WO2021115023A1 - 一种面向智能换相开关功能测试的固态测试平台及方法 - Google Patents
一种面向智能换相开关功能测试的固态测试平台及方法 Download PDFInfo
- Publication number
- WO2021115023A1 WO2021115023A1 PCT/CN2020/128815 CN2020128815W WO2021115023A1 WO 2021115023 A1 WO2021115023 A1 WO 2021115023A1 CN 2020128815 W CN2020128815 W CN 2020128815W WO 2021115023 A1 WO2021115023 A1 WO 2021115023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- capacitor
- main controller
- solid
- test platform
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title abstract description 11
- 239000003990 capacitor Substances 0.000 claims abstract description 49
- 238000005070 sampling Methods 0.000 claims description 15
- 238000010276 construction Methods 0.000 claims description 3
- 238000010998 test method Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 abstract description 2
- 238000009499 grossing Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 16
- 238000011990 functional testing Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/26—Arrangements for eliminating or reducing asymmetry in polyphase networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
- G01R31/3271—Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
- G01R31/3275—Fault detection or status indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
- G01R31/3277—Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/50—Arrangements for eliminating or reducing asymmetry in polyphase networks
Definitions
- the invention belongs to the technical field of equipment detection, and specifically relates to a solid-state test platform and a method for functional testing of intelligent commutation switches.
- the functional test platform of the intelligent commutation switch needs to be connected to the active load for testing, and there is a problem of active power loss; at the same time, after the load is connected, the active and reactive power of each phase load cannot be adjusted arbitrarily, and the unbalance degree cannot be adjusted. And the shortcomings of not being able to switch loads seamlessly multiple times. Therefore, how to overcome the shortcomings of the existing technology is an urgent problem in the field of equipment testing technology.
- the patent of the present invention Provide a solid-state test platform and control method for functional testing of smart commutation switches, which can not only simulate all unbalanced operating conditions, but also feed the simulated unbalanced power back to the grid through the test platform in a balanced manner, achieving no power consumption. The test will not affect the main grid at the same time.
- a solid-state test platform for functional testing of intelligent commutation switches including a main controller, a first module, a second module, a capacitor C, an intelligent commutation switch, and a transformer;
- the main controller is respectively connected to the first module and the second module, and the main controller is configured to control the operations of the first module and the second module;
- One end of the first module is connected to the output end of the transformer
- One end of the second module is connected to the DC output end of the smart commutation switch
- the other end of the first module and the other end of the second module are both connected to the capacitor C, and the first module, the second module, and the capacitor C are connected in parallel;
- the first module is configured to feed back the excess energy on the capacitor C to the power distribution network
- the second module is configured to control the magnitude and direction of the current flowing through the smart commutation switch
- the capacitor C is configured to support energy, filter and smooth waves.
- the number of the second module is several.
- the first module includes a converter composed of eight switch tubes and a passive filter (LC filter); the first module performs inverter control on the power absorbed by the second module, and then filters it through the LC filter. After removing high frequency harmonics, it is transmitted back to the distribution network.
- LC filter passive filter
- the second module includes a single-phase H-bridge and a filter inductor LN; the filter inductor LN filters out the harmonics of the power absorbed by the second module, and then transmits it to the DC capacitor C through the single-phase H-bridge for rectification control.
- It also includes a sampling module connected to the main controller, and the sampling module is configured to collect the three-phase voltage of the power grid, the voltage of the capacitor C, the output current of the first module, and the second The input current of the module and the collected data are transmitted back to the main controller. After the main controller performs rectification control and inverter control, the switching tubes in the first module and the second module are controlled. start up.
