的亮度轉換效率。作為激發光之藍色LED之亮 度為1000 cd/m2,相對於此,通過螢光體後之於547 ^11處 具有發光峰值之綠色之發光的亮度為3443 cd/m2、亮度轉 換效率為340%,相對於比較例而言觀測到3 4倍之亮度提 高。 將以上之結果匯總於下述[表丨]。 [表1] 亮度(cd/m2) 亮度轉換效率(%) 與比較例之比輕 比較例 1023 100 實施例1 1105 110 1.1倍 實施例2 2721 270 2.7倍 實施例3 3512 350 3.5倍 實施例4 Γ 3832 3443 _380_ 340 __3.8倍 3.4倍 貫施例5 (實施例6)[藍色有機EL +螢光體方式] 於0.7 mm之玻璃基板上,形成具有折射率梯度且由複數 之微小圓錐形狀構成的中間層。令間層形成材料係使用於 透明樹脂(聚乙烯)中添加有金屬化合物(Ti〇2)而成者。使 用包括具有如圖3A所示複數之凹形狀之微小圓錐形狀之鋁 161804.doc .67· 201240183 模具的射出成形機,使該等混合材料成形,形成具有多個 微J圓錐形狀(頂角:3〇。)且具有折射率梯度之中間層。 其-人,使用具有與玻璃基板之折射率大致相等的折射率 之市售無色透明之光學接合用聚矽氧油混合物,使玻璃基 板與中間層貼合。 繼而,於中間層上形成紅色螢光體層、綠色螢光體層' 藍色散射體層,設為螢光體基板。 於基板上以寬度20 μιη、膜厚500 nm、間距200 μιη而形 成包含鉻之梯形上之低反射層(光吸收層)。 紅色螢光體層之形成首先係向平均粒徑5 nm之氣相法二 氧化矽0.16g十添加乙醇15 g及γ_縮水甘油氧基丙基三乙氧 基矽烷0·22 g而於開放系統室溫下攪拌丨小時。將該混合物 與紅色螢光體K5Eu2.5(W〇4)6·25以20 g轉移至研缽,充分研 磨混合後於70。(:之烘箱中加熱2小時,進而於12〇。〇之烘箱 中加熱2小時,獲得經表面改質之k5Eu2 5(w〇4)6 25。 其次,向ίο g之經表面改質之〖5^25(评〇4)6 25中添加由 水/二甲基亞砜= 1/1之混合溶液(3〇〇 g)溶解後的聚苯乙烯醇 3〇 g ’藉由分散機攪拌而製作紅色螢光體形成用塗液。將 以上製作之紅色螢光體形成用塗液藉由網版印刷法而塗佈 於上述玻璃上之未形成低反射層的區域。繼而,於真空洪 箱(200°C、10 mmHg之條件)内加熱乾燥4小時,形成膜厚 50 μηι之紅色螢光體層。 其次’綠色螢光體層之形成首先係向平均粒徑5 nm之氣 相法二氧化矽0.16 g中添加乙醇15 g及γ-縮水甘油氧基丙基 I61804.doc -68 - 201240183 二乙氧基矽烷0.22 g,而於開放系統室溫下攪拌〖小時。將 該混合物與綠色螢光體BajiCU: Eu2+以2〇 g轉移至研缽, 充为研磨混合後於70C之烘箱中加熱2小時,進而於12〇。0 之烘箱中加熱2小時,獲得經表面改質之Ba2si〇4 : Eu2+。 其次,向10 g之實施表面改質後之Busier: Eu2+中添加 由水/二甲基亞砜=1/丨之混合溶液(3〇〇 g)溶解後的聚苯乙烯 醇3〇 g ’藉由分散機攪拌而製作綠色螢光體形成用塗液。 將以上製作之綠色螢光體形成用塗液藉由網版印刷法而塗 佈於上述玻璃上之未形成低反射層的區域。繼而,於真空 烘箱(200°C、10 mmHg之條件)内加熱乾燥4小時,形成膜 厚50 μηι之綠色螢光體層。 其次’藍色散射層之形成係添加1·5 μπι之石夕土粒子(折射 率:1.65)20 g、由水/二曱基亞砜=1/1之混合溶液(3〇〇g)溶 解後的聚苯乙稀醇30 g’藉由分散機授拌而製作藍色散射 層形成用塗液。 將以上製作之藍色散射層形成用塗液藉由網版印刷法而 塗佈於上述玻璃上之未形成低反射層的區域。繼而,於真 空烘箱(200°C、10 mmHg之條件)内加熱乾燥4小時,形成 藍色散射層。 其次,於螢光體層之側面上,藉由濺鍍法而以5〇 nm之 膜厚均勻地形成鋁全反射膜。 其次,於製作之螢光體層之使激發光入射之側的面上, 作為波長選擇透過反射膜,將使氧化鈦(Ti〇2 :折射率 =2.30)與氧化矽(Si〇2 :折射率=1.47)藉由EB蒸鍍法交替成 161804.doc -69- 201240183 膜ό層所製作的介電體多層膜,藉由濺鍍法而以1〇〇 nm2 膜厚形成。 其次’於0.7 mm之厚度之玻璃基板上,藉由丨賤鍍法使銀 成膜為膜厚100 nm而形成反射電極,於該反射電極上藉由 濺鍍法成膜銦-錫氧化物(ITO)為膜厚2〇 nm,作為第1電極 而形成反射電極(陽極)。繼而,藉由先前之光微影法,以 第1電極寬度為160 μιη、間距為2〇〇 μπι圖案化為90根條 紋。 其a ’於第1電極上藉由賤鑛法層疊2〇〇 nm之Si02,藉 由先前之光微影法以僅覆蓋第1電極之邊緣部的方式圖案 化。此處’形成僅以距第1電極之端為1〇 μΓη之程度由Si〇2 覆蓋短邊的構造。水洗之後進行i 0分鐘之純水超音波清 洗、10分鐘之丙酮超音波清洗、5分鐘之異丙醇蒸氣清 洗’且以120。(:乾燥1小時。 其次’將該基板固定於電阻加熱蒸鍍裝置内之基板托架 上,減壓至lxl〇-4 Pa以下之真空,進行各有機層之成膜。 首先,作為電洞注入材料,使用丨,^雙-二_4_三胺基-苯 基-環己烧(TAPC) ’藉由電阻加熱蒸鍍法而形成膜厚1〇〇 nm之電洞注入層。 其次,作為電洞輸送材料,使用二-1-萘基-N,N,-二 笨基-1,1'-聯苯聯笨_4,4,_二胺(NPD),藉由電阻加熱 蒸鑛法形成膜厚4〇 nm之電洞輸送層。 繼而’於電洞輸送層之上形成藍色有機發光層(厚度: 30 nm)❶該藍色有機發光層係藉由使丨,4_雙-三苯矽基·苯 161804.doc 201240183 (UGH-2)(主體材料)及雙[(4,6-二氟苯基)-吡啶_n,C2,;K咬 曱酸鹽銥(III)(FIrPic)(藍色磷光發光摻雜劑)各自之蒸鑛 速度設為1.5 A/sec、0.2 A/sec進行共蒸鍍而製作。 繼而’於發光層之上使用2,9-二曱基-4,7-二笨基1〇_ 啡啉(BCP)而形成電洞防止層(厚度:i〇nm)。 繼而,於電洞阻隔層之上使用三(8_羥基喹啉)鋁(Alq3)而 形成電子輸送層(厚度:30 nm)。 繼而,於電子輸送層之上使用氟化鋰(LiF)而形成電子注 入層(厚度:0.5 nm)。 此後’作為第2電極而形成半透明電極。首先,將上述 基板固疋於金屬蒸鑛用腔室。其次,使上述基板與第2電 極形成用之蔽陰遮罩(以於與上述第丨電極之條紋對向之朝 向上能以500 μιη寬度、600 μιη間距之條紋狀形成第2電極 的方式形成有開口部之遮罩)對準,向電子注入層之表面 上,藉由真空蒸鍍法使鎂與銀分別以〇」A/sec、〇 9 A/sec 之比例之蒸鍍速度,利用共蒸鍍而將鎂銀形成為所需之圖 案(厚度:1 nmp進而於其上以強調干涉效應為目的、及 防止第2電極之配線電阻所致的電壓降為目的,使銀以i A/sec之蒸鍍速度形成為所需圖案(厚度:i9nm)。 藉此,形成第2電極。此處,作為有機EL元件於反射 電極(第1電極)與半透過電極(第2電極)之間顯現微空腔效 應(干涉效應),而可提高正面亮度,從而可使來自有機此 元件之發光能量更有效地傳送至螢光體層。又,同樣地, 藉由微空腔效應而將發光蜂值調整為偏nm、半值寬調整 161804.doc C: -71 - 201240183 為 50 nm。 其次’藉由電聚CVD法,將3叫之包含叫之無機保護 層使用蔽陰遮罩而自顯示部之端圖案化形成至上下左右2 mm之密封區域為止。根據以上說明’製作包含有機队元 件之光源基板。 其次,藉由形成於顯示部外之對準標記,使以如上之方 式製作之有機EL元件基板與螢光體基板對準。再者,於此 之前向螢光體基板塗佈熱硬化樹脂,經由熱硬化樹脂而使 兩基板密著,且以8〇t加熱2小時,藉此進行熱硬化樹脂 之硬化。再者,以防止有機EL之因水分所致之劣化為目 的,上述貼合步驟係於乾燥空氣環境下(水分量:_8〇。〇進 行。 最後,藉由將周邊形成之端子連接於外部電源而完成有 機EL顯示裝置。 此處,藉由外部電源將所需之電流施加至所需之條紋狀 電極,藉此可將藍色發光有機EL設為能任意開關之激發光 源’藉由紅色螢光體層、綠色螢光體層而將發光自藍色光 分別轉換成紅色、綠色’獲得紅色、綠色之各向同性發 光’且藉由插入藍色散射層而可獲得各向同性之藍色發 光。如此,可獲得能全彩顯示之良好圖像、視角特性良好 之圖像》 (貫施例7)[主動式驅動藍色有機EL +螢光體方式] 螢光體基板係以與實施例6同樣之方式製作。 於100x100 mm見方之玻璃基板上,使用PECvD法形成 -72- 161804.docS: 66 · 201240183 Next, in the same manner as in the third embodiment, the surface on the side of the phosphor layer of the phosphor substrate on which the excitation light is incident is selected as a wavelength selective transmission reflection film to cause titanium oxide. (Ti〇2: refractive index = 2.3 〇) and yttrium oxide (SiCh. refractive index = 147) were formed by alternately forming a film of 6 layers by EB vapor deposition. It is formed with a film thickness of 100 nm. Then, in the same manner as in the comparative example, when the blue LED was used as the excitation light and the light of 450 nm was incident from the back surface of the phosphor substrate, the luminance conversion efficiency at 25 ° C of the fluorescence emitted from the front surface was measured. The luminance of the blue LED as the excitation light is 1000 cd/m2. On the other hand, the luminance of the green light having the luminescence peak at 547^11 after the phosphor is 3443 cd/m2, and the luminance conversion efficiency is 340. %, a brightness improvement of 34 times was observed with respect to the comparative example. The above results are summarized in the following [Table]. [Table 1] Brightness (cd/m2) Brightness conversion efficiency (%) Light comparison with Comparative Example Example 1023 100 Example 1 1105 110 1.1 times Example 2 2721 270 2.7 times Example 3 3512 350 3.5 times Example 4 Γ 3832 3443 _380_ 340 __3.8 times 3.4 times Example 5 (Example 6) [Blue organic EL + phosphor mode] On a 0.7 mm glass substrate, a micro-cone having a refractive index gradient and consisting of plural The middle layer of the shape. The interlayer forming material is used for adding a metal compound (Ti〇2) to a transparent resin (polyethylene). The mixed material is formed by using an injection molding machine including an aluminum 161804.doc .67·201240183 mold having a micro-conical shape having a concave shape as shown in FIG. 3A to form a plurality of micro-J conical shapes (apex angle: 3) and have an intermediate layer of refractive index gradient. Further, a commercially available colorless transparent optical bonding polyoxyxene oil mixture having a refractive index substantially equal to the refractive index of the glass substrate is used to bond the glass substrate to the intermediate layer. Then, a red phosphor layer and a green phosphor layer 'blue scatterer layer are formed on the intermediate layer, and the phosphor substrate is used. A low-reflection layer (light absorbing layer) on a trapezoidal layer containing chromium was formed on the substrate at a width of 20 μm, a film thickness of 500 nm, and a pitch of 200 μm. The formation of the red phosphor layer is firstly added to the gas phase method of ruthenium dioxide 0.16g with an average particle diameter of 5 nm, 15 g of ethanol and γ-glycidoxypropyl triethoxy decane 0·22 g in the open system. Stir at room temperature for 丨 hours. The mixture was transferred to a mortar with 20 g of red phosphor K5Eu 2.5 (W 4 ), and was thoroughly ground and mixed at 70. (: Heat in an oven for 2 hours, and then heat in an oven for 2 hours to obtain k5Eu2 5(w〇4) 6 25 which has been surface-modified. Secondly, the surface of the ίο g is modified. 5^25 (Review 4) 6 25 Adding a polystyrene alcohol 3〇g dissolved in a mixed solution of water/dimethyl sulfoxide = 1/1 (3〇〇g) by a disperser A coating liquid for forming a red phosphor is prepared, and the coating liquid for forming a red phosphor prepared above is applied to a region of the glass on which the low reflection layer is not formed by a screen printing method. (200 ° C, 10 mmHg conditions) heating and drying for 4 hours to form a red phosphor layer with a film thickness of 50 μη. Secondly, the formation of the green phosphor layer is firstly directed to a gas phase cerium oxide having an average particle diameter of 5 nm. Add 0.1 g of ethanol and 0.1 g of γ-glycidoxypropyl I61804.doc -68 - 201240183 diethoxy decane 0.22 g, while stirring at room temperature for hrs. The mixture was mixed with green phosphor. BajiCU: Eu2+ was transferred to the mortar at 2〇g, and the mixture was ground and heated in a 70C oven for 2 hours. Heating in an oven for 2 hours to obtain a surface modified Ba2si〇4: Eu2+. Next, add 10 g of the surface modified Busier: Eu2+ by water/dimethyl sulfoxide = 1/丨The mixed solution (3 〇〇g) of the polystyrene alcohol 3 〇g' dissolved by the disperser was used to prepare a coating liquid for forming a green phosphor. The coating liquid for green phosphor formation prepared above was used. The screen printing method is applied to the region of the glass on which the low-reflection layer is not formed. Then, it is dried by heating in a vacuum oven (200 ° C, 10 mmHg) for 4 hours to form a green phosphor having a film thickness of 50 μm. Secondly, the formation of the blue scattering layer is a mixture solution of water particles/dimercaptosulfoxide = 1/1 (3 〇〇g) added to the stone particles of 1. 5 μπι (refractive index: 1.65) 20 g. The polystyrene alcohol 30 g' after the dissolution was mixed by a disperser to prepare a coating liquid for forming a blue scattering layer. The coating liquid for forming a blue scattering layer prepared above was coated by a screen printing method. a region on the above glass where no low reflection layer is formed. Then, in a vacuum oven (200 ° C, 10 mmHg) The inside was heated and dried for 4 hours to form a blue scattering layer. Next, an aluminum total reflection film was uniformly formed on the side surface of the phosphor layer by a sputtering method at a film thickness of 5 〇 nm. The surface of the optical layer on which the excitation light is incident is selected as a wavelength selective transmission reflection film, and titanium oxide (Ti〇2: refractive index = 2.30) and yttrium oxide (Si〇2: refractive index = 1.47) are used by EB. The dielectric multilayer film produced by the vapor deposition method alternately formed into a film layer of 161804.doc -69-201240183 was formed by a sputtering method at a film thickness of 1 〇〇 nm 2 . Next, on a glass substrate having a thickness of 0.7 mm, a silver film was formed to a thickness of 100 nm by a ruthenium plating method to form a reflective electrode, and an indium-tin oxide was formed by sputtering on the reflective electrode ( ITO) has a film thickness of 2 〇 nm, and forms a reflective electrode (anode) as a first electrode. Then, by the previous photolithography method, the first electrode has a width of 160 μm and a pitch of 2 〇〇 μπι is patterned into 90 stripes. The a' is deposited on the first electrode by iridium plating of 2 〇〇 nm of SiO 2 , and patterned by the previous photolithography method so as to cover only the edge portion of the first electrode. Here, the structure in which the short side is covered by Si〇2 to the extent that the end of the first electrode is 1 〇 μΓη is formed. After washing with water, i0 minute pure water ultrasonic cleaning, 10 minute acetone ultrasonic cleaning, and 5 minute isopropanol vapor cleaning were performed and the temperature was 120. (: drying for 1 hour. Next, the substrate was fixed on a substrate holder in a resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1×10 〇-4 Pa or less to form a film of each organic layer. First, as a hole The material was injected, and a hole injection layer having a film thickness of 1 〇〇nm was formed by a resistance heating evaporation method using 丨, bis-bis-4_triamine-phenyl-cyclohexene (TAPC). As a hole transporting material, di-1-naphthyl-N,N,-diphenyl-1,1'-biphenyl phenylene-4,4,-diamine (NPD) is used to heat the ore by electric resistance heating. The method forms a hole transport layer having a film thickness of 4 〇 nm. Then a blue organic light-emitting layer (thickness: 30 nm) is formed on the hole transport layer, and the blue organic light-emitting layer is made by 丨, 4_ double -triphenylsulfanylbenzene 161804.doc 201240183 (UGH-2) (host material) and bis[(4,6-difluorophenyl)-pyridine_n, C2,; K bite bismuth citrate (III) (FIrPic) (blue phosphorescent dopant) was prepared by co-evaporation at a vaporization rate of 1.5 A/sec and 0.2 A/sec. Then '2,9-dimercapyl was used on the luminescent layer. -4,7-two stupid 1 〇 morpholine (BCP) to form a hole Stop layer (thickness: i〇nm). Then, three (8-hydroxyquinoline) aluminum (Alq3) was used on the hole barrier layer to form an electron transport layer (thickness: 30 nm). Then, in the electron transport layer On the top, an electron injecting layer (thickness: 0.5 nm) was formed using lithium fluoride (LiF). Thereafter, a translucent electrode was formed as the second electrode. First, the substrate was fixed in a metal vaporizing chamber. The substrate and the second electrode are formed with a shadow mask (the opening is formed so as to form a second electrode in a stripe shape having a width of 500 μm and a pitch of 600 μm facing the stripe of the second electrode; The mask of the part is aligned, and on the surface of the electron injection layer, magnesium and silver are vapor-deposited at a vapor deposition rate of 〇A/sec and 〇9 A/sec, respectively, by co-evaporation. Magnesium silver is formed into a desired pattern (thickness: 1 nmp and further for the purpose of emphasizing interference effect, and preventing voltage drop due to wiring resistance of the second electrode, so that silver is i A/sec The vapor deposition rate is formed into a desired pattern (thickness: i9 nm). Here, as the organic EL element, a microcavity effect (interference effect) appears between the reflective electrode (first electrode) and the semi-transmissive electrode (second electrode), and the front luminance can be improved, thereby enabling The luminescence energy of the organic component is more efficiently transmitted to the phosphor layer. Similarly, the luminescence bee value is adjusted to the nm and half value width by the microcavity effect. 161804.doc C: -71 - 201240183 50 nm. Next, by the electropolymerization CVD method, the inorganic protective layer, which is called 3, is covered with a mask to form a sealed region from the end of the display portion to a sealing area of 2 mm above, below, and to the left and right. According to the above description, a light source substrate including an organic team element is produced. Next, the organic EL element substrate produced in the above manner is aligned with the phosphor substrate by the alignment marks formed on the outside of the display portion. Further, before this, the thermosetting resin was applied to the phosphor substrate, and the two substrates were adhered via the thermosetting resin, and heated at 8 Torr for 2 hours to cure the thermosetting resin. Further, in order to prevent deterioration of the organic EL due to moisture, the bonding step is performed in a dry air atmosphere (water content: _8 〇. 〇. Finally, by connecting the peripherally formed terminal to an external power source The organic EL display device is completed. Here, the required current is applied to the desired stripe electrode by an external power source, whereby the blue light-emitting organic EL can be set as an excitation light source capable of any switch. The light body layer and the green phosphor layer convert the light from the blue light into red, green 'to obtain the red and green isotropic light', and the isotropic blue light can be obtained by inserting the blue scattering layer. A good image with good color display and an image with good viewing angle characteristics can be obtained. (Example 7) [Active Driving Blue Organic EL + Phosphor Method] The phosphor substrate is the same as in the sixth embodiment. Manufactured on a 100x100 mm square glass substrate using the PECvD method to form -72-161804.doc

