WO2021114537A1 - 储能元件充电控制方法及系统、机车 - Google Patents

储能元件充电控制方法及系统、机车 Download PDF

Info

Publication number
WO2021114537A1
WO2021114537A1 PCT/CN2020/085018 CN2020085018W WO2021114537A1 WO 2021114537 A1 WO2021114537 A1 WO 2021114537A1 CN 2020085018 W CN2020085018 W CN 2020085018W WO 2021114537 A1 WO2021114537 A1 WO 2021114537A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
storage element
real
charging
energy storage
Prior art date
Application number
PCT/CN2020/085018
Other languages
English (en)
French (fr)
Inventor
樊运新
康明明
秦庆民
李先岭
黄海
王秀玲
陈奎
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Publication of WO2021114537A1 publication Critical patent/WO2021114537A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the field of charging energy storage elements of rail transit, and in particular to a method and system for charging control of energy storage elements.
  • the present application also relates to a locomotive including the above-mentioned energy storage element charging control system.
  • the charger adopts a limited charging power or charging current mode, and does not automatically adjust according to load changes.
  • Required power supply load power + charging power
  • load refers to other loads other than the charger, which can be the power value of one or a combination of multiple loads.
  • the existing charging power is often used to reduce the charging power or charging current to realize the charging of the energy storage element to reduce the socket burning loss. And the power supply in the library has tripped.
  • the maximum charging power and maximum charging current are limited. The charging power or current often cannot reach the maximum value allowed by the energy storage element itself or the maximum value allowed by the working power supply. Power, charging time will be extended and efficiency will be lower.
  • a charging control method for an energy storage element includes the following steps:
  • Step S1 Obtain the real-time load energy of the load
  • Step S2 Calculate the target charging energy flowing to the energy storage element according to the real-time load energy
  • Step S3 Adjust the charging energy of the energy storage element to the target charging energy.
  • step S1 is:
  • the step S1 includes:
  • the real-time total output energy of the working power supply and the real-time charging energy of the energy storage element are obtained, and the difference between the total real-time output energy and the real-time charging energy is calculated as the real-time load energy.
  • the step S2 includes:
  • the difference between the rated energy of the working power supply and the real-time load energy is calculated as the target charging energy flowing to the energy storage element.
  • the step S2 includes:
  • the real-time load energy is a real-time load current, and the target charging energy is a target charging current; or, the real-time load energy is a real-time load power, and the target charging energy is a target charging power.
  • the step S1 is specifically:
  • a charging control system for energy storage elements including:
  • the controller is used for calculating the target charging energy flowing to the energy storage element according to the real-time load energy, and adjusting the charging energy of the energy storage element as the target charging energy.
  • the energy sensor is a current sensor
  • the current sensor includes a load current sensor connected to the load branch.
  • the energy sensor is a current sensor
  • the current sensor includes a charging current sensor connected to the branch circuit of the energy storage element and a power current sensor connected to the main circuit of the working power supply.
  • the energy storage element is a battery or a super capacitor.
  • the application also provides a locomotive, including the energy storage element charging control system described in any one of the above.
  • the charging control method for an energy storage element includes the following steps: Step S1: Obtain the real-time load energy of the load; Step S2: Calculate the target charging energy flowing to the energy storage element according to the real-time load energy; Step S3: Adjust the load
  • the charging energy of the energy storage element is the target charging energy.
  • the energy storage element charging control system provided by the present invention monitors the variable energy of the load through real-time monitoring of the energy destinations of different branches of the working power supply to control the energy utilization of the energy storage element in real time to prevent overcurrent. The failure of the system reduces the operation and maintenance, and improves the utilization rate of the working power supply, improves the operation efficiency, and the economy is significantly improved.
