WO2021115291A1 - 瓣膜装置支架以及瓣膜装置 - Google Patents

瓣膜装置支架以及瓣膜装置 Download PDF

Info

Publication number
WO2021115291A1
WO2021115291A1 PCT/CN2020/134739 CN2020134739W WO2021115291A1 WO 2021115291 A1 WO2021115291 A1 WO 2021115291A1 CN 2020134739 W CN2020134739 W CN 2020134739W WO 2021115291 A1 WO2021115291 A1 WO 2021115291A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve device
stent
outflow
section
waist
Prior art date
Application number
PCT/CN2020/134739
Other languages
English (en)
French (fr)
Inventor
黄杭栋
雷荣军
王媛茹
赵曼曼
林浩昇
Original Assignee
杭州启明医疗器械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州启明医疗器械股份有限公司 filed Critical 杭州启明医疗器械股份有限公司
Publication of WO2021115291A1 publication Critical patent/WO2021115291A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body

Definitions

  • This application relates to the field of medical devices, and in particular to a valve device stent and its valve device.
  • Tricuspid valve disease usually includes: tricuspid regurgitation, tricuspid stenosis, tricuspid atresia, and tricuspid Deformation of the flap and so on.
  • tricuspid regurgitation is caused by tricuspid regurgitation of right ventricle blood flowing back into the right atrium during systole, and then from the right atrium into the superior vena cava and inferior vena cava, causing the volume of the right atrium to expand.
  • the pressure rises and the venous blood return is obstructed.
  • interventional surgery can be used to repair the tricuspid valve.
  • severe tricuspid regurgitation diseases due to severe calcification, tearing, and prolapse of the tricuspid valve, the tricuspid valve annulus is severely deformed, and percutaneous intervention It is difficult to firmly fix the valve stent in the original tricuspid valve position during the operation.
  • the present application provides a valve device stent and a valve device that are stable in positioning and can prevent peripheral leakage.
  • valve device stent of the present application has opposite inflow and outflow ends, and the valve device stent includes:
  • the stent, the stent is a net-tube structure with blood flow channels inside;
  • the flaring frame is connected with the stent and surrounds the outer circumference of the outflow end.
  • the valve device provided by this application includes:
  • the stent is a mesh cylinder structure with a blood flow channel inside, and the stent has opposite inflow and outflow ends in the axial direction;
  • Valve leaflets the valve leaflets are connected in the blood flow channel of the stent and can open or close the blood flow channel under the action of blood flow;
  • the expansion mask is connected with the bracket and surrounds the outer periphery of the outflow end, and the expansion mask is a flared structure facing away from the inflow end.
  • the expansion mask is positioned in close contact with adjacent tissues under the action of reflux blood.
  • valve device includes in sequence along the blood flow direction:
  • the inflow section is on one side of the inflow end
  • the waist is in the middle of the stent axis
  • the outflow section extends from the part where the expansion mask is connected to the bracket toward the outflow end side;
  • Each part of the valve device has opposite inflow and outflow sides.
  • the outflow section has a double-layer structure in the radial direction, the part of the stent from the outflow side of the waist to the outflow end is the inner layer part (that is, the outflow side of the stent or the outflow part of the stent), and the expansion mask is the outer layer part. .
  • the support has a grid structure, and the axial length is two complete grids.
  • the axial length of the inflow section is a complete grid
  • the axial length of the waist is half a grid
  • the axial length from the outflow side of the waist to the most distal end of the stent outflow is half Grid
  • the expansion mask is connected to the outflow side of the waist.
  • the waist has a smaller outer diameter relative to the inflow section and the outflow section.
  • the outer diameter of the outflow section is 20-60 mm.
  • the outer diameter of the outflow section is 40-50 mm.
  • the outer diameter of the outflow section is 42-48 mm.
  • the outer diameter of the outflow section is 45 mm.
  • the outer diameter of the waist is 15-40 mm.
  • the outer diameter of the waist is 30-35 mm.
  • the outer diameter of the waist is 30 mm.
  • the outer diameter of the inflow section is 20-55 mm.
  • the outer diameter of the inflow section is 40-50 mm.
  • the outer diameter of the inflow section is 40 mm.
  • the axial length of the valve device is 30-85 mm.
  • the axial length of the valve device is 55-70 mm.
  • the axial length of the valve device is 60-65 mm.
  • the axial length of the valve device is 62.5 mm.
  • the axial length of the stent is 25-75 mm.
  • the axial length of the stent is 50-60 mm.
  • the axial length of the stent is 53-58 mm.
  • the axial length of the bracket is 56 mm.
  • the axial length from the inflow side of the waist to the most distal end of the outflow portion of the stent is 12-40 mm.
  • the axial length from the inflow side of the waist to the most distal end of the outflow portion of the stent is 25-30 mm.
  • the axial length from the inflow side of the waist to the most distal end of the outflow portion of the stent is 28 mm.
  • the grid corresponding to the inflow segment includes:
  • the first node on the inflow side is the first node on the inflow side
  • the third and fourth nodes located between the first node and the second node and arranged oppositely;
  • the distance L5 between the first node and the third node in the three-dimensional space is 8-22 mm; the distance L4 between the second node and the third node in the three-dimensional space is 8-22 mm.
  • L5 L4.
  • L5 is 15-20mm
  • L4 is 15-20mm
  • L5 is 14-18 mm
  • L4 is 14-18 mm
  • L5 is 16mm and L4 is 16mm.
  • the half grid corresponding to the waist includes:
  • the sixth and seventh nodes located on the outflow side and arranged oppositely;
  • the distance L3 between the fifth node and the sixth node in the three-dimensional space is 6-16 mm.
  • L3 ⁇ L5, and L3 ⁇ L4 are optionally, L3 ⁇ L5, and L3 ⁇ L4.
  • L3 is 10-15mm.
  • L3 is 10-14mm.
  • L3 is 12mm.
  • the half grid from the outflow side of the waist to the most distal end of the outflow portion of the stent includes:
  • the distance L2 between the eighth node and the tenth node in the three-dimensional space is 6-20 mm.
  • L2 ⁇ L5, and L2 ⁇ L4 are optionally, L2 ⁇ L5, and L2 ⁇ L4.
  • L2 is 10-15mm.
  • L2 is 12-15mm.
  • L2 is 14mm.
  • the circumferential span of the bracket is 3*n complete grids, and n is 1, 2, or 3.
  • the circumferential span of the bracket is six complete grids.
  • bracket and the expanding mask are an integral structure, which is formed by pipe cutting or weaving.
  • the inflow section is a bare stent.
  • the inflow section has a closing structure.
  • the maximum radial stiffness of the inflow section is M1;
  • the radial stiffness of the waist is M2;
  • the radial stiffness from the outflow side of the waist to the most distal end of the outflow portion of the stent is M3;
  • the flaring mask includes a flaring frame connected to the stent and a covering film laid on the flaring frame.
  • the flaring frame has relatively undulating wave crests and wave valleys in the axial direction of the stent, and each wave trough is connected by a connecting strip. Connected to the bracket;
  • the radial stiffness of the flaring frame is M4;
  • the radial stiffness of the connecting bar is M5;
  • the support includes a plurality of support bars enclosing the net tube structure, and the radial rigidity is changed by changing the thickness of the support bars at different positions.
  • the inflow section sequentially includes a port portion and a transition portion connected with the waist portion along the blood flow direction, wherein the radial stiffness of the port portion is smaller than the transition portion.
  • the radial stiffness of the inflow section gradually increases along the blood flow direction.
  • the inflow end is provided with a plurality of connecting ears arranged in a circumferential direction.
  • the inflow section is a grid structure arranged in a circumferential direction, each grid respectively converges to a corresponding first grid vertex at the inflow end, and each first grid vertex is provided with the connection ear.
  • the connecting ear has a closed ring shape or has a thread-hanging opening.
  • a gap or movable overlap is left on both sides of the thread hanging opening.
  • the two sides of the thread-hanging opening circuitously form a labyrinth opening.
  • a recovery pull line is connected to the connecting ear.
  • At least a part of the recovery traction line is a span section inside the area enclosed by the stent.
  • the recovery traction line includes a surrounding section that passes through all the connecting ears and the cross section in sequence, and when the cross section is pulled, the surrounding section drives all the connecting ears to close.
  • the spanning segment is one or more segments, and the multiple segments do not intersect each other or at least two intersect each other.
  • the surrounding section and the span section are an integral structure or a split structure.
  • each end of the span section and the surrounding section are respectively fixedly connected or movably connected.
  • the span of the two ends of the cross section in the circumferential direction of the stent is 1/6 to 1/2 of the circumference of the stent.
  • the central angle between the two ends of the span is 60-180 degrees.
  • two adjacent connecting ears are used as a pair, the two ends of the spanning section are respectively a first end and a second end, and the first end is located between the pair of connecting ears, The second end is located between the other pair of connecting ears.
  • the waist is a bare stent, or only a part of the area is blocked by the expansion mask.
  • the leaflets are located on the inner side of the stent, and the leaflets are further extended to the inflow side to form an expanded film and fixed on the inner side of the stent; the waist is completely covered by the expanded film Or partial occlusion.
  • the flaring mask includes a flaring frame connected to the bracket and a covering film laid on the flaring frame.
  • the cover film further extends to the inflow side to form an outer cover film and is fixed to the outside of the stent; the waist is completely or partially blocked by the outer cover film; or the cover film also flows inward
  • the side is further extended to form an inner covering film and fixed on the inner side of the stent; the waist is completely or partially covered by the inner covering film.
  • the expansion covering membrane and the outer covering membrane or the inner covering membrane have the same edge shape on the inflow side, and are respectively sewn and fixed to the stent.
  • the expansion membrane and the outer membrane or the inner membrane have different edge shapes on the inflow side, and are respectively sewn and fixed to the stent.
  • the area that is blocked by any one of the extended film, the outer film, or the inner film is a blocking area, and is not covered by the extended film or the outer film or Any one of the inner covering films is shielded by a through area, and the shielding area and the through area are alternately distributed in the circumferential direction of the stent.
  • the shielding area is at least shielded by the outer covering film.
  • the waist has a grid structure, the axial length of the shielding area and the penetration area are both half a grid, and the maximum circumferential span is one grid.
  • the bus bar between the waist and the adjacent section transitions smoothly.
  • the waist has a grid structure, each grid respectively converges to a corresponding second grid vertex on the outflow side of the waist, and the expansion mask is connected to each second grid vertex.
  • the outflow section has a double-layer structure in the radial direction, the part of the stent from the outflow side of the waist to the outflow end is an inner layer part, and the expansion mask is an outer layer part;
  • valve leaflets are stitched and fixed on the waist and/or the inner layer part.
  • the valve leaflet is a two-leaflet or a three-leaflet
  • the inner layer part has a mesh structure, and each mesh respectively converges to a corresponding third mesh vertex at the outflow end, and the third mesh
  • the number of lattice vertices corresponds to the number of leaflets.
  • the side of each leaflet facing the inflow end is the fixed side connected to the stent, and the side facing the outflow end is the movable side.
  • the fixed side and the movable side intersect at the corresponding third Mesh vertices.
  • the inner layer part is a V-shaped support strip arranged at intervals, the V-shaped apex is the third mesh apex at the outflow end, and the two branches of the V-shaped are connected to the waist.
  • the waist has a grid structure, and each grid respectively converges to form six second grid vertices on the outflow side of the waist.
  • the stent is provided with positioning holes at the vertices of the third grid, and the corresponding parts of each leaflet are fixed by sutures passing through the positioning holes.
  • a connecting piece further extending toward the outflow side is provided on the apex of the third grid on the support, and the positioning holes are arranged on the connecting piece.
  • the flaring mask includes a flaring frame connected to the bracket and a covering film laid on the flaring frame, and the covering film surrounds the outer periphery of the outflow end under the support of the flaring frame .
  • the covering membrane is circumferentially closed and is connected to the stent with the valve leaflets to form a peripheral leakage prevention part on the periphery of the stent.
  • the outflow side of the flaring frame is bent inward to form a safety necking.
  • a plurality of stitching areas are arranged at intervals on the outflow side of the covering film, and each stitching area is fixedly connected to a corresponding part of the flaring frame, and there is a radial floating edge between two adjacent stitching areas.
  • the covering film is a floating portion adjacent to the radial floating edge, and the floating portion can be radially displaced with the action of blood flow.
  • the floating part can be attached to or away from the surrounding tissues following the action of blood flow.
  • the radial floating edge is arc-shaped, and the arc top faces the inflow side of the covering film.
  • the flaring frame has relatively undulating wave crests and wave troughs in the axial direction of the stent, and each wave crest is on the outflow side, and each stitch area is fixed to a corresponding wave crest in a position.
  • the arc height of the arc-shaped radial floating edge is 1/4 to 1/2 of the height of the wave crest. (Relative to the height of the trough)
  • the flaring frame has relatively undulating wave crests and wave troughs in the axial direction of the stent, and each wave trough is connected to the stent through a connecting bar.
  • the rigidity of the connecting strip is less than the rigidity of other parts connected to the connecting strip, so as to release the traction stress between the respirator mask and the bracket.
  • the connecting bar and the bracket are an integral structure or a separate flexible member.
  • the length of the connecting strip is 3-30 mm.
  • the number of wave crests is the same as the number of grids in the circumferential direction of the bracket.
  • the wave crest has a rounded structure.
  • the wave crests are evenly distributed along the circumferential direction of the bracket.
  • the flaring frame includes a plurality of V-shaped rods sequentially distributed along the circumferential direction of the stent, the apex of the V-shaped rod is a wave crest and is located on the outflow side of the flaring mask, and the two points of the V-shaped rod are The forks respectively converge with adjacent V-shaped rods to form wave troughs, and each wave trough is connected to the outflow side of the waist through the connecting strip.
  • the wave crest of the flaring frame further extends beyond the outflow end of the stent along the blood flow direction.
  • the wave crest portion of the flaring frame further extends beyond the outflow end of the stent along the blood flow direction, and the axial length of the passing portion is 4.5-9 mm.
  • the wave crest portion of the flaring frame further extends in the blood flow direction beyond the outflow end of the stent, and the axial length of the passing portion is 6.5 mm.
  • the flaring frame includes an outer flaring section and a safety necking section in sequence along the blood flow direction, and the ratio of the axial length of the outer flaring section to the safety necking section is 2:1 to 4:1 .
  • the included angle between the outer expansion section and the axial direction of the stent is 30 degrees to 60 degrees.
  • the included angle between the outer expansion section and the axial direction of the stent is 45 degrees.
  • the included angle between the safety necking section and the axial direction of the stent is 30 degrees to 60 degrees.
  • the included angle between the safety necking section and the axial direction of the stent is 45 degrees.
  • the wave trough portion of the flaring rack and the outflow end position of the stent are adjacent to each other.
  • the waist has a grid structure, and each grid respectively converges to form six second grid vertices on the outflow side of the waist.
  • the valve device is a vena cava valve device.
  • the stent includes an inflow section, a waist, and an outflow section in sequence from the inflow end to the outflow end.
  • a connecting strip extending further to the outflow side is provided at the junction of the waist and the outflow portion of the stent, and the other end of the connecting strip It is connected to the flaring frame.
  • the end point on the outflow side of the flaring frame is provided with suture holes for threading sutures.
  • the frame strip of the stent is provided with a corrugated structure for winding sutures.
  • both the outflow end of the flaring frame and the outflow end of the bracket are provided with wire-hanging holes for the recovery traction wire to pass through.
  • the inflow end of the bracket is provided with a thread-hanging hole for the recovery traction thread to pass through.
  • the whole or at least corresponding parts of the bracket are cut by a corrugated tube to form the corrugated structure.
  • the stent is cut along a undulating path at a corresponding position during cutting to form the corrugated structure.
  • the distance between two adjacent wave troughs is 0.5-2 mm.
  • valve device support includes a pre-threaded recovery pull line
  • recovery pull line includes:
  • the ring segment passes through the various wire hanging holes at the outflow end of the flaring frame in sequence in the circumferential direction;
  • the linkage section is connected between the ring section and each thread hanging hole at the outflow end of the bracket.
  • the present application also provides a valve device, which adopts any of the valve device stents described above.
  • valve device has opposite inflow and outflow ends, and the valve device includes:
  • the stent, the stent is a net-tube structure with blood flow channels inside;
  • Pre-sutured body including valve leaflets and expanded membrane, wherein the valve leaflets are located in the blood flow channel of the stent, and can open or close the blood flow channel under the action of blood flow, and the adjacent parts of the pre-sutured body and the stent are fixed by sutures ⁇ ;
  • Flaring frame the flaring frame is connected to the bracket and surrounds the outer periphery of the outflow end;
  • the membrane body is fixed on the inner side of the flaring frame with a loop cloth, and the membrane body extends to the inflow end and at least intersects the pre-suturing body.
  • the frame strip adjacent to the edge of the valve leaflet in the stent has a corrugated structure for the suture to wrap around.
  • valve leaflets are provided with preset indentations or perforations, which serve as marks for threading the suture.
  • the valve device and the valve device stent provided in the present application have stable positioning and can effectively prevent peripheral leakage.
  • Figure 1 is a schematic diagram of the tricuspid regurgitation of the heart
  • Figure 2 is a schematic diagram of the position of the valve device of the application after implantation
  • FIG. 3a is a schematic diagram of one embodiment of the valve device of the present application (leaflet and cover are omitted);
  • Figure 3b is a schematic diagram of the axial length of each part of the valve device of the present application.
  • Fig. 3c is a schematic diagram of the distribution of each grid node of the valve device of the present application.
  • Fig. 3d is a schematic diagram of the size of each grid of the valve device of the present application.
  • Fig. 3e is a schematic diagram of the distribution of various parts of the valve device along the axial direction of the present application.
  • Figure 4a is a schematic diagram of one embodiment of the valve device of the present application (leaflet and cover are omitted);
  • Fig. 4b is a schematic diagram of the size of the flaring frame of the valve device in Fig. 4a;
  • Figure 5a is a three-dimensional view of the valve device of the application (leaflet and cover are omitted);
  • Fig. 5b is a schematic diagram of connecting ears in one embodiment of the valve device of the present application.
  • 5c to 5f are structural schematic diagrams of the cross section in different embodiments of the valve device of the present application.
  • Figure 6 is a three-dimensional view of the valve device of this application (leaflet and membrane are omitted, another perspective);
  • Figure 7 is a three-dimensional view of the valve device of the present application (leaflet and membrane are omitted, another perspective);
  • Figure 8 is a three-dimensional view of the valve device of this application.
  • Figure 9 is a three-dimensional view of the valve device of the application (part of the membrane is omitted, another perspective);
  • FIG. 10 is a schematic diagram of one embodiment of the valve device of the present application.
  • FIG. 11 is a schematic diagram of the unfolding of the membrane covering in an embodiment of the valve device of the present application.
  • FIG. 12 is a schematic diagram of the unfolding of the membrane covering in another embodiment of the valve device of the present application.
  • FIGS 13-19 are schematic diagrams of an embodiment of the valve device of the present application from different angles (leaflet and membrane are omitted);
  • Figures 20-27 are schematic diagrams from different angles of an embodiment of the valve device of the present application (the membrane is on the outside of the expanding mask);
  • Figures 28 to 35 are schematic diagrams of an embodiment of the valve device of the present application from different angles (the membrane is on the inner side of the expanded mask);
  • Figures 36 to 44 are schematic diagrams of an embodiment of the valve device of the present application from different angles (the membrane is on the outside of the expansion mask);
  • Figures 45 to 52 are schematic diagrams of an embodiment of the valve device of the present application from different angles (the membrane is made of transparent or semi-transparent material and is on the outside of the expansion mask);
  • Figures 53-60 are schematic diagrams of an embodiment of the valve device of the present application from different angles (the membrane is on the inner side of the expanded mask);
  • Figures 61 to 68 are schematic diagrams of an embodiment of the valve device of the present application from different angles (the membrane is made of transparent or semi-transparent material and is on the inner side of the mask);
  • Figures 69 to 75 are schematic diagrams of an embodiment of the valve device of the present application from different angles (leaflet and membrane are omitted);
  • Figures 76 to 83 are schematic diagrams of an embodiment of the valve device of the present application from different angles (leaflet and membrane are omitted);
  • Figure 84 is a schematic structural view of a valve device stent (including a stent and a flaring frame) in an embodiment
  • Fig. 85 is an enlarged view of part A in Fig. 84;
  • Figure 86 to Figure 87 are schematic diagrams of the two types of valve leaflets
  • Figure 88 to Figure 89 are the expanded views of the two types of leaflets and the expanded valve after being sutured and spliced;
  • Figure 90 is a schematic diagram of the three-dimensional structure of the valve leaflets and the expanded valve after being enclosed;
  • Fig. 91 is a schematic diagram of the structure of the cover film and the inner cover film (unit chip) of an integrated structure
  • Figure 92 is an unfolded view of the integrated film and the inner film (after all unit pieces are stitched and spliced);
  • Fig. 93 is a schematic structural diagram of the valve device stent in Fig. 84 after the valve leaflets are sutured and the valve is expanded;
  • Fig. 94 is a schematic view of the structure of Fig. 93 after further stitching the membrane and the inner membrane;
  • Fig. 95 is a schematic diagram of the structure of Fig. 94 from another angle (to avoid interference, the leaflet and the expanded valve are omitted in the figure);
  • Fig. 96 is an enlarged view of part B in Fig. 94;
  • Fig. 97 is a schematic diagram of the structure of a valve device stent (including a stent and a flaring frame) in an embodiment.
  • the reference signs in the figure are explained as follows:
  • a component when a component is said to be “connected” with another component, it can be directly connected to the other component or there may also be a central component. When a component is considered to be “installed on” another component, it can be directly installed on another component or a centered component may exist at the same time.
  • a valve device including:
  • a stent 5 is a mesh cylinder structure with a blood flow channel inside, and the stent 5 has opposite inflow and outflow ends in the axial direction;
  • valve leaflet 6 which is connected in the blood flow channel of the stent 5, and can open or close the blood flow channel under the action of blood flow;
  • the expansion mask 7 is connected to the bracket 5 and surrounds the outer periphery of the outflow end.
  • the expansion mask 7 is a flared structure facing away from the inflow end.
  • the valve device is in a released state with a three-dimensional spatial posture in use, and is in a compressed state with a small volume when transported by an interventional device. Unless otherwise specified in this application, it is understood to be a description of the released state.
  • valve device can be applied in different positions.
  • the valve device is placed in the vena cava as an example (that is, the valve device is a vena cava valve device), and other application positions are the same.
  • the valve device provided by the present application is located in the vena cava (including the superior vena cava 1 and the inferior vena cava 2 if no special instructions) after being implanted in the body.
  • Figure 2 only shows the inferior vena cava 2 The position is the same for superior vena cava 1.
  • the blood flow direction in Fig. 2 is the flow direction of blood under normal conditions. If there is no special description in this application, when the concepts of inflow and outflow are involved, they refer to the blood flow direction under normal conditions, not the flow direction of reflux blood.
  • the inside of the stent 5 is a blood flow channel that provides a normal blood flow path.
  • the valve leaflet 6 opens or closes the blood flow channel under the action of blood flow to control the one-way passage of blood. Specifically, it opens the blood from the vena cava to the right atrium 3 The passage of blood from the right atrium 3 into the vena cava is closed. If tricuspid regurgitation occurs, it can be blocked by the valve leaflet 6 to prevent the reflux blood from entering the vena cava blood.
