WO2021114740A1 - 一种系统设计方法及电子设备 - Google Patents

一种系统设计方法及电子设备 Download PDF

Info

Publication number
WO2021114740A1
WO2021114740A1 PCT/CN2020/112575 CN2020112575W WO2021114740A1 WO 2021114740 A1 WO2021114740 A1 WO 2021114740A1 CN 2020112575 W CN2020112575 W CN 2020112575W WO 2021114740 A1 WO2021114740 A1 WO 2021114740A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
type parameter
system design
satellite communication
antenna
Prior art date
Application number
PCT/CN2020/112575
Other languages
English (en)
French (fr)
Inventor
康绍莉
缪德山
孙建成
韩波
孙韶辉
王映民
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021114740A1 publication Critical patent/WO2021114740A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a system design method and electronic equipment.
  • the terminals of satellite communication systems have more abundant elements in types.
  • the satellite communication system is designed based on the 5th generation mobile networks (5G) standard on the ground, different terminal types will mean that there are differences in system design, which introduces the complexity of system design.
  • 5G 5th generation mobile networks
  • the embodiments of the present disclosure provide a system design method and electronic equipment to reduce the complexity of the system design and make the system design simpler and more efficient.
  • the embodiments of the present disclosure provide a system design method, including:
  • the terminal type parameter includes at least one of the following factors:
  • Terminal antenna type terminal application scenario, terminal visual range, terminal communication rate, terminal moving speed, terminal's transmitting antenna equivalent aperture, terminal's receiving antenna equivalent aperture, maximum equivalent omnidirectional radiated power EIRP sent by the terminal, terminal
  • the received equivalent temperature gain coefficient G/T the highest signal-to-noise ratio supported by the terminal, the maximum scheduling bandwidth of the terminal, and the minimum access bandwidth of the terminal.
  • the embodiment of the present disclosure provides a system design device, including:
  • the system design module is configured to perform system design on the satellite communication system based on the terminal type parameters
  • the terminal type parameter includes at least one of the following factors:
  • Terminal antenna type terminal application scenario, terminal visual range, terminal communication rate, terminal moving speed, terminal's transmitting antenna equivalent aperture, terminal's receiving antenna equivalent aperture, maximum equivalent omnidirectional radiated power EIRP sent by the terminal, terminal
  • the received equivalent temperature gain coefficient G/T the highest signal-to-noise ratio supported by the terminal, the maximum scheduling bandwidth of the terminal, and the minimum access bandwidth of the terminal.
  • the embodiments of the present disclosure provide an electronic device including a memory, a processor, and a program stored on the memory and capable of running on the processor, and the processor implements the following steps when the program is executed:
  • the terminal type parameter includes at least one of the following factors:
  • Terminal antenna type terminal application scenario, terminal visual range, terminal communication rate, terminal moving speed, terminal's transmitting antenna equivalent aperture, terminal's receiving antenna equivalent aperture, maximum equivalent omnidirectional radiated power EIRP sent by the terminal, terminal
  • the received equivalent temperature gain coefficient G/T the highest signal-to-noise ratio supported by the terminal, the maximum scheduling bandwidth of the terminal, and the minimum access bandwidth of the terminal.
  • the embodiment of the present disclosure provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the system design method are realized.
  • the system design method and electronic equipment provided by the embodiments of the present disclosure determine the terminal type parameter and perform a targeted system design for the satellite communication system based on the terminal type parameter.
  • the terminal antenna is based on the factors included in the terminal type parameter.
  • the maximum scheduling bandwidth and the minimum access bandwidth of the terminal are both related to the characteristics of satellite communication and can reflect the capabilities of the terminal, so that the satellite communication system can make the system design simpler and more efficient when designing the system based on these terminal type parameters. This solves the problem of difficulty in system design caused by the lack of terminal type parameters in the present disclosure in the existing terminal capabilities.
  • FIG. 1 is a flowchart of the steps of a system design method in an embodiment of the disclosure
  • Fig. 2 is a block diagram of a system design device in an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of the structure of an electronic device in an embodiment of the disclosure.
  • the existing terminal capabilities reflect information such as maximum rate, channel bandwidth, and transmit power, but lack information related to satellite communication characteristics, such as terminal antenna types, terminal application scenarios, Terminal visible range, terminal moving speed, terminal's transmitting antenna equivalent aperture, terminal's receiving antenna equivalent aperture, maximum EIRP sent by the terminal, G/T received by the terminal, maximum scheduling bandwidth of the terminal, minimum access bandwidth of the terminal ,and many more. Since the information related to the satellite communication characteristics can reflect the capabilities of the terminal, the lack of such information will bring difficulties to the system design.
  • different terminal antenna types mean that the system adopts different measurement methods. Terminals using phased array antennas can support inter-satellite measurement, while terminals using single parabolic antennas do not support inter-satellite measurement.
  • the system can be based on different antenna types. Choose different terminal measurement methods; different terminal application scenarios mean that the maximum Doppler frequency offset that the terminal can resist is different. Generally, airborne terminals have greater anti-Doppler frequency offset capabilities than vehicle-mounted terminals.
  • the system can be based on the terminal The application scenarios to choose different random access channel parameters and so on.
  • the present disclosure proposes terminal capabilities required for satellite communication system design, namely terminal type parameters, so that the system design can be compatible with various terminal types, and related parameters can be configured adaptively to reduce the complexity of system design.
  • FIG. 1 it is a flowchart of the steps of the system design method in the embodiment of the present disclosure.
  • the method includes the following steps:
  • Step 101 Determine the terminal type parameter.
  • the terminal type parameter can be used as a newly-added terminal capability parameter, so that the satellite communication system can perform a targeted system based on the terminal type parameter Design, which makes the system design simpler and more efficient.
  • the terminal type parameter can reflect the difference between terminals, and at this time, the terminal type parameter includes at least one of the following factors:
  • Terminal antenna type terminal application scenario, terminal visual range, terminal communication rate, terminal moving speed, terminal's transmitting antenna equivalent aperture, terminal's receiving antenna equivalent aperture, and the maximum equivalent omnidirectional radiated power transmitted by the terminal (EIRP for short) ), the equivalent temperature gain coefficient (G/T for short) received by the terminal, the highest signal-to-noise ratio supported by the terminal, the maximum scheduling bandwidth of the terminal, and the minimum access bandwidth of the terminal.
  • EIRP Equivalent omnidirectional radiated power transmitted by the terminal
  • G/T equivalent temperature gain coefficient
  • the main characteristics of the satellite terminal can be reflected, so that when these terminal type parameters are used as the system design input of the satellite communication system, the system The design is simpler and more efficient.
  • Step 102 Perform system design on the satellite communication system based on the terminal type parameters.
  • the satellite communication system is designed based on the determined terminal type parameters.