S 201240183 非晶矽半導體膜。繼而,藉由實施結晶化處理而形成多晶 矽半導體膜。其次,使用光微影法而將多晶矽半導體膜圖 案化為複數之島狀。繼而,於圖案化之多晶矽半導體層上 依序形成閘極絕緣膜及閘極電極層,且使用光微影法進行 圖案化。 其後,於圖案化之多晶矽半導體膜上摻雜磷等雜質元 素’藉此形成源極及没極區域,從而製作TFT元件。其 後’形成平坦化膜。作為平坦化膜,係藉由旋塗機依序層 疊由PECVD法所形成之氮化石夕膜、丙烯酸系樹脂層而形 成。首先,形成氮化矽膜後,將氮化矽膜與閘極絕緣膜統 括地姓刻’藉此形成穿透源極及/或汲極區域之接觸孔, 繼而形成源極配線。其後’形成丙烯酸系樹脂層,於閘極 絕緣膜及氮化矽膜上在與穿孔之汲極區域之接觸孔相同位 置上形成穿透沒極區域的接觸孔,藉此完成主動式矩陣基 板。作為平坦化膜之功能係藉由丙烯酸系樹脂層實現。再 者,用以將TFT之閘極電位設為悝定電位之電容器係藉由 於開關用TFT之汲極與驅動用TFT之源極之間插入層間絕 緣膜等絕緣膜而形成。 主動式矩陣基板上形成有接觸孔,該接觸孔貫通平坦化 層而與驅動用TFT、紅色發光有機EL元件之第1電極、綠 色發光有機EL元件之第1電極、藍色發光有機EL元件之第 1電極分別電性連接。 其次,以電性連接於貫通與用以驅動各發光像素之TFT 連接之平坦化層而設之接觸孔的方式,藉由濺鍍法形成各 161804.doc • 73- 201240183 像素之第1電極(陽極)。第!電極將膜厚15〇 nmiAl(鋁)與 膜厚2〇 nm之ΙΖΟ(氧化銦-氧化鋅)層疊而形成。 其-人,藉由先則之光微影法將第丨電極圖案化為與各像 素對應之形狀。此處,第i電極之面積係設為3〇() μιηχΐ6〇 μπι。又,形成於100 mmxl〇〇 mm見方之基板上。顯示部 為80 mmx80 mm,顯示部之上下左右設有2 mm寬度之密 封區域’且於短邊側在進而密封區域之外分別設有2_之 端子取出部。長邊側於進行贊折之一方設有2 mm寬度之端 子取出部。 其人於第1電極上藉由錢鑛法層疊200 nm之Si〇2,藉 由先前之光微影法以覆蓋第丨電極之邊緣部的方式圖案 化。此處,將僅以距第i電極之端1〇 μηΐ2程度由si〇2覆蓋 4邊之構造設為邊緣護罩。 其次’對上述主動式基板進行清洗。作為主動式基板之 清洗例如係使用㈣、IPA進行1Q分鐘之超音波清洗,繼 而進行30分鐘之UV-臭氧清洗。 其次,將該基板固定於線内型電阻加熱蒸鍍裝置内之基 板托架上’減壓至H Paa下之真空為止。進行各有機 層之成膜。 首先,作為電洞注入材料,使用151_雙_二_4_三胺基-苯 基-環己院(TAPC),藉由電阻加熱蒸鍵法而形成料1〇〇 nm之電洞注入層。 其次,作為電洞輸送材料,使用N,N,·二_丨_萘基·ν,ν,-二 苯基·1,1’-聯$_1,1’_聯苯_4,4,_二胺(_),肖由電阻加熱 161804.doc 201240183 蒸鑛法而形成膜厚40 nm之電洞輸送層。 繼而,於電洞輸送層之上形成藍色有機發光層(厚度: 30 nm)。該藍色有機發光層係藉由將ι,4-雙-三苯矽基-苯 (UGH-2)(主體材料)及雙[(4,6-二氟苯基)-吡啶-N,C2']吡啶 甲酸鹽銥(III)(FIrpic)(藍色填光發光掺雜劑)各自之蒸鑛 速度設為1.5 A/sec、0.2 A/sec進行共蒸鍵而製作。 繼而,於發光層之上使用2,9-二曱基-4,7-二苯基·1,1〇-啡啉(BCP)而形成電洞防止層(厚度:1〇 。 繼而,於電洞阻隔層之上使用三(8·羥基喹啉)鋁(Alq3)而 形成電子輸送層(厚度:30 nm)。 繼而,於電子輸送層之上使用氟化鋰(LiF)而形成電子注 入層(厚度:0.5 nm)。 此後,作為第2電極而形成半透明電極。首先,將上述 基板固定於金屬蒸鍍用腔室内。其次,使上述基板與第2 電極形成用之蔽陰遮罩(以於與上述第〖電極之條紋對向之 朝向上能以2 mm寬度之條紋狀形成第2電極之方式形成有 開口部的遮罩)對準,於電子注入層之表面上,藉由真空 蒸錄法使鎂與銀分別則]A/see、"七咖之比例之蒸錄 速度進仃共4鍍,而使鎂銀形成為所需圖案(厚度:1 ㈣進而於其上以強調干涉效應為目的、及防止第2電極 電阻所致的電壓降為目的,使銀幻A/Sec之蒸錢速 、為所需圖案(厚度:19 nm)e藉此,形成第2電極。 二第!:有機^元件,於反射電極(第1電極)與半透過 極)間顯現微空腔效應(干涉效應),可提高正面 161804.doc -75- 201240183 亮度,從而可使來自有機元件之發光能量更有效地傳送 至蟹光體層。又’同樣地,藉由微空腔效應而將發光峰值 調整為460 nm、將半值寬調整為5〇 ηηι。 其次,藉由電漿CVD法,將3 μιη之包含Si〇2之無機保護 層使用蔽陰遮罩而自顯示部之端圖案化形成至上下左右2 mm 之密封區域為止。藉由以上說明,製作主動式驅動型有機 EL元件基板。 其次’藉由形成於顯示部外之對準標記,使以如上之方 式製作之主動式驅動型有機EL元件基板與螢光體基板對 準。再者’於此之外向螢光體基板塗佈熱硬化樹脂,經由 熱硬化樹脂而使兩基板密著’且以9〇〇c加熱2小時,藉此 進行熱硬化樹脂之硬化。再者,以防止有機EL之因水分所 致之劣化為目的,上述貼合步驟係於乾燥空氣環境下(水 分量:-8(TC )進行。 其次,於出光方向之基板上貼合偏光板而完成主動式驅 動型有機EL。 最後’將形成於短邊側之端子經由源極驅動器連接於電 源電路,將形成於長邊側之端子經由閘極驅動器而連接於 外部電源,藉此完成具有mmX8〇 min之顯示部的主動式 驅動型有機EL顯示器。 此處,藉由外部電源將所需之電流施加至各像素,將藍 色發光有機EL設為能任意開關之激發光源,藉由紅色營光 體層、綠色螢光體層將發光自藍色光分別轉換為紅色、綠 色,從而獲得紅色、綠色之各向同性發光,且藉由插入藍 -76· 161804.docS 201240183 Amorphous germanium semiconductor film. Then, a polycrystalline germanium semiconductor film is formed by performing a crystallization treatment. Next, the polycrystalline germanium semiconductor film is patterned into a plurality of islands by photolithography. Then, a gate insulating film and a gate electrode layer are sequentially formed on the patterned polysilicon semiconductor layer, and patterned by photolithography. Thereafter, the patterned polycrystalline germanium semiconductor film is doped with an impurity element such as phosphorus to form a source and a non-polar region, thereby fabricating a TFT element. Thereafter, a planarizing film is formed. The flattening film is formed by sequentially laminating a nitride film or an acrylic resin layer formed by a PECVD method by a spin coater. First, after the tantalum nitride film is formed, the tantalum nitride film and the gate insulating film are collectively patterned to form a contact hole penetrating the source and/or the drain region, and then a source wiring is formed. Thereafter, an acrylic resin layer is formed, and a contact hole penetrating the electrodeless region is formed on the gate insulating film and the tantalum nitride film at the same position as the contact hole of the drained drain region, thereby completing the active matrix substrate. . The function as a planarizing film is achieved by an acrylic resin layer. Further, a capacitor for setting the gate potential of the TFT to a constant potential is formed by inserting an insulating film such as an interlayer insulating film between the drain of the switching TFT and the source of the driving TFT. A contact hole is formed in the active matrix substrate, and the contact hole penetrates the planarization layer, and the driving TFT, the first electrode of the red light-emitting organic EL element, the first electrode of the green light-emitting organic EL element, and the blue light-emitting organic EL element The first electrodes are electrically connected to each other. Next, a first electrode of each of the 161804.doc • 73-201240183 pixels is formed by sputtering by electrically connecting to a contact hole provided through a planarization layer for driving the TFTs of the respective OLEDs. anode). The first! The electrode was formed by laminating a film thickness of 15 〇 nmiAl (aluminum) and a film thickness of 2 〇 nm (indium oxide-zinc oxide). In the human, the second electrode is patterned into a shape corresponding to each pixel by a prior art photolithography method. Here, the area of the i-th electrode is set to 3 〇() μηηχΐ6〇 μπι. Further, it was formed on a substrate of 100 mm x 10 mm square. The display portion is 80 mm x 80 mm, and a sealing portion of 2 mm width is provided on the upper and lower sides of the display portion, and a terminal take-out portion of 2 mm is provided on the short side and outside the sealed portion. The long side is provided with a 2 mm width terminal take-out portion on one side of the fold. The person layered Si〇2 of 200 nm by the money ore method on the first electrode, and patterned by covering the edge portion of the second electrode by the previous photolithography method. Here, the structure in which the four sides are covered by si 〇 2 to the extent of 1 〇 μη ΐ 2 from the end of the i-th electrode is referred to as an edge shield. Next, the active substrate is cleaned. As the cleaning of the active substrate, for example, (4), IPA is used for ultrasonic cleaning for 1Q minutes, and then UV-ozone cleaning is performed for 30 minutes. Next, the substrate was fixed to a substrate holder in the in-line type resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum under H Paa. Film formation of each organic layer was carried out. First, as a hole injecting material, a hole injection layer of 1 μm was formed by a resistance heating steaming method using 151_bis-bis-4-triamino-phenyl-cyclohexyl (TAPC). . Secondly, as a hole transporting material, N, N, · di-丨-naphthyl·v, ν,-diphenyl·1,1'-linked $_1,1'-biphenyl_4,4,_ is used. Diamine (_), Shaw by the resistance heating 161804.doc 201240183 steaming method to form a hole transport layer with a thickness of 40 nm. Then, a blue organic light-emitting layer (thickness: 30 nm) was formed on the hole transport layer. The blue organic light-emitting layer is obtained by using i,4-bis-triphenylmethyl-benzene (UGH-2) (host material) and bis[(4,6-difluorophenyl)-pyridine-N, C2 The pyruvate speed of the '] picolinate cerium (III) (FIrpic) (blue filled luminescent dopant) was 1.5 A/sec and 0.2 A/sec, and co-steaming was carried out. Then, 2,9-dimercapto-4,7-diphenyl-1,1〇-morpholine (BCP) was used on the light-emitting layer to form a hole prevention layer (thickness: 1 〇. An electron transport layer (thickness: 30 nm) is formed on the hole barrier layer using tris(8.hydroxyquinoline)aluminum (Alq3). Then, lithium fluoride (LiF) is used on the electron transport layer to form an electron injection layer. (thickness: 0.5 nm). Thereafter, a semi-transparent electrode is formed as the second electrode. First, the substrate is fixed in a chamber for metal deposition, and secondly, a mask for forming the substrate and the second electrode is provided ( Aligning with the mask in which the second electrode is formed in a stripe shape with a width of 2 mm in the direction opposite to the stripe of the electrode described above, on the surface of the electron injection layer, by vacuum The steaming method makes the magnesium and silver respectively] A/see, " seven coffee ratios of the steaming speed into a total of 4 plating, and the magnesium and silver are formed into the desired pattern (thickness: 1 (four) and then on it to emphasize The purpose of the interference effect is to prevent the voltage drop caused by the resistance of the second electrode, so that the speed of the silver magic A/Sec The desired pattern (thickness: 19 nm) e is used to form the second electrode. Second:: organic element, microcavity effect (interference effect) appears between the reflective electrode (first electrode) and the semi-transmissive electrode) , can improve the brightness of the front 161804.doc -75- 201240183, so that the luminescence energy from the organic components can be transmitted to the crab light layer more efficiently. Also, the luminescence peak is adjusted to 460 nm by the microcavity effect. The half value width is adjusted to 5〇ηηι. Next, the inorganic protective layer containing Si〇2 of 3 μm is patterned by the plasma CVD method from the end of the display portion to the upper, lower, left and right sides. By the above description, an active driving type organic EL element substrate is produced. Next, an active driving type organic EL element substrate fabricated as described above is formed by an alignment mark formed outside the display portion. In alignment with the phosphor substrate, the thermosetting resin is applied to the phosphor substrate, and the two substrates are adhered to each other via the thermosetting resin and heated at 9 〇〇c for 2 hours. Hardening of the hardened resin. For the purpose of preventing deterioration of the organic EL due to moisture, the bonding step is carried out in a dry air environment (water content: -8 (TC). Next, the polarizing plate is attached to the substrate in the light-emitting direction. The active drive type organic EL is completed. Finally, the terminal formed on the short side is connected to the power supply circuit via the source driver, and the terminal formed on the long side is connected to the external power supply via the gate driver, thereby completing the mmX8. Active-type organic EL display of the display unit of 〇min. Here, the required current is applied to each pixel by an external power source, and the blue light-emitting organic EL is set as an excitation light source capable of any switch, by the red camp The light body layer and the green phosphor layer convert the luminescence from blue light to red and green, respectively, thereby obtaining red and green isotropic luminescence, and by inserting blue-76·161804.doc

