WO2021114335A1 - 作为afm位置传感器的惠斯通电桥的温度补偿方法 - Google Patents

作为afm位置传感器的惠斯通电桥的温度补偿方法 Download PDF

Info

Publication number
WO2021114335A1
WO2021114335A1 PCT/CN2019/126324 CN2019126324W WO2021114335A1 WO 2021114335 A1 WO2021114335 A1 WO 2021114335A1 CN 2019126324 W CN2019126324 W CN 2019126324W WO 2021114335 A1 WO2021114335 A1 WO 2021114335A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
compensation
resistor
afm
wheatstone bridge
Prior art date
Application number
PCT/CN2019/126324
Other languages
English (en)
French (fr)
Inventor
陈科纶
王纯配
陈俊
孙钰
汝长海
Original Assignee
江苏集萃微纳自动化系统与装备技术研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃微纳自动化系统与装备技术研究所有限公司 filed Critical 江苏集萃微纳自动化系统与装备技术研究所有限公司
Publication of WO2021114335A1 publication Critical patent/WO2021114335A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe

Definitions

  • the invention relates to the field of AFM-SEM hybrid microscopes, in particular to a method for temperature compensation of a Wheatstone bridge used as an AFM position sensor in an AFM-SEM hybrid microscope system.
  • Hybrid microscopes provide complementary imaging functions. Multi-mode measurement has a higher data collection efficiency than a single microscope. For example, SEM can only provide 2D images of the sample and cannot obtain depth information, but AFM can provide depth information of the sample. Based on different imaging physics principles, AFM and SEM represent two complementary imaging technologies. The traditional sample measurement method is to image the sample separately in AFM and SEM, and then correlate the images to obtain more information about the sample. But transferring the sample back and forth and switching between AFM and SEM may damage the sample, and it can be very difficult to observe the same area of the sample on two microscopes. The AFM-SEM hybrid microscope system composed of AFM integrated in the SEM can make it very convenient to observe the sample.
  • a typical AFM with a large scan range (tens of microns) requires a high-resolution position sensor to ensure measurement accuracy.
  • Piezoelectric drive scanning has the characteristics of hysteresis and creep, which will cause a measurement error of about 30%.
  • position sensors that can achieve nanometer resolution, such as capacitance, inductance, strain resistance, eddy current, optical interference, photoelectric encoder, and magnetic encoder, etc.
  • Encoders based on eddy current, inductance, and magnetic control not only take up too much space and are inconvenient to integrate on the AFM, but the magnetic field generated by them will cause SEM imaging distortion; sensors based on photoelectric encoders will cause signal drift due to high power consumption, although they can Used in SEM but its performance is unstable.
  • Capacitive sensor has high sensitivity and low heat dissipation, but its size is slightly larger, and it is difficult to integrate in the limited volume of AFM.
  • its related signal conditioning circuit is too complicated and generates high power consumption. It can only be placed outside the SEM, using wires. It is very difficult to connect capacitive sensors and controllers with cables and can easily cause noise-related problems.
  • Metal strain gauges are small in size and easy to integrate, but their strain sensitivity is too low, which will reduce AFM resolution and measurement accuracy, and is not suitable for high-performance AFM applications.
  • Semiconductor strain gauges are small in size and low in integration complexity, signal conditioning circuits are relatively streamlined, low power consumption, and easy to integrate on AFM, and semiconductor strain gauges have a high gauge factor, which is extremely important to improve AFM performance and achieve sub-nanometer resolution, but SCSG has High temperature sensitivity.
  • the high vacuum environment of SEM is not conducive to heat dissipation. Temperature changes will affect SCSG readings and cause position signal drift. We need to perform temperature compensation on SCSG to reduce the influence of temperature on SCSG.
  • the SCSG temperature compensation method mentioned in USPat.No.3368179 is based on the SCSG production process point of view.
  • a compensation material with low temperature sensitivity is incorporated into the semiconductor strain gauge material, hoping to use the low temperature of the compensation material
  • the sensitivity factor makes the overall semiconductor strain gauge exhibit a relatively small temperature sensitivity factor.
  • the technical problem to be solved by the present invention is to provide a temperature compensation method for a Wheatstone bridge used as an AFM position sensor in an AFM-SEM hybrid microscope system.