  • the satellite communication system is designed based on the determined terminal type parameters. Based on the above-mentioned terminal type parameters related to satellite communication characteristics, it can reflect the capabilities of the terminal, so that the satellite communication system can perform the system based on these terminal type parameters. During the design, the system design can be made simpler and more efficient, and the problem of difficulty in system design caused by the lack of terminal type parameters in the present disclosure in the existing terminal capabilities is avoided.
  • the first factor item can be used as the determined item.
  • the terminal type parameter that is, the factor item is a required option for the determined terminal type parameter; in addition, if the second factor item can be derived from other factor items, that is, it can be derived from other factor items, then the second factor item can be The factor item is an optional item of the determined terminal type parameter, that is, the determined terminal type parameter may not include the second factor item.
  • terminal antenna type, terminal application scenario, and terminal visual range may be taken as mandatory options of terminal type parameters, that is, terminal type parameters include at least terminal antenna type, terminal application scenario, and terminal visual range.
  • the terminal’ s communication rate, terminal moving speed, terminal’s transmitting antenna equivalent aperture, terminal’s receiving antenna equivalent aperture, the maximum EIRP sent by the terminal, the G/T received by the terminal, the highest signal-to-noise ratio supported by the terminal, and the maximum
  • the scheduling bandwidth and the minimum access bandwidth of the terminal can be used as a mandatory option for the terminal type parameter, or as an optional option for the terminal type parameter, which is not specifically limited here.
  • the terminal type parameter can be notified to the terminal and the network side through a broadcast channel, a control channel, or a traffic channel, so that the terminal side and the network side can be unified. Terminal type parameter.
  • the satellite communication system when the satellite communication system is designed based on terminal type parameters, at least one of the following design methods may be included:
  • the terminal type parameter includes the terminal antenna type
  • the terminal antenna type based on the terminal antenna type, it is determined whether the terminal supports inter-satellite measurement.
  • the terminal antenna type is included in the terminal type parameter, so that during the measurement process, based on the terminal antenna type, it can be determined whether the terminal supports inter-satellite measurement, and the parameter design of the measurement process in the satellite communication system is realized.
  • the terminal type parameter includes the terminal application scenario or the terminal moving speed
  • HARQ hybrid automatic repeat request
  • the terminal type parameter includes the terminal application scenario or the terminal moving speed, so that in the HARQ process, the HARQ can be selected to be turned on or off according to the terminal application scenario or the terminal moving speed, thereby realizing the parameters of the HARQ process in the satellite communication system design.
  • the terminal’s search range and tracking range are determined based on the terminal’s visual range.
  • the terminal visual range is included in the terminal type parameter, so that the search range and the tracking range of the satellite communication system can be determined based on the visual range of the terminal, and the initial search process and normal communication of the cell in the satellite communication system are realized.
  • the parameter design of the process is included in the terminal type parameter, so that the search range and the tracking range of the satellite communication system can be determined based on the visual range of the terminal, and the initial search process and normal communication of the cell in the satellite communication system are realized.
  • the terminal’s maximum scheduling bandwidth, or the terminal’s minimum access bandwidth determine the random access channel based on the terminal’s communication rate, the terminal’s maximum scheduling bandwidth, or the terminal’s minimum access bandwidth The length of the preamble and subcarrier spacing.
  • the terminal type parameter includes the terminal communication rate, the maximum scheduling bandwidth of the terminal, or the minimum access bandwidth of the terminal, so that the satellite communication can be determined based on the communication rate of the terminal, the maximum scheduling bandwidth of the terminal, or the minimum access bandwidth of the terminal.
  • the preamble length and sub-carrier spacing of the random access channel of the system realize the parameter design of the access process in the satellite communication system.
  • the system parameters such as the initial cell search process, access process, measurement process and HARQ process of the satellite communication system can be designed to realize the system
  • the design is simple and efficient.
  • this embodiment defines a terminal type parameter (marked as UE Type Parameter) that reflects the terminal capabilities based on the existing terminal capabilities.
  • the terminal type parameter may include multiple factors related to satellite communication, such as terminal antenna type (ue-Antenna Type), terminal application scenario (ue-Application Scenario), terminal visibility range (ue-Visibility Range), terminal Communication rate (ue-datarate), terminal moving speed (ue-Speed), terminal transmitting antenna equivalent aperture (ue-Tx Antenna Size), terminal receiving antenna equivalent aperture (ue-Rx Antenna Size), terminal transmitting Maximum EIRP (ue-EIRP), G/T received by the terminal (ue-G/T), the highest signal-to-noise ratio (ue-SNR) supported by the terminal, the maximum scheduling bandwidth of the terminal (ue-Scheduling Band), the minimum terminal Access Band (ue-Access Band), etc.
  • a collective representation can be used to cover commonly used satellite terminal antenna types, such as phased array, dual parabola, single parabola, and so on.
  • this factor item can be used as a mandatory option for the terminal type parameter.
  • a collective representation can be used to cover common satellite terminal application scenarios, such as airborne, shipborne, train-mounted, car-mounted, fixed, and portable.
  • this factor item can be used as a mandatory option for the terminal type parameter.
  • a collective representation can be used to cover the visual range of commonly used satellite terminals, such as large angles and small angles.
  • this factor item can be used as a mandatory option for the terminal type parameter.
  • a collective representation can be used to cover commonly used satellite terminal communication rate levels, such as 600Mbps, 300Mbps, 150Mbps, 75Mbps, 20Mbps, 10Mbps, 5Mbps, 2Mbps, etc.
  • this factor item can be used as an option for the terminal type parameter.
  • the moving speed of the terminal it can be a determined value, or it can be represented by a set, covering multiple commonly used gears, such as 1000km/h, 350km/h, 120km/h, 60km/h, 3km/h, 0km/h and so on.
  • This factor item can be used as an option for the terminal type parameter.
  • the equivalent aperture of the transmitting antenna of the terminal can be a determined value, or can be represented by a set, covering multiple commonly used gears, such as 1m, 0.75m, 0.45m, 0.3m, etc.
  • this factor item can be used as an option for the terminal type parameter.
  • the equivalent aperture of the receiving antenna of the terminal can be a determined value, or can be represented by a set, covering multiple commonly used gear positions, such as 1m, 0.75m, 0.45m, 0.3m, etc.
  • this factor item can be used as an option for the terminal type parameter.
  • the maximum EIRP sent by the terminal can be a determined value, or can be represented by a set, covering multiple commonly used gears, such as 60dBW, 50dBW, 40dBW, 30dBW, etc.
  • This factor item can be used as an option for the terminal type parameter.
  • the G/T received by the terminal can be a definite value, or it can be represented by a set, covering multiple commonly used gears, such as 18dB/K, 15dB/K, 12dB/K, 9dB/K, 6dB/K , 3dB/K, 0dB/K, etc.
  • This factor item can be used as an option for the terminal type parameter.
  • the terminal For the highest signal-to-noise ratio supported by the terminal, it can be a determined value, or it can be represented by a set, covering multiple commonly used gears, such as 12dB, 10dB, 8dB, 6dB, 4dB, 2dB, 0dB, -2dB,- 4dB, -6dB, -8dB, -10dB, etc.
