WO2021114966A1 - 一种显示系统 - Google Patents

一种显示系统 Download PDF

Info

Publication number
WO2021114966A1
WO2021114966A1 PCT/CN2020/126546 CN2020126546W WO2021114966A1 WO 2021114966 A1 WO2021114966 A1 WO 2021114966A1 CN 2020126546 W CN2020126546 W CN 2020126546W WO 2021114966 A1 WO2021114966 A1 WO 2021114966A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
scanning
array
display system
Prior art date
Application number
PCT/CN2020/126546
Other languages
English (en)
French (fr)
Inventor
余新
胡飞
吴超
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021114966A1 publication Critical patent/WO2021114966A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of display technology, in particular to a display system.
  • the existing projection display system in the form of beam scanning utilizes the characteristics of better directivity of the laser, and dynamically changes the direction of the laser beam through a scanning device, and forms a picture on the screen.
  • This technology can greatly simplify the optical path structure, but requires high beam collimation, and in order to achieve high resolution, the spot size is required to be very small.
  • Single-mode lasers can achieve the above-mentioned characteristics of light beams and spots, but single-mode lasers limit the output brightness of projection display systems in the form of beam scanning.
  • Multimode lasers can improve the output brightness of scanning projection equipment, but even if optical shaping devices are added to the light path of the light source and scanner, the beam collimation and spot size cannot reach the mainstream resolution of the current spatial light modulator.
  • the beam scanning can be performed on the surface of the spatial light modulator.
  • DMD Digital Micromirror array
  • LCD transmissive liquid crystal light valve
  • LCOS reflective liquid crystal light valve
  • the digital micro-mirror array includes a plurality of bistable micro-mirrors, where the bistable state refers to the "on” state and the "off” state. In the “on” state, the light reflected by the micro-mirror exits the lens to form bright pixels on the screen; in the "off” state, the light reflected by the micro-mirror is incident on the absorbing material and does not exit the lens.
  • the micro-mirror can be switched between "on” and “off” at a very fast speed (generally, it can reach a switching speed of the order of microseconds).
  • PWM pulse width modulation
  • Pulse Width Modulation Pulse Width Modulation
  • the spatial light modulator using LCD or LCoS controls the refractive index of the liquid crystal by controlling the voltage of the two levels of the liquid crystal to realize different gray scale display. Therefore, for the liquid crystal spatial light modulator, the illumination light of each pixel is not required to be constant within one frame of display time.
  • DMD Compared with LCD and LCoS, DMD has better thermal performance and stability, so it has a wider application in the field of projection.
  • the existing beam scanning cannot guarantee constant illumination on the surface of the spatial light modulator within one frame of display time, the method of beam scanning on the surface of the spatial light modulator is not suitable for DMD. This also greatly limits the application of beam scanning in the field of laser projection displays.
  • the present invention provides a display system, including: an array light source, at least a first sub-array light source, and a plurality of light source units for emitting illumination light; a scanning system, including a rotation center axis and a plurality of reflection surfaces, the plurality of reflection The surface rotates around the central axis of rotation, and is used to scan the illumination light emitted by the array light source on the incident surface of the spatial light modulator in the form of a spot array, so that the display system satisfies: the first restriction condition—the The distribution of the illumination light on the incident surface of the spatial light modulator remains constant within one frame of display time, and the second limiting condition—each of the light source units included in the first sub-array light source passes through the scanning system in the space The scanning domain formed on the light modulator is the same; the spatial light modulator modulates the illumination light projected on the scanning system to output image light.
  • a display system including: an array light source, at least a first sub-array light source, and a pluralit
  • the first sub-array light source comprising light source units x S 1, S 2 ?? S x , any light source unit in the feature parameter S i L i the incident light beam scanning system comprising: a light beam central optical axis L i and the reference line angle ⁇ i, L i beam scanning cycle of the scanning system on the shear angle perpendicular to the rotation center point axis of the scanning system and the reference line ⁇ i, L i the light beam in the scanning direction angle brightness distribution F i, wherein said reference line perpendicular to the incident surface of the spatial light modulator; each light source unit by setting the light beams S i L i emitted
  • a total light beam composed of light beams emitted by each light source unit is converged and incident on the reflective surface of the scanning system.
  • the light spot formed by the light beam emitted by each light source unit on the incident surface of the spatial light modulator is uniformly distributed.
  • the angular distributions of the light beams emitted by the light source units do not overlap with each other.
  • the size of the scanning field in the scanning direction is larger than the size of the spatial light modulator in the scanning direction.
  • it further includes a homogenization system, and the homogenization system is arranged on the optical path between the array light source and the scanning system.
  • it further includes a first relay optical system, which is arranged between the homogenization system and the scanning system, and is used to assist in adjusting the light beams of the light source units so that the display system satisfies the requirements of the The first restriction and the second restriction.
  • a first relay optical system which is arranged between the homogenization system and the scanning system, and is used to assist in adjusting the light beams of the light source units so that the display system satisfies the requirements of the The first restriction and the second restriction.
  • it further includes a second relay optical system, which is arranged on the optical path between the scanning system and the spatial light modulator.
  • it further includes an imaging device, which is arranged on the exit light path of the spatial light modulator, and is used to project the exit light of the spatial light modulator to the screen.
  • the array light source and the imaging device at least partially overlap, the first relay optical system and the second relay optical system at least partially overlap, so The homogenization system and the second relay optical system at least partially overlap.
  • the spatial light modulator is any one of a digital micro-mirror array, a transmissive liquid crystal light valve, and a reflective liquid crystal light valve.
  • the scanning system is any one of a multi-faceted rotating reflective prism, a polygonal table-type scanning device, and a galvanometer.
  • the present invention provides a display system, including an array light source, a scanning system, and a spatial light modulator, wherein the light beam emitted by the array light source is incident on the spatial light modulator through the scanning system
  • the present invention limits the scanning characteristics of the incident surface of the spatial light modulator in the scanning system, so that the illumination light on the incident surface of the spatial light modulator has a constant light distribution at any time within a frame of display time, thereby making
  • the display system combining scanning and spatial light modulators can be applied to more technical solutions including DMD spatial light modulators.
  • the power consumption of the light source can be reduced, and the dynamic contrast range can be improved.
  • Fig. 1 is a block diagram of a display device according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a specific structure of the first embodiment of the display device shown in FIG. 1.
  • FIG. 3 is a schematic diagram of the array light source arrangement of the first embodiment of the display device of the present invention.
  • FIG. 4 is a schematic diagram of incident light of the multi-faceted rotating reflective prism according to the first embodiment of the invention.
  • 5a, 5b, and 5c are schematic diagrams of the optical axis distribution and reflected light of the light source unit under different rotation angles.
  • Figure 6 shows the relationship between the rotation angle and the illuminance (OA is the reference line).
  • Figure 7 shows the relationship between the illuminance and time at the center point and edge point of the spatial light modulator.
  • Fig. 8 is a top view of the system according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of the optical path of Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of a scanning system according to Embodiment 3 of the invention.
  • FIG. 11 is a schematic diagram of a scanning system according to Embodiment 4 of the present invention.