S 201240183 色散射層而可獲得各向同性之藍色發光。如此,可獲得全 彩顯示之良好圖像、視角特性良好之圖像。 (實施例8)[藍色LED +螢光體方式] 螢光體基板係以與實施例6相同之方式製作。 使用TMG(三甲基鎵)及\%,於反應容器内放置之藍寶 石基板之c面上,以55(rc成長60 nm膜厚的包含GaN之緩 衝層。其次’將溫度提昇至105(rc,除了使用丁腦、NH3 以外還使用S1H4氣體,成長5 μιη膜厚的包含Si摻雜n型 之η型接觸層。繼而,向原料氣體中添加tma(三甲基 鋁),同樣以1050。(:成長0.2 μπι膜厚的包含Si摻雜η型 Al〇.3Ga〇.7N層之第2包覆層。 其次’將溫度下降至850°C,使用TMG、TMI(三甲基 銦)、NH3及S1H4,成長60 nm膜厚的包含Si摻雜 Ιη〇·〇 1 Ga〇 99N之第1 η型包覆層0 繼而,使用TMG、ΤΜΙ及ΝΗ3,以850°C成長5 nm膜厚的 包含未摻雜In0.〇5Ga0.95N之活化層。進而,除了使用 TMG、TMI、NH3以外還新使用CPMg(環戊二烯基鎂鎂), 以850°C成長60 nm膜厚的包含Mg摻雜p型In^GaowN之第 lp型包覆層。 其夂’將溫度提昇為11 〇〇°C,使用TMG、TMA、NH;j、 CPMg’成長150 nm膜厚的包含Mg摻雜p型Al0.3Ga0.7N之第 2p型包覆層。 繼而,以1100°C使用TMG、ΝΗ3及CPMg,成長包含600 nm膜厚的Mg摻雜p型GaN之p型接觸層。以上之操作結束 -77· 161804.docS 201240183 color scattering layer to obtain isotropic blue light. In this way, a good image with a full color display and an image with good viewing angle characteristics can be obtained. (Example 8) [Blue LED + phosphor method] A phosphor substrate was produced in the same manner as in Example 6. Using TMG (trimethylgallium) and \%, on the c-plane of the sapphire substrate placed in the reaction vessel, the buffer layer containing GaN is grown at a thickness of 55 nm (the thickness of 60 nm is increased. Next, the temperature is raised to 105 (rc). In addition to using cyanide and NH3, S1H4 gas was used, and a Si-doped n-type n-type contact layer having a thickness of 5 μm was grown. Then, tma (trimethylaluminum) was added to the material gas, similarly to 1050. (: a second cladding layer containing a Si-doped n-type Al〇.3Ga〇.7N layer having a thickness of 0.2 μπι. Next, 'the temperature is lowered to 850 ° C, and TMG, TMI (trimethyl indium), NH3 and S1H4, the first n-type cladding layer containing Si-doped Ιη〇·〇1 Ga〇99N grown at a thickness of 60 nm, and then grown at 850 ° C with a film thickness of 5 nm using TMG, yttrium and yttrium 3 Contains an activation layer of undoped In.5Ga0.95N. Further, in addition to TMG, TMI, and NH3, CPMg (cyclopentadienyl magnesium magnesium) is newly used, and Mg-containing film thickness of 60 nm is grown at 850 ° C. Doping the lp-type cladding layer of p-type In^GaowN. The 夂' raises the temperature to 11 〇〇 °C, and uses TMG, TMA, NH; j, CPMg' to grow a 150 nm film thickness package. a second p-type cladding layer containing Mg-doped p-type Al0.3Ga0.7N. Then, Tg-type contact layer of Mg-doped p-type GaN containing 600 nm film thickness is grown at 1100 ° C using TMG, ΝΗ 3 and CPMg The above operation ends -77· 161804.doc