- the present invention also provides a solid-state test method for functional testing of smart commutation switches, adopting the above-mentioned solid-state test platform for functional testing of smart commutation switches, including the following steps:
- the sampling module collects the physical quantities of the three-phase voltage of the power grid, the voltage of the capacitor C, the output current of the first module, and the input current of the second module, and sends the relevant physical quantities to the first and second modules;
- the second module performs rectification control according to the physical quantity, active value, and reactive value issued by the lower main controller, and absorbs and transfers the electrical energy to the DC capacitor C;
- the first module judges the working status at this time according to the voltage value of the DC capacitor C issued by the main controller, and then performs inverter control to feed back the excess energy on the DC capacitor C to the main grid;
- this application provides a solid-state test platform and method for functional testing of smart commutation switches, and a solid-state test platform for functional testing of smart commutation switches, including a main controller, a first module, and a second Module, capacitor C, smart commutation switch, and transformer, the main controller is connected to the first module and the second module, respectively, and the main controller is configured to control the first module, the The second module works, one end of the first module is connected to the output end of the transformer, one end of the second module is connected to the DC output end of the smart commutation switch, and the other end of the first module , The other end of the second module is connected to the capacitor C, and the first module, the second module and the capacitor C are connected in parallel, and the first module is configured to connect the The excess energy on the capacitor C is fed back to the distribution network, the second module is configured to control the magnitude and direction of the current flowing through the smart commutation switch, and the capacitor C is configured to support energy, filter and
- Fig. 1 is an overall structure diagram of a solid-state test platform for functional testing of intelligent commutation switches according to the present invention
- Figure 2 is a schematic diagram of the structure of an intelligent commutation switch
- Fig. 3 is a partial schematic diagram of Fig. 1;
- Figure 4 is a structural diagram of the first module
- Figure 5 is a structural diagram of the second module
- Fig. 6 is an overall control block diagram of a solid-state test platform for functional testing of intelligent commutation switches according to the present invention
- Figure 7 is a structural diagram and a control principle diagram of the first module
- Figure 8 is the second module structure diagram and control principle diagram
- Fig. 9 is an equivalent circuit model of a solid-state test platform for functional testing of intelligent commutation switches according to the present invention.
- main controller 2. first module; 3. second module; 4. capacitor C; 5. intelligent commutation switch; 6. transformer; 7. sampling module.
- this application provides a solid-state test platform for functional testing of smart commutation switches, including a main controller 1, a first module 2, a second module 3, a capacitor C4, and a smart commutation switch 5 and transformer 6;
- the main controller 1 is connected to the first module 2 and the second module 3 respectively, and the main controller 1 is configured to control the operation of the first module 2 and the second module 3;
- One end of the first module 2 is connected to the output end of the transformer 6;
- One end of the second module 3 is connected to the DC output end of the smart commutation switch 5;
- the other end of the first module 2 and the other end of the second module 3 are both connected to the capacitor C4, and the first module 2, the second module 3 and the capacitor C4 are connected in parallel ;
- the first module 2 is configured to feed back the excess energy on the capacitor C4 to the power distribution network;
- the second module 3 is configured to control the magnitude and direction of the current flowing through the smart commutation switch 5;
- the capacitor C4 is configured to support energy, filter and smooth waves.
- the number of the second module 3 is several.
- the first module 2 includes a converter composed of eight switch tubes and an LC filter; the first module performs inverter control on the power absorbed by the second module 3, and then passes through the LC filter to filter out high-frequency harmonics. The wave is transmitted back to the distribution network.
- the second module 3 includes a single-phase H bridge and a filter inductor LN; the filter inductor LN filters out the harmonics of the power absorbed by the second module 3, and then transmits it to the DC capacitor C through the single-phase H bridge for rectification control.
- the sampling module 7 is configured to collect the three-phase voltage of the power grid, the voltage of the capacitor C4, and the output current of the first module 2. , The input current of the second module 3, and the collected data is transmitted back to the main controller 1. After the main controller 1 performs rectification control and inverter control, the first module 2 is controlled , The switch tube in the second module 3 is activated.
- a solid-state test method oriented to functional testing of smart commutation switches using the above-mentioned solid-state testing platform oriented to functional testing of smart commutation switches, includes the following steps:
- the sampling module collects the physical quantities of the three-phase voltage of the power grid, the voltage of the capacitor C, the output current of the first module, and the input current of the second module, and sends the relevant physical quantities to the first and second modules;
- the second module performs rectification control according to the physical quantity, active value, and reactive value issued by the lower main controller, and absorbs and transfers the electrical energy to the DC capacitor C;
- the first module judges the working status at this time according to the voltage value of the DC capacitor C issued by the main controller, and then performs inverter control to feed back the excess energy on the DC capacitor C to the main grid;
- Fig. 1 The overall structure of the solid-state test platform for the functional test of the intelligent commutation switch of the present invention is shown in Fig. 1.
- the intelligent commutation switches are terminals 1 to N, and the intelligent main control switch and the intelligent commutation switch are not the structure of the test platform of the present invention, and are regarded as the whole to be tested.
- the intelligent master switch is used as the master, and the intelligent commutation switch is used as the slave.
- the intelligent main control switch is mainly composed of current terminals, voltage terminals and functional terminals. Some functional terminals are reserved during the design process to facilitate later product upgrades and other function expansions.