  • FIG. 1 is a block diagram of a display device according to a preferred embodiment of the present invention
  • FIG. 2 is a specific structural diagram of the first embodiment of the display device of the present invention.
  • the display device 1 includes an array light source 10, a scanning system 20, a spatial light modulator 30, and an imaging device 50.
  • the array light source 10 includes at least a first sub-array light source, and includes a plurality of light source units for emitting illuminating light, and each light source unit is independently adjustable;
  • the scanning system 20 includes a rotation center axis and a plurality of reflective surfaces, the multiple reflective surfaces Rotate around the central axis of rotation to scan the illuminating light emitted by the array light source 10 on the surface of the spatial light modulator 30 in the form of a spot array to form an illuminating light distribution pattern (which can be achieved by adjusting the current of each light source unit);
  • the modulator 30 modulates the illuminating light projected by the scanning system 20 to output image light;
  • the imaging device 50 is arranged on the exit light path of the spatial light modulator 30 and is used to project the exit light of the spatial light modulator to Projection screen (not shown).
  • the core invention of the present invention lies in the requirements for the scanning beam on the incident surface of the spatial light modulator 30 and the formed scanning pattern.
  • scanning by the scanning system 20 on the incident surface of the spatial light modulator 30 satisfies the following two conditions:
  • the first restriction-the illumination light distribution on the incident surface of the spatial light modulator 30 remains constant within one frame of display time ;
  • the second limitation-the light source units included in the first sub-array light source have the same scanning area formed on the spatial light modulator by the scanning system.
  • the array light source may include a plurality of sub-array light sources, and the emitted light of each sub-array light source is scanned by the incident surface of the spatial light modulator in the scanning system, and all satisfy the first restriction condition and the second restriction condition. It is equivalent to a sub-array light source corresponding to a modulation display area of the spatial light modulator. It can be understood that, in some embodiments, the array light source may also include only one sub-array light source, that is, the first sub-array light source, whose illumination light after being acted on by the scanning system covers the entire incident surface of the spatial light modulator.
  • the following takes the technical solution in which the array light source is equivalent to the first sub-array light source as an example for description.
  • the technical solution in which the array light source includes multiple sub-array light sources can be obtained by accumulating the spatial splicing of the example solutions.
  • the array light source 10 that is, the first sub-array light source includes m ⁇ n light source units.
  • FIG. 3 is a schematic diagram of the array light source arrangement of the first embodiment of the display device of the present invention.
  • the array light source 10 includes m rows and n columns of light source units.
  • the scanning direction of the scanning system 20 is consistent with the "column" direction of the array light source.
  • the scanning direction of the scanning system 20 may be the same as that of the array light source.
  • the direction of the "row" remains the same.
  • the light source unit may be a laser diode, a light emitting diode or an organic light emitting diode.
  • the light source unit is a laser diode.
  • Each light source unit is used to emit an independent illuminating beam, and the light-emitting brightness of each light source unit can be independently controlled.
  • the array light source of the present invention is not a combination of light source units emitting parallel light beams with the same or similar angular distribution, but by combining light source units with different light-emitting characteristic parameters to obtain a display system An array light source that satisfies the first restriction condition and the second restriction condition.
  • any light source unit in the feature parameter S i L i of the incident light beam scanning system comprising: a central optical axis of the light beam L i and the reference The included angle ⁇ i of the light beam Li on the scanning system, the angle ⁇ i between the perpendicular to the center axis of rotation of the scanning system and the reference line from the scanning cycle shear point of the light beam Li on the scanning system, the angular distribution of the brightness of the light beam Li in the scanning direction F i, wherein a reference line perpendicular to the incident surface of the spatial light modulator; each light source unit by setting a light beam emitted from the characteristic parameters S i ( ⁇ i, ⁇ i, F i) L i such that the display system Meet the first restriction condition and the second restriction condition.
  • the scanning cycle shear point refers to the point corresponding to the scanning system when the scanning position of the beam on the target plane changes discontinuously.
  • angle of the beam after the light beam L i via the scanning system reflection and a corresponding spot position step change in the spatial light modulator, except for the point light beam by the scanning system of the reflected light beam L i For continuous change.
  • the scanning system 20 includes a plurality of reflective surfaces (understood as at least two reflective surfaces here) for scanning the illuminating light emitted by the light source array 10 on the surface of the spatial light modulator 30 in the form of a spot, then the above-mentioned scanning cycle shear point Located on the intersection of two adjacent reflective surfaces.
  • the scanning system 20 is a multi-sided rotating reflective prism, and the scanning cyclic shear point is located on the edge of the multi-sided rotating reflective prism.
  • the spatial light modulator 30 modulates the light spot projected by the scanning system 20 to output image light.
  • the spatial light modulator 30 is a DMD, and the DMD includes a plurality of bistable micro-mirrors, wherein the bistable state refers to the "on” state and the "off” state. In the “on” state, the light reflected by the micro-mirror exits the lens to form bright pixels on the screen; in the "off” state, the light reflected by the micro-mirror is incident on the absorbing material and does not exit the lens.
  • the micro-mirror can be switched between "on” and “off” at a very fast speed (generally, it can reach a switching speed of the order of microseconds).
  • PWM pulse width modulation
  • Pulse Width Modulation Pulse Width Modulation
  • the spatial light modulator may also be LCD or LCoS.
  • This type of spatial light modulator is an "analog device", which can adjust the light transmittance by changing the orientation of the liquid crystal and combining it with the analyzer. Once the liquid crystal orientation is adjusted, the light transmittance can be controlled stably.
  • FIG. 4 is a schematic diagram of incident light rays of the multi-faceted rotating reflective prism according to the first embodiment of the present invention.
  • multi-faceted rotary reflective prism having N number of reflection surfaces, the presence of a certain time, the intersection of the central axis of a light source unit S i corresponding to the light L i scanning system is K, and K dots located multi-faceted rotating reflective prism certain one edge , Then K point is the scanning cycle shear point.
  • OA the reference line.
  • the angle of the line coincident with OA is 0°. Rotation is defined as “positive”, and clockwise rotation is defined as “negative”.
  • the angular range of any light L i after being reflected by the scanning system is among them Is the beam scanning angular range of L i.
  • L i corresponding to the light beam exit ray scanning range on the spatial light modulator 30 may be represented as H i1 ⁇ H i2:
  • H i1 and H i2 are the coordinate values of the beam Li on the incident surface of the spatial light modulator 30 in the scanning direction, which can be negative (as shown below point A in the figure) or positive (as shown in A Point above).
  • the brightness of the illumination light on the surface of each pixel of the spatial light modulator is a constant value at any time within the display time of one frame.
  • the central axis of each light source unit corresponds to the intersection point of the light passing through the reflective surface of the multi-faceted rotating reflective prism on the spatial light modulator as p i (x i , y i ), where x i is the surface of the spatial light modulator in the scanning direction
  • the position coordinates of y i are the position coordinates on the surface of the spatial light modulator orthogonal to the scanning dimension
  • the illuminating light brightness F of a certain point on the surface of the spatial light modulator can be expressed as:
  • c is a constant and is determined by the image signal.
  • the selection of c is not lower than the brightness of the corresponding image area;
  • P is the pair of p i at a certain time (x i , y i ) the number of light source units contributing.