  • the present invention provides a temperature compensation method for a Wheatstone bridge used as an AFM position sensor in an AFM-SEM hybrid microscope system, wherein the Wheatstone bridge includes: a first resistor, a first resistor, and a second resistor. Two resistors, a third resistor, and a fourth resistor; the first resistor, the second resistor, the third resistor, and the fourth resistor are composed of semiconductor strain gauges; the first resistor and the second resistor are connected in series to form a first branch An arm, the third resistor and the fourth resistor are connected in series to form a second arm, and the first arm and the second arm are connected in parallel;
  • the first resistance and the second resistance are compensated in series and parallel through the first compensation resistance and the second compensation resistance, and the compensation satisfies the following principle: the first compensation resistance and the second compensation resistance cannot be combined with the The first resistance or the second resistance is connected in parallel or in series; when the first compensation resistance and the second compensation resistance respectively compensate the two resistances of the first arm, the two sets of compensation resistances are connected to the resistance to be compensated Different relationship
  • the third resistance and the fourth resistance are compensated in series and parallel through the third compensation resistance and the fourth compensation resistance, and the compensation satisfies the following principle: the third compensation resistance and the fourth compensation resistance cannot be combined with the The third resistance or the fourth resistance is connected in parallel or in series; when the third compensation resistance and the fourth compensation resistance respectively compensate the two resistances of the second arm, the two sets of compensation resistances are connected with the resistance to be compensated Different relationship
  • the resistance values of the first compensation resistance, the second compensation resistance, the third compensation resistance, and the fourth compensation resistance meet the requirements for the differential output of the Wheatstone bridge under static conditions in the preset temperature range It is zero, and, under dynamic conditions, the common-mode voltage of the Wheatstone bridge should meet half of the supply voltage.
  • the semiconductor strain gauge is a P-type semiconductor strain gauge.
  • the semiconductor strain gauge is an N-type semiconductor strain gauge.
  • the method for solving the resistance of the first compensation resistor, the second compensation resistor, the third compensation resistor, and the fourth compensation resistor is as follows:
  • the differential output of the Wheatstone bridge should be zero under static conditions, and the common mode voltage of the Wheatstone bridge should meet half of the supply voltage under dynamic conditions;
  • the resistance values of the first resistance, the second resistance, the third resistance, and the fourth resistance recorded at the temperature point at this time are substituted into the equation group to solve the first compensation resistance, the second compensation resistance, and the The resistance of the third compensation resistor and the fourth compensation resistor.
  • the compensation modes of the first arm and the second arm are the same or different.
  • the so-called same means that the series-parallel relationship between the two compensation resistors and the resistors in the two arms is the same.
  • a Wheatstone bridge used as a position sensor in an AFM-SEM hybrid microscope system is obtained by any one of the temperature compensation methods.
  • an AFM compatible with SEM is characterized in that it includes the aforementioned Wheatstone bridge.
  • this application also provides a computer device, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • a computer program stored in the memory and capable of running on the processor.
  • the processor executes the program, any item is implemented. The steps of the method.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of any one of the methods are implemented.
  • the present application also provides a processor configured to run a program, wherein the program executes any one of the methods when the program is running.
  • the temperature compensation scheme proposed in this embodiment can make the position sensor within a certain temperature range, and when the AFM performs a large-scale profile scan, the output signal of the bridge will not be saturated and signal drift.
  • Figure 1 is an AFM position sensor that is a Wheatstone bridge composed of 4 pieces of SCSG (G1, G2, G3, G4).
  • the arrow in Figure 1 indicates the trend of the resistance value of the SCSG after being stressed, and the upward arrow indicates the resistance value Increase, the downward arrow indicates that the resistance value decreases.
  • the direction of the arrow in the figure is just for illustration, as long as the resistance value of G1G4 changes in the same direction and the resistance value of G2G3 changes in the same direction.
  • the figure also includes series resistance R S1 , R S2 , G2 parallel resistance R P1 , G3 parallel resistance R P2 , R P1 can also be G4 parallel resistance, R P2 can also be G1 parallel resistance, the figure is only An illustration of a parallel situation.
  • R S1 is connected in series between G1G2, and R S2 is connected in series between G3G4.