  • the energy storage element charging control system provided by the present invention includes: an energy sensor for acquiring the real-time load energy of the load; a controller for calculating the target charging energy flowing to the energy storage element according to the real-time load energy, and adjusting the The charging energy of the energy storage element is the target charging energy.
  • the energy storage element charging control system provided by the present invention monitors the energy destination of different branches of the working power supply in real time through the setting of energy sensors, monitors the variable energy of the load, and controls the energy utilization of the energy storage element in real time. Improve the operating efficiency of the working power supply and increase the charging efficiency of the energy storage components.
  • the locomotive provided in this application is equipped with the above-mentioned energy storage element charging control system. Since the energy storage element charging control system has the above technical effects, the locomotive provided with the energy storage element charging control system should also have corresponding technical effects .
  • Fig. 1 is a flowchart of a charging control method for an energy storage element provided by the present invention
  • FIG. 2 is a schematic structural diagram of a specific implementation of the energy storage element charging control system provided by the present invention.
  • FIG. 3 is a schematic structural diagram of another specific embodiment of the energy storage element charging control system provided by the present invention.
  • working power supply-1 energy storage element-2; load-3; charging current sensor-4; load current sensor-5; power supply current sensor-6.
  • the core of the present invention is to provide a charging control method and system for energy storage elements, which are used to improve charging efficiency and reduce charging time.
  • Another core of the application is to provide a locomotive including the above-mentioned energy storage element charging control system.
  • FIG. 1 is a flowchart of a charging control method for an energy storage element provided by the present invention
  • FIG. 2 is a schematic structural diagram of a specific embodiment of a charging control system for an energy storage element provided by the present invention
  • 3 is a schematic structural diagram of another specific implementation of the energy storage element charging control system provided by the present invention.
  • the charging control method of the energy storage element includes the following steps:
  • Step S1 Obtain real-time load energy of load 3, such as real-time load current or real-time load power, preferably real-time load current, which can be detected by a current sensor connected in series on the branch;
  • load 3 such as real-time load current or real-time load power, preferably real-time load current, which can be detected by a current sensor connected in series on the branch;
  • Step S2 Calculate the target charging energy flowing to the energy storage element 2 according to the real-time load energy, specifically, subtracting the real-time load energy from the rated energy of the working power supply 1 as the target charging energy of the energy storage element 2;
  • Step S3 Adjust the charging energy of the energy storage element 2 as the target charging energy.
  • the adjustment of the charging energy of the energy storage element 2 can be achieved through a charger or a microcomputer, for example, adjusting the charging energy set in the charger Just charge the target with energy.
  • the energy storage element charging control system monitors the variable energy of the load 3 by real-time monitoring of the energy destination of different branches of the working power supply 1 to control the energy utilization of the energy storage element 2 in real time to prevent Faults caused by overcurrent reduce operation and maintenance, increase the utilization rate of the working power supply 1, improve operation efficiency, and significantly improve economy.
  • step S1 is:
  • step S1 includes:
  • the total real-time output energy of the working power supply 1 and the real-time charging energy of the energy storage element 2 are obtained, and the difference between the total real-time output energy and the real-time charging energy is calculated as the real-time load energy.
  • the detection of the real-time load energy of the load 3 it can be directly detected and obtained, or can be obtained by detecting the total real-time output energy of the working power supply 1 and the real-time charging energy of the energy storage element 2, and calculating the difference. Any way.