  • the characteristic parameters of the light source unit can be obtained through the above formulas (1), (2), and (3).
  • the light spots formed by the light beams emitted by each light source unit on the incident surface of the spatial light modulator are uniformly distributed, that is, the light spots along the scanning direction are uniformly distributed.
  • the distance is evenly distributed, and the size of each spot is evenly distributed. This makes it possible to reduce the influence between adjacent light spots and reduce the computational complexity of light source adjustment during the light spot scanning process.
  • FIGS. 5a, 5b, and 5c are schematic diagrams of the optical axis distribution and reflected light of the light source unit under different rotation angles.
  • the figure contains 16 light source units in the scanning direction (clockwise in the figure are the light beams emitted by 1-16 light source units, only the outermost beams 1 and 16 are marked), using a multi-faceted rotating reflective prism with 16 reflective surfaces
  • Figure 5a is defined as a schematic diagram of the optical axis distribution and reflected light of the light source unit when rotated by 0°
  • Figure 5b is a schematic diagram of the optical axis distribution and reflected light of the light source unit when rotated by 5°
  • Figure 5c is the optical axis of the light source unit when rotated by 10° Schematic diagram of distribution and reflected light.
  • the total coverage of the light irradiated on the spatial light modulator has not changed significantly, while the coverage of each beam is moving in a circular manner.
  • the beam 1 is in the spatial light.
  • the light spot 1 on the modulator gradually moves to the right with the rotation of the multi-faceted rotating reflective prism, while the light spots formed by the beams of other light sources on the spatial light modulator also move to the right. When it moves to the edge, the light spot returns to the maximum. To the left, move to the right again.
  • the total light beam composed of the light beams emitted by each light source unit is converged and incident on the reflective surface of the scanning system.
  • the "convergence” does not refer to the convergence of a single beam, but to converge multiple beams (16 beams in the figure), so that the spacing between the beams is reduced.
  • This technical solution is different from the array light source that emits in parallel, and can realize the first restriction condition and the second restriction condition of the display system of the present invention, and in particular can make the light beam form a cyclically stable illumination light distribution after passing through the scanning system.
  • the angular distributions of the light beams emitted by the light source units do not overlap with each other, otherwise it may cause too much overlap of the two adjacent light beams on the spatial light modulator, resulting in the inability to achieve higher-precision illumination light distribution modulation .
  • Figure 6 shows the relationship between the position of the spatial light modulator and the illuminance (OA is the reference line). It can be seen that the light distribution in the large middle area is relatively uniform, while the illuminance distribution at the edge position fluctuates greatly. Roughly corresponds to the size of the light spot on the spatial light modulator covered by a beam along the scanning direction. The area with large fluctuations is not conducive to light distribution modulation and may lead to dark edge areas. Therefore, this area should be minimized as much as possible.
  • the size of the edge area can be reduced by increasing the number of light source units of the array light source while reducing the beam spot.
  • FIG. 7 shows the relationship between the illuminance and time of the center point and the edge point of the spatial light modulator. It can be seen that the illumination spot will move in a spatial period with the change of the scanning angle. The unevenness of the edge will cause the edge of the light to be unusable, and the non-edge point of the spatial light modulator can be kept uniform in space and time. Sex. Therefore, preferably, the size of the scanning field of the light source unit in the scanning direction can be made larger than the size of the spatial light modulator in the scanning direction, so that the illumination light on the surface of the spatial light modulator can be kept stable, or more light source units can be introduced , Can reduce the light loss at the edge and improve the light efficiency.
  • the display system 1 may further include a homogenization system 60, a first relay optical system 70, and a second relay optical system 80.
  • the homogenization system 60 is arranged on the optical path between the array light source and the scanning system, and shapes and homogenizes the illumination light emitted by the light source unit to generate a light spot suitable for the scanning system 20.
  • the first relay optical system 70 is arranged between the homogenization system 60 and the scanning system 20, and may include optical devices such as a reflector, a free-form surface lens or a reflector, and can be used to assist in adjusting the light beam of the light source unit so that the display system meets all requirements.
  • the first restriction and the second restriction is arranged on the optical path between the scanning system and the spatial light modulator to shape the light spot emitted from the scanning system 20 to uniformly illuminate the spatial light modulator 30.
  • FIG. 8 is a top view of the system according to Embodiment 1 of the present invention, in which the imaging system 50 and the array light source 10 at least partially overlap, the first relay optical system 70 and the second relay optical system 80 at least partially overlap, and the light is uniform
  • the system 60 and the second relay optical system 80 at least partially overlap, and the overlapping arrangement can ensure the compactness of the display device.
  • the present invention obtains the optimal arrangement of the light source array by calculating the characteristic parameters of the light source unit, so that the brightness of the illumination light on the surface of each pixel of the spatial light modulator is a constant value at any time within a frame of display time, thereby obtaining a suitable DMD's beam scanning display system.
  • FIG. 9 is a schematic diagram of an optical path according to Embodiment 2 of the present invention.
  • the second embodiment of the present invention differs from the first embodiment only in that the scanning system scans in the horizontal direction, and the incident light and the outgoing light are separated in the horizontal space to leave enough space for optical devices such as the relay optical system.
  • Embodiment 1 for solving the characteristic parameters of the light beam of the light source unit.
  • FIG. 10 is a schematic diagram of a scanning system according to Embodiment 3 of the invention.
  • the scanning system in Embodiment 3 of the present invention adopts a multi-prism mesa-type scanning device, and this technical solution only adds a fixed displacement in the vertical direction compared with the above-mentioned technical solution.
  • Embodiment 1 for solving the characteristic parameters of the light beam of the light source unit.
  • FIG. 11 is a schematic diagram of a scanning system according to Embodiment 4 of the present invention.
  • the scanning system in Embodiment 4 of the present invention uses a galvanometer.
  • Embodiment 1 of the present invention adopts a multi-sided rotating reflective prism, and the size of the scanning angle of the outgoing light can be expressed as 4 ⁇ /N, where N is the number of reflective surfaces of the multi-sided rotating reflective prism.
  • N is the number of reflective surfaces of the multi-sided rotating reflective prism.
  • the scanning angle is required to be reduced. Therefore, it is necessary to increase the number of reflecting surfaces of the multi-face rotating reflecting prism, which increases the radius of the multi-face rotating reflecting prism and greatly increases the processing difficulty.
  • the scanning angle range of the galvanometer is twice the rotation angle, and the scanning angle can be reduced by increasing the size of the ⁇ angle and increasing the distance between the rotation center and the mirror. If the rotation angle is too small, each spot cannot traverse all positions; if the rotation angle is too large, the total illumination spot will move significantly, and the uniformity of the illumination spot on the spatial light modulator along time and space cannot be guaranteed .
  • the galvanometer mirror can be regarded as the two reflecting surfaces of the multi-faceted rotating reflecting prism in Embodiment 1, the circumscribed circle can be the center of rotation, and the intersection point of the intersection of the two mirrors and the beam is the scanning cycle shear point.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种显示系统(1),包括:阵列光源(10),至少包括第一子阵列光源,包含多个光源单元,用于发出照明光;扫描系统(20),包括旋转中心轴和多个反射面,其中,多个反射面绕旋转中心轴转动,用于将阵列光源(10)发出的照明光通过光斑阵列的形式在空间光调制器(30)的入射面扫描,使得显示系统满足:第一限制条件——空间光调制器(30)的入射面的照明光分布在一帧显示时间内保持恒定,和第二限制条件——第一子阵列光源包含的各光源单元通过扫描系统(20)在空间光调制器(30)上形成的扫描域相同;空间光调制器(30),对扫描系统(20)投射至其上的照明光进行调制,输出图像光。通过对显示系统(1)限制条件来配置光源单元的特征参数,使得扫描系统(20)与空间光调制器(30)结合的显示系统(1)具有更广的应用范围,实现高对比度。