  • the upper end of G1G3R P2 is connected to the power supply VCC, and the lower end of G2G4R P1 is grounded.
  • vp and vn are the two differential signals output by the Wheatstone bridge. vp can be connected to the upper or lower end of R S1 , and vn can be connected to the upper or lower end of R S2.
  • Figure 2 shows the two differential signals vp and vn outputted by the Wheatstone bridge after SCSG temperature compensation, and the common-mode voltage of the bridge.
  • the differential output vp and vn of the bridge will not saturate and overflow as the AFM displacement increases.
  • the distance on the x-axis represents the distance that the AFM moves, and the distance movement will cause the SCSG to deform, and thus the vp and vn voltages will change.
  • the y-axis is the power supply voltage of the bridge. The figure assumes that the power supply is 3V.
  • Figures 3 and 4 show the saturation and overflow of the differential signal of the bridge when the SCSG is not temperature compensated.
  • SCSG has a very high gauge factor (resistance value has a linear relationship with temperature, a positive linear correlation for P-type semiconductor wafers, and a positive linear correlation for N-type semiconductor wafers), which is extremely important for improving AFM performance and achieving sub-nanometer resolution.
  • resistance value has a linear relationship with temperature, a positive linear correlation for P-type semiconductor wafers, and a positive linear correlation for N-type semiconductor wafers
  • This embodiment proposes a temperature compensation method, which can reduce the influence of temperature on the position signal (Wheatstone bridge), so that the SCSG position sensor is compatible with SEM and realizes large-scale scanning.
  • the temperature compensation scheme proposed in this embodiment can make the position sensor within a certain temperature range, when the AFM performs a large-scale profile scan, the output signal of the bridge will not be saturated and signal drift.
  • the compensation circuit is shown in Figure 2. According to the Wheatstone bridge compensation circuit in Figure 2, four equations can be listed based on the compensation principle.
  • G2(T1), G3(T1), G2(T2), G3(T2) are the resistance values measured at the temperature T1 and T2 respectively, which are known quantities.
  • the differential mode equation 1 can be expressed as:
  • the differential mode equation 2 can be expressed as:
  • the compensation resistors R S1 , R P1 , R S2 , and R P2 in the equations are unknown quantities, and are also the final values that need to be obtained. 12