  • the valve device needs to be prevented from being displaced after implantation, and the expansion mask 7 has an expansion structure.
  • the expansion mask 7 is positioned in close contact with adjacent tissues under the action of reflux blood to prevent the position of the valve device from changing under the action of reflux blood.
  • the material of the stent 5 of the valve device and the material of the leaflets 6 are selected with reference to materials in the prior art for selection.
  • the stent 5 is made of stainless steel or nickel-titanium alloy or memory metal of other materials.
  • 6 Choose natural biomaterials (such as pericardial biomaterials) or synthetic polymer materials.
  • the material selection of the corresponding parts of the mask 7 refer to the bracket 5 and the leaflet 6.
  • valve device includes in sequence along the blood flow direction:
  • the waist 9 is in the middle of the axial direction of the stent 5;
  • the outflow section 10 extends from the part where the expansion mask 7 is connected to the bracket 5 toward the outflow end side;
  • Each part of the valve device has opposite inflow and outflow sides.
  • This application also has the concepts of inflow section 8, inflow end, and inflow side.
  • outflow section 10 outflow end, and outflow side. The concepts are as follows:
  • the inflow section 8 and the outflow section 10 are respectively the two sections in the axial direction of the valve device.
  • H1 is the axial length of the inflow section 8
  • H3 is the axial length of the outflow section 10.
  • the inflow section 8 and the outflow section 10 are respectively It has a certain axial length and is a part of the valve device structure.
  • the inflow end and the outflow end are the two ends of the stent 5 in the axial direction, as shown in Fig. 3a, the inflow end is the bottom end of the stent 5 in Fig. 3a, the outflow end is the top end of the stent 5 in Fig. 3a, the inflow end and the outflow end Used more as a reference to describe the spatial position relationship of other components.
  • the valve device has three parts in the axial direction: an inflow section 8, a waist section 9 (H2 is the axial length of the waist section 9), and an outflow section 10.
  • Each of the three sections has an inflow side and an outflow side.
  • the inflow side and the outflow section The sides are the relative positional relationship in the axial direction, and the inflow side and the outflow side are used as references to describe the spatial positional relationship of other components.
  • the waist 9 has a smaller outer diameter relative to the inflow section 8 and the outflow section 10.
  • the outer diameter D1 of the inflow section 8 and the outer diameter D3 of the outflow section 10 are both larger than the outer diameter D2 of the waist 9 for positioning.
  • the outer diameter of each section generally refers to the largest outer diameter part, for example, the outer diameter D3 of the outflow section 10 is also expanded The outer diameter of the mask 7.
  • the waist 9 has a smaller outer diameter, and the inner wall of the vena cava has an adaptive deformation at the waist 9 to form a convex part that is compatible with the shape of the waist 9. The cooperation of the convex part and the waist 9 prevents the stent 5 from shifting. The role of.
  • the outer diameter D3 of the outflow section 10 is 20-60 mm. In a preferred embodiment, D3 is 40-50 mm. In a preferred embodiment, D3 is 42 to 48 mm, and in a preferred embodiment, D3 is 45 mm.
  • the outer diameter D2 of the waist 9 is 15-40mm. In a preferred embodiment, D2 is 30 to 35 mm. In a preferred embodiment, D2 is 30 mm.
  • the outer diameter D1 of the inflow section 8 is 20 to 55 mm. In a preferred embodiment, D1 is 40-50 mm. In the preferred embodiment, D1 is 40 mm.
  • the appropriate outer diameter size and ratio of each part can further ensure the positioning effect and the fit with the main body tissue.
  • D3 is 45mm
  • D2 is 30mm
  • D1 is 40mm.
  • the bracket 5 has a grid structure, and the axial length H4 is two complete grids.
  • the bracket 5 adopts a grid structure as a whole.
  • the grid is preferably a diamond-shaped grid (or approximately diamond-shaped) or a hexagonal grid.
  • the stent 5 adopts a grid structure, and the number of grids is not easy to be too many, so as not to affect the blood in the vena cava to enter the branch blood vessels, such as the lateral hepatic vein (not shown), etc.
  • the number of grids of the stent 5 is not too small. At least it can play a role in supporting and positioning.
  • the axial length H1 of the inflow section 8 is a complete grid, and the axial length H2 of the waist 9 is half a grid, from the outflow side of the waist 9 to The axial length H5 of the outflow end is half a grid;
  • the expansion mask 7 is connected to the outflow side of the waist 9.
  • the axial length H9 of the valve device is 30 to 85 mm. In a preferred embodiment, H9 is 55-70 mm. In a preferred embodiment, H9 is 60-65 mm. In a preferred embodiment, H9 is 62.5 mm.
  • the axial length H4 of the stent 5 is 25 to 75 mm. In a preferred embodiment, H4 is 50-60 mm. In a preferred embodiment, H4 is 53 to 58 mm, and in a preferred embodiment, H4 is 56 mm.
  • the axial length H8 from the inflow side of the waist to the most distal end of the outflow portion of the stent is 12-40 mm.
  • the axial length H8 from the inflow side of the waist to the most distal end of the outflow portion of the stent is 25-30 mm, and in a preferred embodiment, H8 is 28 mm.
  • the grid structure of different parts of the valve device also has certain distribution characteristics in size.
  • H9 is 62.5 mm
  • H4 is 56 mm
  • H8 is 28 mm.
  • the grid corresponding to the inflow segment includes:
  • a third node 503 and a fourth node 504 located between the first node 501 and the second node 502 and arranged oppositely;
  • the first node 501 and the second node 502, the third node 503, and the fourth node 504 form an approximately diamond-shaped cell.
  • the distance L5 between the first node 501 and the third node 503 in the three-dimensional space is 8-22 mm
  • the distance between the first node 501 and the fourth node 504 in the three-dimensional space is equal to L5.
  • the distance L4 between the second node 502 and the third node 503 in the three-dimensional space is 8-22 mm, and the distance between the second node 502 and the fourth node 504 in the three-dimensional space is equal to L4.
  • L5 L4.
  • L5 is 15-20 mm, and L4 is 15-20 mm. In a preferred embodiment, L5 is 14-18 mm, and L4 is 14-18 mm.
  • L5 is 16 mm
  • L4 is 16 mm
  • the half grid corresponding to the waist includes:
  • the fifth node 505 on the inflow side is the fifth node 505 on the inflow side
  • the sixth node 506 and the seventh node 507 located on the outflow side and arranged oppositely;
  • the position of the fifth node 505 is equivalent to the above-mentioned second node 502.
  • the distance L3 between the fifth node 506 and the sixth node 506 in the three-dimensional space is 6-16 mm.
  • the distance between the fifth node 506 and the seventh node 507 in the three-dimensional space is equal to L3.
  • L3 ⁇ L5, and L3 ⁇ L4 are preferably arranged in a preferred embodiment.
  • L3 is 10-15 mm. In a preferred embodiment, L3 is 10-14 mm.
  • L3 is 12 mm.
  • the half of the grid from the outflow side of the waist to the most distal end of the outflow part of the stent includes:
  • the eighth node 508 and the ninth node 509 arranged oppositely on the inflow side;
  • the distance L2 between the eighth node 508 and the tenth node 510 in the three-dimensional space is 6-20 mm.
  • the distance between the ninth node 509 and the tenth node 510 in the three-dimensional space is equal to L2.
  • L2 is 10-15 mm. In a preferred embodiment, L2 is 12-15 mm. In a further preferred embodiment, L2 is 14 mm.
  • L5 is 16 mm
  • L4 is 16 mm
  • L3 is 12 mm
  • L2 is 14 mm.
  • the circumferential span of the stent 5 is 3*n complete grids, and n is 1, 2 or 3. In one of the embodiments, referring to Figures 5a and 6, the circumferential span of the stent 5 is 6 complete grids. Grid.
  • the bracket 5 and the mask 7 can adopt a separate fixed structure. In one embodiment, they can also adopt an integrated structure, which is formed by pipe cutting or weaving.
  • the integral structure of the bracket 5 and the expanded mask 7 is not only convenient for processing, but also beneficial to reduce the compressed size.
  • the inflow section 8 is a bare stent.
  • the bare stent is not covered with the membrane to avoid unnecessary obstruction due to the interference of the lateral hepatic vein with the membrane.
  • the valve device needs to be recycled during the implantation process.
  • the inflow end of the valve device is the last released part. Accordingly, when the valve device is recovered, the inflow end of the valve device is the most Enter the part of the delivery device first, in order to smoothly switch from the released state to the contracted state, in one embodiment, the inflow section 8 has a closing structure, and the inflow section 8 is restrained by the traction and the tube body of the delivery device through the closing structure. It has a tendency to shrink inward to prevent the structure of the stent 5 at the inflow end from being stuck at the entrance of the conveying device tube body, causing difficulty in recovery.
  • the maximum radial stiffness of the inflow section 8 is M1;
  • the radial stiffness of the waist 9 is M2;
  • the radial stiffness of the outflow portion 51 of the stent is M3;
  • the flaring mask includes a flaring frame 22 connected to the stent and a film laid on the flaring frame.
  • the flaring frame 22 has relatively undulating wave crests and wave valleys in the axial direction of the stent, and each wave trough is connected to the stent through a connecting bar 26;
  • the radial stiffness of the flaring frame 22 is M4;
  • the radial stiffness of the connecting bar 26 is M5;
  • Radial stiffness refers to the ability to resist when subjected to external forces in the radial direction. The greater the radial stiffness, the less likely to be deformed when subjected to external forces in the radial direction. The smaller the radial stiffness, the less When receiving an external force in the direction, the more easily deformed.
  • the radial rigidity of the flaring frame 22 is strong, which can play a stable supporting and anchoring effect; the radial direction of the outflow part 51 of the stent is strong, which can play a good supporting effect, prevent the deformation of the valve leaflet, and ensure the sealing effect; the inflow section 8
  • the radial rigidity is very weak, that is, its maximum radial rigidity is still smaller than M4, M5 to facilitate deformation recovery;
  • the waist 9 has a moderate radial rigidity, which can play a good support and transition role, and further ensure the support of the valve leaflets
  • the radial rigidity of the connecting strip 26 is very weak, which can allow the relative displacement between the flaring frame 22 and the stent 5, and avoid the deformation of the stent 5 caused by mutual pulling, which affects the valve leaflet sealing.
  • the radial rigidity of the inflow section 8 is lower than that of the waist 9 and the outflow section 10.
  • the inflow section 8 When the inflow section 8 is restrained by the tube body of the delivery device, it is easier to conform to the shape of the tube body and deform, so as to return to the tube of the delivery device.
  • the radial rigidity of the inflow section 8 is not too small, otherwise the radial rigidity of the stent 5 as a whole will be affected, and sufficient support and positioning cannot be achieved.
  • the radial rigidity of the waist 9 and the outflow section 10 is appropriately greater than that of the inflow section 8. On the one hand, it can ensure the supporting effect. On the other hand, since the inflow section 8 has entered the tube body, as other parts of the integrated structure, it is relatively easy to enter the tube body compliantly. , No longer need to sacrifice radial stiffness.
  • the radial stiffness can be changed in various forms. For example, different materials are used for different parts of the stent 5, and different parts of the same material are treated differently. See Figures 3a and 4a.
  • the stent 5 includes multiple The support bar surrounded by a net-tube structure changes the radial rigidity by changing the thickness of the support bar at different positions.
  • the waist 9 and the outflow section 10 adopt a thicker diameter (understood as a cross-sectional area, which can actually be expressed in dimensions such as width or thickness), and the inflow section 8 adopts a thinner diameter.
  • the radial stiffness of the inflow section 8 can be further optimized. See Figure 4a.
  • the inflow section 8 includes a port 11 and a waist in sequence along the blood flow direction. 9-phase transition portion 12, wherein the radial rigidity of the port portion 11 is smaller than that of the transition portion 12.
  • the axial length H12 of the port portion 11 and the axial length H11 of the transition portion 12 are roughly half a grid.
  • the radial stiffness of the port portion 11 is the smallest, which is used to meet the needs of recycling.
  • the radial stiffness of the transition portion 12 is greater than that of the port. Section 11 is used to provide stronger support.
  • the radial stiffness of the port portion 11 and the transition portion 12 are different, in order to avoid the occurrence of stress concentration, there is no sudden change in the radial stiffness, that is, in one of the embodiments, the radial stiffness of the inflow section 8 follows the blood flow. The direction gradually increases. The radial stiffness of the inflow section 8 changes continuously, and the continuous change of the radial stiffness is achieved by continuously changing the thickness of the support bar.
  • a plurality of connecting ears 13 are arranged along the circumferential direction at the inflow end.
  • the stent 5 is forced through the connecting ears 13 to complete the process of the stent 5 entering the tube of the delivery device.
  • the inflow section 8 is a grid structure arranged in the circumferential direction, and each grid respectively converges to the corresponding first grid vertex 14 at the inflow end.
  • the vertices 14 of a mesh are provided with connecting ears 13.
  • the connecting ear 13 can take various forms, as long as it can provide an effective force application point.
  • the connecting ear 13 is a closed loop or has a wire hanging opening.
  • a recovery traction wire 131 is connected to the connecting ear 13 (shown in the dotted line in FIG. 5a).
  • the recovery traction line 131 penetrates all or at least a part of the connecting ears 13, and the connection ears 13 through which the recovery traction line 131 penetrates are evenly distributed along the circumferential direction of the inflow section 8.
  • the inflow section 8 is pulled into the conveying device by the uniform force of the recovery traction line. In the tube.
  • valve device After the valve device has been working in the body for a period of time (such as within a month, or at least before endothelialization), if the patient's symptoms (such as tricuspid regurgitation) improve or disappear completely, the valve device can be recovered and loaded using the recovery pull line 131 And move it out of the body, otherwise the recovered pull line 131 will gradually become endothelial after working in the body for a period of time.
  • a period of time such as within a month, or at least before endothelialization
  • the connecting ear When the connecting ear is a closed loop, although the strength is higher than the same period, the operation is inconvenient or other tools are required when threading the recovery pull line.
  • the recovery pull line When there is a hanging line opening, the recovery pull line can directly enter the connecting ear through the hanging line opening. Surrounded area.
  • the thread-hanging opening there are gaps or movable overlaps on both sides of the thread-hanging opening.
  • the movable overlap means that there is no obvious gap in the non-stressed state, and the thread-hanging opening is opened when it is deformed with a little force at the time of use. .
  • the connecting ear 13 has a wire-hanging opening 136.
  • the two sides of the wire-hanging opening 136 are respectively a free end 134 and a free end 135.
  • the free end 134 and the free end 135 alternately form a labyrinth opening.
  • the recovery traction line 131 can enter the area surrounded by the connection ear 13 from one side of the connection ear 13 through a labyrinth opening.
  • the labyrinth opening can restrict the recovery traction line 131 from coming out.
  • the free end 134 and the free end 135 of the recovery traction line 131 are forced to each other.
  • the buckle closes the wire hanging opening 136 and further limits the deformation of the connecting ear 13.
  • At least a part of the recovery traction line is a span section 132 located inside the area surrounded by the stent. That is, at least a part of the retrieving traction line 131 crosses the blood flow channel instead of against the inner wall of the blood vessel. Since there are no more components around the cross section 132, it is easier to be grasped.
  • the recovery traction line 131 penetrates the connecting ear 13.
  • the connecting ears 13 can be close to each other, in order to avoid the free connecting ear 13 (the free connecting ear 13 does not penetrate the recovery traction line)
  • the connecting ear 13 of the 131 is stuck on the end of the tube body of the conveying device, which affects the recovery.
  • the recovery pulling wire 131 passes through all the connecting ears 13 in turn.
  • the recovery traction line includes a surrounding section 133 and a spanning section 132 (the dotted line) passing through all the connecting ears 13 in turn.
  • the spanning section 132 When the spanning section 132 is pulled, it wraps around The segment 133 drives all the connecting ears 13 to close.
  • the number of the spanning segments 132 can be one or more segments, and the segments do not intersect each other or at least two intersect each other.
  • the number of spanning segments 132 in Figure 5d is one segment
  • the number of spanning segments 132 in Figure 5e is two segments and they do not directly intersect. Since the spanning segment 132 itself is a flexible component, it is generally not required to be tightened. , So the figure is only used as a schematic diagram, not as a strict limitation on its extension path.
  • the number of cross sections 132 in FIG. 5f can be regarded as two intersecting sections or three sections of radiation distribution according to the number of ends.
  • the surrounding section 133 and the span section 132 are an integral structure or a split structure.
  • the surrounding section 133 and the span section 132 can be formed by winding a wire body, and when necessary, the node position or the extension direction turning can be changed by combining knotting or the like.
  • the surrounding section 133 and the spanning section 132 can be made of separate wire bodies, and each end of the spanning section 132 is connected to the corresponding position of the surrounding section 133 by knotting or looping.
  • the surrounding section 133 and the connecting ears 13 are fixedly connected or movably threaded.
  • the use of movable threading when the surrounding section 133 is pulled by the spanning section 132, the movable threading of the surrounding section 133 can distribute the traction force as evenly as possible to each connecting ear 13, and of course it is connected to all connecting ears 13 or parts
  • the ears 13 can be fixedly connected to each other, and a parachute-like pulling configuration is formed when recovered, that is, the corresponding connecting ear 13 is pulled at a specific part of the surrounding section 133.
  • each end of the span section 132 and the surrounding section 133 are respectively fixedly connected or movably connected.
  • Fixed connection or movable connection can change the relative force position during pulling.
  • the pulling parts of the spanning section 132 should be distributed as far as possible in different parts of the surrounding section 133, so the ends of the spanning section 132 should be dispersed in the circumferential direction as much as possible, preferably evenly spaced.
  • the span of the two ends of the span section 132 in the circumferential direction of the stent is 1/6 to 1/2 of the circumference of the stent.
  • the central angle ⁇ between the two ends of the span section 132 is 60 to 180 degrees.
  • the span of the end 1321 and the end 1322 of the span section 132 in the circumferential direction of the stent is 1/4 of the circumference of the stent, that is, the central angle ⁇ between the end 1321 and the end 1322. Is 90 degrees.
  • the end 1321 and the end 1322 are distributed in different connecting ear gaps.
  • two adjacent connecting ears are used as a pair, the end 1321 is located between one pair of connecting ears, and the end 1322 is located between the other pair of connecting ears.
  • the span of the end 1321 and the end 1322 in the stent circumferential direction of the two ends of the span section 132 is 1/2 the circumference of the stent, that is, the central angle ⁇ between the end 1321 and the end 1322. Is 180 degrees.
  • the spanning section 132 When the spanning section 132 has multiple sections, the position of the end will be more complicated.
  • the spanning section 132 has two sections, one of which has two ends, namely the end 1321 and the end 1322, and the other end is the two ends.
  • the central angle between the two ends is an obtuse angle, for example, 120 to 150 degrees.
  • obtuse angle such as 120 to 150 degrees.
  • the waist 9 is a bare stent 5, or only a part of the area is covered by the expanded mask 7.
  • the valve leaflet 6 is located on the inner side of the stent 5, and the leaflet 6 further extends to the inflow side to form an expanded membrane and is fixed to the inner side of the stent 5; the waist is completely or partially covered by the expanded membrane.
  • the reaming mask includes a flaring frame 22 connected to the stent 5 and a covering film 23 laid on the flaring frame 22.
  • the covering film 23 further extends to the inflow side to form an outer covering film and is fixed on the outside of the stent 5; the waist is covered with an outer covering film Full occlusion or partial occlusion. That is, the covering film 23 is outside the flaring frame.
  • the cover film further extends to the inflow side to form an inner cover film and is fixed to the inner side of the stent; the waist is completely or partially blocked by the outer cover film. That is, the film is on the inside of the flaring frame, see Figure 28 to Figure 35.
  • the covering film 23 is on the outside of the flaring frame as an example, and the same applies to the inside.
  • the edge shapes of the expanded membrane and the outer membrane on the inflow side are the same, and they are sewn and fixed to the stent 5 respectively.
  • the edge shapes of the expanded membrane and the outer membrane on the inflow side are shown in Fig. 11, which are tooth-shaped, and the tooth-shaped edges are stitched and fixed on the grid support bars of the corresponding parts of the stent.
  • the edge shapes of the expanded membrane and the outer membrane on the inflow side are different, and they are sewn and fixed to the stent 5 respectively.
  • the edge shape of the expanded membrane on the inflow side is shown in Figure 11, which is in the shape of a tooth.
  • the toothed edge is stitched and fixed on the grid support bar at the corresponding part of the stent, while the edge shape of the outer membrane on the inflow side is shown in Figure 12. As shown, it has smooth edges in the circumferential direction.
  • the area that is blocked by either the expanded film or the outer film is the blocking area 15, and the area that is not blocked by either the expanded film or the outer film is the penetrating area 16.
  • the blocking area 15 and the penetrating area are alternately distributed.
  • the shielding area 15 is at least shielded by the outer covering film.
  • the shielding area 15 and the penetrating area 16 are alternately distributed in the 5 circumferential direction of the stent, and at least a part of the cross section of the branch blood vessel corresponds to the penetrating area 16 to ensure the normal circulation of blood.
  • the waist 9 has a grid structure
  • the axial length Y of the shielding area 15 and the penetrating area 16 are both half a grid
  • the circumferential span X is a grid
  • the valve device is a rotationally symmetric structure as a whole, that is, it has a central axis, which is formed by rotating the bus bar around the center axis.
  • the bus bar between the waist 9 and the adjacent section is smoothly transitioned, so that the outer peripheral surface of the valve device is a smooth curved surface, that is, there is no Sharp edges and corners, so as not to cause damage to the body tissues.
  • the waist 9 has a mesh structure, and each mesh converges to the corresponding second mesh vertex 17 on the outflow side of the waist 9, respectively.
  • the vertices 17 of the mesh are connected.
  • the outflow section 10 has a double-layer structure in the radial direction (the dotted line in Figure 7 indicates the inner and outer two-layer structure), and the part of the stent 5 from the outflow side of the waist 9 to the outflow end is The inner layer part 19, the expansion mask 7 is the outer layer part 20;
  • the leaflets 6 are stitched and fixed on the waist 9 and/or the inner portion 19.
  • the valve leaflet 6 closes or opens the blood flow channel under the action of blood flow.
  • the suture and stitching method of the valve leaflet 6 can adopt the existing technology.
  • the sewing position of the valve leaflet 6 can be only at the waist 9 or only in the inner layer. 19. Depending on the size of the leaflet 6, it is also possible to stitch on the waist 9 and the inner layer 19 at the same time.
  • the suture can be single-strand or multiple-strand, and the material is natural or synthetic fiber.
  • the double-layer structure of the outflow end in the radial direction is used to achieve different functions, and the deformation between the inner layer portion 19 and the outer layer portion 20 is relatively independent, and it is not easy to interfere with each other.
  • the inner layer portion 19 is mainly used for the valve leaf 6
  • the outer layer part 20 is mainly used for positioning and preventing peripheral leakage.
  • the inner layer portion 19 and the outer layer portion 20 are not overlapped with each other, but are misaligned to form a coplanar surface (curved surface), which can reduce the radial size after compression to a certain extent. Conducive to loading and conveying in the conveying equipment.
  • the form of the leaflet 6 can adopt the existing technology.
  • the leaflet 6 can be a two-leaflet or a three-leaflet, as shown in Figures 9 and 10.
  • the leaflet 6 is a three-leaflet, and the inner The layer portion 19 has a grid structure, and each grid respectively converges to the corresponding third grid vertices 18 at the outflow end.
  • the number of the third grid vertices 18 corresponds to the number of the leaflets 6, and each leaflet 6 faces one at the inflow end.
  • the side is the fixed side connected with the bracket 5, the side facing the outflow end is the movable side, and the fixed side and the movable side intersect at the corresponding third mesh vertex 18.
  • the number of vertices 18 of the third mesh is three, and the number of leaflets 6 is correspondingly three.
  • the fixed side of each leaflet 6 is stitched on the bracket 5, and the fixed side edge of the leaflet 6 corresponds to the mesh shape of the waist 9.
  • the fixed side of the valve leaflet 6 is stitched on the waist 9 grid by sutures.
  • the movable sides of the valve leaflets 6 have a closed state close to each other and an open state far away from each other. Through the spatial positional arrangement of the valve leaflets 6, the closed state and the open state can be switched under the action of blood flow.