Description

一种显示系统 技术领域
本发明涉及显示技术领域,特别是涉及一种显示系统。
背景技术
现有光束扫描形式的投影显示系统,利用激光具有较佳方向性的特点,通过扫描器件动态改变激光光束的方向,并在屏幕上形成画面。这种技术能大大简化光路结构,但对于光束准直性要求高,且为实现高分辨率,要求光斑尺寸要做到非常小。单模激光器能使光束及光斑实现上述特征,但是单模激光器限制了光束扫描形式的投影显示系统的输出亮度。多模激光器能够提高扫描式投影设备的输出亮度,但是即使在光源和扫描器的光路中增加光学整形器件,光束准直性和光斑尺寸也难以达到目前空间光调制器的主流分辨率。
因此,为解决光束扫描形式的投影系统亮度和分辨率无法同时兼得的问题,可在空间光调制器表面进行光束扫描。
目前应用于投影领域的空间光调制器包括数字微镜阵列(DMD,Digital Micromirror Device)、透射式液晶光阀(LCD,Liquid Crystal Display)、反射式液晶光阀(LCOS,Liquid Crystal on Silicon)。
数字微镜阵列包括多个双稳态的微反射镜,其中双稳态指“开”状态和“关”状态。在“开”状态下,微反射镜反射的光从镜头出射,在屏幕上形成亮的像素;在“关”状态下,微反射镜反射的光入射到吸收材料上而不从镜头出射。微反射镜可以以很快的速度在“开”和“关”状态下切换(一般可以达到微妙量级的切换速度)。通过脉冲宽度调制(PWM,Pulse Width Modulation)控制微反射镜在一帧显示时间内处于“开”状态的占比可实现不同灰阶显示。而为正确显示灰阶,需保证DMD每个像素表面的照明光亮度在一帧显示时间内任意时刻为恒定值
而采用LCD或LCoS的空间光调制器通过控制液晶两级的电压来控制液晶的折射率进而实现不同的灰阶显示。因而,对于液晶空间光调制器而言,并不要求每个像素的照明光在一帧显示时间内保持恒定。
DMD相对于LCD和LCoS有更好的热学性能和稳定性,因此在投影领域的应用更广。但由于现有的光束扫描无法在一帧显示时间内保证在空间光调制器表面形成恒定的照明,因此在空间光调制器表面进行光束扫描的方式不适用于DMD。这也大大地限制了光束扫描在激光投影显示领域的应用。
发明内容
本发明提供一种显示系统,包括:阵列光源,至少包括第一子阵列光源,包含多个光源单元,用于发出照明光;扫描系统,包括旋转中心轴和多个反射面,该多个反射面绕所述旋转中心轴转动,用于将所述阵列光源发出的照明光通过光斑阵列的形式在空间光调制器的入射面扫描,使得所述显示系统满足:第一限制条件——所述空间光调制器的入射面的照明光分布在一帧显示时间内保持恒定,和第二限制条件——所述第一子阵列光源包含的各所述光源单元通过所述扫描系统在所述空间光调制器上形成的扫描域相同;所述空间光调制器,对所述扫描系统投射至其上的所述照明光进行调制,输出图像光。
在一个实施方式中,所述第一子阵列光源包括x个光源单元S 1,S 2……S x,任一光源单元S i在所述扫描系统的入射光束L i的特征参数包括:光束L i的中心光轴与参考线的夹角γ i,光束L i在所述扫描系统上的扫描循环切变点到所述扫描系统的旋转中心轴的垂线与所述参考线的夹角β i,光束L i在扫描方向上的亮度角分布F i,其中,所述参考线为所述空间光调制器的入射面的垂线;通过设定各光源单元S i发出的光束L i的特征参数(γ i,β i,F i),以使得所述显示系统满足所述第一限制条件和第二限制条件。
在一个实施方式中,各所述光源单元发出的光束组成的总光束汇聚入射于所述扫描系统的反射面。
在一个实施方式中,在一帧显示时间内的任一时刻,各所述光源 单元发出的光束在所述空间光调制器的入射面上形成的光斑呈均匀分布。
在一个实施方式中,各所述光源单元发出的光束的角分布彼此不重叠。
在一个实施方式中,所述扫描域在扫描方向上的尺寸大于所述空间光调制器在扫描方向上的尺寸。
在一个实施方式中,还包括匀光系统,所述匀光系统设置于所述阵列光源与所述扫描系统之间的光路上。
在一个实施方式中,还包括第一中继光学系统,设置于所述匀光系统和所述扫描系统之间,用于辅助调节各所述光源单元的光束,使得所述显示系统满足所述第一限制条件和所述第二限制条件。
在一个实施方式中,还包括第二中继光学系统,设置于所述扫描系统与所述空间光调制器之间的光路上。
在一个实施方式中,还包括成像器件,设置于所述空间光调制器的出射光路上,用以将空间光调制器的出射光投射至屏幕。
在一个实施方式中,所述显示系统的系统俯视图中,所述阵列光源与所述成像器件至少部分重合,所述第一中继光学系统与所述第二中继光学系统至少部分重合,所述匀光系统与所述第二中继光学系统至少部分重合。
在一个实施方式中,所述空间光调制器为数字微镜阵列、透射式液晶光阀、反射式液晶光阀中的任意一种。
在一个实施方式中,所述扫描系统为多面旋转反射棱镜、多棱台型扫描器件、振镜中的任意一种。
本发明的有益效果是,区别于现有技术的情况,本发明提供一种显示系统,包括阵列光源、扫描系统、空间光调制器,其中阵列光源发出的光束经扫描系统入射于空间光调制器的入射面,本发明通过限定扫描系统中空间光调制器的入射面的扫描特性,以使得空间光调制器的入射面的照明光在一帧显示时间内任意时刻为恒定的光分布,进而使得扫描与空间光调制器结合的显示系统能够应用到包括DMD空间光调制器在内的更多的技术方案中。此外,通过在空间光调制器的 表面形成照明光分布,进而利用空间光调制器调制出图像光,既可以降低光源的功耗,又可以提高动态对比度范围。
附图说明
图1是本发明一较佳实施例的显示设备的方框示意图。
图2是图1所示显示设备第一实施例的具体结构示意图。
图3为本发明的显示设备第一实施例的阵列光源排布示意图。
图4为本发明实施例一的多面旋转反射棱镜的入射光线示意图。
图5a、5b、5c是不同旋转角度下光源单元的光轴分布及反射光线示意图。