- the intelligent commutation switch is mainly composed of three-phase input terminals and single-phase output terminals. Among them, 1, 2, 3 are ABC three-phase input terminals, 4 is N-phase input, 5 is live wire, and 6 is neutral wire.
- the structure diagram is shown in Figure 2. Shown. After receiving the command of the intelligent main control switch, the intelligent commutation switch internally switches and connects the 5 ports between 1, 2, and 3 ports according to the instruction requirements, so as to achieve the purpose of commutation.
- the two types of modules share a DC capacitor C.
- the first module connects the capacitor C to the power grid, and is mainly used to feed the excess energy on the capacitor C back to the power grid;
- the second module connects the capacitor C to the tested smart commutation switch, which can control the magnitude and direction of the current flowing through the smart commutation switch ;
- Capacitor C mainly plays the role of energy support, filtering and smoothing.
- the first module structure is shown in Figure 4, including: a converter composed of eight switching tubes and a passive filter (LC filter).
- the converter mainly controls the switching tube to achieve the purpose of transmitting the power absorbed by the second module at all levels back to the distribution network; the design of the LC filter is to filter out high-frequency harmonics and make the output current closer to the sine wave .
- the second module structure is shown in Figure 5, including: a single-phase H bridge and a filter inductor LN.
- the single-phase H-bridge controls the power absorption; the filter inductor LN is mainly to filter out harmonics.
- the overall control block diagram of the solid-state test platform for the functional test of the intelligent commutation switch of the present invention is shown in FIG. 6.
- the structure diagram and control principle diagram of the first module are shown in Figure 7. It is mainly after the actual value of the DC voltage obtained by DC voltage sampling and the reference value is differentiated, the amplitude of the command current is obtained through the voltage controller;
- the AC voltage value obtained by voltage sampling that is, the voltage of the distribution network, obtains the phase of the AC voltage through the Phase Locked Loop (PLL); the instantaneous value of the reference current can be obtained by using the amplitude and phase of the obtained reference current ,
- the modulation signal is obtained through the current controller, and the control signal of the eight switching tubes of the converter is obtained through sinusoidal pulse width modulation (SPWM).