  • step S2 includes:
  • the difference between the rated energy of the working power supply 1 and the real-time load energy is calculated as the target charging energy flowing to the energy storage element 2. That is, by using the real-time load energy value as a reference for calculating the target charging energy, it can effectively avoid that in the prior art, the maximum charging power and the maximum charging current are limited, and the charging power or current often cannot reach the charging permission of the energy storage element 2 itself.
  • step S2 includes:
  • the real-time load energy is the real-time load current, and the target charging energy is the target charging current; or, the real-time load energy is the real-time load power, and the target charging energy is the target charging power.
  • step S1 is specifically:
  • the real-time load energy of load 3 is obtained through the current sensor.
  • the present invention also provides a charging control system for an energy storage element.
  • the energy storage element charging control system includes an energy sensor and a controller.
  • the energy sensor is used to obtain the real-time load energy of the load 3; the controller is used to calculate the target charging energy flowing to the energy storage element 2 according to the real-time load energy, and adjust the charging energy of the energy storage element 2 as the target charging energy.
  • the controller may be a controller set on the energy storage element 2 or a controller integrated on the terminal device.
  • the controller may directly adjust the charging energy of the energy storage element 2 as the target charging energy.
  • the adjustment of the charging energy of 2 can also be realized with the help of a charger, that is, the charging energy set in the charger can be adjusted to the target charging energy.
  • the energy storage element charging control system provided by the present invention monitors the energy destination of different branches of the working power supply 1 in real time through the setting of energy sensors, and monitors the variable energy of the load 3 to control the energy storage element 2 in real time. Energy utilization improves the operating efficiency of the working power source 1 and the charging efficiency of the energy storage element 2.
  • the energy sensor is a current sensor, and the current sensor includes a load current sensor 5 connected to the branch of the load 3.
  • the energy sensor is a current sensor
  • the current sensor includes a charging current sensor 4 connected to the branch circuit of the energy storage element 2 and a power current sensor 6 connected to the main circuit of the working power supply 1.
  • the total current of the working power supply 1 obtained by the power supply current sensor 6, the real-time charging current of the energy storage element 2 obtained by the charging current sensor 4, and the total current minus the real-time charging current is the real-time load current of the load 3.
  • the rated current of the working power supply 1 minus the real-time load current is used as the target charging current of the energy storage element 2.
  • the energy storage element 2 is a battery or a super capacitor.
  • the energy storage element 2 may be other components with energy storage properties, and is not limited to the type given in this embodiment.
  • the charging control method of the energy storage element for example: the rated current of the working power supply 1 is 63A, suppose that the real-time load current of the load 3 we monitor is 15A in the first 0-1 minute, and the real-time load current in the first 1-2 minutes The real-time load current is 20A, and the real-time load current in the first 2-3 minutes is 18A, and its load 3 is always fluctuating; through calculation, the real-time target charging current should be 48A in the first 0-1 minute. It is 43A for 1-2 minutes, and the current is 45A in the first 2-3 minutes, and then the target charging current can be limited in real time by the charger.
  • the hypothetical time period can be further subdivided until it is the same as the processing speed of the microcomputer, for example, 10ms.
  • the charging control method of the energy storage element provided in this embodiment can effectively prevent the risk of the power supply socket being burned and the working power supply 1 tripping, and the charging efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种储能元件充电控制方法及系统、机车,其中控制方法包括以下步骤:获取负载的实时负载能量(S1);根据所述实时负载能量计算流向储能元件的目标充电能量(S2);调整所述储能元件的充电能量为目标充电能量(S3)。通过对工作电源(1)的不同支路能量去向进行实时监测的方式,监控负载(3)的可变化能量,来实时控制储能元件(2)的能量利用,以防止过电流导致的故障,减少了运用维护,而且提高了工作电源利用率,提高了运用效率。