图6为旋转角度与照度之间的关系(OA为参考线)。
图7为空间光调制器中心点与边缘点的照度与时间的关系。
图8为本发明实施例1的系统俯视图。
图9为本发明实施例2的光路示意图。
图10为发明实施例3的扫描系统示意图。
图11为本发明实施例4的扫描系统示意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参阅图1-2,图1是本发明一较佳实施例的显示设备的方框示意图,图2是本发明的显示设备第一实施例的具体结构示意图。显示设备1包括阵列光源10、扫描系统20、空间光调制器30和成像器件 50。阵列光源10,至少包括第一子阵列光源,包含多个光源单元,用于发出照明光,各光源单元独立可调;扫描系统20,包括旋转中心轴和多个反射面,该多个反射面绕旋转中心轴转动,用于将阵列光源10发出的照明光通过光斑阵列的形式在空间光调制器30的表面扫描,形成照明光分布图案(可通过调节各光源单元的电流实现);空间光调制器30,对扫描系统20投射至其上的照明光进行调制,输出图像光;成像器件50,设置于空间光调制器30的出射光路上,用于将空间光调制器的出射光投射至投影屏幕(未示出)。
本发明的核心发明点在于,对在空间光调制器30的入射面的扫描光束及形成的扫描图案的要求。本发明中,扫描系统20在空间光调制器30的入射面的扫描满足如下两个条件:第一限制条件——空间光调制器30的入射面的照明光分布在一帧显示时间内保持恒定;第二限制条件——第一子阵列光源包含的各所述光源单元通过所述扫描系统在所述空间光调制器上形成的扫描域相同。
在本发明中,阵列光源可以包括多个子阵列光源,且各个子阵列光源的出射光分别经扫描系统中空间光调制器的入射面的扫描都分别满足第一限制条件和第二限制条件。相当于一个子阵列光源对应空间光调制器的一个调制显示区域。可以理解,在一些实施方式中,阵列光源也可以仅包括一个子阵列光源,即第一子阵列光源,其经扫描系统作用后的照明光覆盖整个空间光调制器的入射面。为便于说明,下面以阵列光源等效为第一子阵列光源的技术方案为例进行说明,阵列光源包括多个子阵列光源的技术方案可以通过对举例方案的空间拼接累加得到。
具体而言,本实施例中,阵列光源10即第一子阵列光源包括m×n个光源单元,请参考图3,图3为本发明的显示设备第一实施例的阵列光源排布示意图。阵列光源10包括m行n列光源单元,在本实施例中,扫描系统20的扫描方向与阵列光源的“列”方向保持一致,在其他实施例中,扫描系统20的扫描方向可与阵列光源的“行”方向保持一致。光源单元可为激光二极管、发光二极管或有机发光二极管。本实施例中,光源单元为激光二极管。每个光源单元用于发出 独立的照明光束,且每个光源单元的发光亮度均可独立控制。
不同于以往的阵列光源,本发明的阵列光源并非出射平行且具有相同或相似角分布的光束的光源单元的结合,而是通过将具有不同发光特征参数的光源单元组合,从而得到能够使显示系统满足第一限制条件和第二限制条件的阵列光源。
具体而言,假设阵列光源包括x个光源单元S 1,S 2……S x,任一光源单元S i在扫描系统的入射光束L i的特征参数包括:光束L i的中心光轴与参考线的夹角γ i,光束L i在扫描系统上的扫描循环切变点到扫描系统的旋转中心轴的垂线与参考线的夹角β i,光束L i在扫描方向上的亮度角分布F i,其中,参考线为空间光调制器的入射面的垂线;通过设定各光源单元S i发出的光束L i的特征参数(γ i,β i,F i),以使得显示系统满足第一限制条件和第二限制条件。在稍后的段落,将对特征参数(γ i,β i,F i)与两个限制条件的关系作更为详细的讨论。
在本发明中,扫描循环切变点是指光束在目标平面的扫描位置不连续变化时对应在扫描系统上的点。在扫描循环切变点前后,光束L i经扫描系统反射后的光束的角度及对应在空间光调制器上的光斑位置跳跃式变化,除该点外,光束L i经扫描系统反射后的光束为连续变化。
扫描系统20包括多个反射面(这里理解为至少两个反射面),用于将光源阵列10发出的照明光通过光斑的形式在空间光调制器30的表面扫描,则上述扫描循环切变点位于相邻的两个反射面的交线上。本实施例中扫描系统20为多面旋转反射棱镜,则扫描循环切变点位于该多面旋转反射棱镜的棱上。
空间光调制器30对扫描系统20投射至其上的光斑进行调制,输出图像光。优选地,本实施例中,空间光调制器30为DMD,DMD包括多个双稳态的微反射镜,其中双稳态指“开”状态和“关”状态。在“开”状态下,微反射镜反射的光从镜头出射,在屏幕上形成亮的像素;在“关”状态下,微反射镜反射的光入射到吸收材料上而不从镜头出射。微反射镜可以以很快的速度在“开”和“关”状态下切换(一般可以达到微妙量级的切换速度)。通过脉冲宽度调制(PWM, Pulse Width Modulation)控制微反射镜在一帧显示时间内处于“开”状态的占比可实现不同灰阶显示。而为正确显示灰阶,需保证照射在数字微镜阵列中每个像素表面的照明光亮度在一帧显示时间内为恒定值,也即使得空间光调制器的入射面的照明光分布在一帧显示时间内保持恒定。设一帧显示时间为(0,T),则在0~T的任意时刻,空间光调制器的入射面的照明光分布都是一样的。
在其他实施例中,空间光调制器还可为LCD或LCoS。该类空间光调制器为“模拟型器件”,通过改变液晶取向并结合检偏器,实现对光束透过率的调节,一旦液晶取向调节完成,能够稳定的控制光透过率。
请参考图4,图4为本发明实施例一的多面旋转反射棱镜的入射光线示意图。举例而言,多面旋转反射棱镜具有N个反射面,存在某时刻,一光源单元S i的中心轴对应的光线L i扫描系统的交点为K,且K点位于多面旋转反射棱镜的某一条棱上,则K点为扫描循环切变点。过K点作多面旋转反射棱镜的旋转中心轴的垂线,得到旋转中心轴上的O点。过O点作空间光调制器30的入射面的垂线,得到与空间光调制器30的焦点A,定义OA为参考线,与OA重合的线的角度为0°,多面旋转反射棱镜逆时针旋转定义为“正”,顺时针旋转定义为“负”。如图所示,以O点作为坐标轴原点,则图中的β i为正值,γ i为正值,h i为正值;若h i在OA线的下方则为负值(数学上,非物理意义上)。设OK的长度为R,则有h i=Rsinβ i