- SPWM sinusoidal pulse width modulation
- the voltage and current controller usually With PI controller, the main purpose of this control method is to maintain the stability of the DC side capacitor voltage, and at the same time transmit the energy absorbed by the second module back
- the second module structure diagram and control principle diagram are shown in Figure 8.
- the reference power n is given according to the requirements of the main controller. Due to the voltage support of the distribution network, the voltage remains basically unchanged. After the AC side voltage signal is collected by the voltage transformer, the unit can be converted to a given power.
- the reference current of the phase H bridge ensures the phase tracking of the output current at the same time. After sampling the filtered output current of the single-phase H-bridge, the reference current and the sampling current are controlled by current tracking.
- the PI controller is used for control. After the difference between the two and the PI controller, the modulated signal is obtained. After sinusoidal pulse width modulation, the control signals of the four switching tubes in the single-phase H-bridge are obtained, which realizes the tracking control of the reference power n, and achieves the purpose of simulating the load.
- Is(a,b,c) represents the three-phase current of a,b,c on the grid side
- ICT(a,b,c) represents the three-phase current of a,b,c collected by the intelligent main control switch through the current transformer
- IL(a,b,c) represents the three-phase current on the load side
- I1(a,b,c) represents the three-phase current output by the three-phase four-wire converter
- na/b/c represents the same as a/b/
- I2 (a, b, c) respectively represent the total input of single-phase H-bridges that are separately connected to a, b, and c three phases through smart commutation switches Current
- P1 (a, b, c) represents the output power of each phase of the three-phase four
- equations and inequalities (1) can be obtained:
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Ac-Ac Conversion (AREA)
Abstract
一种面向智能换相开关(5)功能测试的固态测试平台及方法,测试平台包括主控制器(1)、第一模块(2)、第二模块(3)、电容C(4)、智能换相开关(5)以及变压器(6),主控制器(1)分别与第一模块(2)、第二模块(3)连接,主控制器(1)被配置为用于控制第一模块(2)、第二模块(3)工作,第一模块(2)、第二模块(3)和电容C(4)之间并联连接,第一模块(2)被配置为将电容C(4)上的多余能量反馈回配电网,第二模块(3)被配置为控制流经智能换相开关(5)的电流大小与方向,电容C(4)被配置为能量支撑、滤波和平波。测试平台及方法不仅能模拟所有不平衡运行工况,而且将模拟的不平衡功率通过测试平台均衡回馈至配电网,实现无功率消耗状态下的测试,同时不会对配电网带来影响。
Description
本发明属于装备检测技术领域,具体涉及一种面向智能换相开关功能测试的固态测试平台及方法。
当前,智能换相开关的功能测试平台需要接入有功负荷才能进行测试,存在有功损耗的问题;同时负荷接入之后,不能任意调节各相负荷的有功和无功功率,无法调节不平衡度,以及不能进行多次无缝瞬态切换负荷等缺点。因此如何克服现有技术的不足是目前装备检测技术领域亟需解决的问题。
发明内容