  • the inner layer portion 19 is a V-shaped support strip arranged at intervals, the V-shaped apex is the third mesh apex 18 at the outflow end, and the two branches of the V are connected to The waist 9 is connected.
  • the waist 9 has a grid structure, and each grid converges to form six second grid vertices 17 on the outflow side of the waist 9 respectively.
  • the stent 5 is provided with positioning holes 21 at the apex 18 of the third mesh, and the corresponding parts of each leaflet 6 are fixed by sutures passing through the positioning holes 21.
  • the bracket 5 is provided with a connecting piece further extending toward the outflow side at the apex 18 of the third grid, and positioning holes 21 are arranged on the connecting piece.
  • the flaring mask 7 includes a flaring frame 22 connected to the bracket 5 and a covering film 23 laid on the flaring frame 22, and the covering film 23 is on the flaring frame
  • the support of 22 surrounds the outer periphery of the outflow end.
  • the flaring frame 22 is located on the outer periphery of the stent 5.
  • the flaring frame 22 and the stent 5 form a double-layer structure in the radial direction.
  • the deformation of the flaring frame 22 and the stent 5 are relatively independent to avoid the influence of the deformation of the flaring frame 22 on the shape of the stent 5 .
  • the expanded mask 7 is in the form of a stent 5 with a membrane covering 23, which plays a role of positioning on the one hand, and prevents peripheral leakage on the other hand.
  • the membrane 23 is circumferentially closed and connects with the leaflets 6 to the stent 5 to form The peripheral leakage prevention part located on the periphery of the bracket 5.
  • the expansion mask 7 with a flared structure plays a role of positioning on the one hand, and on the other hand, the covering film 23 of the expansion mask 7 blocks the reflux blood, preventing the reflux blood from passing through the radial gap between the stent 5 and the blood vessel. Under the effect of reflux, the expansion mask 7 will be further pushed against the vena cava opening to ensure the positioning and sealing effect.
  • the anti-peripheral leakage part of the expansion mask 7 is located at the outflow end of the stent 5 and does not affect the blood circulation between the vena cava and the branch vessel stent 5.
  • the outflow side of the flaring frame 22 is bent inward to form a safe contraction.
  • the bending part of the safety necking should be as close as possible to the outflow side of the expansion mask 7.
  • the outflow side of the film 23 is provided with a plurality of stitching areas 231 spaced apart, and each stitching area 231 corresponds to the flaring frame 22
  • the positions are fixedly connected, and there is a radial floating edge 232 between two adjacent stitching areas.
  • the radial floating edge 232 is not stitched with the flaring frame 22, but has a certain range of movement.
  • the radial floating edge 232 is an arc
  • the top of the arc faces the inflow side of the covering film 23.
  • the arc-shaped edge design can reduce the folding and compression of the covering film 23 after the flaring frame 22 is deformed, and ensure the fit with the surrounding tissues.
  • the covering film 23 is a floating portion 233 adjacent to the radial floating edge 232, and the floating portion 233 can be radially displaced with the action of blood flow. It can follow the blood flow to adhere to or stay away from the surrounding tissues. For example, under the action of reflux, the floating part 233 can automatically abut against the inner wall of the blood vessel to further prevent peripheral leakage.
  • the covering film 23 is a piece, which is surrounded to form a tapered surface in an unstitched state. A part of the covering film 23 is located inside the flaring frame 22 and is fixedly connected to the flaring frame 22 through the stitching area; the covering film 23 corresponds to the waist 9 The edge of the is stitched on the mesh structure of the waist 9; between the outflow side of the waist 9 and the outflow end of the stent 5, the covering film 23 is connected with the stent 5 by mesh stitching.
  • the flaring frame 22 has relatively undulating wave crests 24 and wave troughs 25 in the axial direction of the stent 5, and each wave crest 24 is on the outflow side, and each stitch area is fixed to The position corresponds to the crest 24.
  • the arc height H7 of the arc-shaped radial floating edge 232 is the height of the wave crest 24 H6 (the height H6 of the crest 24 is the distance from the crest 24 to the trough 25) of 1/4 to 1/2.
  • the flaring frame 22 has relatively undulating wave crests 24 and wave troughs 25 in the axial direction of the bracket 5, and each wave trough 25 is connected to the bracket 5 through a connecting bar 26.
  • the wave crest 24 and the wave trough 25 are not a wave relationship on a plane, but a relative positional relationship in the axial direction of the stent.
  • the flaring frame 22 and the stent 5 are isolated by the connecting bar 26 to further reduce the mutual influence of deformation between the flaring frame 22 and the stent 5.
  • the rigidity of the connecting bar 26 is less than the rigidity of other parts connected with the connecting bar 26 to relieve the traction stress of the expanding mask 7 and the bracket 5. .
  • the deformation of the flaring frame 22 is absorbed by the connecting strip 26 and is not further transmitted to the stent 5.
  • the connecting bar 26 and the bracket 5 are an integral structure or a separate flexible piece. Referring to Figs. 3a and 4a, in one of the embodiments, the connecting bar 26 and the bracket 5 are an integral structure, and the thickness of the connecting bar 26 is controlled to control the rigidity of the connection to meet the requirements.
  • the length L1 of the connecting strip 26 is 3-30 mm.
  • the length of the connecting strip 26 is adapted to the overall size of the vena cava valve device.
  • the number of wave crests 24 is the same as the number of grids in the circumferential direction of the bracket 5.
  • the wave crest 24 has a rounded structure, which further reduces damage to tissues in the body.
  • the wave crests 24 are evenly distributed along the circumferential direction of the stent 5, so that the valve device receives uniform force in the circumferential direction.
  • the flaring frame 22 includes a plurality of V-shaped rods (the bending part of the V-shaped rod has a rounded structure) distributed in the circumferential direction of the bracket 5, and the V-shaped rod
  • the apex of is the wave crest 24 and is located on the outflow side of the mask 7.
  • the two branches of the V-shaped rods respectively intersect with the adjacent V-shaped rods to form wave troughs 25.
  • Each wave trough 25 is connected to the outflow side of the waist 9 through a connecting strip 26.
  • the wave crest 24 of the flaring frame 22 further extends beyond the outflow end of the stent 5 along the blood flow direction.
  • the wave crest portion of the flaring frame 22 further extends beyond the outflow end of the stent 5 in the blood flow direction, and the axial length H13 of the passing portion is 4.5-9 mm, in a preferred embodiment H13 is 6.5 mm.
  • the flaring frame 22 includes an outer flaring section 221 and a safety necking section 222 in sequence along the blood flow direction.
  • the ratio of the axial length H14 of the outer flaring section 221 to the axial length H15 of the safety necking section 222 is 2:1 ⁇ 4:1. For example, 2.5:1 ⁇ 3:1.
  • the outward inclination angle of the flaring frame 22 is the expansion trend, which is related to the positioning effect to a certain extent.
  • the included angle between the flaring section 221 and the stent axis is 30 degrees to 60 degrees.
  • the angle between the expanded section 221 and the axial direction of the stent is 45 degrees.
  • the included angle between the safety necking section 222 and the axial direction of the stent is 30 degrees to 60 degrees.
  • the angle between the safety necking section 222 and the axial direction of the stent is 45 degrees
  • the wave trough 25 of the flaring frame 22 and the outflow end position of the stent 5 are adjacent to each other.
  • the waist 9 is a grid structure, and each grid converges on the outflow side of the waist 9 to form six second grid vertices 17 respectively.
  • the V-shaped rod has twelve branches in total, and two adjacent branches merge into the same connecting bar 26.
  • the six connecting bars 26 are respectively connected to one of the second mesh vertices 17.
  • FIGS 13-19 are schematic diagrams of an embodiment of the valve device of the present application from different angles.
  • the leaflet and the membrane are omitted in the figure, and only the stent and the flaring frame are shown, that is, the valve device stent.
  • Figures 20-27 are schematic diagrams of an embodiment of the valve device of the present application from different angles.
  • the membrane is on the outside of the flaring frame, and the membrane is further extended to the inflow side to form an outer membrane and fixed on the outside of the stent ,
  • Figure 26, Figure 27 illustrates the different postures of the valve leaflets, that is, the different opening degrees of the blood flow channels.
  • Figures 28 to 35 are schematic diagrams of an embodiment of the valve device of the present application from different angles.
  • the membrane is on the inside of the flaring frame, and the membrane is further extended to the inflow side to form an inner membrane and fixed on the inside of the stent .
  • Figures 36 to 44 are schematic diagrams of an embodiment of the valve device of the present application from different angles.
  • the membrane is on the outside of the flaring frame.
  • Figures 45-52 are schematic diagrams of an embodiment of the valve device of the present application from different angles.
  • the membrane is made of transparent or semi-transparent material, such as the part A in Figure 51.
  • the membrane is flared. The outside of the frame.
  • Figures 53 to 60 are schematic diagrams of an embodiment of the valve device of the present application from different angles.
  • the membrane is on the inner side of the flaring frame.
  • Figures 61 to 68 are schematic diagrams of an embodiment of the valve device of the present application from different angles.
  • the membrane is made of transparent or semi-transparent material, such as part B in Figure 67.
  • the membrane is flared. The inside of the shelf.
  • the valve device provided by the present application is equipped with a respirator, which adaptively abuts against adjacent tissues under the action of regurgitating blood. Due to the use of a flaring structure, the positioning is stable. In addition, due to the use of a membrane and the membrane and the valve leaflets interact with each other Convergence can effectively prevent weekly leakage.
  • Figures 69 to 75 are schematic diagrams of an embodiment of the valve device of the present application from different angles.
  • the leaflets and the membrane are omitted in the figure, and only the stent and the flared frame part, namely the valve device stent, are shown.
  • Figures 76 to 83 are schematic diagrams of an embodiment of the valve device of the present application from different angles. The leaflets and the membrane are omitted in the figure, and only the stent and the flaring frame part, namely the valve device stent, are shown.
  • Figure 82 is the insertion and recovery traction The state of use after the line.
  • suture is an important form of connection between the valve and the stent.
  • the suture strength and the shearing effect of the stent on the suture are an important form of valve failure.
  • the choice of suture and the method of suture have an important impact on the fatigue life of the valve. . Due to the concentration of force on the suture point, the valve is prone to tearing and shearing and breaking of the suture.
  • the commonly used methods to increase fatigue life include: 1choose a diaphragm with high tensile strength and high tear strength; 2choose sutures with shear resistance, high strength, and low creep; 3change the valve The cutting form of the valve leaflet changes the suture method; 4The stent structure is changed to reduce the shearing effect of the suture edge of the stent on the diaphragm and sutures.
  • Commonly used valves mainly include biomaterials and polymer materials. Biomaterials are affected by the organism itself and have certain limitations. The treatment process can increase its mechanical properties, but it is difficult to continue to increase after reaching the peak of the mechanical properties. Since the transcatheter biological valve is loaded and released in the conveyor, the wire diameter requirements of the suture limit its maximum strength performance.
  • changes in the stent structure or combined with the cutting and splicing of the valve can effectively increase the fatigue life of the valve.
  • an embodiment of the present application provides a valve device stent with opposite inflow and outflow ends, including:
  • the stent 5, the stent 5 is a net-tube structure with a blood flow channel inside;
  • the flaring frame 22 is connected to the bracket 5 and surrounds the outer periphery of the outflow end.
  • the stent 5 includes an inflow section 8, a waist section 9, and a waist section in sequence from the inflow end to the outflow end. And the stent outflow portion 51.
  • a connecting strip 26 extending further to the outflow side is provided at the junction of the waist 9 and the stent outflow portion 51, the other end of the connecting strip 26 is connected to the flaring frame 22, the stent 5 and the flaring frame 22 It can be obtained by pipe cutting as a whole.
  • a suture hole 223 for threading sutures is provided at the end portion of the outflow side of the flaring frame 22.
  • the suture hole 223 can better fix the membrane, reduce the sliding of the membrane and the shearing effect of the stent on the suture. After combining with the positioning hole 21 at the outflow end of the stent, the effect can be further coordinated to ensure the effect.
  • the flaring frame 22 can be all The end points of the outflow side are all provided with suture holes 223, or part of the end points are all provided with suture holes.
  • each end point has suture holes, or only three of the end points have suture holes and are arranged at intervals.
  • the end point on the inflow side of the flaring frame (that is, the intersection of the flaring frame and the connecting strip) is provided with a marking hole, which can be used to fix (for example, riveting) the imaging point, so as to guide the surgical positioning in real time through the imaging device.
  • the frame strip of the stent is provided with a corrugated structure for the suture to wrap around.
  • the specific structure will be further described in the following examples of stitching methods.
  • the valve mainly includes leaflets 6, an expanded membrane 61 extending from the edge of the leaflet 6 to the inflow side, and the membrane 23 laid on the flaring frame 22, which is covered by The membrane 23 further extends toward the inflow side and is fixed to the inner membrane 234 inside the stent 5 (or the outer membrane fixed to the outside of the stent).
  • the leaflet 6 and the expansion covering 61 can be pre-spliced into a pre-sutured body, and then stitched to the stent 5.
  • the covering film 23 and the inner covering film 234 can adopt an integral structure, so the boundary between the two is not strictly limited.
  • the integral structure is also referred to as the covering body.
  • the extent of the covering body extending toward the inflow end at least intersects with the pre-suture body. In order to close the unintended bleeding site, for example, in some grid areas, it intersects the inflow side of the valve leaflet, and in other grid areas it intersects the frame strips of the stent 5, that is, the stent is a grid structure composed of frame strips.
  • the grid structure should be understood as having a large hollow area, and does not limit the shape of the grid or whether the regular arrangement is adopted. Regardless of the pre-suture body or the covered body, it can be directly fixed to the stent 5 with sutures when intersecting with the stent 5.
  • the frame strips can also be rolled around the edges to wrap the frame strips of the corresponding parts, and then further stitched to improve the strength and sealing effect.
  • one side of the leaflet 6 is the movable edge 606 that can open and close the blood flow channel
  • the other side is the fixed edge 607 connected with the expansion membrane 61.
  • the movable edges of the three leaflets abut each other and are in contact with each other.
  • the blood flow channel is opened and closed under the action of blood flow.
  • the fixed edge 607 has first coupling wings 601 on both sides, and the first coupling wings 601 are provided at the corresponding positions of the expansion film 61.
  • the second coupling wing 611 matched with the wing 601, the first coupling wing 601 and the second coupling wing 611 are superimposed when stitching, and the frame strip of the wrapping stent 5 can also be rolled to further resist the movement and pulling of the valve leaf 6 and provide resistance Fatigue.
  • the leaflet 6 can be indented or punched in advance as a mark for suture threading.
  • the leaflet 6 is provided with a central positioning hole 603, a needle positioning hole 604, and a suture positioning hole 605, in order to facilitate the alignment with the stent 5.
  • the first coupling wing 601 is further provided with a lug 602, which can further roll the frame strip of the wrapping bracket 5.
  • the edge parts that need to be sewn include a first stitched edge 612 that matches the leaflet 6, a second stitched edge 613 that fits between two adjacent expanded membranes, And a third suture edge 614 sutured to the stent 5.
  • the figure also shows the three-dimensional structure after all the valve leaflets 6 and the expanded membrane 61 are spliced into a pre-sutured body.
  • the figure is only for illustration. Generally, the three-dimensional shape can only be maintained after being stitched to the stent 5.
  • the covering body formed by the covering film 23 and the inner covering film 234 is composed of three unit pieces, and the three unit pieces pass through adjacent
  • the joints 235 of the lamella are stitched to each other, and a fork 237 is left between the two adjacent unit pieces for the outflow end of the stent 5 (for example, the third mesh vertex 18) to pass through.
  • the six outflow side end points of the flaring frame 22 correspond to each other, and the six fins 236 are stitched through the stitching holes 223 at corresponding positions, which can further avoid misalignment and ensure the fixing effect.
  • the covering body is located on the periphery of the valve leaflet 6, which can protect the valve leaflet 6 and effectively prevent paravalvular leakage.
  • valve device has opposite inflow and outflow ends in the axial direction.
  • the valve device specifically includes:
  • the stent 5, the stent 5 is a net-tube structure with a blood flow channel inside;
  • the pre-suturing body includes the valve leaflet 6 and the expanded membrane 61, wherein the valve leaflet 6 is located in the blood flow channel of the stent 5 and can open or close the blood flow channel under the action of blood flow.
  • the pre-sutured body (expanded valve 61 and valve The leaf 6) and the adjacent part of the bracket 5 are fixed to the bracket 5 by sutures;
  • a flaring frame 22 which is connected to the bracket 5 and surrounds the outer circumference of the outflow end;
  • the membrane body is fixed on the inner side of the flaring frame 22 with a loop cloth, and the membrane body extends to the inflow end and at least intersects the pre-suturing body.
  • the frame strip adjacent to the edge of the leaflet 6 in the stent 22 has a corrugated structure.
  • the corrugated structure can increase the contact area with the edge of the valve leaflet and further fix the suture line, reduce the stress concentration point, reasonably distribute the stress, and increase the fatigue resistance.
  • the corrugated structure can be formed by slotting the outer wall of the frame strip, or by bending the frame strip itself.
  • the frame bars adjacent to the fixed edge 607 of the leaflet 6 in the stent 5 are the first frame bar 513 and the second frame bar 514.
  • the fixed edge 607 is relative to the movable edge 606, which is not strictly limited. It is directly connected to the frame bar of the bracket 5, but at least it is adjacent to the frame bar of the bracket 5.
  • the first coupling wing 601 and the second coupling wing 611 can be rolled to wrap the first frame strip 513 after being stacked. Since the first frame strip 513 is closer to the movable edge 606, it can provide better connection strength. Ensure the effectiveness of the opening and closing of the movable edge 606.
  • the film-coated body is formed by combining three unit pieces, so the sharp corners on the inflow side of the inner film 234 correspond to three of the cells, and the three cells are distributed at intervals.
  • the inflow side of the expanded membrane 61 has six sharp corners, three of which are aligned with each leaflet 6, and the outside of these three sharp corners is also exactly covered by the sharp corners on the inflow side of the inner membrane 234. However, since the inner covering film 234 does not extend to the other three sharp corners, they are not blocked.
  • the sharp corners of the inflow side of the inner covering film 234 are sewn with the second frame strip 514 on the one hand, and are also sewn to each other at the positions adjacent to the fixed edge 607 (that is, the fixed edge 607 near the inflow side).
  • the sharp corners of the inflow side of the inner covering film 234 are blocked from the outside of the pre-suturing body, but part of the suture path is still visible. In order to avoid interference, stitches are omitted in the drawings.
  • one of the preferred ways is that the whole or at least the corresponding part of the stent is cut by a corrugated tube. That is, no secondary processing is required, and a corrugated structure that undulates in the radial direction of the stent can be obtained after cutting.
  • FIG. 96 another preferred way is to cut along the undulating path at the corresponding position during cutting.
  • the pitch of the corrugations (for example, the distance between two adjacent troughs) is 0.5-2 mm.
  • the so-called crests 511 and troughs 512 are relative terms, only emphasizing the relative undulations of the two.
  • the pitch of the corrugations is the same as the stitch length, so that the sutures can be embedded in the troughs in a regular manner to minimize the adverse effects on compression loading.
  • the width of the trough can be determined according to the line diameter of the suture, generally 0.5-1mm, the width is the same as or slightly smaller than the diameter of the suture, the width of the trough is understood as the width of the trough depth at 1/2 position .
  • the suture method is changed to increase the contact area of the valve leaflet, the suture and the stent, thereby reducing the shearing force of the stent on the suture, and reducing the single point force of the suture during the opening and closing of the valve leaflet.
  • the suture is just inserted into the corrugated valley of the stent.
  • the abrasion of the suture by the conveying device is reduced, and the fatigue life of the valve is improved overall. To a certain extent, it can also reduce the size of loading and implantation.
  • an embodiment of the present application provides a valve device stent that can be flexibly recovered, which has opposite inflow and outflow ends, and includes:
  • the stent 5, the stent 5 is a net-tube structure with a blood flow channel inside;
  • a flaring frame 22 which is connected to the stent 5 and surrounds the outer circumference of the outflow end of the stent 5, and the flaring frame 22 is a flaring structure facing away from the inflow end;
  • Both the outflow end of the flaring frame 22 and the outflow end of the bracket 5 are provided with wire-hanging holes for the recovery traction wire to pass through.
  • the valve device can use the connecting ear 13 at the inflow end to traction and recovery of the valve device.
  • the main improvement in this embodiment is that it can be traction and recovery at the outflow end.
  • it can also be combined with the foregoing embodiment, which can be used as needed. Recycling at the inflow or outflow end makes the operation more flexible.
  • the inflow end of the bracket is also provided with a wire hanging hole for the recovery traction wire to pass through.
  • Retrieving the traction line needs to pull all the cusp structures on the corresponding side of the valve device, otherwise the cusp structure may turn up and the recovery may be blocked. Because the stent and the flaring frame form a radial double-layer structure, there are many cusp parts. Therefore, how to thread the recovery traction line is also a problem that needs to be further solved.
  • valve device which has opposite inflow and outflow ends, including:
  • the stent 5, the stent 5 is a net-tube structure with a blood flow channel inside;
  • the pre-sutured body includes a valve leaflet 6 and an expanded membrane 61, wherein the valve leaflet 6 is located in the blood flow channel of the stent 5 and can open or close the blood flow channel under the action of blood flow.
  • the pre-sutured body is adjacent to the stent 5
  • the part is fixed to the bracket 5 by sutures;
  • a flaring frame 22 which is connected to the bracket 5 and surrounds the outer circumference of the outflow end;
  • the covering body, the loop cloth is fixed on the inner side of the flaring frame 22, the covering body extends to the inflow end and at least intersects the pre-suturing body;
  • Both the outflow end of the flaring frame 22 and the outflow end of the bracket 5 are provided with wire-hanging holes for the recovery traction wire to pass through.
  • the recovery traction wire 131 can be threaded in advance, and the recovery traction wire 131 is retained in the body for a period of time after the operation, so that the recovery operation can be performed when necessary.
  • the bracket 5 and the flaring frame 22 are distributed with a number of mesh vertices at the outflow end, and each mesh vertex is provided with a wire hanging hole.
  • the wire hanging hole can be a through hole with a smooth inner edge processed on the frame, or it can be used directly.
  • the gaps of the grids can pass through the recovery traction line, and it is preferable to separately process the through holes on the frame bar to prevent the recovery traction line from being scattered and further restrict its traversing path.
  • valve device stent or valve device further includes a pre-threaded recovery pull line 131, and the recovery pull line 131 includes:
  • the ring segment 138 passes through the wire-hanging holes 224 at the outflow end of the flaring frame 22 in the circumferential direction;
  • the linkage section 137 is connected between the ring section and each thread hanging hole 181 at the outflow end of the bracket 5.
  • the mesh vertex of the outflow end of the flaring frame 22 is more axially protruding than the mesh vertex of the outflow end of the stent 5, so it is preferable that the ring segment 138 penetrates each of the wire hanging holes 224 on the flaring frame 22.
  • the linkage section 137 can be a single-wire structure or a ring-shaped wire sleeve. Each wire-hanging hole 181 on the bracket 5 is equipped with a linkage section 137 to ensure the consistency of linkage at different wire-hanging holes 181 as much as possible to avoid The mutual traction causes the linkage of the individual wire-hanging holes 181 to lag behind.
  • the outflow end of the flaring frame 22 can be gathered by pulling the ring section, and at the same time, the outflow end of the stent 22 can be brought together through the linkage section 137. Facilitate the recovery and loading of valve devices.