可以计算得到,任意光线L i经扫描系统反射后的角度范围为
Figure PCTCN2020126546-appb-000001
其中
Figure PCTCN2020126546-appb-000002
即为光束L i的扫描角度范围。
假设OA线段的长度为D,则光束L i对应的出射光线在空间光调制器30上的扫描范围可以表示为H i1~H i2
Figure PCTCN2020126546-appb-000003
Figure PCTCN2020126546-appb-000004
其中H i1、H i2为光束L i在空间光调制器30入射面在扫描方向的坐标值,可以为负值(如图表示在A点的下方),也可以为正值(如图 在A点的上方)。
在本发明中,为使阵列光源10经过多面旋转反射棱镜反射后,投射至空间光调制器表面的每个像素点的照明光亮度为恒定值,对于任意L i,H i1=a,H i2=b,其中a和b为常数,即各光束在空间光调制器上形成的扫描域相同。
空间光调制器每个像素表面的照明光亮度在一帧显示时间内任意时刻为恒定值。假设每个光源单元的中心轴对应光线通过多面旋转反射棱镜的反射面在空间光调制器上的交点为p i(x i,y i),其中x i为扫描方向上在空间光调制器表面的位置坐标,y i为正交于扫描维度上在空间光调制器表面的位置坐标,则空间光调制器表面某点的照明光亮度F可以表示为:
Figure PCTCN2020126546-appb-000005
F=c
其中,c为常量,且由图像信号决定,一般而言,由于空间光调制器只能做“减光”处理,因此选取c不低于对应的图像区域的亮度;P为某时刻对p i(x i,y i)点有贡献的光源单元的数量。
因此在已知阵列光源行列数、多面旋转反射棱镜的尺寸及多面旋转反射棱镜的反射面数后,通过上述公式(1)(2)(3)即可得到光源单元的特征参数。
在本发明的一个优选实施例中,在一帧显示时间内的任一时刻,各光源单元发出的光束在空间光调制器的入射面上形成的光斑呈均匀分布,即沿扫描方向各光斑的距离分布均匀,各光斑的尺寸分布均匀。这样使得可以减小相邻光斑之间的影响,并减小光斑扫描过程中光源调节的运算复杂性。
根据求解得到的最优阵列光源特性,进行仿真模拟,验证是否能够在空间光调制器上形成稳定的光分布,在本实施例中,以均匀白场作为预设图案。请参考图5a、5b、5c,为不同旋转角度下光源单元的光轴分布及反射光线示意图。图中在扫描方向上包含16个光源单 元(图中按顺时针分别为1-16光源单元发出的光束,只标记了最边缘的光束1和16),采用多面旋转反射棱镜具有16个反射面,图5a定义为旋转0°时光源单元的光轴分布及反射光线示意图,图5b为旋转5°时光源单元的光轴分布及反射光线示意图,图5c为旋转10°时光源单元的光轴分布及反射光线示意图。随着多面旋转反射棱镜的旋转,照射在空间光调制器上的光的总覆盖范围未发生明显变化,而各个光束的覆盖范围在进行循环式移动,如图中所示,光束1在空间光调制器上的光斑1随着多面旋转反射棱镜的旋转逐渐向右移动,而其他光源的光束在空间光调制器上形成的光斑也在向右移动,当移动到边缘时,光斑重新回到最左端,再向右移动。
在本实施例中,各光源单元发出的光束组成的总光束汇聚入射于扫描系统的反射面。这里的“汇聚”并非指单个光束的汇聚,而是将多个光束(如图中16个光束)汇聚,使得各光束之间的间距减小。该技术方案与平行出射的阵列光源不同,能够实现本发明显示系统的第一限制条件和第二限制条件,尤其能够使得光束经扫描系统后形成循环稳定的照明光分布。
在本实施例中,各光源单元发出的光束的角分布彼此不重叠,否则可能导致相邻两个光束在空间光调制器上交叠区域太多,导致无法实现精度更高的照明光分布调制。
请参考图6,图6为空间光调制器位置与照度之间的关系(OA为参考线),可以看出,中间较大区域的光分布相对均匀,而边缘位置的照度分布波动较大,大致对应一个光束在空间光调制器上的光斑沿扫描方向覆盖的尺寸,该波动较大的区域不利于光分布调制,可能导致边缘区域偏暗,因此要尽可能减小该区域。在本发明中,可以通过增加阵列光源的光源单元数量同时减小光束光斑的方式减小该边缘区域尺寸。
请参考图7,图7为空间光调制器中心点与边缘点的照度与时间的关系。可以看出照明光斑随着扫描的角度变化会有一个空间周期的移动,边缘的不均匀性会导致边缘的光无法被利用,而空间光调制器非边缘点可以保持在空间上和时间的均匀性。因此优选的,可以令光 源单元的扫描域在扫描方向上的尺寸大于空间光调制器在扫描方向上的尺寸,从而使得在空间光调制器表面照明光可以保持稳定,或引入更多的光源单元,可以降低边缘处的光损失,提高光效。
显示系统1还可包括匀光系统60,第一中继光学系统70、第二中继光学系统80。匀光系统60设置于匀光系统设置于阵列光源与扫描系统之间的光路上,对光源单元出射的照明光进行整形和匀光,以产生与扫描系统20适配的光斑。第一中继光学系统70,设置于匀光系统60和扫描系统20之间,可包括反光镜、自由曲面透镜或反射镜等光学器件,可用于辅助调节光源单元的光束,使得显示系统满足所述第一限制条件和所述第二限制条件。第二中继光学系统80,设置于扫描系统与空间光调制器之间的光路上,用以将从扫描系统20出射的光斑整形以均匀照明空间光调制器30。
请参考图8,图8为本发明实施例1的系统俯视图,其中成像系统50与阵列光源10至少部分重合,第一中继光学系统70与第二中继光学系统80至少部分重合,匀光系统60与第二中继光学系统80至少部分重合,通过重叠设置,可以保证显示设备体积紧凑性。