Description

储能元件充电控制方法及系统、机车
本申请要求于2019年12月12日提交中国专利局、申请号为201911275082.X、发明名称为“储能元件充电控制方法及系统、机车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及轨道交通储能元件充电领域,特别是涉及一种储能元件充电控制方法及系统。此外,本申请还涉及一种包括上述储能元件充电控制系统的机车。
背景技术
在目前主流的调车机车、工程维护车在进行储能元件充电工作时,只对自身部分功能进行限制,以防止在储能元件充电工作时,工作电源过载。而由于现有结构的限制,储能元件工作时用电负载无法得到有效控制,且缺乏统一的能源管理,使得机车、工程车在储能元件充电工作时,偶有供电插座烧损、供电电源跳闸等故障出现。
储能元件充电工作时,充电机采用限制的充电功率或充电电流的模式,不根据负载变化而自动进行调整。所需供电功率=负载功率+充电功率,负载指非充电机的其他负载,其可以是一个或多个负载组合的功率值。当所需功率超过了供电插座承受能力时,将导致供电插座烧损;超过了工作电源负荷时,将导致工作电源跳闸。
现有技术中,为了尽量避免供电插座烧损和工作电源跳闸的问题,对现有的充电功率往往采用了降低充电功率或充电电流的方式,来实现对储能元件充电,以减少插座烧损和库内电源跳闸。然而,目前的方法中,限制的是最大充电功率和最大充电电流,其充电功率或电流往往不能达到储能元件本身充电允许的最大值或工作电源允许工作的最大值,存在不能最大限度利用充电功率,充电时间将延长,效率将较低。
因此,如何有效提高充电效率,是本领域技术人员目前需要解决的技 术问题。
发明内容
本发明的目的是提供一种储能元件充电控制方法及系统,用于提高充电效率,降低充电时间。本申请的另一目的是提供一种包括上述储能元件充电控制系统的机车。
为实现上述目的,本发明提供如下技术方案:
一种储能元件充电控制方法,包括以下步骤:
步骤S1:获取负载的实时负载能量;
步骤S2:根据所述实时负载能量计算流向储能元件的目标充电能量;
步骤S3:调整所述储能元件的充电能量为目标充电能量。
优选的,所述步骤S1为:
直接获取所述负载的实时负载能量;
或者,所述步骤S1包括:
获取所述工作电源的实时输出总能量和所述储能元件的实时充电能量,计算所述实时输出总能量与所述实时充电能量的差值作为所述实时负载能量。
优选的,所述步骤S2包括:
计算所述工作电源的额定能量与所述实时负载能量的差值,作为流向储能元件的目标充电能量。
优选的,所述步骤S2包括:
所述实时负载能量为实时负载电流,所述目标充电能量为目标充电电流;或者,所述实时负载能量为实时负载功率,所述目标充电能量为目标充电功率。
优选的,当所述实时负载能量为实时负载电流,所述目标充电能量为目标充电电流时,所述步骤S1具体为:
通过电流传感器获取负载的实时负载能量。
一种储能元件充电控制系统,包括:
能量传感器,用于获取负载的实时负载能量;
控制器,用于根据所述实时负载能量计算流向储能元件的目标充电能量,并调整所述储能元件的充电能量为目标充电能量。
优选的,所述能量传感器为电流传感器,所述电流传感器包括连接于所述负载支路上的负载电流传感器。
优选的,所述能量传感器为电流传感器,所述电流传感器包括连接于所述储能元件支路上的充电电流传感器和连接于所述工作电源主路上的电源电流传感器。
优选的,所述储能元件为蓄电池或超级电容。
本申请还提供一种机车,包括上述任意一项所述的储能元件充电控制系统。
本发明所提供的储能元件充电控制方法,包括以下步骤:步骤S1:获取负载的实时负载能量;步骤S2:根据所述实时负载能量计算流向储能元件的目标充电能量;步骤S3:调整所述储能元件的充电能量为目标充电能量。本发明所提供的储能元件充电控制系统,通过对工作电源的不同支路能量去向进行实时监测的方式,监控负载的可变化能量,来实时控制储能元件的能量利用,以防止过电流导致的故障,减少了运用维护,而且提高了工作电源利用率,提高了运用效率,经济性显著提高。
本发明所提供的储能元件充电控制系统,包括:能量传感器,用于获取负载的实时负载能量;控制器,用于根据所述实时负载能量计算流向储能元件的目标充电能量,并调整所述储能元件的充电能量为目标充电能量。本发明所提供的储能元件充电控制系统,通过能量传感器的设置,对工作电源的不同支路能量去向进行实时监测的方式,监控负载的可变化能量,来实时控制储能元件的能量利用,提高工作电源的运用效率,提高储能元件的充电效率。