Abstract

一种瓣膜装置以及瓣膜装置支架,其中瓣膜装置包括:支架(5),支架(5)为网筒结构且内部为血流通道,支架(5)在轴向上具有相对的流入端和流出端;瓣叶(6),瓣叶(6)连接在支架(5)的血流通道内,且能够在血流作用下开放或关闭血流通道;扩口罩(7),扩口罩(7)与支架(5)相连且围在流出端的外周,扩口罩(7)为背向流入端的扩口结构。瓣膜装置定位稳定,且能够有效防止周漏。

Description

瓣膜装置支架以及瓣膜装置 技术领域
本申请涉及医疗器械领域,特别是涉及一种瓣膜装置支架及其瓣膜装置。
背景技术
心脏的右心室和右心房之间三尖瓣的瓣膜不能正常工作,会导致三尖瓣疾病,三尖瓣疾病通常包括:三尖瓣返流、三尖瓣狭窄、三尖瓣闭锁和三尖瓣下移畸形等。
参见图1所示,三尖瓣返流是由于三尖瓣关闭不全引起的心脏收缩期右心室血液返流入右心房,再由右心房流入上腔静脉和下腔静脉,造成右心房容积扩大,压力升高,静脉血液回流障碍。
现有技术中可以采用介入手术对三尖瓣进行修补,但是对于重度三尖瓣返流病症,由于三尖瓣严重钙化、撕裂、脱垂等,三尖瓣瓣环变形严重,经皮介入手术很难在原三尖瓣位置牢固的固定瓣膜支架。
发明内容
本申请为了解决三尖瓣返流问题,提供一种定位稳定,且能够防止周漏的瓣膜装置支架以及瓣膜装置。
本申请瓣膜装置支架,具有相对的流入端和流出端,所述瓣膜装置支架包括:
支架,支架为网筒结构且内部为血流通道;
扩口架,扩口架与支架相连且围在流出端的外周。
本申请提供的瓣膜装置,包括:
支架,所述支架为网筒结构且内部为血流通道,所述支架在轴向上具有相对的流入端和流出端;
瓣叶,所述瓣叶连接在所述支架的血流通道内,且能够在血流作用下开放或关闭所述血流通道;
扩口罩,所述扩口罩与所述支架相连且围在所述流出端的外周,所述扩口罩为背向流入端的扩口结构。
以下还提供了若干可选方式,但并不作为对上述总体方案的额外限定,仅仅是进一步的增补或优选,在没有技术或逻辑矛盾的前提下,各可选方式可单独针对上述总体方案进行组合,还可以是多个可选方式之间进行组合。
可选的,所述扩口罩在返流血作用下与邻近组织贴靠定位。
可选的,所述瓣膜装置沿血流方向依次包括:
流入段,处在所述流入端的一侧;
腰部,处在支架轴向的中部;
流出段,由所述扩口罩与所述支架相连的部位起朝流出端一侧延伸;
所述瓣膜装置的各部分均具有相对的流入侧和流出侧。
所述流出段在径向上具有双层结构,所述支架由腰部的流出侧至所述流出端的部分为内层部分(即支架流出侧、或支架流出部),所述扩口罩为外层部分。
可选的,除所述扩口罩以外,所述支架为网格结构,且轴向长度为两个完整的网格。可选的,所述流入段的轴向长度为一个完整的网格,所述腰部的轴向长度为半个网格,由腰部的流出侧至支架流出部最远端的轴向长度为半个网格;
所述扩口罩连接在所述腰部的流出侧。
可选的,所述腰部相对于所述流入段和所述流出段具有较小的外径。
可选的,所述流出段的外径为20~60mm。
可选的,所述流出段的外径为40~50mm。
可选的,所述流出段的外径为42~48mm。
可选的,所述流出段的外径为45mm。
可选的,所述腰部的外径为15~40mm。
可选的,所述腰部的外径为30~35mm。
可选的,所述腰部的外径为30mm。
可选的,所述流入段的外径为20~55mm。
可选的,所述流入段的外径为40~50mm。
可选的,所述流入段的外径为40mm。
可选的,所述瓣膜装置的轴向长度为30~85mm。
可选的,所述瓣膜装置的轴向长度为55~70mm。
可选的,所述瓣膜装置的轴向长度为60~65mm。
可选的,所述瓣膜装置的轴向长度为62.5mm。
可选的,所述支架的轴向长度为25~75mm。
可选的,所述支架的轴向长度为50~60mm。
可选的,所述支架的轴向长度为53~58mm。
可选的,所述支架的轴向长度为56mm。
可选的,由腰部流入侧至支架流出部最远端的轴向长度为12~40mm。
可选的,由腰部流入侧至支架流出部最远端的轴向长度为25~30mm。
可选的,由腰部流入侧至支架流出部最远端的轴向长度为28mm。
可选的,所述流入段所对应的网格中,包括:
位于流入侧的第一节点;
位于流出侧的第二节点;
位于第一节点与第二节点之间,且相对布置的第三、第四节点;
所述支架在释放状态下,第一节点与第三节点在三维空间中的距离L5为8~22mm;第二节点与第三节点在三维空间中的距离L4为8~22mm。
可选的,L5=L4。
可选的,L5为15~20mm,L4为15~20mm。
可选的,L5为14~18mm,L4为14~18mm。
可选的,L5为16mm,L4为16mm。
可选的,所述腰部对应的半个网格中,包括:
位于流入侧的第五节点;
位于流出侧的且相对布置的第六、第七节点;
所述支架在释放状态下,第五节点与第六节点在三维空间中的距离L3为6~16mm。
可选的,L3<L5,且L3<L4。
可选的,L3为10~15mm。
可选的,L3为10~14mm。
可选的,L3为12mm。
可选的,由腰部的流出侧至支架流出部最远端对应的半个网格中,包括:
位于流入侧且相对布置的第八、第九节点;
位于流出侧的第十节点;
所述支架在释放状态下,第八节点与第十节点在三维空间中的距离L2为6~20mm。
可选的,L2<L5,且L2<L4。
可选的,L2为10~15mm。
可选的,L2为12~15mm。
可选的,L2为14mm。
可选的,所述支架的周向跨度为3*n个完整的网格,n为1、2或3。
可选的,所述支架的周向跨度为六个完整的网格。
可选的,所述支架与所述扩口罩为一体结构,通过管材切割或编织构成。
可选的,所述流入段为裸支架。
可选的,所述流入段具有收口结构。
可选的,所述流入段的最大径向刚度为M1;
所述腰部的径向刚度为M2;
所述支架中,由腰部的流出侧至支架流出部最远端之间的径向刚度为M3;
所述扩口罩包括与所述支架相连的扩口架以及铺设于所述扩口架的覆膜,所述扩口架在支架轴向上具有相对起伏的波峰和波谷,且各波谷通过连接条与所述支架相连;
所述扩口架的径向刚度为M4;
所述连接条的径向刚度为M5;
且满足:
M1<M2<M3;
M1<M2<M4;
M5<M2。
可选的,所述支架包括多根围成所述网筒结构的支撑条,通过不同部位支撑条的粗细变化改变所述径向刚度。
可选的,所述流入段沿血流方向依次包括端口部以及与所述腰部相衔接的过渡部,其中所述端口部的径向刚度小于所述过渡部。
可选的,所述流入段的径向刚度沿血流方向逐渐增加。
可选的,所述流入端沿周向排布有多个连接耳。
可选的,所述流入段为沿周向排布的网格结构,各网格在所述流入端分别收敛至相应的第一网格顶点,每个第一网格顶点均设置所述连接耳。
可选的,所述连接耳为封闭的环形或带有挂线开口。
可选的,所述挂线开口的两侧留有间隙或活动搭置。
可选的,所述挂线开口的两侧互相迂回形成迷宫式开口。
可选的,所述连接耳上连接有回收牵引线。
可选的,所述回收牵引线的至少一部分为处在支架围拢区域内部的横跨段。
可选的,所述回收牵引线包括依次穿引经过所有的连接耳的环绕段以及所述横跨段,牵拉所述横跨段时,所述环绕段带动所有连接耳收拢。
可选的,所述横跨段为一段或多段,多段之间互不相交或至少有两条相交。
可选的,所述环绕段以及所述横跨段为一体结构或分体结构。
可选的,所述环绕段与各连接耳之间为固定连接或活动穿引。
可选的,所述横跨段的各端部分别与所述环绕段之间为固定连接或活动连接。
可选的,所述横跨段的其中两端部在支架周向上的跨度为1/6~1/2支架周长。
可选的,所述横跨段的其中两端部所夹的圆心角为60~180度。
可选的,相邻两连接耳作为一对,所述横跨段的其中两端部分别为第一端部和第二端部,所述第一端部位于其中一对连接耳之间,所述第二端部位于另一对连接耳之间。
可选的,所述腰部为裸支架,或仅有部分区域被所述扩口罩遮挡。
可选的,所述瓣叶处在所述支架的内侧,所述瓣叶还向流入侧进一步延伸形成扩展覆膜并固定于所述支架的内侧;所述腰部被所述扩展覆膜完全遮挡或局部遮挡。
可选的,所述扩口罩包括与所述支架相连的扩口架以及铺设于所述扩口架的覆膜。
可选的,所述覆膜还向流入侧进一步延伸形成外覆膜并固定于所述支架的外侧;所述腰部被所述外覆膜完全遮挡或局部遮挡;或所述覆膜还向流入侧进一步延伸形成内覆膜并固定于所述支架的内侧;所述腰部被所述内覆膜完全遮挡或局部遮挡。
可选的,所述扩展覆膜与所述外覆膜或所述内覆膜在流入侧的边缘形状相同、并分别缝缀固于所述支架。
可选的,所述扩展覆膜与所述外覆膜或所述内覆膜在流入侧的边缘形状不同、并分别缝缀固于所述支架。
可选的,所述腰部中,被所述扩展覆膜或所述外覆膜或所述内覆膜任意一者遮挡的为遮挡区,没有被所述扩展覆膜或所述外覆膜或所述内覆膜任意一者遮挡的为贯通区,在支架周向上,所述遮挡区和所述贯通区交替分布。
可选的,所述遮挡区至少被所述外覆膜遮挡。
可选的,所述腰部为网格结构,所述遮挡区和所述贯通区的轴向长度均为半个网格,周向最大跨度为一个网格。
可选的,所述腰部与相邻段之间的母线平滑过渡。
可选的,所述腰部为网格结构,各网格在所述腰部的流出侧分别收敛至相应的第二网格顶点,所述扩口罩与各第二网格顶点相连。
可选的,所述流出段在径向上具有双层结构,所述支架由腰部的流出侧至所述流出端的部分为内层部分,所述扩口罩为外层部分;
所述瓣叶缝缀固定在所述腰部和/或所述内层部分。
可选的,所述瓣叶为二叶瓣或三叶瓣,所述内层部分带有网格结构,各网格在所述流出端分别收敛至相应的第三网格顶点,第三网格顶点的数量与瓣叶数量相应,各瓣叶朝向流入端的一侧为与支架相连的固定侧,朝向流出端的一侧为活动侧,所述固定侧与所述活动侧相 交在相应的第三网格顶点。
可选的,所述内层部分为间隔布置的V形支撑条,V形顶点为处在所述流出端的第三网格顶点,V形的两分叉与所述腰部相连。
可选的,所述腰部为网格结构,各网格在所述腰部的流出侧分别收敛形成六个第二网格顶点,所述V形支撑条为三条,所有V形支撑条共有六支分叉,每支分叉分别连接其中一第二网格顶点。
可选的,所述支架在第三网格顶点处开设有定位孔,各瓣叶的相应部位通过穿设于所述定位孔的缝线固定。
可选的,所述支架上在第三网格顶点处设有朝流出侧进一步延伸的连接片,所述定位孔排布在所述连接片上。
可选的,所述扩口罩包括与所述支架相连的扩口架以及铺设于所述扩口架的覆膜,所述覆膜在所述扩口架的支撑下围在所述流出端的外周。
可选的,所述覆膜周向封闭且与所述瓣叶相互衔接于支架部位、形成处在支架外围的防周漏部。
可选的,所述扩口架的流出侧向内弯折形成安全缩口。
可选的,所述覆膜的流出侧间隔的布置有多个缝缀区,各缝缀区与所述扩口架的相应部位固定连接,相邻两缝缀区之间为径向浮动缘。
可选的,所述覆膜在邻近径向浮动缘处为浮动部,所述浮动部可随血流作用发生径向位移。
可选的,所述浮动部可随血流作用与周围组织贴合或远离。
可选的,所述径向浮动缘为弧形,且弧顶朝向所述覆膜的流入侧。
可选的,所述扩口架在支架轴向上具有相对起伏的波峰和波谷,且各波峰处在流出侧,所述各缝缀区固定于位置相应的波峰。
可选的,所述弧形径向浮动缘的弧高为波峰高度的1/4~1/2。(相对于波谷的高度)
可选的,所述扩口架在支架轴向上具有相对起伏的波峰和波谷,且各波谷通过连接条与所述支架相连。
可选的,所述连接条的刚度小于与所述连接条相连的其他部位的刚度、用以释放所述扩口罩与所述支架的牵引应力。
可选的,所述连接条与所述支架为一体结构或为单独设置的柔性件。
可选的,所述连接条的长度为3~30mm。
可选的,所述波峰的数量与支架周向的网格数量相同。
可选的,所述波峰为圆角结构。
可选的,所述波峰沿支架周向均匀分布。
可选的,所述扩口架包括沿支架周向依次分布的多个V形杆,所述V形杆的顶点为波峰且位于所述扩口罩的流出侧,所述V形杆的两分叉分别与相邻的V形杆交汇形成波谷,各波谷通过所述连接条与所述腰部的流出侧连接。
可选的,所述扩口架的波峰部位沿血流方向进一步延伸越过所述支架的流出端。
可选的,所述扩口架的波峰部位沿血流方向进一步延伸越过所述支架的流出端,且越过部分的轴向长度为4.5~9mm。
可选的,所述扩口架的波峰部位沿血流方向进一步延伸越过所述支架的流出端,且越过部分的轴向长度为6.5mm。
可选的,所述扩口架沿血流方向依次包括外扩段以及安全缩口段,所述外扩段与所述安全缩口段的轴向长度之比为2:1~4:1。
可选的,所述外扩段与支架轴向的夹角为30度~60度。
可选的,所述外扩段与支架轴向的夹角为45度。
可选的,所述安全缩口段与支架轴向的夹角为30度~60度。
可选的,所述安全缩口段与支架轴向的夹角为45度。
可选的,在支架轴向上,所述扩口架的波谷部位与所述支架的流出端位置相互邻近。
可选的,所述腰部为网格结构,各网格在所述腰部的流出侧分别收敛形成六个第二网格顶点,所述V形杆为六条,所有V形杆共有十二支分叉,相邻的两支分叉汇至同一连接条,六根连接条且分别连接其中一第二网格顶点。
可选的,所述瓣膜装置为腔静脉瓣膜装置。
可选的,所述支架从流入端至流出端依次包括流入段、腰部、以及支架流出部,在腰部与支架流出部的结合部位设置有向流出侧进一步延伸的连接条,连接条的另一端则与扩口架相连。
可选的,位于扩口架流出侧的端点部位带有用于穿引缝线的缝合孔。
可选的,支架的框条上带有供缝线绕置的波纹结构。
可选的,在扩口架的流出端,以及支架的流出端均设有供回收牵引线穿引的挂线孔。
可选的,所述支架的流入端设有供回收牵引线穿引的挂线孔。
可选的,所述支架整体或至少相应部位采用波纹管切割而成,以形成所述波纹结构。
可选的,所述支架切割时在相应的位置沿波浪起伏的路径切割,以形成所述波纹结构。
可选的,所述波纹结构中,相邻两波谷的距离为0.5-2mm。
可选的,所述瓣膜装置支架包括预穿引的回收牵引线,回收牵引线包括:
环形段,沿周向依次穿过扩口架流出端的各个挂线孔;
联动段,连接在环形段与支架流出端的各个挂线孔之间。
本申请还提供一种瓣膜装置,采用上述任一种所述的瓣膜装置支架。
可选的,所述瓣膜装置具有相对的流入端和流出端,所述瓣膜装置包括:
支架,支架为网筒结构且内部为血流通道;
预缝合体,包括瓣叶与扩展覆膜,其中瓣叶位于支架的血流通道内,且能够在血流作用下开放或关闭血流通道,预缝合体与支架的相邻部位通过缝线固定于支架;
扩口架,扩口架与支架相连且围在流出端的外周;
覆膜体,环布固定在扩口架的内侧,覆膜体向流入端延伸且至少与预缝合体相交。
可选的,支架中与瓣叶边缘相邻近的框条带有供缝线绕置的波纹结构。
可选的,所述瓣叶上带有预设的压痕或打孔,作为缝线穿引的标识。本申请提供的瓣膜装置以及瓣膜装置支架,定位稳定,且能够有效防止周漏。
附图说明
图1为心脏三尖瓣返流的示意图;
图2为本申请瓣膜装置植入后的位置示意图;
图3a为本申请瓣膜装置其中一个实施例的示意图(省略瓣叶和覆膜);
图3b为本申请瓣膜装置各部位的轴向长度示意图;
图3c为本申请瓣膜装置各网格节点的分布示意图;
图3d为本申请瓣膜装置各网格的尺寸示意图;
图3e为本申请瓣膜装置沿轴向各部分的分布示意图;
图4a为本申请瓣膜装置其中一个实施例的示意图(省略瓣叶和覆膜);
图4b为图4a中瓣膜装置的扩口架部位尺寸示意图;
图5a为本申请瓣膜装置的立体图(省略瓣叶和覆膜);
图5b为本申请瓣膜装置其中一个实施例中连接耳的示意图;
图5c~图5f为本申请瓣膜装置不同的实施例中横跨段的结构示意图;
图6为本申请瓣膜装置的立体图(省略瓣叶和覆膜,另一视角);
图7为本申请瓣膜装置的立体图(省略瓣叶和覆膜,另一视角);
图8为本申请瓣膜装置的立体图;
图9为本申请瓣膜装置的立体图(省略部分覆膜,另一视角);
图10为本申请瓣膜装置其中一个实施例的示意图;
图11为本申请瓣膜装置一实施例中覆膜的展开示意图;
图12为本申请瓣膜装置另一实施例中覆膜的展开示意图;
图13~图19为本申请瓣膜装置一实施例不同角度的示意图(省略瓣叶和覆膜);
图20~图27为本申请瓣膜装置一实施例不同角度的示意图(覆膜处在扩口罩外侧);
图28~图35为本申请瓣膜装置一实施例不同角度的示意图(覆膜处在扩口罩内侧);
图36~图44为本申请瓣膜装置一实施例不同角度的示意图(覆膜处在扩口罩外侧);
图45~图52为本申请瓣膜装置一实施例不同角度的示意图(覆膜为透明或半透明材质且处在扩口罩外侧);
图53~图60为本申请瓣膜装置一实施例不同角度的示意图(覆膜处在扩口罩内侧);
图61~图68为本申请瓣膜装置一实施例不同角度的示意图(覆膜为透明或半透明材质且处在扩口罩内侧);
图69~图75为本申请瓣膜装置一实施例不同角度的示意图(省略瓣叶和覆膜);
图76~图83为本申请瓣膜装置一实施例不同角度的示意图(省略瓣叶和覆膜);
图84为一实施例中瓣膜装置支架(包括支架以及扩口架)的结构示意图;
图85为图84中的A部放大图;
图86~图87为两种类型瓣叶的结构示意图;
图88~图89为两种类型瓣叶与扩展瓣膜缝合拼接后的展开图;
图90为瓣叶与扩展瓣膜围拢后的立体结构示意图;
图91为一体结构的覆膜以及内覆膜(单元片)的结构示意图;
图92为一体结构的覆膜以及内覆膜(所有单元片缝合拼接后)的展开图;
图93为图84中的瓣膜装置支架缝合瓣叶以及扩展瓣膜后的结构示意图;
图94为图93中进一步缝合覆膜以及内覆膜后的结构示意图;
图95为图94另一角度(为避免干涉,图中省略了瓣叶与扩展瓣膜)的结构示意图;
图96为图94中的B部放大图;
图97为一实施例中瓣膜装置支架(包括支架以及扩口架)的结构示意图。图中附图标记说明如下:
1、上腔静脉;2、下腔静脉;3、右心房;4、右心室;5、支架;501、第一节点;502、第二节点;503、第三节点;504、第四节点;505、第五节点;506、第六节点;507、第七节点;508、第八节点;509、第九节点;510、第十节点;51、支架流出部;511、波峰;512、波谷;513、第一框条;514、第二框条;6、瓣叶;601、第一结合翼;602、凸耳;603、中心定位孔;604、起针定位孔;605、缝合定位孔;606、活动缘;607、固定缘;61、扩展覆膜;611、第二结合翼;612、第一缝合缘;613、第二缝合缘;614、第三缝合缘;7、扩口罩;8、流入段;9、腰部;10、流出段;11、端口部;12、过渡部;13、连接耳;131、回收牵引线;132、横跨段;1321、端部;1322、端部;1323、端部;1324、端部;133、环绕段;134、自由端;135、自由端;136、挂线开口;137、联动段;138、环形段;14、第一网格顶点;15、遮挡区;16、贯通区;17、第二网格顶点;18、第三网格顶点;181、挂线孔;19、内层部分;20、外层部分;21、定位孔;22、扩口架;221、外扩段;222、安全缩口段;223、缝合孔;224、挂线孔;23、覆膜;231、缝缀区;232、径向浮动缘;233、浮动部;234、内覆膜;235、结合部;236、翼片;237、岔口;24、波峰;25、波谷;26、连接条。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为与另一个组件“连接”时,它可以直接与另一个组件连接或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参见图3a、图4a、图10所示,本申请其中一实施例中,提供一种瓣膜装置,包括:
支架5,支架5为网筒结构且内部为血流通道,支架5在轴向上具有相对的流入端和流出端;
瓣叶6,瓣叶6连接在支架5的血流通道内,且能够在血流作用下开放或关闭血流通道;