本发明通过计算光源单元的特征参数,从而得到光源阵列的最佳排布,以使得空间光调制器每个像素表面的照明光亮度在一帧显示时间内任意时刻为恒定值,进而得到适用于DMD的光束扫描显示系统。
请参考图9,图9为本发明实施例2的光路示意图。本发明实施例2区别于实施例1仅在于扫描系统在水平方向上进行扫描,入射光和出射光在水平空间上分离,以留出足够空间容纳中继光学系统等光学器件。光源单元的光束的特征参数的求解可参考实施例1。
请参考图10,图10为发明实施例3的扫描系统示意图。区别于实施例1,本发明实施例3中扫描系统采用多棱台型扫描器件,该技术方案相对于上述技术方案仅仅增加了一个竖直方向的固定位移。光源单元的光束的特征参数的求解可参考实施例1。
请参考图11,图11为本发明实施例4的扫描系统示意图。区别于实施例1,本发明实施例4中扫描系统采用振镜。本发明实施例1采用多面旋转反射棱镜,出射光线扫描的角度大小可以表示为4π/N, 其中N为多面旋转反射棱镜的反射面数。为避免光源单元扫描域的畸变,要求扫描角度减小,因而需要增加多面旋转反射棱镜的反射面数,这就增加了多面旋转反射棱镜的半径,加工难度大大上升。而采用两片成θ夹角的镜面形成振镜,并围绕旋转中心做往复旋转运动,则可以解决多面旋转反射棱镜的加工难度大的缺点。振镜的扫描角度范围为旋转角度的两倍,可以通过增加θ角的大小,并增加旋转中心离反射镜的距离从而减小扫描角度。如果旋转角度过小,则每一个光斑无法遍历所有的位置;如旋转角度过大,则总的照明光斑会出现大幅度的移动,不能保证空间光调制器上照明光斑沿时间和空间的均匀性。光源单元的特征参数的求解可参考实施例1。可将振镜看成实施例1中多面旋转反射棱镜的两个反射面,外接圆可以旋转中心为圆心,两镜交线与光束的交点为扫描循环切变点。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个单元或装置也可以由同一个单元或装置通过软件或者硬件来实现。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种显示系统,其特征在于,包括:
    阵列光源,至少包括第一子阵列光源,包含多个光源单元,用于发出照明光;
    扫描系统,包括旋转中心轴和多个反射面,该多个反射面绕所述旋转中心轴转动,用于将所述阵列光源发出的照明光通过光斑阵列的形式在空间光调制器的入射面扫描,使得所述显示系统满足:第一限制条件——所述空间光调制器的入射面的照明光分布在一帧显示时间内保持恒定,和第二限制条件——所述第一子阵列光源包含的各所述光源单元通过所述扫描系统在所述空间光调制器上形成的扫描域相同;
    所述空间光调制器,对所述扫描系统投射至其上的所述照明光进行调制,输出图像光。
  2. 根据权利要求1所述的显示系统,其特征在于,所述第一子阵列光源包括x个光源单元S 1,S 2……S x,任一光源单元S i在所述扫描系统的入射光束L i的特征参数包括:光束L i的中心光轴与参考线的夹角γ i,光束L i在所述扫描系统上的扫描循环切变点到所述扫描系统的旋转中心轴的垂线与所述参考线的夹角β i,光束L i在扫描方向上的亮度角分布F i,其中,所述参考线为所述空间光调制器的入射面的垂线;
    通过设定各光源单元S i发出的光束L i的特征参数(γ i,β i,F i),以使得所述显示系统满足所述第一限制条件和第二限制条件。
  3. 根据权利要求2所述的显示系统,其特征在于,各所述光源单元发出的光束组成的总光束汇聚入射于所述扫描系统的反射面。
  4. 根据权利要求2所述的显示系统,其特征在于,在一帧显示时间内的任一时刻,各所述光源单元发出的光束在所述空间光调制器的入射面上形成的光斑呈均匀分布。
  5. 根据权利要求2所述的显示系统,其特征在于,各所述光源单元发出的光束的角分布彼此不重叠。
  6. 根据权利要求1所述的显示系统,其特征在于,所述扫描域在扫描方向上的尺寸大于所述空间光调制器在扫描方向上的尺寸。
  7. 根据权利要求1所述的显示系统,其特征在于,还包括匀光系统,所述匀光系统设置于所述阵列光源与所述扫描系统之间的光路上。
  8. 根据权利要求7所述的显示系统,其特征在于,还包括第一中继光学系统,设置于所述匀光系统和所述扫描系统之间,用于辅助调节各所述光源单元的光束,使得所述显示系统满足所述第一限制条件和所述第二限制条件。
  9. 根据权利要求8所述的显示系统,其特征在于,还包括第二中继光学系统,设置于所述扫描系统与所述空间光调制器之间的光路上。
  10. 根据权利要求1~9中任一项所述的显示系统,其特征在于,还包括成像器件,设置于所述空间光调制器的出射光路上,用以将空间光调制器的出射光投射至屏幕。
  11. 根据权利要求10所述的显示系统,其特征在于,所述显示系统的系统俯视图中,所述阵列光源与所述成像器件至少部分重合,所述第一中继光学系统与所述第二中继光学系统至少部分重合,所述匀光系统与所述第二中继光学系统至少部分重合。
  12. 根据权利要求1所述的显示系统,其特征在于,所述空间光调制器为数字微镜阵列、透射式液晶光阀、反射式液晶光阀中的任意一种。
  13. 根据权利要求1所述的显示其特征在于,所述扫描系统为多面旋转反射棱镜、多棱台型扫描器件、振镜中的任意一种。
PCT/CN2020/126546 2019-12-09 2020-11-04 一种显示系统 WO2021114966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911247601.1 2019-12-09
CN201911247601.1A CN113031257B (zh) 2019-12-09 2019-12-09 一种显示系统