  • This factor item can be used as an option for the terminal type parameter.
  • the maximum scheduling bandwidth supported by the terminal can be a determined value, or can be represented by a set, covering multiple commonly used gears, such as 400MHz, 200MHz, 100MHz, 50MHz, 20MHz, 10MHz, etc. This factor item can be used as an option for the terminal type parameter.
  • the minimum access bandwidth supported by the terminal it can be a determined value, or can be represented by a set, covering multiple commonly used gears, such as 50MHz, 40MHz, 30MHz, 20MHz, 10MHz, 5MHz, etc.
  • This factor item can be used as an option for the terminal type parameter.
  • terminal type parameter can be expressed in the standard specification as follows:
  • the above-mentioned terminal type parameters can be sent to the terminal and the network side through a broadcast channel, a control channel, or a service channel.
  • the network side and the terminal side can use this as an input for system design.
  • the terminal measurement method can be designed based on the terminal antenna type. Specifically:
  • the terminal antenna type is a phased array antenna, it is determined that the terminal supports intersatellite beam measurement;
  • the terminal antenna type is a dual parabolic antenna, it is determined that the terminal supports cross-satellite beam measurement, and different antennas perform beam measurement of different satellites;
  • the terminal antenna type is a single parabolic antenna, it is determined that the terminal does not support inter-satellite beam measurement.
  • Example 2 if the terminal type parameter includes the terminal application scenario or the terminal moving speed, the use of the HARQ function can be judged based on the terminal type parameter.
  • the specific description is as follows:
  • the HARQ function is disabled
  • the terminal application scenario is shipborne, portable, or the maximum movement speed supported by the terminal is greater than 0 and less than 120km/h, enable the HARQ function but set fewer processes for HARQ;
  • the HARQ function is turned on but a larger process is set for HARQ.
  • the maximum mobile speed that the terminal can support can be determined based on the terminal type, so as to obtain the maximum residual Doppler frequency offset that the terminal must resist, and select the appropriate The physical random access channel (PRACH for short) design parameters.
  • PRACH physical random access channel
  • the maximum mobile speed supported by the terminal is 1000km/h, and the maximum residual Doppler frequency offset that the terminal must resist is about 30KHz. It is recommended that the subcarrier spacing of the PRACH channel is not less than 60KHz;
  • the maximum mobile speed supported by the terminal is 350km/h, and the maximum residual Doppler frequency deviation that the terminal must resist is about 10KHz. It is recommended that the subcarrier spacing of the PRACH channel is not less than 30KHz;
  • the maximum mobile speed supported by the terminal is 120km/h, and the maximum residual Doppler frequency deviation that the terminal must resist is about 3KHz. It is recommended that the subcarrier spacing of the PRACH channel is not less than 15KHz;
  • the maximum mobile speed supported by the terminal is 60km/h, and the maximum residual Doppler frequency offset that the terminal must resist is about 1.5KHz. It is recommended that the subcarrier spacing of the PRACH channel is not less than 10KHz;
  • the maximum mobile speed supported by the terminal is 3km/h, and the maximum residual Doppler frequency offset that the terminal must resist is about 1KHz. It is recommended that the subcarrier spacing of the PRACH channel is not less than 5KHz;
  • the terminal application scenario is a fixed location, the maximum mobile speed supported by the terminal is 0km/h, and the maximum residual Doppler frequency offset that the terminal must resist is about 1KHz. It is recommended that the subcarrier spacing of the PRACH channel is not less than 5KHz.
  • Example 4 if the terminal type parameter includes the terminal visual range, the terminal search range and the star tracking range can be determined based on the terminal type parameter.
  • the specific description is as follows:
  • the visible range of the terminal is a large angle, it means that the terminal is working in a low-latitude offset coverage, and the central normal angle area can be avoided in the search and tracking of the satellite;
  • the visible range of the terminal is a small angle, it means that the terminal is working in the regular coverage of mid-to-high latitudes, and it scans directly in the full range during satellite search and satellite tracking.
  • the preamble length and subcarrier spacing of the random access channel of the terminal can be determined based on the terminal type parameter.
  • the specific description is as follows:
  • the random access channel selects 839*30KHz or 139*120KHz, that is, the preamble length is 839, and the subcarrier The interval is 30KHz or the preamble length is 139, and the subcarrier interval is 120KHz;
  • the random access channel selects 839*10KHz or 139* 60KHz, that is, the preamble length is 839, the subcarrier spacing is 10KHz or the preamble length is 139, and the subcarrier spacing is 60KHz;
  • the random access channel selects 839*5KHz or 139*30KHz, that is, the preamble length is 839 and the subcarrier interval is 5KHz Or the preamble length is 139 and the subcarrier spacing is 30KHz.
  • Example 6 if the terminal type parameter includes EIRP, the highest signal-to-noise ratio supported by the terminal, terminal communication rate, and maximum scheduling bandwidth of the terminal can be calculated based on the terminal type parameter.
  • EIRP EIRP
  • the highest signal-to-noise ratio supported by the terminal is related to EIRP and G/T, and is determined according to the link budget;
  • MCS modulation and coding strategy
  • the system parameter design method determines the terminal type parameter and performs a targeted system design for the satellite communication system based on the terminal type parameter. At this time, it is based on the terminal antenna type in the factors included in the terminal type parameter.
  • Terminal application scenarios terminal visual range, terminal communication rate, terminal moving speed, terminal's transmitting antenna equivalent aperture, terminal's receiving antenna equivalent aperture, maximum EIRP sent by the terminal, G/T received by the terminal, supported by the terminal.
  • the highest signal-to-noise ratio, the maximum scheduling bandwidth of the terminal, and the minimum access bandwidth of the terminal are all related to the characteristics of satellite communication and can reflect the capabilities of the terminal, so that the satellite communication system can make the system design based on these terminal type parameters.
  • the system design is simpler and more efficient, which avoids the problem of difficulty in system design caused by the lack of terminal type parameters in the present disclosure in the existing terminal capabilities.
  • FIG. 2 it is a block diagram of a system design device in an embodiment of the present disclosure.
  • the device includes:
  • the determining module 201 is configured to determine terminal type parameters
  • the system design module 202 is configured to perform system design on the satellite communication system based on the terminal type parameters;
  • the terminal type parameter includes at least one of the following factors:
  • Terminal antenna type terminal application scenario, terminal visual range, terminal communication rate, terminal moving speed, terminal's transmitting antenna equivalent aperture, terminal's receiving antenna equivalent aperture, maximum equivalent omnidirectional radiated power EIRP sent by the terminal, terminal
  • the received equivalent temperature gain coefficient G/T the highest signal-to-noise ratio supported by the terminal, the maximum scheduling bandwidth of the terminal, and the minimum access bandwidth of the terminal.
  • the system design module 202 is configured to determine whether the terminal supports inter-satellite measurement based on the terminal antenna type when the terminal type parameter includes the terminal antenna type.