扩口罩7,扩口罩7与支架5相连且围在流出端的外周,扩口罩7为背向流入端的扩口结构。瓣膜装置在使用状态下为具有空间三维姿态的释放状态,在利用介入器械进行输送时为体积较小的压缩状态,本申请在没有特殊说明时,均理解为对释放状态的描述。
瓣膜装置可根据应用于不同位置,在一些实施例中,以置于腔静脉为例(即瓣膜装置为腔静脉瓣膜装置),其他应用位置同理。
参见图2所示,本申请提供的瓣膜装置植入体内后位于腔静脉(如无特殊说明,包括上 腔静脉1和下腔静脉2)中,图2中仅示意了下腔静脉2中的位置,上腔静脉1同理。图2中的血流方向为正常情况下血液的流动方向,本申请中如果没有特殊说明,涉及流入、流出概念时,均指正常情况下的血液流动方向,而非返流血液的流动方向。
支架5内部为血流通道,提供正常的血流通路,瓣叶6在血流作用下开放或关闭血流通道,可以控制血液的单向通过,具体地,开放血液从腔静脉进入右心房3的通路,关闭血液从右心房3进入腔静脉的通路,如果出现三尖瓣返流,可以通过瓣叶6进行阻隔,避免返流血进入腔静脉血。
瓣膜装置在植入后需要防止移位,扩口罩7具有扩口结构。另外扩口罩7在返流血作用下与邻近的组织贴靠定位,防止瓣膜装置在返流血的作用下发生位置改变。
本申请中,瓣膜装置的支架5材质、以及瓣叶6材质选择无特殊之处,参照现有技术中的材质进行选择,例如支架5选择不锈钢或镍钛合金或其他材质的记忆金属,瓣叶6选择天然生物材料(例如心包膜生物材料)或合成的高分子材质。扩口罩7相应部分的材质选择参照支架5和瓣叶6。
参见图3a、图4a所示,瓣膜装置沿血流方向依次包括:
流入段8,处在流入端的一侧;
腰部9,处在支架5轴向的中部;
流出段10,由扩口罩7与支架5相连的部位起朝流出端一侧延伸;
瓣膜装置的各部分均具有相对的流入侧和流出侧。
本申请中同时具有流入段8、流入端、流入侧的概念,相应的具有流出段10、流出端、流出侧的概念,对各概念明确如下:
流入段8和流出段10分别为瓣膜装置轴向上的两段,参见图3a所示,H1为流入段8轴向长度、H3为流出段10轴向长度,流入段8和流出段10分别具有一定的轴向长度,且分别为瓣膜装置结构的一部分。
流入端和流出端分别为支架5轴向上的两端,参见图3a所示,流入端为图3a中支架5的底端,流出端为图3a中支架5的顶端,流入端和流出端更多地作为参照来描述其他部件的空间位置关系。
瓣膜装置沿轴向依次具有流入段8、腰部9(H2为腰部9轴向长度)和流出段10三个部分,三个部分各自具有流入侧和流出侧,针对每个部分,流入侧和流出侧分别为轴向上的相对位置关系,流入侧和流出侧作为参照来描述其他部件的空间位置关系。
其中一实施例中,腰部9相对于流入段8和流出段10具有较小的外径。流入段8的外径D1,以及流出段10的外径D3均大于腰部9外径D2用于实现定位,各段外径一般指最大外径部分,例如流出段10的外径D3也即扩口罩7的外径。
腰部9具有更小的外径,腔静脉内壁在腰部9处相应具有适应形变,形成与腰部9形状相适应的凸起部位,通过凸起部位与腰部9的配合,起到防止支架5移位的作用。
例如在一实施例中:
流出段10的外径D3为20~60mm。在优选的实施例中D3为40~50mm。在优选的实施例中D3为42~48mm,在优选的实施例中D3为45mm。
腰部9的外径D2 15~40mm。在优选的实施例中D2为30~35mm。在优选的实施例中D2为30mm。
流入段8的外径D1为20~55mm。在优选的实施例中D1为40~50mm。在优选的实施例中D1为40mm。
各部分适宜的外径尺寸和比例,可进一步保证定位效果以及与主视体内组织贴合。例如一实施例中D3为45mm,D2为30mm,D1为40mm。
参见图3a所示,其中一实施例中,除扩口罩7以外,支架5为网格结构,且轴向长度H4为两个完整的网格。支架5整体采用网格结构,为了实现压缩与展开两个状态,网格优选菱形格(或近似菱形)或六边形格。
支架5采用网格结构,网格数量不易太多,以免影响腔静脉内的血液进入分支血管,例如旁侧的肝静脉(图中未示)等,支架5的网格数量也不易太少,至少能起到支撑定位作用。
参见图3a、图4a所示,其中一实施例中,流入段8的轴向长度H1为一个完整的网格,腰部9的轴向长度H2为半个网格,由腰部9的流出侧至流出端的轴向长度H5为半个网格;
扩口罩7连接在腰部9的流出侧。
结合图3b,其中一实施例中:
瓣膜装置的轴向长度H9为30~85mm。在优选的实施例中H9为55~70mm。在优选的实施例中H9为60~65mm。在优选的实施例中H9为62.5mm。
支架5的轴向长度H4为25~75mm。在优选的实施例中H4为50~60mm。在优选的实施例中H4为为53~58mm,在优选的实施例中H4为56mm。
由腰部流入侧至支架流出部最远端的轴向长度H8为12~40mm。由腰部流入侧至支架流出部最远端的轴向长度H8为25~30mm,在优选的实施例中H8为28mm。
为使得瓣膜装置整体上具有适宜刚度特性以及良好的可压缩性,瓣膜装置中不同部位的网格结构在尺寸上也具有一定的分布特点。
例如一实施例中:H9为62.5mm,H4为56mm,H8为28mm。
结合图3c和图3d,其中一实施例中:流入段所对应的网格中,包括:
位于流入侧的第一节点501;
位于流出侧的第二节点502;
位于第一节点501与第二节点502之间,且相对布置的第三节点503、第四节点504;
第一节点501与第二节点502、第三节点503、第四节点504围成近似菱形的单元格,支架在释放状态下,第一节点501与第三节点503在三维空间中的距离L5为8~22mm,第一节点501与第四节点504在三维空间中的距离等同于L5。
第二节点502与第三节点503在三维空间中的距离L4为8~22mm,第二节点502与与第四节点504在三维空间中的距离等同于L4。
在优选的实施例中L5=L4。
在优选的实施例中L5为15~20mm,L4为15~20mm。在优选的实施例中L5为14~18mm,L4为14~18mm。
在进一步优选的实施例中L5为16mm,L4为16mm。
腰部对应的半个网格中,包括:
位于流入侧的第五节点505;
位于流出侧的且相对布置的第六节点506、第七节点507;
第五节点505在位置上即相当于上述的第二节点502,支架在释放状态下,第五节点506 与第六节点506在三维空间中的距离L3为6~16mm。第五节点506与第七节点507在三维空间中的距离等同于L3。
在优选的实施例中L3<L5,且L3<L4。
在优选的实施例中L3为10~15mm。在优选的实施例中L3为10~14mm。
在进一步优选的实施例中L3为12mm。
由腰部的流出侧至支架流出部最远端对应的半个网格中,包括:
位于流入侧且相对布置的第八节点508、第九节点509;
位于流出侧的第十节点510;
支架在释放状态下,第八节点508与第十节点510在三维空间中的距离L2为6~20mm。第九节点509与第十节点510在三维空间中的距离等同于L2。
在优选的实施例中L2<L5,且L2<L4。在优选的实施例中L3<L2。
在优选的实施例中L2为10~15mm。在优选的实施例中L2为12~15mm。在进一步优选的实施例中L2为14mm。
在更优选的实施例中L5为16mm,L4为16mm,L3为12mm,L2为14mm。
支架5的周向跨度为3*n个完整的网格,n为1、2或3,在其中一个实施例中,参见图5a、图6所示,支架5的周向跨度为6个完整的网格。
支架5与扩口罩7可以采用分体固定式结构,其中一实施例中,也可以采用一体结构,通过管材切割或编织构成。一体结构的支架5和扩口罩7不仅便于加工,也有利于减小压缩尺寸。
参见图8所示,为了避免影响腔静脉和其他分支血管之间的血液流动,其中一实施例中,流入段8为裸支架。裸支架即不覆膜,避免因覆膜干涉旁侧的肝静脉,造成不必要的阻挡。
瓣膜装置作为介入器械,在植入过程中需要考虑回收问题,在瓣膜装置植入的过程中,瓣膜装置的流入端为最后释放的部位,相应地在进行回收时,瓣膜装置的流入端为最先进入输送器械的部位,为了顺利地由释放状态切换至收缩状态,其中一实施例中,流入段8具有收口结构,通过收口结构使流入段8在受到牵引以及输送器械管体的束缚下,具有向内收缩的趋势,避免流入端的支架5结构卡在输送器械管体的入口处,造成回收困难。
为了进一步便利回收过程的进行,结合图3e,其中一实施例中,流入段8的最大径向刚度为M1;
腰部9的径向刚度为M2;
支架中,由腰部的流出侧至支架流出部最远端之间,即支架流出部51的径向刚度为M3;
扩口罩包括与支架相连的扩口架22以及铺设于扩口架的覆膜,扩口架22在支架轴向上具有相对起伏的波峰和波谷,且各波谷通过连接条26与支架相连;
扩口架22的径向刚度为M4;
连接条26的径向刚度为M5;
且满足:
M1<M2<M3;
M1<M2<M4;
M5<M2。
径向刚度是指径向方向上在受到外力作用时抵抗时的能力,径向刚度越大,则在径向方 向上受到外力时,越不容易发生形变,径向刚度越小,则在径向方向上受到外力时,越容易发生形变。
扩口架22的径向刚度较强,可起到稳固的支撑锚定作用;支架流出部51的径向较强,可起到良好支撑作用,防止瓣叶变形,保证密封效果;流入段8的径向刚度很弱,即其最大径向刚度的部位仍小于M4、M5,以便于形变回收;腰部9径向刚度适中,可起到良好的支撑以及过渡作用,进一步保证对瓣叶的支撑和密封性,连接条26的径向刚度很弱,可容许扩口架22与支架5之间的相对位移,避免相互牵拉导致支架5形变,以至于影响瓣叶密封。
其中一实施例中,流入段8的径向刚度小于腰部9和流出段10,流入段8在受到输送器械管体的束缚时,更容易顺应管体形状发生形变,从而回收入输送器械的管体(例如外鞘管)内,但是流入段8的径向刚度也不易过小,否则会影响支架5整体的径向刚度,起不到足够的支撑和定位作用。
腰部9和流出段10的径向刚度适当大于流入段8,一方面可以保证支撑作用,另一方面由于流入段8已经进入管体,作为一体结构的其他部分,也相对容易顺应地进入管体,不再需要牺牲径向刚度。
径向刚度的改变可以通过多种形式,例如,支架5不同部位采用不同材料,同一材料支架5不同部位的不同处理,参见图3a、图4a所示,在一实施例中,支架5包括多根围成网筒结构的支撑条,通过不同部位支撑条的粗细变化改变径向刚度。腰部9和流出段10采用较粗的直径(理解为截面积,实际上可以表现为宽度或厚度等尺寸),流入段8采用较细的直径。
为了兼顾径向支撑力和回收性能,对于流入段8的径向刚度可以做进一步优化,参见图4a所示,在一实施例中,流入段8沿血流方向依次包括端口部11以及与腰部9相衔接的过渡部12,其中端口部11的径向刚度小于过渡部12。
端口部11的轴向长度H12和过渡部12的轴向长度H11大致均为半个网格,端口部11的径向刚度最小,用于适应回收的需求,过渡部12的径向刚度大于端口部11,用于提供更有力的支撑。
端口部11与过渡部12的径向刚度虽然有大小差异,但是为了避免出现应力集中部位,不存在径向刚度的突变点,即其中一实施例中,流入段8的径向刚度沿血流方向逐渐增加。流入段8的径向刚度连续改变,通过支撑条的粗细连续变化来达到径向刚度连续改变的目的。
参见图5a、图6所示,其中一实施例中,流入端沿周向排布有多个连接耳13。通过各连接耳13对支架5施力,以完成支架5进入输送器械管体的过程。
参见图5a、图6所示,其中一实施例中,流入段8为沿周向排布的网格结构,各网格在流入端分别收敛至相应的第一网格顶点14,每个第一网格顶点14均设置连接耳13。连接耳13可以采用各种形式,只要能够提供有效的施力点即可,例如,其中一实施例中,连接耳13为封闭的环形或带有挂线开口。
参见图5a所示,其中一实施例中,连接耳13上连接有回收牵引线131(图5a中虚线部分所示)。回收牵引线131贯穿全部或至少一部分连接耳13,回收牵引线131贯穿的连接耳13沿流入段8的周向均匀分布,通过回收牵引线均匀的施力,将流入段8牵引进入输送器械的管体内。
瓣膜装置在体内工作一段时间后(如一个月内,或至少在内皮化前),若病人的症状(如三尖瓣返流)好转或完全消失后可利用回收牵引线131将瓣膜装置回收装载并移出体外,否 则在体内工作一段时间后回收牵引线131会逐渐内皮化。
连接耳为封闭的环形时,尽管同比强度较高,但穿引回收牵引线时操作不便或需借助其他工具,而带有挂线开口时,回收牵引线可直接经由该挂线开口进入连接耳围拢的区域。
在不同的实施例中,挂线开口的两侧留有间隙或活动搭置,活动搭置是指在非受力状态下并没有明显的间隙,使用时刻稍用力形变,则挂线开口张开。
参见图5b,在一实施例中,连接耳13带有挂线开口136,挂线开口136两侧分别为自由端134和自由端135,自由端134和自由端135互相迂回形成迷宫式开口。回收牵引线131可经由迷宫式开口从连接耳13的一侧进入连接耳围拢的区域,迷宫式开口可限制回收牵引线131脱出,另外回收牵引线131施力时自由端134和自由端135相互搭扣,封闭挂线开口136,也进一步限制连接耳13的形变。
为了便于对回收牵引线进行抓取,参见图5a所示,其中一实施例中,回收牵引线的至少一部分为处在支架围拢区域内部的横跨段132。即回收牵引线131的至少一部分横跨血流通道,而非贴靠血管内壁,由于横跨段132周围不存在更多部件干扰,更容易被抓取。
回收牵引线131贯穿连接耳13,通过回收牵引线131上任意一点的施力,可以实现各连接耳13的相互靠近,为了避免游离的连接耳13(游离的连接耳13即没有贯穿回收牵引线131的连接耳13卡在输送器械的管体端部,对回收造成影响,优选地,其中一实施例中,回收牵引线131依次穿引经过所有的连接耳13。
参见图5a~图5f,例如,一实施例中,回收牵引线包括依次穿引经过所有的连接耳13的环绕段133以及横跨段132(虚线部分),牵拉横跨段132时,环绕段133带动所有连接耳13收拢。
横跨段132的数量可以是一段或多段,多段之间互不相交或至少有两条相交。
例如图5c,图5d中横跨段132的数量是一段,图5e中横跨段132的数量是两段且并没有直接相交,由于横跨段132自身为柔性部件,一般并不要求绷紧,所以图中仅仅作为原理示意,并不作为对其延伸路径的严格限定。
图5f中横跨段132的数量按照端部数量可视为是相交的两段,或辐射分布的三段。
在不同的实施例中,环绕段133以及横跨段132为一体结构或分体结构。环绕段133以及横跨段132可以通过一根线体的绕置形成,必要时可结合打结等方式改变节点位置或延伸方向的转折。
环绕段133以及横跨段132可以使各自独立的线体,横跨段132的各端部通过打结或作活套的方式连接于环绕段133的相应位置。
在不同的实施例中,环绕段133与各连接耳13之间为固定连接或活动穿引。作为优选,采用活动穿引,环绕段133受横跨段132牵拉时,环绕段133的活动穿引可将牵引力尽可能的平均分布于各个连接耳13,当然与所有连接耳13或部分连接耳13之间可以采用固定连接,回收时形成类似于降落伞的牵拉形态,即环绕段133的的特定部位牵拉对应的连接耳13。
在不同的实施例中,横跨段132的各端部分别与环绕段133之间为固定连接或活动连接。固定连接或活动连接可改变牵拉时的相对受力部位。
横跨段132的牵拉部位应尽量分布于环绕段133的不同部位,因此横跨段132的各端部应尽可能在周向上分散开,优选均匀的间隔排布。
一实施例中,横跨段132的其中两端部在支架周向上的跨度为1/6~1/2支架周长。同理可 理解为横跨段132的其中两端部所夹的圆心角α为60~180度。
例如图5c中,横跨段132的其中两端部即端部1321和端部1322在支架周向上的跨度为1/4支架周长,即端部1321和端部1322所夹的圆心角α为90度。
端部1321和端部1322分布在不同的连接耳间隙中,例如相邻两连接耳作为一对,端部1321位于其中一对连接耳之间,端部1322位于另一对连接耳之间。
例如图5d中,横跨段132的其中两端部即端部1321和端部1322在支架周向上的跨度为1/2支架周长,即端部1321和端部1322所夹的圆心角α为180度。
当横跨段132有多段时,端部的位置会进一步复杂,例如图5e中,横跨段132有两段,其中一段两端部即端部1321和端部1322,另一端两端部即端部1323和端部1324,就同一段而言,两端部所夹的圆心角为钝角,例如120~150度。
例如图5f中,端部有三处,相邻两端部之间所夹的圆心角为钝角,例如120~150度。
为了减小对腔静脉与分支血管(例如肝静脉)之间的血流交互的影响,参见图8并结合图11和图12(图11和图12中扩口罩连同与之邻近的局部支架均呈平铺展开状态),其中一实施例中,腰部9为裸支架5,或仅有部分区域被扩口罩7遮挡。
瓣叶6处在支架5的内侧,瓣叶6还向流入侧进一步延伸形成扩展覆膜并固定于支架5的内侧;腰部被扩展覆膜完全遮挡或局部遮挡。
扩口罩包括与支架5相连的扩口架22以及铺设于扩口架22的覆膜23,覆膜23还向流入侧进一步延伸形成外覆膜并固定于支架5的外侧;腰部被外覆膜完全遮挡或局部遮挡。即覆膜23处在扩口架外侧。
在其他实施例中,覆膜还向流入侧进一步延伸形成内覆膜并固定于支架的内侧;腰部被外覆膜完全遮挡或局部遮挡。即覆膜处在扩口架内侧,可参见图28~图35。
以下若干实施例中以覆膜23处在扩口架外侧为例,而处在内侧同理。
一实施例中,扩展覆膜与外覆膜在流入侧的边缘形状相同、并分别缝缀固于支架5。例如扩展覆膜与外覆膜在流入侧的边缘形状均如图11所示,呈齿状,齿状边缘缝缀固定于支架相应部位的网格支撑条上。
一实施例中,扩展覆膜与外覆膜在流入侧的边缘形状不同、并分别缝缀固于支架5。例如扩展覆膜在流入侧的边缘形状如图11所示,呈齿状,齿状边缘缝缀固定于支架相应部位的网格支撑条上,而外覆膜在流入侧的边缘形状如图12所示,即沿周向具有平滑的边缘。
腰部中,被扩展覆膜或外覆膜任意一者遮挡的为遮挡区15,没有被扩展覆膜或外覆膜任意一者遮挡的为贯通区16,在支架周向上,遮挡区15和贯通区16交替分布。其中遮挡区15至少被外覆膜遮挡。遮挡区15和贯通区16在支架5周向上交替分布,分支血管的横截面至少一部分与贯通区16相对应,保证血液的正常流通。
参见图11、图12所示,其中一实施例中,腰部9为网格结构,遮挡区15和贯通区16的轴向长度Y均为半个网格,周向跨度X为一个网格。
瓣膜装置整体上为旋转对称结构,即具有一中心轴线,通过母线围绕中心轴线旋转形成,腰部9与相邻段之间的母线平滑过渡,使瓣膜装置的外周面为平滑的曲面,即不存在尖锐的棱角,以免对体内组织造成伤害。
参见图8、图9所示,其中一实施例中,腰部9为网格结构,各网格在腰部9的流出侧 分别收敛至相应的第二网格顶点17,扩口罩7与各第二网格顶点17相连。
参见图7、图10所示,其中一实施例中,流出段10在径向上具有双层结构(图7中虚线示意内外两层结构),支架5由腰部9的流出侧至流出端的部分为内层部分19,扩口罩7为外层部分20;
瓣叶6缝缀固定在腰部9和/或内层部分19。
瓣叶6在血流作用下封闭或开放血流通道,瓣叶6的缝线以及缝缀方式可以采用现有技术,瓣叶6的缝制部位可以仅在腰部9、或仅在内层部分19、依照瓣叶6的尺寸也可能同时缝缀于腰部9和内层部分19。缝线可以是单股或多股,材质为天然或合成纤维。
流出端在径向上的双层结构用于实现不同的作用,且内层部分19和外层部分20之间的形变相对独立,不容易相互影响干涉,内层部分19主要用于瓣叶6的支撑,外层部分20主要用于定位和防周漏。
在压缩状态下,内层部分19和外层部分20相互之间并无叠置,而是相互错位,形成共面(弧面),可以在一定程度上减小压缩后的径向尺寸,有利于在输送器械内进行装载和输送。