  • the common mode voltage of the bridge meets half of the supply voltage
  • the Wheatstone bridge includes: a first resistor, a second resistor, a third resistor, and a fourth resistor; the first resistor, the second resistor, the third resistor, and the fourth resistor are composed of semiconductor strain gauges; the first resistor And the second resistor in series to form a first arm, the third resistor and the fourth resistor in series to form a second arm, the first arm and the second arm are connected in parallel.
  • the compensation principle is as follows:
  • the first compensation resistor G1 and the second resistor G2 Perform series-parallel compensation on the first resistor G1 and the second resistor G2 through a first compensation resistor and a second compensation resistor, and the first compensation resistor is connected in series or in parallel with the first resistor or the second resistor
  • the second compensation resistor is connected in series or in parallel with the first resistor or the second resistor; the compensation satisfies the following principle: the first compensation resistor and the second compensation resistor cannot be simultaneously connected with the first resistor or The second resistance is connected in parallel or in series; when the first compensation resistance and the second compensation resistance respectively compensate the two resistances of the first arm, the connection relationship between the two sets of compensation resistances and the resistance to be compensated is different (the so-called Compensation resistances of different fingers and the resistance to be compensated cannot be connected in parallel or in series at the same time; it can be understood that the first compensation resistance and the second compensation resistance can also simultaneously compensate one resistance in the first arm at the same time);
  • the position sensor composed of SCSG keeps the bridge balance state within the compensation temperature range, and the temperature will not affect the AFM position sensor. It can be seen from Fig. 3 that the voltage change of the differential output vpvn of the Wheatstone bridge is symmetrical, floating up and down on the basis of the common mode voltage VCC/2, and the phenomenon of saturation and overflow of the differential signal shown in Fig. 3 and Fig. 4 will not occur.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种作为AFM位置传感器的惠斯通电桥的温度补偿方法,应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥,惠斯通电桥包括:第一电阻(G1)和第二电阻(G2)串联组成第一支臂,第三电阻(G3)和第四电阻(G4)串联组成第二支臂,第一支臂和第二支臂并联。可以降低温度对位置传感器(惠斯通电桥)的影响,减小因SEM高真空环境的不良散热造成的位置信号漂移,使得基于SCSG位置传感器的AFM可以兼容SEM的高真空环境并实现大型貌扫描。