为了克服现有的智能换相开关功能测试平台不能实现能任意调节各相负荷的有功和无功功率,无法调节不平衡度,以及不能进行多次无缝瞬态切换负荷等缺点,本发明专利提供一种面向智能换相开关功能测试的固态测试平台及控制方法,不仅能模拟所有不平衡运行工况,而且将模拟的不平衡功率通过测试平台均衡地回馈至电网,实现无功率消耗状态下的测试,同时不会对主电网带来影响。
为实现上述目的,本发明采用的技术方案如下:
一种面向智能换相开关功能测试的固态测试平台,包括主控制器、第一模块、第二模块、电容C、智能换相开关以及变压器;
所述主控制器分别与所述第一模块、所述第二模块连接,所述主控制器被配置为用于控制所述第一模块、所述第二模块工作;
所述第一模块的一端与所述变压器的输出端相连;
所述第二模块的一端与所述智能换相开关的直流输出端相连;
所述第一模块的另一端、所述第二模块的另一端均与所述电容C连接,且所述第一模块、所述第二模块和所述电容C之间并联连接;
所述第一模块被配置为将所述电容C上的多余能量反馈回配电网;
所述第二模块被配置为控制流经所述智能换相开关的电流大小与方向;
所述电容C被配置为能量支撑、滤波和平波。
所述第二模块的个数为若干个。
所述第一模块包括八个开关管组成的变换器和无源滤波器(LC滤波器);所述第一模块对所述第二模块吸收的功率进行逆变控制,再经过LC滤波器滤除高频谐波后传回配电网。
所述第二模块包括单相H桥和滤波电感LN;滤波电感LN将所述第二模块吸收的功率滤除谐波后,再经过单相H桥进行整流控制传至直流电容C。
还包括采样模块,所述采样模块与所述主控制器连接,所述采样模块被配置为采集电网三相电压、所述电容C的电压、所述第一模块的输出电流、所述第二模块的输入电流,并将采集到的数据传回至所述主控制器,所述主控制器通过进行整流控制与逆变控制后,所述控制第一模块、所述第二模块中开关管启动。
本发明同时提供一种面向智能换相开关功能测试的固态测试方法,采用上述面向智能换相开关功能测试的固态测试平台,包括如下步骤:
在主控制器设定各个第二模块需要吸收的有功与无功值,并下发至各对应第二模块;
采样模块采集电网三相电压、电容C的电压、第一模块的输出电流、第二模块的输入电流这些物理量,并将相关物理量下发至第一模块和第二模块;
第二模块根据下主控制器下发的物理量、有功值、无功值,进行整流控制,将电能能量吸收并传递至直流电容C;
第一模块根据主控制器下发的直流电容C的电压值,判断此时的工作状态,然后进行逆变控制,将直流电容C上多余的能量反馈回主电网;
此时固态测试平台的不平衡运行工况构建完成,再将被测试的智能换相开关功能开启,进行验证。
由以上技术方案可知,本申请提供一种面向智能换相开关功能测试的固态测试平台及方法,一种面向智能换相开关功能测试的固态测试平台,包括主控制器、第一模块、第二模块、电容C、智能换相开关以及变压器,所述主控制器分别与所述第一模块、所述第二模块连接,所述主控制器被配置为用于控制所述第一模块、所述第二模块工作,所述第一模块的一端与所述变压器的输出端相连,所述第二模块的一端与所述智能换相开关的直流输出端相连,所述第一模块的另一端、所述第二模块的另一端均与所述电容C连接,且所述第一模块、所述第二模块和所述电容C之间并联连接,所述第一模块被配置为将所述电容C上的多余能量反馈回配电网,所述第二模块被配置为控制流经所述智能换相开关的电流大小与方向,所述电容C被配置为能量支撑、滤波和平波。本申请通过对智能换相开关进行控制,实现了电力电子平台测试平台的总输入功率和总输出功率相等,零功率损耗下的智能换相开关测试,大大降低了电能损耗。
图1为本发明面向智能换相开关功能测试的固态测试平台整体结构图;
图2为智能换相开关结构示意图;
图3为图1的局部示意图;
图4为第一模块结构图;
图5为第二模块结构图;
图6为本发明面向智能换相开关功能测试的固态测试平台的整体控制框图;
图7为第一模块结构图及控制原理图;
图8为第二模块结构图及控制原理图;
图9为本发明面向智能换相开关功能测试的固态测试平台等效电路模型。
其中,1、主控制器;2、第一模块;3、第二模块;4、电容C;5、智能换相开关;6、变压器;7、采样模块。
下面结合实施例对本发明作进一步的详细描述。
本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用材料或设备未注明生产厂商者,均为可以通过购买获得的常规产品。
如图1和图6所示,本申请提供了一种面向智能换相开关功能测试的固态测试平台,包括主控制器1、第一模块2、第二模块3、电容C4、智能换相开关5以及变压器6;
所述主控制器1分别与所述第一模块2、所述第二模块3连接,所述主控制器1被配置为用于控制所述第一模块2、所述第二模块3工作;
所述第一模块2的一端与所述变压器6的输出端相连;
所述第二模块3的一端与所述智能换相开关5的直流输出端相连;
所述第一模块2的另一端、所述第二模块3的另一端均与所述电容C4连接,且所述第一模块2、所述第二模块3和所述电容C4之间并联连接;
所述第一模块2被配置为将所述电容C4上的多余能量反馈回配电网;
所述第二模块3被配置为控制流经所述智能换相开关5的电流大小与方向;
所述电容C4被配置为能量支撑、滤波和平波。
所述第二模块3的个数为若干个。
所述第一模块2包括八个开关管组成的变换器和LC滤波器;所述第一模块对所述第二模块3吸收的功率进行逆变控制,再经过LC滤波器滤除高频谐波后传回配电网。所述第二模块3包括单相H桥和滤波电感LN;滤波电感 LN将所述第二模块3吸收的功率滤除谐波后,再经过单相H桥进行整流控制传至直流电容C。
还包括采样模块7,所述采样模块7与所述主控制器1连接,所述采样模块7被配置为采集电网三相电压、所述电容C4的电压、所述第一模块2的输出电流、所述第二模块3的输入电流,并将采集到的数据传回至所述主控制器1,所述主控制器1通过进行整流控制与逆变控制后,所述控制第一模块2、所述第二模块3中开关管启动。
一种面向智能换相开关功能测试的固态测试方法,采用上述面向智能换相开关功能测试的固态测试平台,包括如下步骤:
在主控制器设定各个第二模块需要吸收的有功与无功值,并下发至各对应第二模块;
采样模块采集电网三相电压、电容C的电压、第一模块的输出电流、第二模块的输入电流这些物理量,并将相关物理量下发至第一模块和第二模块;