Publications (1)

Publication Number Publication Date
WO2021114966A1 true WO2021114966A1 (zh) 2021-06-17

Family

ID=76329562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126546 WO2021114966A1 (zh) 2019-12-09 2020-11-04 一种显示系统

Country Status (2)

Country Link
CN (1) CN113031257B (zh)
WO (1) WO2021114966A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1383496A (zh) * 2000-04-05 2002-12-04 松下电器产业株式会社 彩色图像显示装置
CN1610861A (zh) * 2001-07-02 2005-04-27 松下电器产业株式会社 投射型图像显示装置
CN1760713A (zh) * 2004-10-15 2006-04-19 杨东佐 一种视频显示图像投影系统及其光工作方法
US20090244499A1 (en) * 2008-03-31 2009-10-01 Terry Alan Bartlett System and Method for a Projection Display System Using an Optical Lightguide
CN105739225A (zh) * 2014-12-24 2016-07-06 Prysm公司 扫描波束显示系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178727A (ja) * 2005-12-28 2007-07-12 Seiko Epson Corp 照明装置及びプロジェクタ
US7835054B2 (en) * 2007-07-02 2010-11-16 Texas Instruments Incorporated Optical architecture having a rotating polygon for use in imaging systems
TWI383238B (zh) * 2007-08-29 2013-01-21 Young Optics Inc 照明系統
WO2011026005A2 (en) * 2009-08-31 2011-03-03 3M Innovative Properties Company Projection and display system
US8531751B2 (en) * 2011-08-19 2013-09-10 Orbotech Ltd. System and method for direct imaging
US10422881B1 (en) * 2018-12-07 2019-09-24 Didi Research America, Llc Mirror assembly for light steering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1383496A (zh) * 2000-04-05 2002-12-04 松下电器产业株式会社 彩色图像显示装置
CN1610861A (zh) * 2001-07-02 2005-04-27 松下电器产业株式会社 投射型图像显示装置
CN1760713A (zh) * 2004-10-15 2006-04-19 杨东佐 一种视频显示图像投影系统及其光工作方法
US20090244499A1 (en) * 2008-03-31 2009-10-01 Terry Alan Bartlett System and Method for a Projection Display System Using an Optical Lightguide
CN105739225A (zh) * 2014-12-24 2016-07-06 Prysm公司 扫描波束显示系统

Also Published As

Publication number Publication date
CN113031257A (zh) 2021-06-25
CN113031257B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
US8004766B2 (en) Illuminating device, illuminating method, image signal processing device, image signal processing method, and image projecting apparatus
US7677736B2 (en) Illumination light source and two-dimensional image display using same
CN109633977B (zh) 背光模组及显示装置
US20160327783A1 (en) Projection display system and method
US8325406B2 (en) Planar lighting apparatus and liquid crystal display device using the same
JP2018511148A (ja) 出力の指向性制御を有する表示装置、およびこのような表示装置用のバックライトおよび光指向方法
WO2021197356A1 (zh) 一种光束偏移装置、扫描方法、扫描装置及显示装置
WO2021114966A1 (zh) 一种显示系统
US8529071B2 (en) Illuminating spatial light modulators using an anamorphic prism assembly
EP3848753B1 (en) Light source system and control method thereof, display device and control method thereof
US20230101471A1 (en) Laser projection apparatus
JP2004341211A (ja) プロジェクタ及びプロジェクタの制御方法
WO2021184922A1 (zh) 一种光源标定方法及光源标定装置
EP3480656B1 (en) Display system and method
TW202101066A (zh) 用於光束的空間和角度均勻化的方法和系統
RU2294002C2 (ru) Проекционная система
US20230028602A1 (en) Laser source assembly and laser projection apparatus
JP7258115B1 (ja) 投射型表示装置
US11982932B2 (en) Projection display device
US11399162B2 (en) Display system
TWI806993B (zh) 光路調整機構及其製造方法
JP7329665B1 (ja) 投射型表示装置
WO2022012340A1 (zh) 投影显示系统
US20240094615A1 (en) Illumination system and projection apparatus
US20230350281A1 (en) Laser source and projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898739

Country of ref document: EP

Kind code of ref document: A1