  • the system design module 202 is configured to determine whether to initiate a hybrid automatic repeat request based on the terminal application scenario or the terminal moving speed when the terminal type parameter includes the terminal application scenario or the terminal moving speed HARQ.
  • the system design module 202 is configured to, when the terminal type parameter includes the terminal visual range, determine the terminal star search range and the terminal following star range based on the terminal visual range.
  • the system design module 202 is configured to, when the terminal type parameter includes the terminal communication rate, the maximum scheduling bandwidth of the terminal, or the minimum access bandwidth of the terminal, based on the terminal communication rate, terminal
  • the maximum scheduling bandwidth of the terminal or the minimum access bandwidth of the terminal determines the preamble length and subcarrier spacing of the random access channel.
  • the device provided in this embodiment can implement all the method steps of the above method embodiment, and can achieve the same beneficial effects.
  • the same parts and beneficial effects in this embodiment as those in the method embodiment will not be changed here. Go into details.
  • FIG. 3 it is a schematic diagram of the physical structure of the electronic device provided by the embodiments of the present disclosure.
  • the electronic device may include: a processor 310, a communication interface 320, a memory 330, and a communication interface.
  • the bus 340 wherein the processor 310, the communication interface 320, and the memory 330 communicate with each other through the communication bus 340.
  • the processor 310 can call a computer program stored on the memory 330 and running on the processor 310 to perform the following steps:
  • the terminal type parameter design the system parameters of the satellite communication system based on the terminal type parameter; the terminal type parameter includes at least one of the following factors:
  • Terminal antenna type terminal application scenario, terminal visual range, terminal communication rate, terminal moving speed, terminal's transmitting antenna equivalent aperture, terminal's receiving antenna equivalent aperture, maximum equivalent omnidirectional radiated power EIRP sent by the terminal, terminal
  • the received equivalent temperature gain coefficient G/T the highest signal-to-noise ratio supported by the terminal, the maximum scheduling bandwidth of the terminal, and the minimum access bandwidth of the terminal.
  • the method further includes: notifying the terminal type parameter to the terminal and the network side through a broadcast channel, a control channel, or a service channel.
  • the system design of the satellite communication system based on the terminal type parameter includes: when the terminal type parameter includes a terminal antenna type, determining whether the terminal supports inter-satellite measurement based on the terminal antenna type .
  • the system design of the satellite communication system based on the terminal type parameter includes: when the terminal type parameter includes the terminal application scenario or the terminal moving speed, based on the terminal application scenario or the terminal moving speed To determine whether to start hybrid automatic repeat request HARQ.
  • the system design of the satellite communication system based on the terminal type parameter includes: when the terminal type parameter includes the visible range of the terminal, determining the terminal search based on the visible range of the terminal Star range and terminal and star range.
  • the system design of the satellite communication system based on the terminal type parameter includes: when the terminal type parameter includes the terminal communication rate, the maximum scheduling bandwidth of the terminal, or the minimum access bandwidth of the terminal Determine the preamble length and subcarrier spacing of the random access channel based on the communication rate of the terminal, the maximum scheduling bandwidth of the terminal, or the minimum access bandwidth of the terminal.
  • the electronic device provided in this embodiment can implement all the method steps of the above method embodiment, and can achieve the same beneficial effects.
  • the same parts and benefits of the method embodiment in this embodiment will not be provided here. The effect will be described in detail.