第二模块根据下主控制器下发的物理量、有功值、无功值,进行整流控制,将电能能量吸收并传递至直流电容C;
第一模块根据主控制器下发的直流电容C的电压值,判断此时的工作状态,然后进行逆变控制,将直流电容C上多余的能量反馈回主电网;
此时固态测试平台的不平衡运行工况构建完成,再将被测试的智能换相开关功能开启,进行验证。
本发明面向智能换相开关功能测试的固态测试平台整体结构如图1。图1中,智能换相开关为终端1~终端N,智能主控开关和智能换相开关均不是本发明测试平台的结构,且作为待测整体。
智能主控开关作为主机,智能换相开关作为从机。智能主控开关主要由电流端子、电压端子和功能端子组成,在设计过程中预留了部分功能端子,方便后期产品升级和其它功能的扩展。智能换相开关主要由三相输入端子和单相输出端子组成,其中1、2、3为ABC三相输入端,4为N相输入,5为火线,6为零线,结构示意图如图2所示。智能换相开关的在接收到智能主控开关的命令后,其内部按指令要求将5端口在1、2、3端口之间进行切换连接,从而实现换相的目的。
如图3所示,包括第一模块、第二模块,两类模块共直流电容C。第一模块连接电容C与电网,主要用于将电容C上的多余能量反馈回电网;第二模块连接电容C与被测试智能换相开关,可控制流经智能换相开关的电流大小与方向;电容C主要起能量支撑、滤波和平波的作用。
第一模块结构如图4所示,包括:由八个开关管组成的变换器和无源滤波器(LC滤波器)。变换器主要是通过对开关管的控制,达到将各级第二模块吸收的功率传回配电网的目的;LC滤波器的设计是为了滤除高频谐波,使 输出电流更接近正弦波。
第二模块结构如图5所示,包括:单相H桥、滤波电感LN。单相H桥控制吸收功率;滤波电感LN主要是为了滤除谐波。
本发明面向智能换相开关功能测试的固态测试平台的整体控制框图如图6所示。第一模块结构图及控制原理图如图7所示,主要是将通过直流电压采样得到的直流电压实际值与参考值作差之后,经过电压控制器,得到指令电流的幅值;将通过交流电压采样得到的交流电压值,也就是配电网的电压,经过锁相环节(PhaseLockedLoop,PLL)得到交流电压的相位;利用所得到的参考电流的幅值和相位可求得参考电流的瞬时值,并和采样的实际值作差之后,经过电流控制器得到调制信号,经过正弦脉宽调制(Sine pulse width modulation,SPWM)得到变换器的八个开关管的控制信号,其中电压电流控制器通常采用PI控制器,采用该控制方式的目的主要是维持直流侧电容电压的稳定,同时将由第二模块吸收的能量以三相对称的形式传回配电网。
第二模块结构图及控制原理图如图8所示。其中,参考功率n按主控制器要求进行给定,由于配电网电压支撑,电压基本维持不变,通过电压互感器采集交流侧电压信号之后,在给定功率的情况下,可以折算出单相H桥的参考电流,同时保证了输出电流相位跟踪。通过对单相H桥滤波之后的输出电流进行采样后,将参考电流与采样电流进行电流跟踪控制,一般采用PI控制器进行控制,两者作差经过PI控制器之后得到调制信号,调制信号经正弦脉宽调制后,得到单相H桥中四个开关管控制信号,即实现了对参考功率n的跟踪控制,达到了模拟负荷的目的。
本发明面向智能换相开关功能测试的固态测试平台等效电路模型如图9所示。其中,Is(a,b,c)表示网侧a,b,c三相电流;ICT(a,b,c)表示智能主控开关通过电流互感器采集到的a,b,c三相电流;IL(a,b,c)表示负荷侧三相电流;I1(a,b,c)表示三相四线制变换器输出的三相电流;na/b/c分别表示与a/b/c相相连的只能换相开关以及单相H桥的数量;I2(a,b,c)分别表示通过智能换相开关与a,b,c三相单独连接的单相H桥的总输入电流;P1(a,b,c)表示三相四线制变换器各相输出功率;P2(a,b,c)分别表示通过智能换相开关各相输入的总功率。
根据其电路结构以及电力电子平台能量传输路径,可以得到等式和不等式(1):
通过式(1)中第五个等式可知,在忽略电子电子器件损耗的情况下,通 过电力电子平台测试平台的总输入功率和总输出功率相等,实现零功率损耗下的智能换相开关测试,大大降低了电能损耗。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (6)
- 面向智能换相开关功能测试的固态测试平台,其特征在于,包括主控制器(1)、第一模块(2)、第二模块(3)、电容C(4)、智能换相开关(5)以及变压器(6);所述主控制器(1)分别与所述第一模块(2)、所述第二模块(3)连接,所述主控制器(1)被配置为用于控制所述第一模块(2)、所述第二模块(3)工作;所述第一模块(2)的一端与所述变压器(6)的输出端相连;所述第二模块(3)的一端与所述智能换相开关(5)的直流输出端相连;所述第一模块(2)的另一端、所述第二模块(3)的另一端均与所述电容C(4)连接,且所述第一模块(2)、所述第二模块(3)和所述电容C(4)之间并联连接;所述第一模块(2)被配置为将所述电容C(4)上的多余能量反馈回配电网;所述第二模块(3)被配置为控制流经所述智能换相开关(5)的电流大小与方向;所述电容C(4)被配置为能量支撑、滤波和平波。
- 根据权利要求1所述的面向智能换相开关功能测试的固态测试平台,其特征在于,所述第二模块(3)的个数为若干个。
- 根据权利要求1所述的面向智能换相开关功能测试的固态测试平台,其特征在于,所述第一模块(2)包括八个开关管组成的变换器和LC滤波器;所述第一模块对所述第二模块(3)吸收的功率进行逆变控制,再经过LC滤波器滤除高频谐波后传回配电网。
- 根据权利要求1所述的面向智能换相开关功能测试的固态测试平台,其特征在于,所述第二模块(3)包括单相H桥和滤波电感LN;滤波电感LN将所述第二模块(3)吸收的功率滤除谐波后,再经过单相H桥进行整流控制传至直流电容C。
- 根据权利要求1所述的面向智能换相开关功能测试的固态测试平台,其特征在于,还包括采样模块(7),所述采样模块(7)与所述主控制器(1)连接,所述采样模块(7)被配置为采集电网三相电压、所述电容C(4)的电压、所述第一模块(2)的输出电流、所述第二模块(3)的输入电流,并将采集到的数据传回至所述主控制器(1),所述主控制器(1)通过进行整流控制与逆变控制后,所述控制第一模块(2)、所述第二模块(3)中开关管启动。