本申请所提供的机车设有上述储能元件充电控制系统,由于所述储能元件充电控制系统具有上述技术效果,因此,设有该储能元件充电控制系统的机车也应当具有相应的技术效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的储能元件充电控制方法的流程图;
图2为本发明所提供的储能元件充电控制系统一种具体实施方式的结构示意图;
图3为本发明所提供的储能元件充电控制系统另一种具体实施方式的结构示意图;
其中:工作电源-1;储能元件-2;负载-3;充电电流传感器-4;负载电流传感器-5;电源电流传感器-6。
具体实施方式
本发明的核心是提供一种储能元件充电控制方法及系统,用于提高充电效率,降低充电时间。本申请的另一核心是提供一种包括上述储能元件充电控制系统的机车。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图1至图3,图1为本发明所提供的储能元件充电控制方法的流程图;图2为本发明所提供的储能元件充电控制系统一种具体实施方式的结构示意图;图3为本发明所提供的储能元件充电控制系统另一种具体实施方式的结构示意图。
在该实施方式中,储能元件充电控制方法包括以下步骤:
步骤S1:获取负载3的实时负载能量,如实时负载电流或实时负载功率,优选为实时负载电流,可以通过串联在支路上的电流传感器进行检测;
步骤S2:根据实时负载能量计算流向储能元件2的目标充电能量,具体的,将工作电源1的额定能量减去实时负载能量,作为储能元件2的目标充电能量;
步骤S3:调整储能元件2的充电能量为目标充电能量,具体的,对于储能元件2的充电能量的调整,可以通过充电机或微机实现,比如,将充电机内设定的充电能量调整为目标充电能量即可。
本发明所提供的储能元件充电控制系统,通过对工作电源1的不同支路能量去向进行实时监测的方式,监控负载3的可变化能量,来实时控制储能元件2的能量利用,以防止过电流导致的故障,减少了运用维护,而且提高了工作电源1利用率,提高了运用效率,经济性显著提高。
进一步,步骤S1为:
直接获取负载3的实时负载能量,即直接对连接负载3的支路进行检测,直接作为负载3的实时负载能量使用;
或者,步骤S1包括:
获取工作电源1的实时输出总能量和储能元件2的实时充电能量,计算实时输出总能量与实时充电能量的差值作为实时负载能量。
上述步骤,对于负载3的实时负载能量的检测,既可以直接检测获取,也可以通过检测工作电源1的实时输出总能量和储能元件2的实时充电能量,并进行差值计算获取,两种方式均可。
在上述各实施方式的基础上,步骤S2包括:
计算工作电源1的额定能量与实时负载能量的差值,作为流向储能元件2的目标充电能量。即通过实时负载能量的值,作为计算目标充电能量的参考,可以有效避免现有技术中,限制的是最大充电功率和最大充电电流,其充电功率或电流往往不能达到储能元件2本身充电允许的最大值或工作电源1允许工作的最大值,存在不能最大限度利用充电功率,充电时间延长,效率较低的问题。
在上述各实施方式的基础上,步骤S2包括:
实时负载能量为实时负载电流,目标充电能量为目标充电电流;或者,实时负载能量为实时负载功率,目标充电能量为目标充电功率。
在上述各实施方式的基础上,当实时负载能量为实时负载电流,目标充电能量为目标充电电流时,步骤S1具体为:
通过电流传感器获取负载3的实时负载能量。
除上述储能元件充电控制方法外,本发明还提供了一种储能元件充电控制系统。
该储能元件充电控制系统包括能量传感器和控制器。
其中,能量传感器用于获取负载3的实时负载能量;控制器用于根据实时负载能量计算流向储能元件2的目标充电能量,并调整储能元件2的充电能量为目标充电能量。具体的,控制器可以为设置在储能元件2上的控制器,也可以为集成在终端设备上的控制器,控制器可以直接调整储能元件2的充电能量为目标充电能量,储能元件2的充电能量的调整,也可以借助充电机实现,即将充电机内设定的充电能量调整为目标充电能量即可。
本发明所提供的储能元件充电控制系统,通过能量传感器的设置,对工作电源1的不同支路能量去向进行实时监测的方式,监控负载3的可变化能量,来实时控制储能元件2的能量利用,提高工作电源1的运用效率,提高储能元件2的充电效率。
在上述各实施方式的基础上,能量传感器为电流传感器,电流传感器包括连接于负载3支路上的负载电流传感器5。