S 201240183 之後’將溫度下降至室溫,自反應容器中取出晶圓,以 720 C進行晶圓之退火,使p型層低電阻化。其次,於最上 層之P型接觸層之表面上形成特定形狀之遮罩,進行触刻 直至η型接觸層之表面露出為止。姓刻後於η型接觸層之表 面上形成包含鈦(Ti)及鋁(Α1)之負電極、於ρ型接觸層之表 面上形成包含鎳(Ni)及金(Au)的正電極《電極形成後,將 晶圓分離為350 μηι見方之晶片,之後於另外準備之形成有 用以連接於外部電路之配線的基板上,藉由UV硬化樹脂 固定上述製作之LED晶片’將LED晶片與基板上之配線電 性連接,從而製作包含藍色LED之光源基板。 其次,藉由形成於顯示部外之對準標記,使以如上之方 式所製作之光源基板與螢光體基板對準。再者,於此之前 向螢光體基板上塗佈熱硬化樹脂,經由熱硬化樹脂使兩基 板密著,以80°C加熱2小時,藉此進行熱硬化樹脂之硬 化。再者,以防止有機EL之因水分所致之劣化為目的,上 述貼合步驟係於乾燥空氣環境下(水分量:_8〇充)進行。 最後藉由將周邊形成之端子連接於外部電源而完成leD 顯示裝置。 此處,藉由外部電源將所需之電流施加至所需之條紋狀 電極,而使藍色發光有機EL設為能任意開關的激發光源, 藉由紅色螢光體層、綠色螢光體層將發光自藍色光分別轉 換為紅色、綠色,而可獲得红色、綠色之各向同性發光, 且藉由插入藍色散射層而可獲得各向同性之藍色發光。如 此,可獲得能全彩顯示之良好圖像、視角特性良好之圖 161804.doc •78· 201240183S 201240183 After that, the temperature was lowered to room temperature, the wafer was taken out from the reaction container, and the wafer was annealed at 720 C to lower the resistance of the p-type layer. Next, a mask of a specific shape is formed on the surface of the uppermost P-type contact layer, and the surface is exposed until the surface of the n-type contact layer is exposed. After the last name, a negative electrode including titanium (Ti) and aluminum (Α1) is formed on the surface of the n-type contact layer, and a positive electrode containing nickel (Ni) and gold (Au) is formed on the surface of the p-type contact layer. After the formation, the wafer is separated into a 350 μηι square wafer, and then separately formed on a substrate for wiring connected to an external circuit, and the LED wafer fabricated as described above is fixed by a UV curing resin. The wiring is electrically connected to form a light source substrate including a blue LED. Next, the light source substrate produced in the above manner is aligned with the phosphor substrate by the alignment marks formed on the outside of the display portion. Further, before this, the thermosetting resin was applied onto the phosphor substrate, and the two substrates were adhered via a thermosetting resin, and heated at 80 °C for 2 hours to harden the thermosetting resin. Further, in order to prevent deterioration of the organic EL due to moisture, the bonding step is carried out in a dry air atmosphere (water content: _8 〇). Finally, the leD display device is completed by connecting the peripherally formed terminals to an external power source. Here, the required current is applied to the desired stripe electrode by an external power source, and the blue light-emitting organic EL is set as an excitation light source capable of arbitrarily switching, and the red phosphor layer and the green phosphor layer emit light. The blue light is converted into red and green, respectively, and red and green isotropic light is obtained, and isotropic blue light is obtained by inserting the blue scattering layer. As a result, a good image with full color display and a good viewing angle characteristic can be obtained. 161804.doc •78· 201240183

於0.7 mm之玻璃基板上,形y 之微小圓錐形狀構成的中間層。 形成具有折射率梯度且由複數On the 0.7 mm glass substrate, the intermediate layer is formed by a tiny conical shape of y. Forming a gradient of refractive index and consisting of