- 一种面向智能换相开关功能测试的固态测试方法,采用权利要求1~5任意一项所述的面向智能换相开关功能测试的固态测试平台,其特征在于,包括如下步骤:在主控制器设定各个第二模块需要吸收的有功与无功值,并下发至各对应第二模块;采样模块采集电网三相电压、电容C的电压、第一模块的输出电流、第二模块的输入电流这些物理量,并将相关物理量下发至第一模块和第二模块;第二模块根据下主控制器下发的物理量、有功值、无功值,进行整流控制,将电能能量吸收并传递至直流电容C;第一模块根据主控制器下发的直流电容C的电压值,判断此时的工作状态,然后进行逆变控制,将直流电容C上多余的能量反馈回主电网;此时固态测试平台的不平衡运行工况构建完成,再将被测试的智能换相开关功能开启,进行验证。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/422,727 US11366163B2 (en) | 2019-12-12 | 2020-11-13 | Solid testing platform and method for function testing of intelligent phase-change switch |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911271458.X | 2019-12-12 | ||
CN201911271458.XA CN110954817A (zh) | 2019-12-12 | 2019-12-12 | 面向智能换相开关功能测试的固态测试平台及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021115023A1 true WO2021115023A1 (zh) | 2021-06-17 |
Family
ID=69981107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/128815 WO2021115023A1 (zh) | 2019-12-12 | 2020-11-13 | 一种面向智能换相开关功能测试的固态测试平台及方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11366163B2 (zh) |
CN (1) | CN110954817A (zh) |
WO (1) | WO2021115023A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110954817A (zh) | 2019-12-12 | 2020-04-03 | 云南电网有限责任公司临沧供电局 | 面向智能换相开关功能测试的固态测试平台及方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4202655A1 (de) * | 1992-01-31 | 1993-08-05 | Peter Schieritz | Pruefgeraet fuer wechsel- und drehstrombetriebsmittel |
US20040196604A1 (en) * | 2003-04-04 | 2004-10-07 | Tmt & D Corporation | Control system for canceling load unbalance of three-phase circuit |
CN102354982A (zh) * | 2011-09-29 | 2012-02-15 | 日立电梯(中国)有限公司 | 能量回馈电梯系统 |
CN106291207A (zh) * | 2016-08-31 | 2017-01-04 | 许继电气股份有限公司 | 一种链式svg模块测试系统、平台及方法 |
CN108152729A (zh) * | 2018-01-12 | 2018-06-12 | 江苏南瑞泰事达电气有限公司 | 一种三相电流不平衡调节装置的检测装置和方法 |
CN108427071A (zh) * | 2018-05-15 | 2018-08-21 | 国网福建省电力有限公司电力科学研究院 | 一种换相开关智能检测装置及方法 |
CN208767798U (zh) * | 2018-10-31 | 2019-04-19 | 山东康润电气股份有限公司 | 动态svg模块与换相开关混合型三相不平衡治理系统 |
CN110176890A (zh) * | 2019-05-06 | 2019-08-27 | 浙江大学 | 基于无感混合储能系统的无刷直流电机制动转矩控制方法 |
CN110954817A (zh) * | 2019-12-12 | 2020-04-03 | 云南电网有限责任公司临沧供电局 | 面向智能换相开关功能测试的固态测试平台及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005028270A1 (de) * | 2005-06-14 | 2006-12-28 | Siemens Ag | Verlustfreie Hochstromprüfanlage |
US7660135B2 (en) * | 2007-05-23 | 2010-02-09 | Hamilton Sundstrand Corporation | Universal AC high power inveter with galvanic isolation for linear and non-linear loads |
CN100533166C (zh) * | 2007-06-29 | 2009-08-26 | 株洲南车时代电气股份有限公司 | 一种变流器的试验电路 |
CA2732525C (en) * | 2008-07-30 | 2016-07-19 | Rolls-Royce Corporation | Electrical power system with high-density pulse width modulated (pwm) rectifier |