Description

作为AFM位置传感器的惠斯通电桥的温度补偿方法 技术领域
本发明涉及AFM-SEM混合显微镜领域,具体涉及一种应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥的温度补偿方法。
背景技术
混合显微镜提供了互补的成像功能,多模式测量比单个显微镜具有更高的数据采集效率,例如SEM只能提供样品的2D图像,得不到深度信息,但AFM可以提供样品的深度信息。基于不同的成像物理原理,AFM和SEM代表了两种互补的成像技术。传统的样品测量方法是在AFM和SEM中分别对样品成像,然后再将图像关联起来从而获得更多关于样品的信息。但是来回转移样品并在AFM和SEM之间切换可能会损坏样品,并且想在两个显微镜上观察样品的同一区域会非常困难。通过在SEM中集成AFM组成AFM-SEM混合显微镜系统可以使得观察样品非常方便。尽管AFM-SEM混合显微镜系统具有诸多优势,但是如何使得AFM兼容SEM而又不影响二者的性能和功能依然存在一些技术挑战。这些挑战来自AFM尺寸限制,真空环境的不良散热,电子束影响AFM力反馈信号等等。
具有大型貌扫描范围(数十微米)的典型AFM需要高分辨率位置传感器以确保测量精度。压电驱动扫描具有迟滞和蠕变的特点,这将导致30%左右的测量误差。基于不同的测量原理,能够实现纳米级分辨率的位置传感器有很多,例如电容、电感、应变电阻、涡流、光干涉、光电编码器和磁控编码器等等。基于涡流、电感和磁控编码器不但会占用太大空间不方便集成在AFM上,而且 其产生的磁场会导致SEM成像失真;基于光电编码器的传感器由于高功耗会导致信号漂移,虽然可以用于SEM中但其性能不稳定。电容传感器灵敏度高散热量低,但是其尺寸略大,很难集成在AFM有限的体积上,另外其相关的信号调理电路太过复杂产生很高的功耗,只能放在SEM外部,用线缆连接电容传感器和控制器非常困难并且容易引起噪声相关问题。金属应变片尺寸小方便集成,但是其应变灵敏度太低会降低AFM分辨率和测量精度,并不适合高性能AFM应用。半导体应变片尺寸小集成复杂度低,信号调理电路较为精简低功耗易于集成在AFM上,并且半导体应变片具有很高的应变系数,对提高AFM性能实现亚纳米分辨率极为重要,但是SCSG具有很高的温度灵敏度,SEM的高真空环境不利于散热,温度变化会影响SCSG读数,引起位置信号漂移,我们需要给SCSG进行温度补偿,以降低温度对SCSG的影响。
传统技术存在以下技术问题:
在U.S.Pat.No.3368179中提到的SCSG温度补偿方法是从SCSG生产工艺的角度出发,将一种对温度灵敏度低的补偿材料参杂进半导体应变片材料中,希望借助补偿材料的低温度灵敏度系数使得整体半导体应变片呈现出相对较小的温度灵敏度系数。虽然这种方法在一定程度上可以缓解温度对SCSG的影响,但同时也会使得SCSG自身的应变系数降低,而且由于制作工艺变得更加复杂从而提高了生产和应用成本。
在文献《A monolithic MEMS position sensor for closed-loop high-speed atomic force microscopy》中,N.Hosseini等人提到在MEMS制造中,具有相同设计的共同制造的SCSG表现出高度匹配的温度系数。如果将两个或四个具有相同设计的共同制造的SCSG一起使用组成半桥或者全桥,则无需任何调整即可很好的补偿整体的温度系数。但是用于SCSG位置传感器的MEMS制造工艺复杂且昂贵,这种SCSG不易获得。
发明内容
本发明要解决的技术问题是提供一种应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥的温度补偿方法。
为了解决上述技术问题,本发明提供了一种应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥的温度补偿方法,其中,所述惠斯通电桥包括:第一电阻、第二电阻、第三电阻和第四电阻;所述第一电阻、第二电阻、第三电阻和第四电阻由半导体应变片构成;所述第一电阻和所述第二电阻串联组成第一支臂,所述第三电阻和所述第四电阻串联组成第二支臂,所述第一支臂和所述第二支臂并联;
包括:
对所述第一电阻和所述第二电阻通过第一补偿电阻和第二补偿电阻进行串并联补偿,补偿满足以下原则:所述第一补偿电阻和所述第二补偿电阻不能同时与所述第一电阻或者所述第二电阻并联或者串联;当所述第一补偿电阻和所述第二补偿电阻分别对第一支臂的两个电阻补偿时,两组补偿电阻与待补偿电阻的连接关系不同;
对所述第三电阻和所述第四电阻通过第三补偿电阻和第四补偿电阻进行串并联补偿,补偿满足以下原则:所述第三补偿电阻和所述第四补偿电阻不能同时与所述第三电阻或者所述第四电阻并联或者串联;当所述第三补偿电阻和所述第四补偿电阻分别对第二支臂的两个电阻补偿时,两组补偿电阻与待补偿电阻的连接关系不同;
其中,所述第一补偿电阻、所述第二补偿电阻、所述第三补偿电阻和所述第四补偿电阻的阻值满足在预设温度区间内静态下要使得惠斯通电桥的差分输 出为零,以及,在动态下要使得惠斯通电桥的共模电压满足供电电压的一半。
在其中一个实施例中,所述半导体应变片是P类型半导体应变片。
在其中一个实施例中,所述半导体应变片是N类型半导体应变片。
在其中一个实施例中,所述第一补偿电阻、所述第二补偿电阻、所述第三补偿电阻和所述第四补偿电阻的阻值求解方法如下:
将惠斯通电桥放入恒温环境中,在预设温度区间取某个温度点,在该温度点下记录此时的所述第一电阻、第二电阻、第三电阻和第四电阻的阻值;
在该温度点下,根据以下条件列出方程组:静态下要使得惠斯通电桥的差分输出为零,以及,在动态下要使得惠斯通电桥的共模电压满足供电电压的一半;
将该温度点下记录此时的所述第一电阻、第二电阻、第三电阻和第四电阻的阻值代入方程组求解出所述第一补偿电阻、所述第二补偿电阻、所述第三补偿电阻和所述第四补偿电阻的阻值。
在其中一个实施例中,所述第一支臂和所述第二支臂的补偿方式相同或者不同。所谓相同指的两个补偿电阻与两个支臂中的电阻的串并联关系相同。
基于同样的发明构思,一种应用于AFM-SEM混合显微镜系统中作为位置传感器的惠斯通电桥,由任一项所述的温度补偿方法获得。