瓣叶6形式可以采用现有技术,例如,即瓣叶6可以为二叶瓣或三叶瓣,参见图9、图10所示,在一实施例中,瓣叶6为三叶瓣,内层部分19带有网格结构,各网格在流出端分别收敛至相应的第三网格顶点18,第三网格顶点18的数量与瓣叶6数量相应,各瓣叶6朝向流入端的一侧为与支架5相连的固定侧,朝向流出端的一侧为活动侧,固定侧与活动侧相交在相应的第三网格顶点18。
第三网格顶点18的数量为三个,瓣叶6数量相应为三片,各瓣叶6的固定侧缝缀在支架5上,瓣叶6的固定侧边缘与腰部9的网格形状相适应,瓣叶6的固定侧均通过缝线缝缀在腰部9网格上。参见图10所示,瓣叶6的活动侧具有相互靠拢的关闭状态以及相互远离的开放状态,通过瓣叶6的空间位置关系布置,在血流作用下实现关闭状态和开放状态的切换。
参见图4a、图6所示,其中一实施例中,内层部分19为间隔布置的V形支撑条,V形顶点为处在流出端的第三网格顶点18,V形的两分叉与腰部9相连。
其中一实施例中,腰部9为网格结构,各网格在腰部9的流出侧分别收敛形成六个第二网格顶点17,V形支撑条为三条,所有V形支撑条共有六支分叉,每支分叉分别连接其中一第二网格顶点17。
参见图3a、图4a所示,其中一实施例中,支架5在第三网格顶点18处开设有定位孔21,各瓣叶6的相应部位通过穿设于定位孔21的缝线固定。支架5上在第三网格顶点18处设有朝流出侧进一步延伸的连接片,定位孔21排布在连接片上。
其中一实施例中,同一第三网格顶点18上的定位孔21有一个或多个(例如1~3个),沿支架5的轴向依次排布,相邻两瓣叶6在定位孔21处相交汇,在瓣叶6闭合状态下,减少瓣叶6间的间隙。
参见图7、图8、图9所示,其中一实施例中,扩口罩7包括与支架5相连的扩口架22以及铺设于扩口架22的覆膜23,覆膜23在扩口架22的支撑下围在流出端的外周。
扩口架22位于支架5的外周,扩口架22与支架5在径向上形成双层结构,扩口架22与支架5的形变各自相对独立,避免扩口架22形变对支架5形状的影响。
扩口罩7采用覆膜23支架5的形式,一方面起到定位的作用,另一方面起到防周漏的作用,覆膜23周向封闭且与瓣叶6相互衔接于支架5部位、形成处在支架5外围的防周漏部。
具有扩口结构的扩口罩7一方面起到定位作用,另一方面扩口罩7的覆膜23对返流血形成阻挡,防止返流血从支架5与血管的径向间隙中通过。而在返流血的作用下,也会进一步推动扩口罩7贴靠腔静脉口,保证定位和密封效果。
扩口罩7的防周漏部处于支架5的流出端,不影响腔静脉与分支血管支架5之间的血液流通。
由于扩口罩7的外径D3较大,为了避免对体内组织造成损伤,参见图3a、图4a所示,扩口架22的流出侧向内弯折形成安全缩口。为了保证定位作用的实现,安全缩口的弯折部位尽可能靠近扩口罩7的流出侧。
参见图8、图9、图11、图12所示,其中一实施例中,覆膜23的流出侧间隔的布置有多个缝缀区231,各缝缀区231与扩口架22的相应部位固定连接,相邻两缝缀区之间为径向浮动缘232。
径向浮动缘232不与扩口架22缝缀,而是具有一定的活动范围,为了减小压缩状态下,覆膜23的相互叠置,参见图8所示,径向浮动缘232为弧形,且弧顶朝向覆膜23的流入侧。弧形的边缘设计可在扩口架22变形后减少覆膜23的折叠压缩,保证与周边组织的贴合。
覆膜23在邻近径向浮动缘232处为浮动部233,浮动部233可随血流作用发生径向位移。即可随血流作用与周围组织贴合或远离。例如在返流血作用下,浮动部233可以自动贴靠血管内壁,进一步防止周漏。
覆膜23为一块,在未缝缀状态下环绕形成锥面,覆膜23的一部分位于扩口架22内部,通过缝缀区与扩口架22之间固定连接;覆膜23与腰部9对应的边缘缝缀在腰部9的网格结构上;在腰部9流出侧至支架5流出端之间,覆膜23与支架5网格缝缀连接。
参见图3a、图4a所示,其中一实施例中,扩口架22在支架5轴向上具有相对起伏的波峰24和波谷25,且各波峰24处在流出侧,各缝缀区固定于位置相应的波峰24。
覆膜23在缝缀时,少许边缘包裹波峰24并通过缝线与波峰24固定连接,以减少覆膜23在扩口架22上的移位。
参见图4a所示,其中一实施例中,弧形的径向浮动缘232(图4a中虚线所示,图4a中仅示意了一部分径向浮动缘的位置)的弧高H7为波峰24高度H6(波峰24高度H6为波峰24到波谷25的距离)的1/4~1/2。
参见图3a、图4a所示,其中一实施例中,扩口架22在支架5轴向上具有相对起伏的波峰24和波谷25,且各波谷25通过连接条26与支架5相连。
波峰24和波谷25并非平面上的波浪关系,而是在支架轴向上的相对位置关系。通过连接条26对扩口架22和支架5进行隔离,进一步减小扩口架22与支架5之间形变的相互影响。
为了进一步减少扩口架22形变对支架5形状的影响,其中一实施例中,连接条26的刚度小于与连接条26相连的其他部位的刚度、用以释放扩口罩7与支架5的牵引应力。当扩口架22发生形变时,通过连接条26吸收扩口架22的形变,不再进一步传递至支架5。
连接条26与支架5为一体结构或为单独设置的柔性件。参见图3a、图4a所示,其中一实施例中,连接条26与支架5为一体结构,通过控制连接条26的粗细来控制连接的刚度符合要求。
参见图4a所示,其中一实施例中,连接条26的长度L1为3~30mm。连接条26的长度与腔静脉瓣膜装置整体尺寸相适应。
参见图5a、图6所示,其中一实施例中,波峰24的数量与支架5周向的网格数量相同。波峰24为圆角结构,进一步减小对体内组织的损伤。波峰24沿支架5周向均匀分布,使瓣膜装置在周向上受力均匀。
参见图5a、图6所示,其中一实施例中,扩口架22包括沿支架5周向依次分布的多个V形杆(V形杆的折弯部位具有圆角结构),V形杆的顶点为波峰24且位于扩口罩7的流出侧,V形杆的两分叉分别与相邻的V形杆交汇形成波谷25,各波谷25通过连接条26与腰部9的流出侧连接。
参见图4a、图4b所示,其中一实施例中,扩口架22的波峰24部位沿血流方向进一步延伸越过支架5的流出端。
其中一实施例中,扩口架22的波峰部位沿血流方向进一步延伸越过支架5的流出端,且越过部分的轴向长度H13为4.5~9mm,在优选的实施例中H13为6.5mm。
其中一实施例中,扩口架22沿血流方向依次包括外扩段221以及安全缩口段222,外扩段221的轴向长度H14与安全缩口段222的轴向长度H15之比为2:1~4:1。例如2.5:1~3:1。
扩口架22向外倾斜的角度即扩张的趋势,在一定程度上与定位效果相关,其中一实施例中,外扩段221与支架轴向的夹角为30度~60度。例如外扩段221与支架轴向的夹角为45度。
安全缩口段222与支架轴向的夹角为30度~60度。例如安全缩口段222与支架轴向的夹角为45度
在支架5轴向上,扩口架22的波谷25部位与支架5的流出端位置相互邻近。
参见图3a、图4a所示,其中一实施例中,腰部9为网格结构,各网格在腰部9的流出侧分别收敛形成六个第二网格顶点17,V形杆为六条,所有V形杆共有十二支分叉,且相邻的两支分叉汇至同一连接条26,六根连接条26分别连接其中一第二网格顶点17。
图13~图19为本申请瓣膜装置一实施例不同角度的示意图,图中省略瓣叶和覆膜,仅示意了支架以及扩口架部分,即瓣膜装置支架。
图20~图27为本申请瓣膜装置一实施例不同角度的示意图,本实施例中,覆膜处在扩口架外侧,覆膜还向流入侧进一步延伸形成外覆膜并固定于支架的外侧,图26,图27示意了瓣叶不同姿态即血流通道不同的开启程度。
图28~图35为本申请瓣膜装置一实施例不同角度的示意图,本实施例中,覆膜处在扩口架内侧,覆膜还向流入侧进一步延伸形成内覆膜并固定于支架的内侧。
图36~图44为本申请瓣膜装置一实施例不同角度的示意图,本实施例中,覆膜处在扩口架外侧。
图45~图52为本申请瓣膜装置一实施例不同角度的示意图,本实施例中,覆膜为透明或半透明材质,例如图51中的A部位,本实施例中覆膜处在扩口架外侧。
图53~图60为本申请瓣膜装置一实施例不同角度的示意图,本实施例中,覆膜处在扩口架内侧。
图61~图68为本申请瓣膜装置一实施例不同角度的示意图,本实施例中,覆膜为透明或半透明材质,例如图67中的B部位,本实施例中覆膜处在扩口架内侧。
本申请提供的瓣膜装置,设置了扩口罩,其在返流血的作用下自适应的贴靠与邻近组织,由于采用扩口结构,因此定位稳定,另外由于采用覆膜且覆膜与瓣叶相互衔接,能够有 效防止周漏。
图69~图75为本申请瓣膜装置一实施例不同角度的示意图,图中省略瓣叶和覆膜,仅示意了支架以及扩口架部分,即瓣膜装置支架。
图76~图83为本申请瓣膜装置一实施例不同角度的示意图,图中省略瓣叶和覆膜,仅示意了支架以及扩口架部分,即瓣膜装置支架,其中图82为穿设回收牵引线后的使用状态。
无论外科生物瓣膜与介入瓣膜,缝合是瓣膜与支架的重要连接形式,缝合强度和支架对缝合线的剪切作用造成瓣膜失效的重要形式,缝线的选择、缝合方式对瓣膜疲劳寿命有重要影响。由于缝合点受力作用的集中,此处易发生瓣膜撕裂、缝线的剪切断裂。
目前常用的增加的解决疲劳寿命的方法主要有:①选择抗拉强度高、抗撕裂强度高的膜片;②选择抗剪切、高强度、低蠕变的性能的缝合线;③改变瓣膜瓣叶的切割形式,从而改变缝合方式;④改变支架结构减少支架缝合边缘对膜片和缝合线的剪切作用。常用瓣膜主要有生物材料和高分子材料等,生物材料受生物本身的影响,有一定的限制,处理工艺可以增加其力学性能,但达到力学性能顶点后再继续增加是困难的。由于经导管生物瓣膜的装载释放时在输送器中进行的,缝合线的线径要求限制了其最大强度性能。
以下一些实施例中通过支架结构的改变,或结合瓣膜的切割、拼接形式可以有效增加瓣膜的疲劳寿命。
参见图84,图85,本申请一实施例提供一种瓣膜装置支架,具有相对的流入端和流出端,包括:
支架5,支架5为网筒结构且内部为血流通道;
扩口架22,扩口架22与支架5相连且围在流出端的外周。
关于支架5以及扩口架22的其他结构特点,以及瓣叶或覆膜的缝缀方式等均可结合前述各实施例,例如支架5从流入端至流出端依次包括流入段8、腰部9、以及支架流出部51,在腰部9与支架流出部51的结合部位设置有向流出侧进一步延伸的连接条26,连接条26的另一端则与扩口架22相连,支架5以及扩口架22整体上可采用管材切割的方式获得。
在一些改进的实施例中,位于扩口架22流出侧的端点部位带有用于穿引缝线的缝合孔223。
缝合孔223可以更好的固定覆膜,减少覆膜的滑动以及支架对缝合线的剪切作用,结合支架流出端的定位孔21后,可进一步协同保证效果,扩口架22上既可以是所有的流出侧端点都带有缝合孔223,也可以是其中一部分的端点都带有缝合孔。
例如有六个端点部位,且每个端点部位都带有缝合孔,或者是仅其中三个端点部位带有缝合孔,且间隔布置。位于扩口架流入侧的端点部位(即扩口架与连接条的相交部位)带有标记孔,可用于固定(例如铆接)显影点,以便通过影像设备实时指导手术定位。
在一些改进的实施例中,为了更好的缝缀瓣叶或覆膜,支架的框条上带有供缝线绕置的波纹结构。具体结构将在以下有关缝缀方式的实施例中进一步说明。
参见图86~图92,在一些实施例中,瓣膜主要包括瓣叶6,从瓣叶6边缘起向流入侧进一步延伸的扩展覆膜61,铺设于扩口架22的覆膜23,由覆膜23起向流入侧进一步延伸且固定于支架5内侧的内覆膜234(或固定于支架外侧的外覆膜)。
瓣叶6与扩展覆膜61可以预拼接成为预缝合体,然后再向支架5上缝缀。覆膜23与内覆膜234可采用一体结构,因此并不严格限制两者的交界,以下也称该一体结构为覆膜体, 覆膜体向流入端延伸的幅度至少与预缝合体相交、以封闭非预期的过血部位,例如在某些网格区域相交于瓣叶的流入侧,在其他网格区域相交于支架5的框条,即支架是由框条构成的网格结构,其中网格结构应理解为有较大的镂空区,而并不限制网格形状或是否采用规则的排布,无论预缝合体或覆膜体,在与支架5相交时可直接用缝线固定至框条,也可以边缘翻卷包裹相应部位的框条,而后再进一步缝合,以提高强度和密封效果。
图中可见,瓣叶6一侧为可开闭血流通道的活动缘606,另一侧为与扩展覆膜61相连的固定缘607,三片瓣叶的活动缘之间相互贴靠并在血流作用下开闭血流通道,为了便于与扩展覆膜61之间的拼合,固定缘607的两侧带有第一结合翼601,在扩展覆膜61的相应位置设有与第一结合翼601配合的第二结合翼611,缝合时第一结合翼601与第二结合翼611相叠置,还可以翻卷包裹支架5的框条,进一步耐受瓣叶6的运动牵拉,提供耐疲劳性。
在瓣叶6上可预先进行压痕或打孔,作为缝线穿引的标识,例如在瓣叶6设置中心定位孔603、起针定位孔604、缝合定位孔605,为了便于与支架5相结合,在一实施例中第一结合翼601上还带有凸耳602,可进一步翻卷包裹支架5的框条。
扩展覆膜61上除了第二结合翼611外,需要缝合的边缘部位还有与瓣叶6相配合的第一缝合缘612、相邻两扩展覆膜之间相配合的第二缝合缘613、以及与支架5相缝合的第三缝合缘614。图中也示意了所有瓣叶6与扩展覆膜61拼接成为预缝合体后的立体结构,当然图中仅作示意,一般只有缝缀于支架5后才能保持其三维形态。
相对于三片瓣叶6而言,结合本实施例支架5的具体结构,覆膜23与内覆膜234形成的覆膜体由三个单元片拼成,三个单元片之间通过相邻的结合部235相互缝合,相邻两单元片之间留有岔口237供支架5流出端(例如第三网格顶点18)穿出,覆膜体流出侧带有六个翼片236,恰与扩口架22的六个流出侧端点相对应,六个翼片236通过相应位置的缝合孔223缝缀,可进一步避免错位,保证固定效果。覆膜体处在瓣叶6外围,可以对瓣叶6形成保护,还可有效防止瓣周漏。
结合图93~图96,本申请其中一些实施例提供一种瓣膜装置,瓣膜装置在轴向上具有相对的流入端和流出端,瓣膜装置具体包括:
支架5,支架5为网筒结构且内部为血流通道;
预缝合体,包括瓣叶6与扩展覆膜61,其中瓣叶6位于支架5的血流通道内,且能够在血流作用下开放或关闭血流通道,预缝合体(扩展瓣膜61与瓣叶6)与支架5的相邻部位通过缝线固定于支架5;
扩口架22,扩口架22与支架5相连且围在流出端的外周;
覆膜体,环布固定在扩口架22的内侧,覆膜体向流入端延伸且至少与预缝合体相交。
在优选的实施例中,支架22中与瓣叶6边缘相邻近的框条带有波纹结构。波纹结构可增大与瓣叶边缘的接触面积以及进一步固定缝合线,减少受力集中点,合理分配应力,可增加抗疲劳性能。波纹结构的形成可以是框条外壁开槽,或框条自身弯曲形成。
图中可见,支架5中与瓣叶6的固定缘607相邻近的框条为第一框条513以及第二框条514,固定缘607是相对于活动缘606而言,即并非严格限制与支架5的框条直接相连,但至少会邻近支架5的框条。
结合前述实施例,第一结合翼601与第二结合翼611相叠置后可以翻卷包裹第一框条513,由于第一框条513更邻近活动缘606,因此可提供更好的连接强度,保证活动缘606开闭的 有效性。
覆膜体是由三个单元片结合而成,因此内覆膜234流入侧的尖角部位对应其中三个单元格,且这三个单元格是间隔分布的。扩展覆膜61的流入侧具有六个尖角部位,其中三个尖角部位与各瓣叶6对正,这三个尖角部位的外侧也恰被内覆膜234流入侧的尖角部位所遮挡,而其余三个尖角部位由于内覆膜234并未延伸至此,所以并没有被遮挡。
内覆膜234流入侧的尖角部位一方面边缘与第二框条514缝缀,另外在与固定缘607邻近的部位处(即固定缘607靠近流入侧的部位),也相互缝合,因此尽管内覆膜234流入侧的尖角部位遮挡在预缝合体外侧,但仍然可见部分缝合路径。附图中为了避免干涉省略了缝线。
关于波纹结构的形成,其中一优选的方式是支架整体或至少相应部位采用波纹管切割而成。即不需要二次加工,切割后即可得到在支架径向上起伏的波纹结构。
如图96所示,另一优选的方式是切割时在相应的位置沿波浪起伏的路径切割。
波纹的间距(例如相邻两波谷的距离)为0.5-2mm。,所谓波峰511与波谷512是相对而言,仅强调两者的相对起伏而已,波纹的间距与缝合针距一致,可使缝线规整的嵌入波谷,尽可能减少对压缩装载的不利影响。
可以根据缝线的线径确定波谷宽度,一般为0.5-1mm,该宽度与缝线的线径一致或略小于缝线的线径,波谷的宽度理解为波谷深度在1/2位置处的宽度。
本申请中通过改变缝合方式,增加瓣叶、缝线与支架的接触面积,从而减少支架对缝线的剪切力,减少了瓣叶开闭过程中缝线单点受力。另外在缝合过程中缝线刚好嵌入支架波纹波谷位置,在装载过程中,减少了输送器械对缝线的磨损,整体提高瓣膜的疲劳寿命。一定程度上,还可起到减小装载和植入尺寸的作用。
参见图97,本申请一实施例提供一种可灵活回收的瓣膜装置支架,具有相对的流入端和流出端,包括:
支架5,支架5为网筒结构且内部为血流通道;
扩口架22,扩口架22与支架5相连且围在支架5流出端的外周,扩口架22为背向流入端的扩口结构;
在扩口架22的流出端,以及支架5的流出端均设有供回收牵引线穿引的挂线孔。
在前述实施例中,瓣膜装置可以利用流入端的连接耳13对瓣膜装置进行牵引回收,本实施例中主要改进在于可在流出端进行牵引回收,当然还可以与前述实施例结合,即可根据需要在流入端、或流出端进行回收,操作更加灵活。例如,在进一步优选的实施例中,支架的流入端也设有供回收牵引线穿引的挂线孔。
回收牵引线需要对瓣膜装置相应侧的所有尖角结构都进行牵引,否则尖角结构的翻翘可能导致回收受阻,由于支架以及扩口架形成径向的双层结构,尖角部位较多,因此如何穿引回收牵引线也是需要进一步解决的问题。
当然,结合前述实施例,也提供一种瓣膜装置,具有相对的流入端和流出端,包括:
支架5,支架5为网筒结构且内部为血流通道;
预缝合体,包括瓣叶6与扩展覆膜61,其中瓣叶6位于支架5的血流通道内,且能够在血流作用下开放或关闭血流通道,预缝合体与支架5的相邻部位通过缝线固定于支架5;
扩口架22,扩口架22与支架5相连且围在流出端的外周;
覆膜体,环布固定在扩口架22的内侧,覆膜体向流入端延伸且至少与预缝合体相交;
在扩口架22的流出端,以及支架5的流出端均设有供回收牵引线穿引的挂线孔。
无论是瓣膜装置支架,或者瓣膜装置,都可以预先穿引回收牵引线131,术后的一段时间内回收牵引线131保留在体内,以便在必要时进行回收操作。
支架5以及扩口架22在流出端均分布有若干网格顶点,各网格顶点均开设有挂线孔,挂线孔可以是在框条上加工内缘光滑的通孔,也可以直接利用网格的间隙,都可以穿引回收牵引线,优选单独在框条上加工通孔,可防止回收牵引线散乱,进一步限制其穿引路径。
在一实施例中,瓣膜装置支架或者瓣膜装置还包括预穿引的回收牵引线131,回收牵引线131包括:
环形段138,沿周向依次穿过扩口架22流出端的各个挂线孔224;
联动段137,连接在环形段与支架5流出端的各个挂线孔181之间。
扩口架22的流出端网格顶点相对于支架5的流出端网格顶点轴向上更加突出,因此优选环形段138穿设在扩口架22上的各个挂线孔224。
联动段137既可以是单线结构,也可以采用环形线套,针对支架5上的各个挂线孔181均分别配置有联动段137,尽可能的保证不同挂线孔181处联动的一致性,避免相互牵引导致个别挂线孔181联动滞后。
若在流入侧回收,则可结合前述相关实施例,若在流出侧回收,则拉动环形段,可以使扩口架22的流出端聚拢,同时通过联动段137可带动支架22的流出端聚拢,便于瓣膜装置的回收和装载。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。不同实施例中的技术特征体现在同一附图中时,可视为该附图也同时披露了所涉及的各个实施例的组合例。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (114)