其次,使用具有與玻璃基板之折射率大致相等的折射率 之市售無色透明之光學接合用聚石夕氧油混合#,而使玻璃 基板與中間層貼合。 其次,於中間層上形成紅色螢光體層、綠色螢光體層、 藍色散射體層而設為螢光體基板。 於基板上’以寬度20 μιη、膜厚5〇〇 nm、200 μιη間距形 成包含鉻之梯形狀之低反射層(光吸收層其次,藉由 CF4電漿處理進行低反射層表面之斥水處理。 紅色螢光體層之形成首先係將[2-[2-[4-(二甲胺基)笨]乙 烯基]-6-曱基-4Η-。比喃-4-亞基]-丙烷二腈(DCM)(〇.〇2 mol/kg(固形物成分比混合至環氧化物系熱硬化樹脂藉 由授拌機攪拌而製作紅色螢光體形成用塗液。將以上製作 之紅色螢光體形成用塗液藉由喷墨法塗佈於上述玻璃上之 未形成低反射層的區域。繼而,於真空烘箱(15〇。(:之條件) 内硬化1小時,形成膜厚2 μϊη之紅色螢光體層。此處,紅 I61804.doc •79- 201240183 色螢光體層之剖面形狀根據低反射層之斥水處理之效果而 為半圓柱狀之形狀。 綠色螢光體層之形成首先係將2,3,6,7-四氫-11-含氧-1H,5H,11H-[1]苯駢喃[6,7,8-ij]喹唤-10-羧酸(香豆素 519)(0.02 mol/kg(固形物成分比))混合至環氧化物系熱硬 化樹脂,藉由攪拌機攪拌而製作綠色螢光體形成用塗液。 將以上製作之綠色螢光體形成用塗液藉由喷墨法塗佈於上 述玻璃上之未形成低反射層的區域。繼而於真空烘箱 (150°C之條件)内硬化1小時,形成膜厚2 μηι之綠色螢光體 層。此處,綠色螢光體層之剖面形狀根據低反射層之斥水 處理之效果而為半圓柱狀之形狀。 藍色螢光體層之形成首先係將7-羥基-4-曱基香豆素(香 豆素4)(0.02 mol/kg(固形物成分比))混合至環氧化物系熱 硬化樹脂,藉由攪拌機攪拌而製作藍色螢光體形成用塗 液。將以上製作之藍色螢光體形成用塗液藉由喷墨法塗佈 於上述玻璃上之未形成低反射層的區域。繼而,於真空烘 箱(150°C之條件)内硬化1小時’形成膜厚2 μιη之藍色勞光 體層。此處,藍色螢光體層之剖面形狀根據低反射層之斥 水處理之效果而為半圓柱狀之形狀。 其次,於螢光體層之側面上,藉由濺鍍法而以5〇 nm2 膜厚均勻地形成鋁之全反射膜。 其次,於製作之螢光體層之使激發光入射之側的面上, 作為波長選擇透過反射膜’將使氧化鈦(Ti〇2 :折射率 =2.30)與氧化矽(Si〇2 :折射率=ι·47)藉由EB蒸鍍法交替成 161804.doc -80-Next, a glass substrate and an intermediate layer were bonded to each other by using a commercially available colorless transparent optical bonding polychlorinated oil # having a refractive index substantially equal to the refractive index of the glass substrate. Next, a red phosphor layer, a green phosphor layer, and a blue scatterer layer were formed on the intermediate layer to form a phosphor substrate. Forming a low-reflection layer containing a ladder shape of chromium on the substrate at a width of 20 μm, a film thickness of 5 〇〇 nm, and a thickness of 200 μm (the light absorbing layer is second, and the surface of the low-reflection layer is treated by CF4 plasma treatment) The formation of the red phosphor layer is first [2-[2-[4-(dimethylamino))]]vinyl]-6-mercapto-4Η-.pyran-4-ylidene]-propane Nitrile (DCM) (〇.〇2 mol/kg (solid content is prepared by mixing with an epoxide-based thermosetting resin by a mixer) to prepare a red phosphor-forming coating liquid. The coating liquid for forming a body is applied to the region of the glass on which the low-reflection layer is not formed by an inkjet method, and then hardened in a vacuum oven for 15 hours in a vacuum oven to form a film thickness of 2 μϊ. Red phosphor layer. Here, the cross-sectional shape of the red phosphor layer is a semi-cylindrical shape according to the effect of the water repellent treatment of the low-reflection layer. The formation of the green phosphor layer is first 2,3,6,7-tetrahydro-11-oxy-1H,5H,11H-[1]benzoquino[6,7,8-ij]quino-10-carboxylic acid (coumarin 519) (0.02 mol /kg (solid content ratio)) is mixed with an epoxide-based thermosetting resin, and a coating liquid for forming a green phosphor is prepared by stirring with a stirrer. The coating liquid for green phosphor formation prepared above is ink-jetted. The method was applied to a region of the above glass on which the low-reflection layer was not formed, and then hardened in a vacuum oven (at 150 ° C) for 1 hour to form a green phosphor layer having a film thickness of 2 μm. Here, the green phosphor layer The cross-sectional shape is a semi-cylindrical shape according to the effect of the water repellent treatment of the low-reflection layer. The formation of the blue phosphor layer is firstly based on 7-hydroxy-4-mercaptocoumarin (coumarin 4) (0.02 Mol/kg (solid content ratio) was mixed with an epoxide-based thermosetting resin, and a blue phosphor-forming coating liquid was prepared by stirring with a stirrer. The blue phosphor-forming coating liquid prepared above was used. The region on the glass which was not formed with the low-reflection layer was applied by an ink-jet method. Then, it was cured in a vacuum oven (at 150 ° C for 1 hour) to form a blue mortar layer having a film thickness of 2 μm. The cross-sectional shape of the blue phosphor layer is based on the low-reflection layer The effect of the water repellent treatment is a semi-cylindrical shape. Next, a total reflection film of aluminum is uniformly formed on the side surface of the phosphor layer by a sputtering method at a film thickness of 5 〇 nm 2 . The surface of the optical layer on which the excitation light is incident is used as a wavelength-selective transmission-reflecting film' to make titanium oxide (Ti〇2: refractive index = 2.30) and cerium oxide (Si〇2: refractive index = ι·47). Alternately formed by EB evaporation to 161804.doc -80-

S 201240183 膜6層所製作的介電體多層膜,藉由濺鍍法而以1〇〇 nm之 膜厚形成。 其次’於介電體多層膜上藉由旋塗法使用丙烯酸系樹脂 而形成平坦化膜’進而於平坦化膜上藉由先前之方法而形 ' 成偏光薄膜、透明電極、配光膜,從而製作螢光體基板。 其次’於玻璃基板上藉由先前之方法形成包含TFT之開 關元件。繼而,以經由接觸孔而與上述TFT電性接觸之方 式’形成100 nm之ITO透明電極。其次,以與前製作之有 機EL部之像素為相同間距之方式’藉由通常之微影法使透 明電極圖案化。其次,藉由印刷法形成配向膜。 其次,介隔10 μηι之間隔件而將形成有TFT之基板與螢 光體基板黏接,向兩基板間注入TN模式之液晶材料,完 成液晶•榮光體部。 其次,於0.7 mm之厚度之玻璃基板上,藉由濺鍍法成膜 膜厚為100 nm之銀而形成反射電極,於該反射電極上藉由 濺鍍法成膜膜厚為20 nm的銦-錫氧化物(IT〇),作為第i電 極而形成反射電極(陽極)。並且,藉由先前之光微影法, 以所需大小使第1電極圖案化。 其次,於第1電極上藉由濺鍍法層疊200 nm2 Si〇2,藉 ' 由先前之光微影法以僅覆蓋第丨電極之邊緣部的方式圖案 化。此處,設為僅以距第1電極之端1〇 μπΐ2程度由Si〇2覆 蓋短邊的構造。水洗之後進行1〇分鐘之純水超音波清洗、 1〇分鐘之丙酮超音波清洗、5分鐘之異丙醇蒸氣清洗,且 以120°C乾燥1小時。 I61804.doc -81 - 201240183 其次,將該基板固定於電阻加熱蒸錄裝置内之基板托架 上,減壓至lxio·4 Pa以下之真空為止,進行各有機層之成 膜。 首先’作為電洞注入材料,使用1,1 _雙-二·4_三胺基-苯 基-環己烧(TAPC),藉由電阻加熱蒸鍍法而形成膜厚1〇〇 nm之電洞注入層。 其次,作為電洞輸送材料,使用n卡唾聯苯(Cbp)藉由電 阻加熱蒸鍍法而形成膜厚10 nm之電洞輸送層。 繼而,於電洞輸送層之上形成近紫外有機發光層(厚 度:30 nm)〇該近紫外有機發光層係藉由使3,5_雙(4_第三 丁基-苯基)-4-苯基-[1,2,4]三唑(TAZ)(近紫外磷光發光材 料)各自之蒸鍵速度為1.5 A/sec進行蒸錄而製作。 繼而,於發光層之上使用2,9-二甲基·4,7_二苯基_u〇_ #«#(BCP)而形成電子輸送層(厚度: 繼而,於電子輸送層上使用氟化鋰(LiF)形成電子注入層 (厚度· 0,5 nm)。 此後’作為第2電極而形成半透明電極。首先,將上 基板固定於金屬蒸㈣腔室内。其次,使上述基板與斧 電極形成用之蔽陰遮罩(以於與上述第旧極之條紋對向 朝向上能以寬度500 μπι、間距6〇〇 μιη之條紋狀形成第二 極的方式形成有開口部之遮罩)對準,於電子注入層之 面上,藉由真空蒸鍍法使鎂與銀分別以〇i A/sec、〇 A/sec之比例之蒸鑛速度進行共蒸鍵,而㈣銀形成為 需圖案(厚度:i nm)。進而於其上以強調干涉效應為 161804.docS 201240183 A dielectric multilayer film produced by a film of 6 layers is formed by a sputtering method at a film thickness of 1 〇〇 nm. Next, 'the planarization film is formed by using an acrylic resin on the dielectric multilayer film by a spin coating method', and then formed into a polarizing film, a transparent electrode, and a light distribution film on the planarizing film by the prior method. A phosphor substrate is produced. Next, a switching element including a TFT is formed on the glass substrate by a prior method. Then, a 100 nm ITO transparent electrode was formed in a manner of electrically contacting the TFT via a contact hole. Next, the transparent electrode is patterned by the usual lithography method in such a manner as to be the same pitch as the pixels of the previously fabricated organic EL portion. Next, an alignment film is formed by a printing method. Next, the substrate on which the TFT was formed was bonded to the phosphor substrate via a spacer of 10 μηι, and a liquid crystal material of TN mode was injected between the substrates to complete the liquid crystal and glory body. Next, a reflective electrode is formed by depositing a silver film having a thickness of 100 nm on a glass substrate having a thickness of 0.7 mm, and a film having a film thickness of 20 nm is formed by sputtering on the reflective electrode. Tin oxide (IT〇), which forms a reflective electrode (anode) as the i-th electrode. Further, the first electrode is patterned in a desired size by the previous photolithography method. Next, 200 nm 2 Si 〇 2 was laminated on the first electrode by sputtering, and patterned by the previous photolithography method so as to cover only the edge portion of the second electrode. Here, it is assumed that the short side is covered by Si 〇 2 only by 1 〇 μπ ΐ 2 from the end of the first electrode. After washing with water, 1 minute of pure water ultrasonic cleaning, 1 minute of acetone ultrasonic cleaning, 5 minutes of isopropyl alcohol vapor cleaning, and drying at 120 ° C for 1 hour. I61804.doc -81 - 201240183 Next, the substrate is fixed to a substrate holder in a resistance heating and vaporizing apparatus, and a pressure of lxio·4 Pa or less is applied to a vacuum to form a film of each organic layer. First, as a hole injecting material, using 1,1 bis-bis-tetra-triamino-phenyl-cyclohexene (TAPC), a film thickness of 1 〇〇nm is formed by resistance heating evaporation. Hole injection layer. Next, as a hole transporting material, a hole transporting layer having a film thickness of 10 nm was formed by a resistance heating vapor deposition method using n-calene biphenyl (Cbp). Then, a near-ultraviolet organic light-emitting layer (thickness: 30 nm) is formed on the transport layer of the hole, and the near-ultraviolet organic light-emitting layer is made by making 3,5_bis(4_t-butyl-phenyl)-4 -Phenyl-[1,2,4]triazole (TAZ) (near-ultraviolet phosphorescent material) was produced by steaming at a steaming rate of 1.5 A/sec. Then, an electron transport layer is formed using 2,9-dimethyl-4,7-diphenyl_u〇_#«# (BCP) on the light-emitting layer (thickness: then, fluorine is used on the electron transport layer) Lithium (LiF) forms an electron injecting layer (thickness: 0, 5 nm). Thereafter, a semitransparent electrode is formed as the second electrode. First, the upper substrate is fixed in the metal vapor (four) chamber. Second, the substrate and the axe are made. a mask for forming an electrode (a mask in which an opening is formed so as to form a second pole in a stripe shape having a width of 500 μm and a pitch of 6 μm in a direction opposite to the stripe of the first pole) Aligning, on the surface of the electron injecting layer, magnesium and silver are co-steamed at a steaming rate of 〇i A/sec and 〇A/sec, respectively, by vacuum evaporation, and (iv) silver formation is required. Pattern (thickness: i nm). Further on it to emphasize the interference effect is 161804.doc