  • the aforementioned logic instructions in the memory 330 may be implemented in the form of software functional units and when sold or used as independent products, they may be stored in a computer readable storage medium.
  • the present disclosure therefore, the embodiments of the present disclosure provide a computer software product, which is stored in a storage medium and includes a number of instructions to enable a computer device (for example, a personal computer, a server, or a network device, etc.) ) Perform all or part of the steps of the method described in each embodiment of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
  • the embodiments of the present disclosure also provide a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method steps in the above-mentioned embodiments are implemented.
  • non-transitory computer-readable storage medium provided in this embodiment can implement all the method steps of the above method embodiment and can achieve the same beneficial effects.
  • the implementation of the method and the method in this embodiment will not be repeated here.
  • the same parts and beneficial effects of the example will be described in detail.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One location, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • each implementation manner can be implemented by software and a required general hardware platform, and of course, it can also be implemented by hardware.
  • the embodiments of the present disclosure provide a computer software product that can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., and includes several instructions to enable a computer device (For example, a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种系统设计方法及电子设备,其中系统设计方法包括:确定终端类型参数;基于所述终端类型参数,对卫星通信系统进行系统设计;所述终端类型参数包括下述因素项中的至少一个:终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大等效全向辐射功率EIRP、终端接收的等效温度增益系数G/T、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽。本公开实施例实现了卫星通信系统设计的简单高效。

Description

一种系统设计方法及电子设备
相关申请的交叉引用
本申请要求于2019年12月09日提交的申请号为201911253554.1,发明名称为“一种系统设计方法及电子设备”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种系统设计方法及电子设备。
背景技术
针对卫星通信系统,与地面通信系统不同,卫星通信系统的终端在类型上有着更丰富的元素。此时,如果基于地面第五代移动通信技术(5th generation mobile networks,5G)标准来设计卫星通信系统,不同的终端类型会意味着系统设计上存在不同,从而引入系统设计的复杂性。
发明内容
本公开实施例提供一种系统设计方法及电子设备,以降低系统设计的复杂度,使得系统设计更加简单高效。
本公开实施例提供一种系统设计方法,包括:
确定终端类型参数;
基于所述终端类型参数,对卫星通信系统进行系统设计;
所述终端类型参数包括下述因素项中的至少一个:
终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大等效全向辐射功率EIRP、终端接收的等效温度增益系数G/T、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽。
本公开实施例提供一种系统设计装置,包括:
确定模块,配置为确定终端类型参数;
系统设计模块,配置为基于所述终端类型参数,对卫星通信系统进行系统设计;
所述终端类型参数包括下述因素项中的至少一个:
终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大等效全向辐射功率EIRP、终端接收的等效温度增益系数G/T、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽。
本公开实施例提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
确定终端类型参数;
基于所述终端类型参数,对卫星通信系统进行系统设计;
所述终端类型参数包括下述因素项中的至少一个:
终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大等效全向辐射功率EIRP、终端接收的等效温度增益系数G/T、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽。
本公开实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现所述的系统设计方法的步骤。
本公开实施例提供的系统设计方法及电子设备,通过确定终端类型参数,并基于终端类型参数对卫星通信系统进行针对性的系统设计,此时基于终端类型参数所包括的因素项中的终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大EIRP、终端接收的G/T、终端的最大调度带宽、终端的最小接入带宽,均与卫星通信特征相关,能够反映终端的能力,从而使得卫星通信系统在依据该些终端类型参数进行系统设计时,能够使得系统设计更加简单高效,避免了现有的终端能力中缺乏本公开中的终端类型参数时所导致的系统设计困难的问题。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例中系统设计方法的步骤流程图;
图2为本公开实施例中系统设计装置的模块框图;
图3为本公开实施例中电子设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
针对卫星通信系统,不同的终端类型在能力上有着较大的差别,从而导致系统设计上需要针对不同终端有着不同的考虑,进而引入系统设计的复杂性。针对基于地面5G标准来设计的卫星通信系统,现有的终端能力中反映了最大速率、信道带宽和发送功率等信息,但是缺乏与卫星通信特征相关的信息,例如终端天线类型、终端应用场景、终端可视范围、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大EIRP、终端接收的G/T、终端的最大调度带宽、终端的最小接入带宽,等等。由于卫星通信特征相关的信息能够反映终端的能力,这些信息的缺乏会给系统设计带来困难。例如,终端天线类型不同,意味着系统采取的测量方法不同,使用相控阵天线的终端能够支持跨星测量,而使用单抛物面天线的终端不支持跨星测量,系统可以依据天线类型的不同来选择不同的终端测量方法;终端应用场景不同,意味着终端能抵抗的最大多普勒频偏不同,通常机载终端相对于车载终端具有更大的抗多普勒频偏能力,系统可以依据终端的应用场景来选择不同的随机接入信道参数等等。
基于此,本公开提出卫星通信系统设计需要的终端能力,即终端类型参数,使得系统设计能够兼容多样的终端类型,并能够自适应地配置相关的参数,以降低系统设计的复杂度。
下面对本公开进行具体说明。
如图1所示,为本公开实施例中系统设计方法的步骤流程图,该方法包括如下步骤:
步骤101:确定终端类型参数。
在本步骤中,具体的,由于终端类型能够反映卫星终端的主要特征,因此可以将终端类型参数作为一种新增的终端能力参数,使得卫星通信系统能够依据该终端类型参数进行针对性的系统设计,从而使得系统设计更为简单高效。
此外,具体的,终端类型参数能够反映终端之间的差异,此时该终端类型参数包括下述因素项中的至少一个:
终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大等效全向辐射功率(简称EIRP)、终端接收的等效温度增益系数(简称G/T)、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽。
这样,通过将上述中的至少一个因素项确定为终端类型参数,基于该些因素项能够反映卫星终端的主要特征,从而使得将该些终端类型参数作为卫星通信系统的系统设计输入时,使得系统设计更加简单高效。
步骤102:基于终端类型参数,对卫星通信系统进行系统设计。