  1. 瓣膜装置,其特征在于,包括:
    支架,所述支架为网筒结构且内部为血流通道,所述支架在轴向上具有相对的流入端和流出端;
    瓣叶,所述瓣叶连接在所述支架的血流通道内,且能够在血流作用下开放或关闭所述血流通道;
    扩口罩,所述扩口罩与所述支架相连且围在所述流出端的外周,所述扩口罩为背向流入端的扩口结构。
  2. 根据权利要求1所述的瓣膜装置,其特征在于,所述瓣膜装置沿血流方向依次包括:
    流入段,处在所述流入端的一侧;
    腰部,处在支架轴向的中部;
    流出段,由所述扩口罩与所述支架相连的部位起朝流出端一侧延伸;
    所述瓣膜装置的各部分均具有相对的流入侧和流出侧。
  3. 根据权利要求1所述的瓣膜装置,其特征在于,所述扩口罩在返流血作用下与邻近组织贴靠定位。
  4. 根据权利要求2所述的瓣膜装置,其特征在于,除所述扩口罩以外,所述支架为网格结构,且轴向长度为两个完整的网格。
  5. 根据权利要求4所述的瓣膜装置,其特征在于,所述流入段的轴向长度为一个完整的网格,所述腰部的轴向长度为半个网格,由腰部的流出侧至支架流出部最远端的轴向长度为半个网格;
    所述扩口罩连接在所述腰部的流出侧。
  6. 根据权利要求2所述的瓣膜装置,其特征在于,所述腰部相对于所述流入段和所述流出段具有较小的外径。
  7. 根据权利要求2所述的瓣膜装置,其特征在于,所述流出段的外径为20~60mm。
  8. 根据权利要求2所述的瓣膜装置,其特征在于,所述流出段的外径为40~50mm。
  9. 根据权利要求2所述的瓣膜装置,其特征在于,所述流出段的外径为42~48mm。
  10. 根据权利要求2所述的瓣膜装置,其特征在于,所述流出段的外径为45mm。
  11. 根据权利要求2所述的瓣膜装置,其特征在于,所述腰部的外径为15~40mm。
  12. 根据权利要求2所述的瓣膜装置,其特征在于,所述腰部的外径为30~35mm。
  13. 根据权利要求2所述的瓣膜装置,其特征在于,所述腰部的外径为30mm。
  14. 根据权利要求2所述的瓣膜装置,其特征在于,所述流入段的外径为20~55mm。
  15. 根据权利要求2所述的瓣膜装置,其特征在于,所述流入段的外径为40~50mm。
  16. 根据权利要求2所述的瓣膜装置,其特征在于,所述流入段的外径为40mm。
  17. 根据权利要求2所述的瓣膜装置,其特征在于,所述瓣膜装置的轴向长度为30~85mm。
  18. 根据权利要求2所述的瓣膜装置,其特征在于,所述瓣膜装置的轴向长度为55~70mm。
  19. 根据权利要求2所述的瓣膜装置,其特征在于,所述瓣膜装置的轴向长度为60~65mm。
  20. 根据权利要求2所述的瓣膜装置,其特征在于,所述瓣膜装置的轴向长度为62.5mm。
  21. 根据权利要求2所述的瓣膜装置,其特征在于,所述支架的轴向长度为25~75mm。
  22. 根据权利要求2所述的瓣膜装置,其特征在于,所述支架的轴向长度为50~60mm。
  23. 根据权利要求2所述的瓣膜装置,其特征在于,所述支架的轴向长度为53~58mm。
  24. 根据权利要求2所述的瓣膜装置,其特征在于,所述支架的轴向长度为56mm。
  25. 根据权利要求2所述的瓣膜装置,其特征在于,由腰部流入侧至支架流出部最远端的轴向长度为12~40mm。
  26. 根据权利要求2所述的瓣膜装置,其特征在于,由腰部流入侧至支架流出部最远端的轴向长度为25~30mm。
  27. 根据权利要求2所述的瓣膜装置,其特征在于,由腰部流入侧至支架流出部最远端的轴向长度为28mm。
  28. 根据权利要求5所述的瓣膜装置,其特征在于,所述流入段所对应的网格中,包括:
    位于流入侧的第一节点;
    位于流出侧的第二节点;
    位于第一节点与第二节点之间,且相对布置的第三、第四节点;
    所述支架在释放状态下,第一节点与第三节点在三维空间中的距离L5为8~22mm;第二节点与第三节点在三维空间中的距离L4为8~22mm。
  29. 根据权利要求28所述的瓣膜装置,其特征在于,L5=L4。
  30. 根据权利要求28所述的瓣膜装置,其特征在于,L5为15~20mm,L4为15~20mm。
  31. 根据权利要求28所述的瓣膜装置,其特征在于,L5为14~18mm,L4为14~18mm。
  32. 根据权利要求28所述的瓣膜装置,其特征在于,L5为16mm,L4为16mm。
  33. 根据权利要求28所述的瓣膜装置,其特征在于,所述腰部对应的半个网格中,包括:
    位于流入侧的第五节点;
    位于流出侧的且相对布置的第六、第七节点;
    所述支架在释放状态下,第五节点与第六节点在三维空间中的距离L3为6~16mm。
  34. 根据权利要求33所述的瓣膜装置,其特征在于,L3<L5,且L3<L4。
  35. 根据权利要求33所述的瓣膜装置,其特征在于,L3为10~15mm。
  36. 根据权利要求33所述的瓣膜装置,其特征在于,L3为10~14mm。
  37. 根据权利要求33所述的瓣膜装置,其特征在于,L3为12mm。
  38. 根据权利要求28所述的瓣膜装置,其特征在于,由腰部的流出侧至支架流出部最远端对应的半个网格中,包括:
    位于流入侧且相对布置的第八、第九节点;
    位于流出侧的第十节点;
    所述支架在释放状态下,第八节点与第十节点在三维空间中的距离L2为6~20mm。
  39. 根据权利要求28所述的瓣膜装置,其特征在于,L2<L5,且L2<L4。
  40. 根据权利要求28所述的瓣膜装置,其特征在于,L2为10~15mm。
  41. 根据权利要求28所述的瓣膜装置,其特征在于,L2为12~15mm。
  42. 根据权利要求28所述的瓣膜装置,其特征在于,L2为14mm。
  43. 根据权利要求4所述的瓣膜装置,其特征在于,所述支架的周向跨度为3*n个完整的网格,n为1、2或3。
  44. 根据权利要求1所述的瓣膜装置,其特征在于,所述支架与所述扩口罩为一体结构,通过管材切割或编织构成。
  45. 根据权利要求2所述的瓣膜装置,其特征在于,所述流入段为裸支架。
  46. 根据权利要求2所述的瓣膜装置,其特征在于,所述流入段具有收口结构。
  47. 根据权利要求2所述的瓣膜装置,其特征在于,所述流入段的最大径向刚度为M1;
    所述腰部的径向刚度为M2;
    所述支架中,由腰部的流出侧至支架流出部最远端之间的径向刚度为M3;
    所述扩口罩包括与所述支架相连的扩口架以及铺设于所述扩口架的覆膜,所述扩口架在支架轴向上具有相对起伏的波峰和波谷,且各波谷通过连接条与所述支架相连;
    所述扩口架的径向刚度为M4;
    所述连接条的径向刚度为M5;
    且满足:
    M1<M2<M3;
    M1<M2<M4;
    M5<M2。
  48. 根据权利要求47所述的瓣膜装置,其特征在于,所述支架包括多根围成所述网筒结构的支撑条,通过不同部位支撑条的粗细变化改变所述径向刚度。
  49. 根据权利要求48所述的瓣膜装置,其特征在于,所述流入段沿血流方向依次包括端口部以及与所述腰部相衔接的过渡部,其中所述端口部的径向刚度小于所述过渡部。
  50. 根据权利要求48所述的瓣膜装置,其特征在于,所述流入段的径向刚度沿血流方向逐渐增加。
  51. 根据权利要求2所述的瓣膜装置,其特征在于,所述流入端沿周向排布有多个连接耳。
  52. 根据权利要求51所述的瓣膜装置,其特征在于,所述流入段为沿周向排布的网格结构,各网格在所述流入端分别收敛至相应的第一网格顶点,每个第一网格顶点均设置所述连接耳。
  53. 根据权利要求51所述的瓣膜装置,其特征在于,所述连接耳为封闭的环形或带有挂线开口。
  54. 根据权利要求53所述的瓣膜装置,其特征在于,所述挂线开口的两侧留有间隙或活动搭置。
  55. 根据权利要求54所述的瓣膜装置,其特征在于,所述挂线开口的两侧互相迂回形成迷宫式开口。
  56. 根据权利要求51所述的瓣膜装置,其特征在于,所述连接耳上连接有回收牵引线。
  57. 根据权利要求56所述的瓣膜装置,其特征在于,所述回收牵引线的至少一部分为处在支架围拢区域内部的横跨段。
  58. 根据权利要求57所述的瓣膜装置,其特征在于,所述回收牵引线包括依次穿引经过所有的连接耳的环绕段以及所述横跨段,牵拉所述横跨段时,所述环绕段带动所有连接耳收拢。
  59. 根据权利要求58所述的瓣膜装置,其特征在于,所述横跨段为一段或多段,多段之间互不相交或至少有两条相交。
  60. 根据权利要求58所述的瓣膜装置,其特征在于,所述环绕段以及所述横跨段为一体结构或分体结构。
  61. 根据权利要求58所述的瓣膜装置,其特征在于,所述环绕段与各连接耳之间为固定连接或活动穿引。
  62. 根据权利要求58所述的瓣膜装置,其特征在于,所述横跨段的各端部分别与所述环绕段之间为固定连接或活动连接。
  63. 根据权利要求58所述的瓣膜装置,其特征在于,所述横跨段的其中两端部在支架周向上的跨度为1/6~1/2支架周长。
  64. 根据权利要求58所述的瓣膜装置,其特征在于,所述横跨段的其中两端部所夹的圆心角为60~180度。
  65. 根据权利要求58所述的瓣膜装置,其特征在于,相邻两连接耳作为一对,所述横跨段的其中两端部分别为第一端部和第二端部,所述第一端部位于其中一对连接耳之间,所述第二端部位于另一对连接耳之间。
  66. 根据权利要求2所述的瓣膜装置,其特征在于,所述腰部为裸支架,或仅有部分区域被所述扩口罩遮挡。
  67. 根据权利要求66所述的瓣膜装置,其特征在于,所述瓣叶处在所述支架的内侧,所述瓣叶还向流入侧进一步延伸形成扩展覆膜并固定于所述支架的内侧;所述腰部被所述扩展覆膜完全遮挡或局部遮挡。
  68. 根据权利要求67所述的瓣膜装置,其特征在于,所述扩口罩包括与所述支架相连的扩口架以及铺设于所述扩口架的覆膜;
    所述覆膜还向流入侧进一步延伸形成外覆膜并固定于所述支架的外侧;所述腰部被所述外覆膜完全遮挡或局部遮挡;或所述覆膜还向流入侧进一步延伸形成内覆膜并固定于所述支架的内侧;所述腰部被所述内覆膜完全遮挡或局部遮挡。
  69. 根据权利要求68所述的瓣膜装置,其特征在于,所述扩展覆膜与所述外覆膜或所述内覆膜在流入侧的边缘形状相同、并分别缝缀固于所述支架。
  70. 根据权利要求68所述的瓣膜装置,其特征在于,所述扩展覆膜与所述外覆膜或所述内覆膜在流入侧的边缘形状不同、并分别缝缀固于所述支架。
  71. 根据权利要求68所述的瓣膜装置,其特征在于,所述腰部中,被所述扩展覆膜或所述外覆膜或所述内覆膜任意一者遮挡的为遮挡区,没有被所述扩展覆膜或所述外覆膜或所述内覆膜任意一者遮挡的为贯通区,在支架周向上,所述遮挡区和所述贯通区交替分布。
  72. 根据权利要求71所述的瓣膜装置,其特征在于,所述遮挡区至少被所述外覆膜遮挡。
  73. 根据权利要求71所述的瓣膜装置,其特征在于,所述腰部为网格结构,所述遮挡区和所述贯通区的轴向长度均为半个网格,周向最大跨度为一个网格。
  74. 根据权利要求2所述的瓣膜装置,其特征在于,所述腰部与相邻段之间的母线平滑过渡。
  75. 根据权利要求2所述的瓣膜装置,其特征在于,所述腰部为网格结构,各网格在所述腰部的流出侧分别收敛至相应的第二网格顶点,所述扩口罩与各第二网格顶点相连。
  76. 根据权利要求2~75任一项所述的瓣膜装置,其特征在于,所述流出段在径向上具有双层结构,所述支架由腰部的流出侧至所述流出端的部分为内层部分,所述扩口罩为外层部分;
    所述瓣叶缝缀固定在所述腰部和/或所述内层部分。
  77. 根据权利要求76所述的瓣膜装置,其特征在于,所述瓣叶为二叶瓣或三叶瓣,所述内层部分带有网格结构,各网格在所述流出端分别收敛至相应的第三网格顶点,第三网格顶点的数量与瓣叶数量相应,各瓣叶朝向流入端的一侧为与支架相连的固定侧,朝向流出端的一侧为活动侧,所述固定侧与所述活动侧相交在相应的第三网格顶点。
  78. 根据权利要求77所述的瓣膜装置,其特征在于,所述内层部分为间隔布置的V形支撑条,V形顶点为处在所述流出端的第三网格顶点,V形的两分叉与所述腰部相连。
  79. 根据权利要求78所述的瓣膜装置,其特征在于,所述腰部为网格结构,各网格在所述腰部的流出侧分别收敛形成六个第二网格顶点,所述V形支撑条为三条,所有V形支撑条共有六支分叉,每支分叉分别连接其中一第二网格顶点。
  80. 根据权利要求77所述的瓣膜装置,其特征在于,所述支架在第三网格顶点处开设有定位孔,各瓣叶的相应部位通过穿设于所述定位孔的缝线固定。
  81. 根据权利要求80所述的瓣膜装置,其特征在于,所述支架上在第三网格顶点处设有朝流出侧进一步延伸的连接片,所述定位孔排布在所述连接片上。
  82. 根据权利要求2~75任一项所述的瓣膜装置,其特征在于,所述扩口罩包括与所述支架相连的扩口架以及铺设于所述扩口架的覆膜,所述覆膜在所述扩口架的支撑下围在所述流出端的外周。
  83. 根据权利要求82所述的瓣膜装置,其特征在于,所述覆膜周向封闭且与所述瓣叶相互衔接于支架部位、形成处在支架外围的防周漏部。
  84. 根据权利要求82所述的瓣膜装置,其特征在于,所述扩口架的流出侧向内弯折形成安全缩口。
  85. 根据权利要求82所述的瓣膜装置,其特征在于,所述覆膜的流出侧间隔的布置有多个缝缀区,各缝缀区与所述扩口架的相应部位固定连接,相邻两缝缀区之间为径向浮动缘。
  86. 根据权利要求85所述的瓣膜装置,其特征在于,所述覆膜在邻近径向浮动缘处为浮动部,所述浮动部可随血流作用发生径向位移。
  87. 根据权利要求85所述的瓣膜装置,其特征在于,所述浮动部可随血流作用与周围组织贴合或远离。
  88. 根据权利要求85所述的瓣膜装置,其特征在于,所述径向浮动缘为弧形,且弧顶朝向所述覆膜的流入侧。
  89. 根据权利要求88所述的瓣膜装置,其特征在于,所述扩口架在支架轴向上具有相对起伏的波峰和波谷,且各波峰处在流出侧,所述各缝缀区固定于位置相应的波峰。
  90. 根据权利要求89所述的瓣膜装置,其特征在于,所述弧形径向浮动缘的弧高为波峰高度的1/4~1/2。
  91. 根据权利要求82所述的瓣膜装置,其特征在于,所述扩口架在支架轴向上具有相对起伏的波峰和波谷,且各波谷通过连接条与所述支架相连。
  92. 根据权利要求91所述的瓣膜装置,其特征在于,所述连接条的刚度小于与所述连接条相连的其他部位的刚度、用以释放所述扩口罩与所述支架的牵引应力。
  93. 根据权利要求92所述的瓣膜装置,其特征在于,所述连接条与所述支架为一体结构或为单独设置的柔性件。
  94. 根据权利要求93所述的瓣膜装置,其特征在于,所述连接条的长度为3~30mm。
  95. 根据权利要求91所述的瓣膜装置,其特征在于,所述波峰的数量与支架周向的网格数量相同。
  96. 根据权利要求91所述的瓣膜装置,其特征在于,所述波峰为圆角结构。
  97. 根据权利要求91所述的瓣膜装置,其特征在于,所述波峰沿支架周向均匀分布。
  98. 根据权利要求91所述的瓣膜装置,其特征在于,所述扩口架包括沿支架周向依次分布的多个V形杆,所述V形杆的顶点为波峰且位于所述扩口罩的流出侧,所述V形杆的两分叉分别与相邻的V形杆交汇形成波谷,各波谷通过所述连接条与所述腰部的流出侧连接。
  99. 根据权利要求91所述的瓣膜装置,其特征在于,所述扩口架的波峰部位沿血流方向进一步延伸越过所述支架的流出端。
  100. 根据权利要求99所述的瓣膜装置,其特征在于,所述扩口架的波峰部位沿血流方向进一步延伸越过所述支架的流出端,且越过部分的轴向长度为4.5~9mm。
  101. 根据权利要求100所述的瓣膜装置,其特征在于,所述扩口架的波峰部位沿血流方向进一步延伸越过所述支架的流出端,且越过部分的轴向长度为6.5mm。
  102. 根据权利要求82所述的瓣膜装置,其特征在于,所述扩口架沿血流方向依次包括外扩段以及安全缩口段,所述外扩段与所述安全缩口段的轴向长度之比为2:1~4:1。
  103. 根据权利要求102所述的瓣膜装置,其特征在于,所述外扩段与支架轴向的夹角为30度~60度。
  104. 根据权利要求102所述的瓣膜装置,其特征在于,所述外扩段与支架轴向的夹角为45度。
  105. 根据权利要求102所述的瓣膜装置,其特征在于,所述安全缩口段与支架轴向的夹角为30度~60度。
  106. 根据权利要求102所述的瓣膜装置,其特征在于,所述安全缩口段与支架轴向的夹角为45度。
  107. 根据权利要求91所述的瓣膜装置,其特征在于,在支架轴向上,所述扩口架的波谷部位与所述支架的流出端位置相互邻近。
  108. 根据权利要求98所述的瓣膜装置,其特征在于,所述腰部为网格结构,各网格在所述腰部的流出侧分别收敛形成六个第二网格顶点,所述V形杆为六条,所有V形杆共有十二支分叉,相邻的两支分叉汇至同一连接条,六根连接条且分别连接其中一第二网格顶点。
  109. 根据权利要求1所述的瓣膜装置,其特征在于,所述瓣膜装置为腔静脉瓣膜装置。
  110. 瓣膜装置支架,具有相对的流入端和流出端,其特征在于,所述瓣膜装置支架包括:
    支架,支架为网筒结构且内部为血流通道;
    扩口架,扩口架与支架相连且围在支架流出端的外周。
  111. 根据权利要求110所述的瓣膜装置支架,其特征在于,位于扩口架流出侧的端点部位带有用于穿引缝线的缝合孔。
  112. 根据权利要求110所述的瓣膜装置支架,其特征在于,在扩口架的流出端,以及支架的流出端均设有供回收牵引线穿引的挂线孔。
  113. 根据权利要求110所述的瓣膜装置支架,其特征在于,所述支架的框条上带有供缝线绕置的波纹结构。
  114. 瓣膜装置,具有相对的流入端和流出端,其特征在于,所述瓣膜装置包括:
    瓣膜装置支架,如权利要求110~113任一项所述的瓣膜装置支架;
    预缝合体,包括瓣叶与扩展覆膜,其中所述瓣叶位于所述支架的血流通道内,且能够在血流作用下开放或关闭血流通道,所述预缝合体与所述支架的相邻部位通过缝线固定于支架;
    覆膜体,环布固定在扩口架的内侧,覆膜体向流入端延伸且至少与预缝合体相交。
PCT/CN2020/134739 2019-12-10 2020-12-09 瓣膜装置支架以及瓣膜装置 WO2021115291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911261367.8 2019-12-10
CN201911261367 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021115291A1 true WO2021115291A1 (zh) 2021-06-17