S •82· 201240183 的、及防止第2電極之配線電阻所致之電壓降為目的,使 銀以丄Α/sec之蒸鍵速度形成為所需圖案(厚度:19⑽)。 藉此,形成第2電極。此處,作為有機EL元件,於反射電 極(第1電極)與半透過電極(第2電極)間顯現微空腔效應(干 涉效應),可提高正面亮度,從而可使來自有機el元件之 發光能罝更有效地傳送至螢光體層。χ,同樣地,藉由微 空腔效應而將發光峰值調整為37G⑽、將半值寬調整為3〇 nm ° 其次,藉由電漿CVD法,將3 μηχ之含有叫之無機保護 層使用蔽陰遮罩而自顯示部之端圖案化形成至上下左右2 mm之密封區域為止。藉由以上說明,製作包含有機孔元 件之光源基板。 最後,藉由熱硬化樹脂進行有機與液晶•螢光體部 之對準、硬化,從而完成顯示裝置。 此處,為使所需之有機EL部發光,藉由外部電源向液晶 驅動用之電極施加所需之電壓,藉此可獲得所需之良好圖 像、視角特性良好之圖像。 [產業上之可利用性] 本發明之形態可利用於螢光體基板、使用該螢光體基板 之各種顯示裝置、及照明裝置。 【圖式簡單說明】 圖1A表示本發明之顯示裝置之第1實施形態之概略構 成’其係表示顯示裝置之全體之模式剖面圖。 圖1B表示本發明之顯示裝置之第1實施形態之概略構 161804.doc •83· 201240183 成’其係表示光源之要部之剖面圖。 圖2A係表示微小構造體之概略構成之立體圖。 圖2B係用以說明微小構造體之構造之側剖面圖。 圖3 A係用以說明螢光體基板之製造步驟之模式圖。 圖3B係用以說明螢光體基板之製造步驟之模式圖。 圖3C係用以說明螢光體基板之製造步驟之模式圖。 圖3D係用以說明螢光體基板之製造步驟之模式圖。 圓3E係用以說明螢光體基板之製造步驟之模式圖。 圖3F係用以說明螢光體基板之製造步驟之模式圖。 圖3G係用以說明螢光體基板之製造步驟之模式圖。 圖3H係用以說明螢光體基板之製造步驟之模式圖。 圖31係用以說明螢光體基板之製造步驟之模式圖。 圖4係表示第丨實施形態之第1變形例之顯示裝置之模式 剖面圖。 圖5 A係表示第丨實施形態之第2變形例之顯示裝置之全體 的模式剖面圖。 圖5B係表示第1實施形態之第2變形例之顯示裝置之光源 之要部的剖面圖。 圖6A係表示第丨實施形態之第3變形例之顯示裝置之全體 的模式剖面圖。 圖6B係表示第丨實施形態之第3變形例之顯示裝置之光源 之要部的剖面圖。 圓7係表示本發明之顯示裝置之第2實施形態之概略構成 的模式剖面圖。 1618〇4.d〇c • 84- 201240183 圖8係表示第2實施形態之顯示裝置之平面圖。· 圖9係表示本發明之顯示裝置之第3實施形態之概略構成 的模式剖面圖。 圖10A係表示具備本發明之顯示裝置之電子機器之例的 模式圖。 圖10B係表示具備本發明之顯示裝置之電子機器之例的 模式圖。 圖11係表示具備本發明之顯示裝置之照明裝置之一例的 剖面圖。 圖12係表示本發明之顯示裝置之第4實施形態之概略構 成的模式剖面圖。 圖13 A係用以說明具備先前之螢光體基板之顯示裝置之 模式側面圖。 圖13B係用以說明具備先前之螢光體基板之顯示裝置之 模式側面圖。 【主要元件符號說明】 1 顯示裝置 2 螢光體基板 4 有機EL元件基板(光源) 7B 螢光體層 7G 螢光體層 7R 螢光體層 8 反射層 8a 反射層 161804.doc -85- 201240183 9 波長選擇透過反射層 10 中間層 10a 微小構造體 11 保護層 12 有機EL元件 13 陽極 14 電洞注入層 15 電洞輸送層 16 發光層 17 電洞阻隔層 18 電子輸送層 19 電子注入層 20 陰極 21 邊緣護罩 22 基板 25 顯示裝置 26 螢光體基板 27 有機EL元件基板 28 光散射層 30 紹模具 31 中間層形成材料 51 顯示裝置 52 LED基板(光源) 53 基板 doc -86 - 201240183 54 第1緩衝層 55 η型接觸層 56 第2η型包覆層 57 第In型包覆層 58 活化層 59 第lp型包覆層 60 第2p型包覆層 61 第2緩衝層 62 陰極 63 陽極 64 LED(發光二極體) 67 顯示裝置 68 無機EL元件基板(光源) 69 基板 70 第1電極 71 第1介電體層 72 發光層 73 第2介電體層 74 第2電極 75 無機EL元件 82 顯示裝置 83 有機EL元件基板(光源) 84 本體 85 TFT 161804.doc -87- 201240183 86 閘極電極 87 閘極線 88 閘極絕緣膜 89 源極電極 90 汲極電極 91 資料線 92 平坦化膜 93 接觸孔 94 像素部 95 閘極信號驅動電路 96 資料信號驅動電路 97 信號配線 98 電流供給線 99 可撓性印刷電路板 111 外部驅動電路 113 顯示裝置 114 有機EL元件基板(光源) 115 液晶元件 116 有機EL元件 117 偏光板 118 偏光板 119 電極 120 電極 121 配向膜 161804.doc -88- 201240183 122 配向膜 123 基板 124 液晶 127 行動電話機 128 本體 129 顯示部 130 聲音輸入部 131 聲音輸出部 132 天線 133 操作開關 135 電視接收裝置 136 本體機櫃 137 顯示部 138 揚聲器 139 支架 141 照明裝置 142 光學薄膜 143 螢光體基板 144 陽極 145 有機EL層 146 陰極 147 有機EL元件 148 熱擴散板 149 密封基板 161804.doc -89- 201240183 150 密封樹脂 151 散熱材 151 螢光體基板 152 驅動用電路 152 基板 153 配線 153R、 153G、153Β 中間層 154 懸掛吸頂具 154 光吸收層 155R、 155G、155Β 螢光體層 156 保護層 157 反射層 158 波長選擇透過反射膜 ΡΒ 藍色像素 PG 綠色像素 PR 紅色像素 θ 頂角 161804.doc ·90·For the purpose of suppressing the voltage drop caused by the wiring resistance of the second electrode, silver is formed into a desired pattern (thickness: 19 (10)) at a steaming speed of 丄Α/sec. Thereby, the second electrode is formed. Here, as the organic EL element, a microcavity effect (interference effect) appears between the reflective electrode (first electrode) and the semi-transmissive electrode (second electrode), and the front luminance can be improved, and the light emitted from the organic EL element can be obtained. Can be transmitted to the phosphor layer more efficiently. χ Similarly, the luminescence peak is adjusted to 37G (10) by the microcavity effect, and the half value width is adjusted to 3 〇 nm °. Next, by using the plasma CVD method, the 3 μη χ is called the inorganic protective layer. The shadow mask is patterned from the end of the display portion to a sealing area of 2 mm up, down, left, and right. According to the above description, a light source substrate including an organic hole member was produced. Finally, the organic device and the liquid crystal phosphor portion are aligned and hardened by a thermosetting resin to complete the display device. Here, in order to cause the desired organic EL portion to emit light, a voltage required for application to the liquid crystal driving electrode is applied from an external power source, whereby an image having a desired good image and excellent viewing angle characteristics can be obtained. [Industrial Applicability] The aspect of the present invention can be applied to a phosphor substrate, various display devices using the phosphor substrate, and an illumination device. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic cross-sectional view showing the entire configuration of a display device according to a first embodiment of the display device of the present invention. Fig. 1B is a cross-sectional view showing a principal part of a light source, showing a schematic configuration of a first embodiment of the display device of the present invention, 161804.doc; 83·201240183. Fig. 2A is a perspective view showing a schematic configuration of a minute structure. Fig. 2B is a side sectional view for explaining the structure of the minute structure. Fig. 3A is a schematic view for explaining a manufacturing step of a phosphor substrate. 3B is a schematic view for explaining a manufacturing step of the phosphor substrate. 3C is a schematic view for explaining a manufacturing step of the phosphor substrate. 3D is a schematic view for explaining a manufacturing step of a phosphor substrate. Circle 3E is a schematic view for explaining the manufacturing steps of the phosphor substrate. 3F is a schematic view for explaining a manufacturing step of the phosphor substrate. Fig. 3G is a schematic view for explaining a manufacturing step of the phosphor substrate. 3H is a schematic view for explaining a manufacturing step of the phosphor substrate. Figure 31 is a schematic view for explaining a manufacturing step of a phosphor substrate. Fig. 4 is a schematic cross-sectional view showing a display device according to a first modification of the second embodiment. Fig. 5A is a schematic cross-sectional view showing the entire display device according to a second modification of the second embodiment. Fig. 5B is a cross-sectional view showing a principal part of a light source of a display device according to a second modification of the first embodiment. Fig. 6A is a schematic cross-sectional view showing the entirety of a display device according to a third modification of the third embodiment. Fig. 6B is a cross-sectional view showing a principal part of a light source of a display device according to a third modification of the third embodiment. The circle 7 is a schematic cross-sectional view showing a schematic configuration of a second embodiment of the display device of the present invention. 1618〇4.d〇c • 84- 201240183 Fig. 8 is a plan view showing the display device of the second embodiment. Fig. 9 is a schematic cross-sectional view showing a schematic configuration of a third embodiment of the display device of the present invention. Fig. 10A is a schematic view showing an example of an electronic apparatus including the display device of the present invention. Fig. 10B is a schematic view showing an example of an electronic apparatus including the display device of the present invention. Fig. 11 is a cross-sectional view showing an example of an illumination device including the display device of the present invention. Fig. 12 is a schematic cross-sectional view showing the schematic configuration of a fourth embodiment of the display device of the present invention. Fig. 13A is a schematic side view showing a display device having a conventional phosphor substrate. Fig. 13B is a schematic side view showing a display device having a conventional phosphor substrate. [Description of main components] 1 Display device 2 Phosphor substrate 4 Organic EL device substrate (light source) 7B Phosphor layer 7G Phosphor layer 7R Phosphor layer 8 Reflecting layer 8a Reflecting layer 161804.doc -85- 201240183 9 Wavelength selection Transmissive layer 10 Intermediate layer 10a Microstructure 11 Protective layer 12 Organic EL element 13 Anode 14 Hole injection layer 15 Hole transport layer 16 Light-emitting layer 17 Hole barrier layer 18 Electron transport layer 19 Electron injection layer 20 Cathode 21 Edge protection Cover 22 Substrate 25 Display device 26 Phosphor substrate 27 Organic EL element substrate 28 Light scattering layer 30 Thin mold 31 Intermediate layer forming material 51 Display device 52 LED substrate (light source) 53 Substrate doc -86 - 201240183 54 First buffer layer 55 N-type contact layer 56 second n-type cladding layer 57 in-type cladding layer 58 activation layer 59 lp-type cladding layer 60 second p-type cladding layer 61 second buffer layer 62 cathode 63 anode 64 LED (light-emitting diode 67) Display device 68 Inorganic EL element substrate (light source) 69 Substrate 70 First electrode 71 First dielectric layer 72 Light-emitting layer 73 Second dielectric 74 second electrode 75 inorganic EL element 82 display device 83 organic EL element substrate (light source) 84 body 85 TFT 161804.doc -87- 201240183 86 gate electrode 87 gate line 88 gate insulating film 89 source electrode 90 drain Electrode 91 data line 92 planarization film 93 contact hole 94 pixel portion 95 gate signal drive circuit 96 data signal drive circuit 97 signal wiring 98 current supply line 99 flexible printed circuit board 111 external drive circuit 113 display device 114 organic EL element Substrate (light source) 115 Liquid crystal element 116 Organic EL element 117 Polarizing plate 118 Polarizing plate 119 Electrode 120 Electrode 121 Alignment film 161804.doc -88- 201240183 122 Alignment film 123 Substrate 124 Liquid crystal 127 Mobile phone 128 Main body 129 Display part 130 Sound input part 131 Sound output unit 132 Antenna 133 Operation switch 135 TV receiving device 136 Main cabinet 137 Display unit 138 Speaker 139 Bracket 141 Illumination device 142 Optical film 143 Phosphor substrate 144 Anode 145 Organic EL layer 146 Cathode 147 Organic EL element 148 Thermal diffusion plate 149 Sealing substrate 161804.doc -89- 201240183 150 Sealing resin 151 Heat radiating material 151 Phosphor substrate 152 Driving circuit 152 Substrate 153 Wiring 153R, 153G, 153 中间 Intermediate layer 154 Suspended ceiling 154 Light absorbing layer 155R, 155G, 155 萤Light body layer 156 Protective layer 157 Reflective layer 158 Wavelength selective transmission reflection film ΡΒ Blue pixel PG Green pixel PR Red pixel θ Vertex angle 161804.doc ·90·