在本步骤中,具体的,在确定终端类型参数之后,基于确定的终端类型参数对卫星通信系统进行系统设计。
此时,基于所确定的终端类型参数对卫星通信系统进行系统设计,基于上述的终端类型参数与卫星通信特征相关,能够反映终端的能力,从而使得卫星通信系统在依据该些终端类型参数进行系统设计时,能够使得系统设计更加简单高效,避免了现有的终端能力中缺乏本公开中的终端类型参数时所导致的系统设计困难的问题。
在此需要说明的是,在上述的因素项中,若其中的第一因素项不能依据其他因素项得到,即不能依据其他因素项推导得出,则可以将该第一因素项作为所确定的终端类型参数,即该因素项为所确定的终端类型参数的必选项;此外,若其中的第二因素项能依据其他因素项得到,即能够依据其他因素项推导得到,则可以将该第二因素项作为所确定的终端类型参数的可选项,即所确定的终端类型参数可以不包括该第二因素项。
例如,本实施例可以将终端天线类型、终端应用场景、终端可视范围 作为终端类型参数的必选项,即终端类型参数至少包括终端天线类型、终端应用场景和终端可视范围。
此外,终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大EIRP、终端接收的G/T、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽,即可以作为终端类型参数的必选项,也可以作为终端类型参数的可选项,在此不进行具体限定。
此外,进一步地,本实施例在确定终端类型参数之后,可以通过广播信道、控制信道或业务信道,将该终端类型参数通知给终端和网络侧,从而使得终端侧和网络侧均能够获得统一的终端类型参数。
另外,进一步地,本实施例中在基于终端类型参数,对卫星通信系统进行系统设计时,可以包括如下设计方式中的至少一种:
其一,当终端类型参数中包括终端天线类型时,基于终端天线类型,确定终端是否支持跨星测量。
具体的,在终端类型参数中包括终端天线类型,使得在测量过程中,能够基于该终端天线类型,确定终端是否支持跨星测量,实现了对卫星通信系统中测量过程的参数设计。
其二,当终端类型参数中包括终端应用场景或终端移动速度时,基于终端应用场景或终端移动速度,确定是否启动混合自动重传请求(简称HARQ)。
具体的,在终端类型参数中包括终端应用场景或终端移动速度,使得在HARQ过程中,能够依据该终端应用场景或终端移动速度选择启动或者关闭HARQ,实现了对卫星通信系统中HARQ过程的参数设计。
其三,当终端类型参数中包括终端可视范围时,基于终端可视范围,确定终端的搜星范围和跟星范围。
具体的,在终端类型参数中包括终端可视范围,使得能够基于该终端可视范围,确定卫星通信系统的搜星范围和跟星范围,实现了对卫星通信系统中小区初搜过程及正常通信过程的参数设计。
其四,当终端类型参数中包括终端通信速率、终端的最大调度带宽或终端的最小接入带宽时,基于终端通信速率、终端的最大调度带宽或终端 的最小接入带宽,确定随机接入信道的前导码长度和子载波间隔。
具体的,在终端类型参数中包括终端通信速率、终端的最大调度带宽或终端的最小接入带宽,使得能够基于该终端通信速率、终端的最大调度带宽或终端的最小接入带宽,确定卫星通信系统的随机接入信道的前导码长度和子载波间隔,实现了对卫星通信系统中接入过程的参数设计。
这样,通过确定与终端特征相关的终端类型参数,使得能基于该些终端类型参数,对卫星通信系统的小区初搜过程、接入过程、测量过程和HARQ过程等系统参数进行设计,实现了系统设计的简单高效性。
下面通过具体举例对本实施例进行说明。
为了让基于地面的5G标准来设计的卫星通信系统在设计上更简单高效,本实施例在现有的终端能力的基础上,定义一种反映终端能力的终端类型参数(标记为UE Type Parameter),该终端类型参数可以包括与卫星通信相关的多个因素项,例如终端天线类型(ue-Antenna Type)、终端应用场景(ue-Application Scenario)、终端可视范围(ue-Visibility Range)、终端通信速率(ue-datarate)、终端移动速度(ue-Speed)、终端的发射天线等效口径(ue-Tx Antenna Size)、终端的接收天线等效口径(ue-Rx Antenna Size)、终端发送的最大EIRP(ue-EIRP)、终端接收的G/T(ue-G/T)、终端支持的最高信噪比(ue-SNR)、终端的最大调度带宽(ue-Scheduling Band)、终端的最小接入带宽(ue-Access Band),等等。
其中,对于终端天线类型,可以采用一个集合表示,涵盖常用的卫星终端天线类型,例如相控阵、双抛物面、单抛物面等。当然,该因素项可以作为终端类型参数的必选项。
此外,对于终端应用场景,可以采用一个集合表示,涵盖常用的卫星终端应用场景,例如机载、船载、火车载、汽车载、固定、便携等。当然,该因素项可以作为终端类型参数的必选项。
此外,对于终端可视范围,可以采用一个集合表示,涵盖常用的卫星终端可视范围,例如大角度、小角度等。当然,该因素项可以作为终端类型参数的必选项。
此外,对于终端通信速率,可以采用一个集合表示,涵盖常用的卫星终端通信速率等级,例如600Mbps、300Mbps、150Mbps、75Mbps、20Mbps、 10Mbps、5Mbps、2Mbps等。当然,该因素项可以作为终端类型参数的可选项。
此外,针对终端移动速度,可以是确定的取值,也可以用一个集合表示,涵盖常用的多个档位,如1000km/h、350km/h、120km/h、60km/h、3km/h、0km/h等等。该因素项可以作为终端类型参数的可选项。
此外,针对终端的发射天线等效口径,可以是确定的取值,也可以用一个集合表示,涵盖常用的多个档位,例如1m、0.75m、0.45m、0.3m等。当然,该因素项可以作为终端类型参数的可选项。
此外,针对终端的接收天线等效口径,可以是确定的取值,也可以用一个集合表示,涵盖常用的多个档位,如1m、0.75m、0.45m、0.3m等。当然,该因素项可以作为终端类型参数的可选项。
此外,针对终端发送的最大EIRP,可以是确定的取值,也可以用一个集合表示,涵盖常用的多个档位,如60dBW、50dBW、40dBW、30dBW等。该因素项可以作为终端类型参数的可选项。
针对终端接收的G/T,可以是确定的取值,也可以用一个集合表示,涵盖常用的多个档位,如18dB/K、15dB/K、12dB/K、9dB/K、6dB/K、3dB/K、0dB/K等。该因素项可以作为终端类型参数的可选项。
针对终端支持的最高信噪比,可以是确定的取值,也可以用一个集合表示,涵盖常用的多个档位,如12dB、10dB、8dB、6dB、4dB、2dB、0dB、-2dB、-4dB、-6dB、-8dB、-10dB等。该因素项可以作为终端类型参数的可选项。
针对终端支持的最大调度带宽,可以是确定的取值,也可以用一个集合表示,涵盖常用的多个档位,如400MHz、200MHz、100MHz、50MHz、20MHz、10MHz等。该因素项可以作为终端类型参数的可选项。
针对终端支持的最小接入带宽,可以是确定的取值,也可以用一个集合表示,涵盖常用的多个档位,如50MHz、40MHz、30MHz、20MHz、10MHz、5MHz等。该因素项可以作为终端类型参数的可选项。
基于上述的描述,该终端类型参数在标准规范中可表达如下:
Figure PCTCN2020112575-appb-000001
当然,上述终端类型参数可以通过广播信道、控制信道或业务信道发送给终端和网络侧。
此时,基于该终端类型参数,网络侧和终端侧能够以此为输入进行系统设计。
例如,示例1,若终端类型参数中包括终端天线类型,则可以基于该终端天线类型设计终端测量方式。具体为:
若终端天线类型为相控阵天线,则确定终端支持跨星的波束测量;
若终端天线类型为双抛物面天线,则确定终端支持跨星的波束测量,且不同天线进行不同星的波束的测量;
若终端天线类型为单抛物面天线,则确定终端不支持跨星的波束测量。
再例如,示例2,若终端类型参数中包括终端应用场景或终端移动速度,则可以基于该终端类型参数判断HARQ功能的使用,具体描述如下:
若终端应用场景为机载、火车载、汽车载或终端支持的最高移动速度 大于或等于120km/h,则关闭HARQ功能;
若终端应用场景为船载、便携或终端支持的最高移动速度大于0且小于120km/h,则开启HARQ功能但为HARQ设置较少的进程;
若终端应用场景为固定或终端支持的最高移动速度等于0km/h,则开启HARQ功能但为HARQ设置较大的进程。
再例如,示例3,若终端类型参数中包括终端应用场景,则可以基于终端类型来判断终端能支持的最高移动速度,从而获得终端要抵抗的最大残留多普勒频偏,并以此选择合适的物理随机接入信道(简称PRACH)设计参数。具体描述如下:
若终端应用场景为机载,则终端支持的最高移动速度为1000km/h,终端要抵抗的最大残留多普勒频偏约30KHz,建议PRACH信道的子载波间隔不小于60KHz;
若终端应用场景为火车载,则终端支持的最高移动速度为350km/h,终端要抵抗的最大残留多普勒频偏约10KHz,建议PRACH信道的子载波间隔不小于30KHz;
若终端应用场景为汽车载,则终端支持的最高移动速度为120km/h,终端要抵抗的最大残留多普勒频偏约3KHz,建议PRACH信道的子载波间隔不小于15KHz;
若终端应用场景为船载,则终端支持的最高移动速度为60km/h,终端要抵抗的最大残留多普勒频偏约1.5KHz,建议PRACH信道的子载波间隔不小于10KHz;
若终端应用场景为便携,则终端支持的最高移动速度为3km/h,终端要抵抗的最大残留多普勒频偏约1KHz,建议PRACH信道的子载波间隔不小于5KHz;
若终端应用场景为固定位置,则终端支持的最高移动速度为0km/h,终端要抵抗的最大残留多普勒频偏约1KHz,建议PRACH信道的子载波间隔不小于5KHz。
再例如,示例4,若终端类型参数中包括终端可视范围,则可以基于该终端类型参数判断终端搜星范围和跟星范围,具体描述如下:
若终端可视范围为大角度,则表示终端工作在低纬度的偏置覆盖,搜 星和跟星中可以避开中心法向角度区域;
若终端可视范围为小角度,则表示终端工作在中高纬度的常规覆盖,搜星和跟星中直接全范围扫描。
再例如,示例5,若终端类型参数中包括终端通信速率或终端的最大调度带宽或终端的最小接入带宽,则可以基于该终端类型参数判断终端的随机接入信道的前导码长度和子载波间隔,具体描述如下:
若终端通信速率不小于75Mbps或终端的最大调度带宽不小于50MHz或终端的最小接入带宽不小于30MHz,则随机接入信道选择839*30KHz或者139*120KHz,即前导码长度为839、子载波间隔为30KHz或者前导码长度为139、子载波间隔为120KHz;