在上述各实施方式的基础上,能量传感器为电流传感器,电流传感器包括连接于储能元件2支路上的充电电流传感器4和连接于工作电源1主路上的电源电流传感器6。通过电源电流传感器6获取的工作电源1的总电流,充电电流传感器4获取的储能元件2的实时充电电流,总电流减去实时充电电流的值即为负载3的实时负载电流,然后通过总工作电源1的额定电流减去实时负载电流,作为储能元件2的目标充电电流。
在上述各实施方式的基础上,储能元件2为蓄电池或超级电容,当然,储能元件2可以为其他具有储能性质的部件,并不局限于本实施例所给出的类型。
本实施例所提供的储能元件充电控制方法,举例:工作电源1的额定电流为63A,假设我们监测的负载3在第0-1分钟的实时负载电流为15A,在第1-2分钟的实时负载电流为20A,在第2-3分钟的实时负载电流为18A,其负载3是一直处于波动的;通过计算,实时得出的目标充电电流应该为 第0-1分钟为48A,在第1-2分钟为43A,在第2-3分钟电流为45A,再通过充电机对目标充电电流进行实时限制即可。其中假设的时间段还可往下细分,直至与微机的处理速度相同,例如,10ms。
该实施例所提供的储能元件充电控制方法,可以有效防范供电插座烧损和工作电源1跳闸的风险,提高充电效率。
以上对本发明所提供的储能元件充电控制方法及系统和机车进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种储能元件充电控制方法,其特征在于,包括以下步骤:
    步骤S1:获取负载(3)的实时负载能量;
    步骤S2:根据所述实时负载能量计算流向储能元件(2)的目标充电能量;
    步骤S3:调整所述储能元件(2)的充电能量为目标充电能量。
  2. 根据权利要求1所述的储能元件充电控制方法,其特征在于,所述步骤S1为:
    直接获取所述负载(3)的实时负载能量;
    或者,所述步骤S1包括:
    获取所述工作电源(1)的实时输出总能量和所述储能元件(2)的实时充电能量,计算所述实时输出总能量与所述实时充电能量的差值作为所述实时负载能量。
  3. 根据权利要求1所述的储能元件充电控制方法,其特征在于,所述步骤S2包括:
    计算所述工作电源(1)的额定能量与所述实时负载能量的差值,作为流向储能元件(2)的目标充电能量。
  4. 根据权利要求1至3任意一项所述的储能元件充电控制方法,其特征在于,所述步骤S2包括:
    所述实时负载能量为实时负载电流,所述目标充电能量为目标充电电流;或者,所述实时负载能量为实时负载功率,所述目标充电能量为目标充电功率。
  5. 根据权利要求4所述的储能元件充电控制方法,其特征在于,当所述实时负载能量为实时负载电流,所述目标充电能量为目标充电电流时,所述步骤S1具体为:
    通过电流传感器获取负载(3)的实时负载能量。
  6. 一种储能元件充电控制系统,其特征在于,包括:
    能量传感器,用于获取负载(3)的实时负载能量;
    控制器,用于根据所述实时负载能量计算流向储能元件(2)的目标充 电能量,并调整所述储能元件(2)的充电能量为目标充电能量。
  7. 根据权利要求6所述的储能元件充电控制系统,其特征在于,所述能量传感器为电流传感器,所述电流传感器包括连接于所述负载(3)支路上的负载电流传感器(5)。
  8. 根据权利要求6所述的储能元件充电控制系统,其特征在于,所述能量传感器为电流传感器,所述电流传感器包括连接于所述储能元件(2)支路上的充电电流传感器(4)和连接于所述工作电源(1)主路上的电源电流传感器(6)。
  9. 根据权利要求6至8任意一项所述的储能元件充电控制系统,其特征在于,所述储能元件(2)为蓄电池或超级电容。
  10. 一种机车,包括储能元件充电控制系统,其特征在于,所述储能元件充电控制系统为如权利要求6至9任意一项所述的储能元件充电控制系统。
PCT/CN2020/085018 2019-12-12 2020-04-16 储能元件充电控制方法及系统、机车 WO2021114537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911275082.X 2019-12-12
CN201911275082.XA CN111038332A (zh) 2019-12-12 2019-12-12 储能元件充电控制方法及系统、机车