Claims (1)

201240183 七、申請專利範圍: ι· 一種螢光體基板,其包括: 基板; 第一螢光體層,其構成為藉由入射之激發光產生螢 光’使產生之光自出光面射出;及 第一中間層,其係設於上述第一螢光體層與上述基板 之間’且自上述第-螢光體層附近直至上述基板附近具 有折射率梯度。 2·如叫求項1之螢光體基板,其中於將上述第一螢光體層 之折射率設為nl、上述基板之折射率設為“之情形時, 上述第一中間層之折射率具有自上述第一螢光體層朝向 上述基板,於與上述出光面正交之厚度方向上在“至Μ 之範圍内變化之梯度。 3. 如請求項1之螢光體基板,其中上述第一中間層包含 以上之微小構造體,且具有上述微小構造體之截面積自 过·第螢光體層朝向上述基板而變小之形狀。 4. 如印求項3之螢光體基板,其中上述微小構造體為大致 圓錐形狀,且上述大致圓錐形狀之頂點部所成之頂角形 • 成為4 5 °以下。 .5.如請求項1之螢光體基板,其設有保護層,該保護層係 °又於上述基板之外表面上,且於遠離上述基板之外表面 之方向上具有折射率梯度。 6.如請求項5之螢光體基板,其中於將上述基板之折射率 °又為n3、空氣之折射率設為n4之情形時,上述保護層之 161804.doc 201240183 折射率具有於遠離上述基板之外表面之方向、且與上述 出光面正交的厚度方向上,在自n3至n4之範圍内變化之 梯度。 7. 如請求項5之螢光體基板,其中上述保護層係由丨個以上 之微小構造體形成,且具有上述微小構造體之截面積自 上述基板附近朝向上述外部層附近而變小之形狀。 8. 如請求項7之螢光體基板’其中上述微小構造體為大致 圓錐形狀,且上述大致圓錐形狀之頂點部所成之頂角形 成為4 5 °以下。 9. 如請求項1之螢光體基板,其中於上述第一螢光體層之】 個以上之側面上設有反射層。 10·如請求項!之螢光體基板,其更包波長選擇透過反射 層,該波長選擇透過反射層構成為於上述第一螢光體層 中之使上述激發光入射的面上,至少透過上述激發光之 峰值波長之光,且至少反射上述第一螢光體層之發光峰 值波長的光》 11. 如請求項1之螢光體基板,其中上述第一螢光體層包含 對應特定區域而分割之複數之第二螢光體層,且上述第 一中間層係形成於上述複數之第二螢光體層與上述基板 之間。 12. 如請求項丨丨之螢光體基板,其中上述複數之第二螢光體 層具有互不相同之折射率; 上述第一中間層包含對應特定區域而分割之複數之第 二中間層; 161804.doc Λ • 2 - S 201240183 上述複數之第二中間層分別係設於上述複數之第二螢 光體層與上述基板之間; 且上述複數之第二中間層具有互不相同之折射率梯 度。 13. —種顯示裝置,其包括: 如請求項1之螢光體基板;及 光源’其包含射出照射至上述第一螢光體層之激發光 之第一發光元件。 14. 如明求項13之顯示裝置其更包含至少含有進行紅色光 顯不之紅色像素、進行綠色光顯示之綠色像素、進行藍 色光顯示之藍色像素的複數之像素; 自上述光源射出作為上述激發光之紫外光; 作為上述第二螢光體層,於上述紅色像素上設有將上 述紫外光作為上述激發光而發出紅色光之紅色螢光體 層,於上述綠色像素上設有將上述紫外光作為上述激發 光而發出綠色光的綠色螢光體層,於上述藍色像素上設 迷1外光作為上述激發光而發出藍色光之藍色螢 光體層。 15 t:求項14之顯示裝置’其更包含:複數之像素,其至 〔3有進仃紅色光顯示之紅色像素、進行綠色光顯示之 綠色像素、進行藍色光顯示之藍色像素;及 散射層,其係設於上述藍色像素上,使上述藍色光散 射; 自上述光源射出作為上述激發光之藍色光; 161804.doc 201240183 作為上述第二螢光體層’於上述紅色像素上設有將上 述藍色光作為上述激發光而發出紅色光之紅色營光體 層’於上述綠色像素上設有將上述藍色光作為上述激發 光而發出綠色光的綠色螢光體層。 16.如請求項14之顯示裝置,其中上述光源係主動式矩陣驅 動方式之光源’且包括:至少對應於上述紅色像素、上 述綠色像素、及上述藍色像素之各者而設之複數之第二 發光元件;及分別驅動上述複數之第二發光元件的複數 之驅動元件。 17·如請求項16之顯示裝置,其中上述複數之驅動元件係配 置於上述紅色螢光體層、上述綠色螢光體層、及上述藍 色勞光體層之任一者與形成有上述複數之驅動元件的基 板之間; 且上述紅色螢光體層、上述綠色螢光體層、及上述藍 色榮光體層之各者係沿與上述複數之驅動元件為相反方 向射出光。 18·如4求項15之顯示裝置,其中上述光源係主動式矩陣驅 動方式之光源’且包括:至少對應於上述紅色像素、上 述綠色像素、及上述藍色像素之各者而設之複數之第二 發光元件;及分別驅動上述複數之第二發光元件的複數 之驅動元件。 19·如凊求項16之顯示裝置,其中上述複數之驅動元件係配 置於上述紅色螢光體層、上述綠色螢光體層、及上述散 射層之任一者與形成有上述複數之驅動元件的基板之 161804.doc 201240183 間; 且上述紅色螢光體層、上述綠色螢光體層、及上述散 射層之各者係沿與上述複數之驅動元件為相反方向射出 光。 20. 21. 22. 23. 々叫求項13之顯示裝置’其中上述光源包含發光二極 體有機電致發光元件、無機電致發光元件之任一者。 如咕求項13之顯示裝置,其中進而於上述先源與上述螢 光體基板之間設有液晶元件,該液晶元件構成為對應上 述紅色像素、綠色像素、及藍色像素而控制自上述光源 射出之光的透過率; 且上述光源係自光射出面射出光之面狀光源。 如π求項14之顯示裝置,其中進而於上述光源與上述螢 光體基板之間設有液晶元件,該液晶元件構成為對應上 述紅色像素、綠色像素、及藍色像素而控制自上述光源 射出之光的透過率; 且上述光源係自光射出面射出光之面狀光源。 、種照明裝置’其包括:如請求項i之螢光體基板;及 光源,其包含射出照射至上述螢光體層之激發光之發光 元件。 161804.doc201240183 VII. Patent application scope: ι· A phosphor substrate comprising: a substrate; a first phosphor layer configured to generate fluorescence by incident excitation light to cause the generated light to be emitted from the light exit surface; An intermediate layer is disposed between the first phosphor layer and the substrate and has a refractive index gradient from a vicinity of the first phosphor layer to a vicinity of the substrate. 2. The phosphor substrate according to claim 1, wherein when the refractive index of the first phosphor layer is n1 and the refractive index of the substrate is "the refractive index of the first intermediate layer" The gradient from the first phosphor layer toward the substrate in the thickness direction orthogonal to the light-emitting surface is "in the range of Μ". 3. The phosphor substrate according to claim 1, wherein the first intermediate layer includes the above-described minute structure, and has a shape in which a cross-sectional area of the microstructure is reduced from the phosphor layer toward the substrate. 4. The phosphor substrate according to claim 3, wherein the minute structure has a substantially conical shape, and a vertex shape formed by a vertex portion of the substantially conical shape is 45 degrees or less. The phosphor substrate of claim 1, which is provided with a protective layer which is further on the outer surface of the substrate and has a refractive index gradient in a direction away from the outer surface of the substrate. 6. The phosphor substrate according to claim 5, wherein when the refractive index of the substrate is n3 and the refractive index of the air is n4, the refractive index of the protective layer is 161804.doc 201240183 A gradient that varies from n3 to n4 in the direction of the outer surface of the substrate and in the thickness direction orthogonal to the light-emitting surface. 7. The phosphor substrate according to claim 5, wherein the protective layer is formed of one or more minute structures, and has a shape in which a cross-sectional area of the microstructure is smaller from a vicinity of the substrate toward a vicinity of the outer layer. . 8. The phosphor substrate of claim 7, wherein the minute structure has a substantially conical shape, and a vertex shape formed by a vertex portion of the substantially conical shape is 45 or less. 9. The phosphor substrate of claim 1, wherein a reflective layer is provided on more than one of the sides of the first phosphor layer. 10. If requested! The phosphor substrate further includes a wavelength selective transmission transmissive layer, and the wavelength selective transmission reflection layer is configured to transmit at least a peak wavelength of the excitation light on a surface of the first phosphor layer on which the excitation light is incident. Light, and at least reflecting light of a peak wavelength of the first phosphor layer. The phosphor substrate of claim 1, wherein the first phosphor layer comprises a plurality of second phosphors that are divided corresponding to a specific region. And a first intermediate layer formed between the plurality of second phosphor layers and the substrate. 12. The phosphor substrate according to claim 1, wherein the plurality of second phosphor layers have refractive indices different from each other; and the first intermediate layer includes a plurality of second intermediate layers divided corresponding to a specific region; 161804 .doc 2 2 - S 201240183 The second intermediate layer of the plurality of complexes is respectively disposed between the plurality of second phosphor layers and the substrate; and the plurality of second intermediate layers have refractive index gradients different from each other. A display device comprising: the phosphor substrate of claim 1; and a light source ' comprising a first light-emitting element that emits excitation light that is incident on the first phosphor layer. 14. The display device according to claim 13, further comprising: a pixel including at least a red pixel for performing red light display, a green pixel for performing green light display, and a blue pixel for performing blue light display; and outputting from the light source The ultraviolet light of the excitation light; the red phosphor layer is provided with a red phosphor layer that emits red light as the excitation light as the excitation light, and the ultraviolet light is provided on the green pixel A green phosphor layer that emits green light as the excitation light, and a blue phosphor layer that emits blue light as the excitation light and emits blue light on the blue pixel. 15 t: The display device of claim 14 further comprises: a plurality of pixels, wherein the red pixel of the red light display, the green pixel for the green light display, and the blue pixel for the blue light display; a scattering layer disposed on the blue pixel to scatter the blue light; and emitting blue light as the excitation light from the light source; 161804.doc 201240183 as the second phosphor layer 'on the red pixel A red phosphor layer that emits red light by using the blue light as the excitation light is provided on the green pixel with a green phosphor layer that emits green light using the blue light as the excitation light. 16. The display device of claim 14, wherein the light source is an active matrix driving mode light source' and includes: a plurality of at least corresponding to each of the red pixel, the green pixel, and the blue pixel a second light emitting element; and a plurality of driving elements respectively driving the plurality of second light emitting elements. The display device of claim 16, wherein the plurality of driving elements are disposed on any one of the red phosphor layer, the green phosphor layer, and the blue working layer, and the plurality of driving elements are formed Between the substrates; and each of the red phosphor layer, the green phosphor layer, and the blue refractory layer emits light in a direction opposite to the plurality of driving elements. 18. The display device of claim 15, wherein the light source is an active matrix driving mode light source' and includes at least a plurality of colors corresponding to each of the red pixel, the green pixel, and the blue pixel. a second light emitting element; and a plurality of driving elements that respectively drive the plurality of second light emitting elements. The display device of claim 16, wherein the plurality of driving elements are disposed on any one of the red phosphor layer, the green phosphor layer, and the scattering layer, and a substrate on which the plurality of driving elements are formed. 161804.doc 201240183; and each of the red phosphor layer, the green phosphor layer, and the scattering layer emits light in a direction opposite to the plurality of driving elements. 20. 21. 22. 23. The display device of claim 13, wherein the light source comprises any one of a light-emitting diode organic electroluminescent element and an inorganic electroluminescent element. The display device according to claim 13, wherein a liquid crystal element is further provided between the source and the phosphor substrate, and the liquid crystal element is configured to control the light source corresponding to the red pixel, the green pixel, and the blue pixel. The transmittance of the emitted light; and the light source is a planar light source that emits light from the light exit surface. The display device of π, wherein the liquid crystal element is further disposed between the light source and the phosphor substrate, and the liquid crystal element is configured to control emission from the light source corresponding to the red pixel, the green pixel, and the blue pixel. The transmittance of the light; and the light source is a planar light source that emits light from the light exit surface. An illumination device comprising: a phosphor substrate as claimed in claim i; and a light source comprising a light-emitting element that emits excitation light that is incident on the phosphor layer. 161804.doc
TW101104092A 2011-02-10 2012-02-08 Fluorescent substrate and display device and lighting device using the same TW201240183A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011027215 2011-02-10