若终端通信速率小于75Mbps但大于等于20Mbps,或终端的最大调度带宽小于50MHz但大于等于20MHz,或终端的最小接入带宽小于30MHz但大于等于10MHz,则随机接入信道选择839*10KHz或者139*60KHz,即前导码长度为839、子载波间隔为10KHz或者前导码长度为139、子载波间隔为60KHz;
若终端通信速率小于20Mbps或终端的最大调度带宽小于20MHz或终端的最小接入带宽小于10MHz,则随机接入信道选择839*5KHz或者139*30KHz,即前导码长度为839、子载波间隔为5KHz或者前导码长度为139、子载波间隔为30KHz。
再例如,示例6,若终端类型参数中包括EIRP,则可以基于该终端类型参数来计算终端支持的最高信噪比、终端通信速率以及终端的最大调度带宽等,具体描述如下:
终端支持的最高信噪比与EIRP和G/T相关,则根据链路预算进行确定;
终端通信速率与系统单载波带宽BW total和最高信噪比SNR UE,max有关,则通信速率=BW totalUE,max,其中η UE,max由最高信噪比SNR UE,max决定,此时可以参照系统定义的调制与编码策略(简称MCS)表格;
终端的最大调度带宽BW UE,max与系统单载波带宽BW total、系统能支持的最大频谱效率η max以及由最高信噪比SNR UE,max决定的η UE,max相关,BW UE,max=BW totalUE,maxmax,其中η max为系统定义的MCS最大等级。
这样,本实施例提供的系统参数设计方法,通过确定终端类型参数,并基于终端类型参数对卫星通信系统进行针对性的系统设计,此时基于终端类型参数所包括的因素项中的终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大EIRP、终端接收的G/T、终端支持的最高信噪比、终端的最大调度带宽、终端的最小接入带宽,均与卫星通信特征相关,能够反映终端的能力,从而使得卫星通信系统在依据该些终端类型参数进行系统设计时,能够使得系统设计更加简单高效,避免了现有的终端能力中缺乏本公开中的终端类型参数时所导致的系统设计困难的问题。
如图2所示,为本公开实施例中系统设计装置的模块框图,该装置包括:
确定模块201,配置为确定终端类型参数;
系统设计模块202,配置为基于所述终端类型参数,对卫星通信系统进行系统设计;
所述终端类型参数包括下述因素项中的至少一个:
终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大等效全向辐射功率EIRP、终端接收的等效温度增益系数G/T、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽。
可选地,所述系统设计模块202被配置为,当所述终端类型参数中包括终端天线类型时,基于所述终端天线类型,确定终端是否支持跨星测量。
可选地,所述系统设计模块202被配置为,当所述终端类型参数中包括终端应用场景或终端移动速度时,基于所述终端应用场景或终端移动速度,确定是否启动混合自动重传请求HARQ。
可选地,所述系统设计模块202被配置为,当所述终端类型参数中包括所述终端可视范围时,基于所述终端可视范围,确定终端搜星范围和终端跟星范围。
可选地,所述系统设计模块202被配置为,当所述终端类型参数中包括所述终端通信速率、终端的最大调度带宽或终端的最小接入带宽时,基 于所述终端通信速率、终端的最大调度带宽或终端的最小接入带宽,确定随机接入信道的前导码长度和子载波间隔。
在此需要说明的是,本实施例提供的装置能够实现上述方法实施例的所有方法步骤,并能够达到相同的有益效果,在此不再对本实施例中与方法实施例的相同部分及有益效果进行具体赘述。
另外,如图3所示,为本公开实施例提供的电子设备的实体结构示意图,该电子设备可以包括:处理器(processor)310、通信接口(Communications Interface)320、存储器(memory)330和通信总线340,其中,处理器310,通信接口320,存储器330通过通信总线340实现相互间的通信。处理器310可以调用存储在存储器330上并可在处理器310上运行的计算机程序,以执行如下步骤:
确定终端类型参数;基于所述终端类型参数,对卫星通信系统的系统参数进行设计;所述终端类型参数包括下述因素项中的至少一个:
终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大等效全向辐射功率EIRP、终端接收的等效温度增益系数G/T、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽。
可选地,所述确定终端类型参数之后,还包括:通过广播信道、控制信道或业务信道,将所述终端类型参数通知给终端和网络侧。
可选地,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:当所述终端类型参数中包括终端天线类型时,基于所述终端天线类型,确定终端是否支持跨星测量。
可选地,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:当所述终端类型参数中包括终端应用场景或终端移动速度时,基于所述终端应用场景或终端移动速度,确定是否启动混合自动重传请求HARQ。
可选地,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:当所述终端类型参数中包括所述终端可视范围时,基于所述终端可视范围,确定终端搜星范围和终端跟星范围。
可选地,所述基于所述终端类型参数,对卫星通信系统进行系统设计, 包括:当所述终端类型参数中包括所述终端通信速率、终端的最大调度带宽或终端的最小接入带宽时,基于所述终端通信速率、终端的最大调度带宽或终端的最小接入带宽,确定随机接入信道的前导码长度和子载波间隔。
在此需要说明的是,本实施例提供的电子设备能够实现上述方法实施例的所有方法步骤,并能够达到相同的有益效果,在此不再对本实施例中与方法实施例的相同部分及有益效果进行具体赘述。
此外,上述的存储器330中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。本公开由此,本公开的实施例提供一种计算机软件产品,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(例如,个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中的方法步骤。
在此需要说明的是,本实施例提供的非暂态计算机可读存储介质能够实现上述方法实施例的所有方法步骤,并能够达到相同的有益效果,在此不再对本实施例中与方法实施例的相同部分及有益效果进行具体赘述。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个位置,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可通过软件和所需的通用硬件平台的方式来实现,当然也可以通过硬件来实现。由此,本公开的实施例提供一种计算机软件产品,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(例如,个人计算机,服务 器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (14)

  1. 一种系统设计方法,其特征在于,包括:
    确定终端类型参数;
    基于所述终端类型参数,对卫星通信系统进行系统设计;
    所述终端类型参数包括下述因素项中的至少一个:
    终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大等效全向辐射功率EIRP、终端接收的等效温度增益系数G/T、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽。
  2. 根据权利要求1所述的系统设计方法,其特征在于,所述确定终端类型参数之后,还包括:
    通过广播信道、控制信道或业务信道,将所述终端类型参数通知给终端和网络侧。
  3. 根据权利要求1所述的系统设计方法,其特征在于,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:
    当所述终端类型参数中包括终端天线类型时,基于所述终端天线类型,确定终端是否支持跨星测量。
  4. 根据权利要求1所述的系统设计方法,其特征在于,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:
    当所述终端类型参数中包括终端应用场景或终端移动速度时,基于所述终端应用场景或所述终端移动速度,确定是否启动混合自动重传请求HARQ。
  5. 根据权利要求1所述的系统设计方法,其特征在于,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:
    当所述终端类型参数中包括所述终端可视范围时,基于所述终端可视范围,确定终端搜星范围和终端跟星范围。
  6. 根据权利要求1所述的系统设计方法,其特征在于,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:
    当所述终端类型参数中包括所述终端通信速率、终端的最大调度带宽或终端的最小接入带宽时,基于所述终端通信速率、终端的最大调度带宽 或终端的最小接入带宽,确定随机接入信道的前导码长度和子载波间隔。
  7. 一种系统设计装置,其特征在于,包括:
    确定模块,配置为确定终端类型参数;
    系统设计模块,配置为基于所述终端类型参数,对卫星通信系统进行系统设计;
    所述终端类型参数包括下述因素项中的至少一个:
    终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大等效全向辐射功率EIRP、终端接收的等效温度增益系数G/T、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽。
  8. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    确定终端类型参数;
    基于所述终端类型参数,对卫星通信系统进行系统设计;
    所述终端类型参数包括下述因素项中的至少一个:
    终端天线类型、终端应用场景、终端可视范围、终端通信速率、终端移动速度、终端的发射天线等效口径、终端的接收天线等效口径、终端发送的最大等效全向辐射功率EIRP、终端接收的等效温度增益系数G/T、终端支持的最高信噪比、终端的最大调度带宽以及终端的最小接入带宽。