Family

ID=76329549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134739 WO2021115291A1 (zh) 2019-12-10 2020-12-09 瓣膜装置支架以及瓣膜装置

Country Status (1)

Country Link
WO (1) WO2021115291A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120053685A1 (en) * 2010-08-31 2012-03-01 Biotronik Ag Medical valve implant for implantation in an animal body and/or human body
US20140243969A1 (en) * 2013-02-28 2014-08-28 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with expandable microspheres
CN206761798U (zh) * 2016-12-28 2017-12-19 上海微创心通医疗科技有限公司 瓣膜假体
CN109806028A (zh) * 2017-11-21 2019-05-28 先健科技(深圳)有限公司 心脏瓣膜
CN109966023A (zh) * 2017-12-28 2019-07-05 上海微创心通医疗科技有限公司 心脏瓣膜假体及其支架
CN110368157A (zh) * 2019-08-22 2019-10-25 浙江归创医疗器械有限公司 一种血管支架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120053685A1 (en) * 2010-08-31 2012-03-01 Biotronik Ag Medical valve implant for implantation in an animal body and/or human body
US20140243969A1 (en) * 2013-02-28 2014-08-28 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with expandable microspheres
CN206761798U (zh) * 2016-12-28 2017-12-19 上海微创心通医疗科技有限公司 瓣膜假体
CN109806028A (zh) * 2017-11-21 2019-05-28 先健科技(深圳)有限公司 心脏瓣膜
CN109966023A (zh) * 2017-12-28 2019-07-05 上海微创心通医疗科技有限公司 心脏瓣膜假体及其支架
CN110368157A (zh) * 2019-08-22 2019-10-25 浙江归创医疗器械有限公司 一种血管支架

Similar Documents

Publication Publication Date Title
US20200237512A1 (en) Valve repair devices for repairing a native valve of a patient
US20200306035A1 (en) Stent Device Having Skirt For Peripheral Leakage Prevention and Processing Method Thereof, Skirt Folding Method, and Heart Valve
CN111200995B (zh) 用于心脏瓣膜的假体间隔件装置
US20220287841A1 (en) Heart valve sealing devices and delivery devices therefor
EP1615595B1 (en) Artificial valve prosthesis with improved flow dynamics
WO2018090576A1 (zh) 阻流膜及植入医疗器械
CN109789018A (zh) 具有同轴框架的人工瓣膜
JP2023520437A (ja) 低圧縮性を有する高可撓性インプラントカテーテル
WO2014144439A1 (en) Method and apparatus for therapy of mitral valve
WO2021115291A1 (zh) 瓣膜装置支架以及瓣膜装置
CN216417421U (zh) 瓣膜修复装置
WO2021052486A1 (zh) 便于定位的介入器械及加工方法和介入系统
TWI840422B (zh) 用於修復病患之自體瓣膜的瓣膜修復裝置
CN219307044U (zh) 可控制倒刺的三尖瓣置换瓣膜
WO2023185169A1 (zh) 一种瓣膜假体
JP2022534013A (ja) 心臓弁シーリングデバイス、それのための送達デバイス、および回収デバイス
CN112807131A (zh) 一种心脏瓣膜可调辅助装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899279

Country of ref document: EP

Kind code of ref document: A1