Publications (1)

Publication Number Publication Date
TW201240183A true TW201240183A (en) 2012-10-01

Family

ID=46638599

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101104092A TW201240183A (en) 2011-02-10 2012-02-08 Fluorescent substrate and display device and lighting device using the same

Country Status (2)

Country Link
TW (1) TW201240183A (en)
WO (1) WO2012108384A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261730B2 (en) 2013-01-03 2016-02-16 Empire Technology Development Llc Display devices including inorganic components and methods of making and using the same
CN105556201A (en) * 2013-09-20 2016-05-04 优志旺电机株式会社 Fluorescent light source device, and method for manufacturing same
CN110112123A (en) * 2018-02-01 2019-08-09 晶元光电股份有限公司 Light emitting device and its manufacturing method
TWI743410B (en) * 2018-02-01 2021-10-21 晶元光電股份有限公司 Light-emitting device and manufacturing method thereof
TWI769941B (en) * 2014-06-18 2022-07-01 愛爾蘭商艾克斯展示公司技術有限公司 Micro assembled led displays and lighting elements
TWI771613B (en) * 2018-09-07 2022-07-21 韓商大洲電子材料股份有限公司 Laminated body for producing wavelength conversion portion and method for producing wavelength conversion portion

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998297B1 (en) * 2012-11-22 2014-11-14 Arkema France PROCESS FOR PREPARING SALT OF IMIDES CONTAINING FLUOROSULFONYL GROUP
KR20150141955A (en) * 2013-04-12 2015-12-21 파나소닉 아이피 매니지먼트 가부시키가이샤 Light-emitting device
US9647240B2 (en) 2013-05-21 2017-05-09 Panasonic Intellectual Property Management Co., Ltd. Light emitting apparatus
JP2017010609A (en) * 2013-11-13 2017-01-12 パナソニックIpマネジメント株式会社 Light emitting device
US9618697B2 (en) 2014-02-28 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Light directional angle control for light-emitting device and light-emitting apparatus
CN105940510B (en) 2014-02-28 2019-01-11 松下知识产权经营株式会社 Light emitting device
US9515239B2 (en) 2014-02-28 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
EP3113237B1 (en) 2014-02-28 2019-04-24 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device
JP2016034012A (en) 2014-02-28 2016-03-10 パナソニックIpマネジメント株式会社 Light emitting element and light emitting device
US9518215B2 (en) 2014-02-28 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
JP2016171228A (en) 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 Light emission element, light emission device and detection device
US10182702B2 (en) 2015-03-13 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US10031276B2 (en) 2015-03-13 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Display apparatus including photoluminescent layer
JP6569856B2 (en) 2015-03-13 2019-09-04 パナソニックIpマネジメント株式会社 Light emitting device and endoscope
JP2017005054A (en) 2015-06-08 2017-01-05 パナソニックIpマネジメント株式会社 Light emission device
JP2017003697A (en) 2015-06-08 2017-01-05 パナソニックIpマネジメント株式会社 Light-emitting element and light-emitting device
JP2017040818A (en) 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 Light-emitting element
US10359155B2 (en) 2015-08-20 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
JP6719094B2 (en) 2016-03-30 2020-07-08 パナソニックIpマネジメント株式会社 Light emitting element
US20190140214A1 (en) * 2016-04-29 2019-05-09 Sabic Global Technologies B.V. Extraction Substrate And Method For Fabrication Thereof
JP2016194697A (en) * 2016-05-10 2016-11-17 ウシオ電機株式会社 Fluorescent light source device
WO2019036702A1 (en) * 2017-08-18 2019-02-21 Corning Incorporated Coated cover substrates and electronic devices including the same
KR101977261B1 (en) * 2017-11-03 2019-05-13 엘지전자 주식회사 Phosphor module
KR101984102B1 (en) * 2017-11-03 2019-05-30 엘지전자 주식회사 Phosphor module
JP7349393B2 (en) * 2020-03-10 2023-09-22 シャープ福山レーザー株式会社 image display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748818B1 (en) * 2000-08-23 2007-08-13 이데미쓰 고산 가부시키가이샤 Organic el display device
JP2003077680A (en) * 2001-09-06 2003-03-14 Konica Corp Organic electroluminescent element and display device
JP3962572B2 (en) * 2001-10-30 2007-08-22 出光興産株式会社 Organic electroluminescence light emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261730B2 (en) 2013-01-03 2016-02-16 Empire Technology Development Llc Display devices including inorganic components and methods of making and using the same
CN105556201A (en) * 2013-09-20 2016-05-04 优志旺电机株式会社 Fluorescent light source device, and method for manufacturing same
CN105556201B (en) * 2013-09-20 2017-09-22 优志旺电机株式会社 Fluorescence light source device and its manufacture method
TWI769941B (en) * 2014-06-18 2022-07-01 愛爾蘭商艾克斯展示公司技術有限公司 Micro assembled led displays and lighting elements
CN110112123A (en) * 2018-02-01 2019-08-09 晶元光电股份有限公司 Light emitting device and its manufacturing method
TWI743410B (en) * 2018-02-01 2021-10-21 晶元光電股份有限公司 Light-emitting device and manufacturing method thereof
TWI775608B (en) * 2018-02-01 2022-08-21 晶元光電股份有限公司 Light-emitting device
TWI771613B (en) * 2018-09-07 2022-07-21 韓商大洲電子材料股份有限公司 Laminated body for producing wavelength conversion portion and method for producing wavelength conversion portion

Also Published As

Publication number Publication date
WO2012108384A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
TW201240183A (en) Fluorescent substrate and display device and lighting device using the same
US9091415B2 (en) Light-emitting device, and display apparatus, which can efficiently emit, to outside, fluorescence generated in fluorescent layer and can realize high-luminance light emission and in which generation of blurriness and fuzziness of display is suppressed
US9512976B2 (en) Light-emitting device, display device and illumination device
US8796914B2 (en) Organic electroluminescence element, organic electroluminescence display, and organic electroluminescence display apparatus
US9117977B2 (en) Light emitting device, display apparatus, and illuminating apparatus
WO2014084012A1 (en) Scatterer substrate
US9099409B2 (en) Organic electroluminescent display device, electronic apparatus including the same, and method for producing organic electroluminescent display device
WO2013183751A1 (en) Fluorescent substrate, light-emitting device, display device, and lighting device
CN103733243B (en) Fluorophor substrate, display device and electronic equipment
JP2014052606A (en) Phosphor substrate, light-emitting device, display device and luminaire
WO2011129135A1 (en) Fluorescent substrate and method for producing the same, and display device
WO2012081568A1 (en) Fluorescent substrate, display device, and lighting device
WO2009119334A1 (en) Organic electroluminescent device, illuminating device and display device
WO2013111696A1 (en) Fluorescent material substrate, display apparatus, and electronic apparatus
JP2013196854A (en) Fluorescent substrate and display device including the same
WO2013183696A1 (en) Fluorescent material substrate, display apparatus, and illuminating apparatus
TW201131851A (en) Organic EL element and an organic EL panel
JP2016218151A (en) Wavelength conversion substrate, light-emitting device and display device comprising the same, lighting device, and electronic apparatus
WO2013073521A1 (en) Organic electroluminescent display device, electronic apparatus using same, and method for producing organic electroluminescent display device
TW201108848A (en) Light guiding structure
JP2014038702A (en) Wavelength conversion substrate and display device using the same, and electronic apparatus
US8547013B2 (en) Organic EL display device with a color converting layer
WO2013065649A1 (en) Organic light-emitting element
WO2012081536A1 (en) Light-emitting device, display device, electronic apparatus, and illumination device
WO2012043172A1 (en) Phosphor substrate, and display device and lighting device each equipped with same