  9. 根据权利要求8所述的电子设备,其特征在于,所述确定终端类型参数之后,所述处理器执行所述程序时还实现如下步骤:
    通过广播信道、控制信道或业务信道,将所述终端类型参数通知给终端和网络侧。
  10. 根据权利要求8所述的电子设备,其特征在于,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:
    当所述终端类型参数中包括终端天线类型时,基于所述终端天线类型,确定终端是否支持跨星测量。
  11. 根据权利要求8所述的电子设备,其特征在于,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:
    当所述终端类型参数中包括终端应用场景或终端移动速度时,基于所述终端应用场景或所述终端移动速度,确定是否启动混合自动重传请求HARQ。
  12. 根据权利要求8所述的电子设备,其特征在于,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:
    当所述终端类型参数中包括所述终端可视范围时,基于所述终端可视范围,确定终端搜星范围和终端跟星范围。
  13. 根据权利要求8所述的电子设备,其特征在于,所述基于所述终端类型参数,对卫星通信系统进行系统设计,包括:
    当所述终端类型参数中包括所述终端通信速率、终端的最大调度带宽或终端的最小接入带宽时,基于所述终端通信速率、终端的最大调度带宽或终端的最小接入带宽,确定随机接入信道的前导码长度和子载波间隔。
  14. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至6任一项所述的系统设计方法的步骤。
PCT/CN2020/112575 2019-12-09 2020-08-31 一种系统设计方法及电子设备 WO2021114740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911253554.1A CN113037354B (zh) 2019-12-09 2019-12-09 一种系统设计方法及电子设备
CN201911253554.1 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021114740A1 true WO2021114740A1 (zh) 2021-06-17

Family

ID=76329459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112575 WO2021114740A1 (zh) 2019-12-09 2020-08-31 一种系统设计方法及电子设备

Country Status (2)

Country Link
CN (1) CN113037354B (zh)
WO (1) WO2021114740A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049066A1 (en) * 2016-08-12 2018-02-15 Motorola Mobility Llc Method and Apparatus Including One or More Parameters for Defining a More Flexible Radio Communication
CN109286640A (zh) * 2018-12-14 2019-01-29 北京工业大学 一种基于卫星网络状态进行自适应调节的通信方法
CN109525303A (zh) * 2018-11-30 2019-03-26 四川安迪科技实业有限公司 基于卫星通信的自适应调制编码控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091506A3 (en) * 1999-10-01 2001-05-16 Ascom Systec AG A hybrid CDMA and TDMA radio access scheme for personal satellite communication systems
CN103427937B (zh) * 2012-05-18 2016-12-14 电信科学技术研究院 一种终端能力信息的上报方法及装置
WO2018221882A1 (ko) * 2017-06-01 2018-12-06 엘지전자 주식회사 무선 통신 시스템에서, 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
CN109725333B (zh) * 2018-12-17 2020-09-18 中国空间技术研究院 一种场景自适应的卫星信号接收及处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049066A1 (en) * 2016-08-12 2018-02-15 Motorola Mobility Llc Method and Apparatus Including One or More Parameters for Defining a More Flexible Radio Communication
CN109525303A (zh) * 2018-11-30 2019-03-26 四川安迪科技实业有限公司 基于卫星通信的自适应调制编码控制方法
CN109286640A (zh) * 2018-12-14 2019-01-29 北京工业大学 一种基于卫星网络状态进行自适应调节的通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON, KEYSIGHT: "NTN Channel Modeling", 3GPP DRAFT; R1-1801360, vol. RAN WG1, 17 February 2018 (2018-02-17), Athens, Greece, pages 1 - 5, XP051397524 *
SAMSUNG: "Physical layer control procedures in NTN", 3GPP DRAFT; R1-1910480_PHY_PROCEDURE_FOR_NTN_V2, vol. RAN WG1, 4 October 2019 (2019-10-04), Chongqing, China, pages 1 - 4, XP051789286 *

Also Published As

Publication number Publication date
CN113037354B (zh) 2022-06-21
CN113037354A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
US8614643B2 (en) System and methods for antenna optimization for wireless broadband communication
WO2016062147A1 (zh) 消息发送接收方法、发送接收装置、基站及终端
JP7388609B2 (ja) ビーム構成方法および装置
WO2019179305A1 (zh) 信号接收方法及信号接收装置
JP7030832B2 (ja) 通信方法および通信装置
US11184055B2 (en) MIMO transmission using fewer antennas for communication
US20210400462A1 (en) Communication method, communications apparatus, device, and communications system
WO2021114740A1 (zh) 一种系统设计方法及电子设备
EP3985885A1 (en) Method and device for determining sending parameters of terminal
CN110300388B (zh) 一种海域通信系统的功率控制方法及装置
US20210391900A1 (en) Apparatus and methods for uplink mimo enhancement in wireless systems
CN107835514B (zh) 一种多宿主业务场景下无线网络资源匹配的建模方法
WO2022205232A1 (zh) 覆盖增强等级的确定方法、配置方法、装置及存储介质
CN114244469B (zh) 一种安全传输方法、系统、介质、设备及数据处理终端
KR102519357B1 (ko) O-RAN 프론트홀의 5G mmWave 광대역 빔포밍 MIMO 서비스 방법과 그 장치
CN114679244A (zh) 跨载波数据传输方法与装置、终端和网络设备
CN116095728A (zh) 数据传输方法及相关产品
JP2022545569A (ja) ネットワークアクセスマネージメント
WO2024060976A1 (zh) 卫星通信方法及装置
CN117014061B (zh) 确定卫星通信频段的方法、装置及存储介质
Yun et al. Downlink spectrum sharing of heterogeneous communication systems in LEO satellite networks
US11848745B2 (en) Method and apparatus for accessing base station in satellite communication system
WO2021155574A1 (zh) 信道处理方法、装置、设备及存储介质
US20230170987A1 (en) Satellite communication system and method for managing radio resource of non-terrestrial network
WO2023185616A1 (zh) 一种psfch传输方法、装置、芯片及模组设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899810

Country of ref document: EP

Kind code of ref document: A1