Publications (1)

Publication Number Publication Date
WO2021114537A1 true WO2021114537A1 (zh) 2021-06-17

Family

ID=70236394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085018 WO2021114537A1 (zh) 2019-12-12 2020-04-16 储能元件充电控制方法及系统、机车

Country Status (2)

Country Link
CN (1) CN111038332A (zh)
WO (1) WO2021114537A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111703443B (zh) * 2020-05-29 2021-03-26 中车株洲电力机车有限公司 混合动力机车及其能量平衡控制方法与系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805238A (zh) * 2004-12-30 2006-07-19 凌特公司 用于电池供电的系统的功率管理电路及方法
CN1877954A (zh) * 2005-06-09 2006-12-13 仁宝电脑工业股份有限公司 电子装置的供电控制装置及方法
CN1973416A (zh) * 2004-06-25 2007-05-30 诺基亚公司 电池充电方法及其装置
CN102904290A (zh) * 2011-07-25 2013-01-30 国基电子(上海)有限公司 电子装置及其判断电池充满的方法
US20180123357A1 (en) * 2011-03-05 2018-05-03 Powin Energy Corporation Battery energy storage system and control system and applications thereof
CN109245085A (zh) * 2018-10-11 2019-01-18 福建星云电子股份有限公司 具有削峰填谷功能的直流储能后备电源及控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944758A (zh) * 2010-09-24 2011-01-12 鸿富锦精密工业(深圳)有限公司 具有动态分配充电电流功能的电池管理系统和方法
CN102856953A (zh) * 2012-08-14 2013-01-02 苏州佳世达电通有限公司 控制充电电流强度的电子装置
CN103825316A (zh) * 2012-11-16 2014-05-28 大连金兰电子技术有限公司 一种太阳能充电系统
CN106394261B (zh) * 2016-09-30 2018-11-06 株洲中车时代电气股份有限公司 一种储能式城轨列车充电功率分配方法及系统
JP6724701B2 (ja) * 2016-10-04 2020-07-15 トヨタ自動車株式会社 車載バッテリ充電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973416A (zh) * 2004-06-25 2007-05-30 诺基亚公司 电池充电方法及其装置
CN1805238A (zh) * 2004-12-30 2006-07-19 凌特公司 用于电池供电的系统的功率管理电路及方法
CN1877954A (zh) * 2005-06-09 2006-12-13 仁宝电脑工业股份有限公司 电子装置的供电控制装置及方法
US20180123357A1 (en) * 2011-03-05 2018-05-03 Powin Energy Corporation Battery energy storage system and control system and applications thereof
CN102904290A (zh) * 2011-07-25 2013-01-30 国基电子(上海)有限公司 电子装置及其判断电池充满的方法
CN109245085A (zh) * 2018-10-11 2019-01-18 福建星云电子股份有限公司 具有削峰填谷功能的直流储能后备电源及控制方法

Also Published As

Publication number Publication date
CN111038332A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
EP2262076B1 (en) Power stabilization system and method employing a rechargeable battery system
CN110943483A (zh) 一种微电网系统及控制方法
JP2006511190A (ja) 風力発電装置と送電システムとの間の電力制御インターフェース
WO2021000682A1 (zh) 一种基于特定频率的母线电压正反馈的直流孤岛检测方法
WO2014063413A1 (zh) 一种通过调整电压辅助调节电网频率的方法
WO2013166931A1 (zh) 串补火花间隙分压器回路的在线监测电路和方法
CN103618331A (zh) 一种柔性直流输电换流站直流过压限流控制方法
WO2021114537A1 (zh) 储能元件充电控制方法及系统、机车
WO2024067558A1 (zh) 一种并网逆变系统及低频振荡抑制方法
CN108336743B (zh) 一种基于分布式电源并网逆变器的本地电压控制方法
JP5141764B2 (ja) 系統安定化装置
KR102272665B1 (ko) Dc 마이크로그리드에서의 mas 기반의 분산형 제어 시스템 및 방법
CN110190595B (zh) 电力储能系统的控制方法、控制系统以及仿真与控制模型
CN104300896A (zh) 带防逆流的光伏逆变器控制装置及其控制方法
JP4993972B2 (ja) 蓄電池設備と自家発電設備を組み合せた自家発電システムおよび該システムにおける自家発電設備の出力制御方法
CN205595885U (zh) 一种消防应急照明设备的高速切换装置
KR101977165B1 (ko) 비상 전원용 ess 제어 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
CN109617101B (zh) 一种储能变流器充放电模式自动切换控制方法
JP5239767B2 (ja) 系統安定化装置
CN108173276B (zh) 一种应对大规模风机脱网后低频的控制方法
CN107658887A (zh) 一种基于下垂控制的新能源发电快速无功响应控制方法
CN107681687B (zh) 基于储能的分布式系统母线过电压抑制控制方法和系统
CN109856489A (zh) 一种负荷模拟装置及测试直流供电系统性能的方法
CN105958516B (zh) 配网终端由三相不平衡引起低电压的治理装置及治理方法
CN111509739B (zh) 一种电网频率控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898765

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20898765

Country of ref document: EP

Kind code of ref document: A1