CN108574305B (zh) * | 2018-05-22 | 2021-03-19 | 国电南京自动化股份有限公司 | 具有回馈功能的级联型高压变频器功率单元负载平台 |
-
2019
- 2019-12-12 CN CN201911271458.XA patent/CN110954817A/zh active Pending
-
2020
- 2020-11-13 US US17/422,727 patent/US11366163B2/en active Active
- 2020-11-13 WO PCT/CN2020/128815 patent/WO2021115023A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4202655A1 (de) * | 1992-01-31 | 1993-08-05 | Peter Schieritz | Pruefgeraet fuer wechsel- und drehstrombetriebsmittel |
US20040196604A1 (en) * | 2003-04-04 | 2004-10-07 | Tmt & D Corporation | Control system for canceling load unbalance of three-phase circuit |
CN102354982A (zh) * | 2011-09-29 | 2012-02-15 | 日立电梯(中国)有限公司 | 能量回馈电梯系统 |
CN106291207A (zh) * | 2016-08-31 | 2017-01-04 | 许继电气股份有限公司 | 一种链式svg模块测试系统、平台及方法 |
CN108152729A (zh) * | 2018-01-12 | 2018-06-12 | 江苏南瑞泰事达电气有限公司 | 一种三相电流不平衡调节装置的检测装置和方法 |
CN108427071A (zh) * | 2018-05-15 | 2018-08-21 | 国网福建省电力有限公司电力科学研究院 | 一种换相开关智能检测装置及方法 |
CN208767798U (zh) * | 2018-10-31 | 2019-04-19 | 山东康润电气股份有限公司 | 动态svg模块与换相开关混合型三相不平衡治理系统 |
CN110176890A (zh) * | 2019-05-06 | 2019-08-27 | 浙江大学 | 基于无感混合储能系统的无刷直流电机制动转矩控制方法 |
CN110954817A (zh) * | 2019-12-12 | 2020-04-03 | 云南电网有限责任公司临沧供电局 | 面向智能换相开关功能测试的固态测试平台及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110954817A (zh) | 2020-04-03 |
US11366163B2 (en) | 2022-06-21 |
US20220043063A1 (en) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103683288B (zh) | 基于模块化多电平变换器的并联有源滤波器及其控制方法 | |
CN108535545B (zh) | 一种双谐振注入式宽频带阻抗测量装置及其控制方法 | |
CN109830966B (zh) | 三相四线制电能质量综合治理装置及其控制方法和系统 | |
CN111030152A (zh) | 一种储能变流器系统及其控制方法 | |
CN104868762B (zh) | 一种分散储能的电力电子变压器及其控制方法 | |
CN201498992U (zh) | 一种用于母线连接时的滤波器连接电路 | |
CN102508073B (zh) | 采用有源前端的大功率变频器负载试验装置 | |
CN110350534A (zh) | 一种基于七电平换流器的有源电力滤波系统及其补偿方法 | |
CN107315112A (zh) | 一种兆瓦级宽频带阻抗测量装置及其控制方法 | |
CN106487240A (zh) | 一种具有精确谐波电压和虚拟阻抗控制的电网模拟器 | |
CN107688722A (zh) | 电压源型变流器的导纳模型和阻抗模型获取方法及装置 | |
CN103618310A (zh) | 一种大容量统一电能质量控制器及其控制方法 | |
CN108574305A (zh) | 具有回馈功能的级联型高压变频器功率单元负载平台 | |
CN206790097U (zh) | 实现双极性直流母线电压独立控制的拓扑结构与系统 | |
WO2021115023A1 (zh) | 一种面向智能换相开关功能测试的固态测试平台及方法 | |
CN110266008A (zh) | 基于改进的中性点箝位型多电平有源电力滤波器 | |
CN107959406A (zh) | 三相电压型pwm整流器的电网电压波形跟踪系统及方法 | |
CN101291064A (zh) | 采用三单相h桥型的低压有源电力滤波器 | |
CN107645241A (zh) | 一种无谐波智能变频控制器及控制方法 | |
CN203589727U (zh) | 一种大容量统一电能质量控制器 | |
CN100459361C (zh) | 混合有源电力滤波器及其控制方法 | |
CN104917190A (zh) | 一种h桥级联电网静止无功补偿器的分散控制方法 | |
CN103219745A (zh) | 一种基于正交正弦波提取器的并网逆变控制算法 | |
CN108347176A (zh) | 一种用于电力系统实时仿真的功率放大器 | |
CN103956738B (zh) | 一种兼具apf与svg功能的电池储能系统控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20898639 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20898639 Country of ref document: EP Kind code of ref document: A1 |