基于同样的发明构思,一种兼容SEM的AFM,其特征在于,包括所述的惠斯通电桥。
基于同样的发明构思,本申请还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现任一项所述方法的步骤。
基于同样的发明构思,本申请还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现任一项所述方法的步骤。
基于同样的发明构思,本申请还提供一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行任一项所述的方法。
本发明的有益效果:
可以降低温度对位置传感器(惠斯通电桥)的影响,减小因SEM高真空环境的不良散热造成的位置信号漂移,使得基于SCSG位置传感器的AFM可以兼容SEM的高真空环境并实现大型貌扫描。本实施例提出的温度补偿方案可以使得位置传感器在一定温度范围内,当AFM进行大型貌扫描时电桥的输出信号不会出现饱和以及信号漂移现象。
附图说明
图1是由4片SCSG(G1、G2、G3、G4)组成的AFM位置传感器即惠斯通电桥,图1中的箭头表示SCSG在受到应力后电阻阻值变化的趋势,向上箭头表示阻值增大,向下箭头表示阻值减小,图中箭头方向只是示意,只要保证G1G4阻值变化同向,G2G3阻值变化同向即可。图中还包括串联电阻R S1、R S2,G2的并联电阻R P1,G3的并联电阻R P2,R P1也可以是G4的并联电阻,R P2也可以是G1的并联电阻,图中只是其中一种并联情况的示意。R S1串联在G1G2之间,R S2串联在G3G4之间。G1G3R P2上端接电源VCC,G2G4R P1下端接地。vp,vn是惠斯通电桥输出的两路差分信号,vp可以接在R S1上端也可以是下端,vn可以接在R S2上端也可以是下端。
图2是惠斯通电桥在SCSG进行温度补偿后输出的两路差分信号vp,vn,以及电桥具有的共模电压。进行温度补偿后电桥的差分输出vp,vn并不会随着AFM位移增加而发生饱和溢出的现象。x轴的距离表示AFM移动的距离,距离移动会引起SCSG形变,从而vp,vn电压发生变化。y轴是电桥供电电压,图中 假定供电3V。
图3、图4分别是SCSG没有进行温度补偿出现的电桥差分信号饱和溢出的现象。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
SCSG具有极高的应变系数(电阻值与温度成线性关系,对于P型半导体片成正线性相关,对于N型半导体片成正线性相关),对提高AFM性能实现亚纳米分辨率极为重要,但是由于SCSG具有很高的温度灵敏度,SEM真空环境的不良散热容易造成位置信号漂移,影响扫图质量。本实施例提出了一种温度补偿方法,可以降低温度对位置信号(惠斯通电桥)的影响,使得SCSG位置传感器兼容SEM并实现大型貌扫描。本实施例提出的温度补偿方案可以使得位置传感器在一定温度范围内,当AFM进行大型貌扫描时电桥的输出信号不会出现饱和以及信号漂移现象。补偿原理必须满足两个条件,一是在静态时电桥输出差分信号为零即vp=vn,二是在动态时电桥共模电压为VCC/2即
Figure PCTCN2019126324-appb-000001
补偿电路如图2。根据图2的惠斯电桥补偿电路基于补偿原理可以列出四个方程。
VB diff(T=T1,R S1,R P1,R S2,R P2)=0     ①
VB diff(T=T2,R S1,R P1,R S2,R P2)=0    ②
VB cm(T=T1,R S1,R P1,R S2,R P2)=0.5VCC  ③
VB cm(T=T2,R S1,R P1,R S2,R P2)=0.5VCC  ④
把补偿之后的G2看作Rc2,G3看作Rc3。
在温度T1时,
Figure PCTCN2019126324-appb-000002
Figure PCTCN2019126324-appb-000003
在温度T2时,
Figure PCTCN2019126324-appb-000004
Figure PCTCN2019126324-appb-000005
G2(T1),G3(T1),G2(T2),G3(T2)分别是在温度T1,T2时刻测得的电阻值,是已知量。
在温度T1时差模方程①可以表示为:
Figure PCTCN2019126324-appb-000006
在温度T2时差模方程②可以表示为:
Figure PCTCN2019126324-appb-000007
在温度T1时共模方程③可以表示为:
Figure PCTCN2019126324-appb-000008
在温度T2时共模方程④可以表示为:
Figure PCTCN2019126324-appb-000009
将⑤⑥分别代入⑨
Figure PCTCN2019126324-appb-000010
可得:
Figure PCTCN2019126324-appb-000011
Figure PCTCN2019126324-appb-000012
将⑦⑧分别代入⑩0
Figure PCTCN2019126324-appb-000013
可得:
Figure PCTCN2019126324-appb-000014
Figure PCTCN2019126324-appb-000015
假设SCSG补偿的温度范围为T=T1至T=T2,方程组中补偿电阻R S1,R P1,R S2,R P2是未知量,也是最终需要得到的值,①②式表示在T=T1到T=T2温度区间补偿电阻的取值在静态下要使得电桥的差分输出为零即vp=vn;③④式表示在T=T1到T=T2温度区间补偿电阻的取值在动态下要使得电桥的共模电压满足供电电压的一半
Figure PCTCN2019126324-appb-000016
将惠斯通电桥放入恒温环境中,在T1-T2之间等间隔取4个温度点,在每个温度点下记录此时的G1G2G3G4的阻值,因为SCSG的电阻值跟温度成线性关系,当每个SCSG在不同温度下测量的电阻值(离散的点)可以落在拟合的一条直线时说明测量的结果正确(阻值跟温度成线性关系),当测量的离散点不能很好的落在拟合直线上即偏差较大时,说明测量的这组值不正确,应当舍弃重新测量,4组已知数据可以求得方程组中的4个未知量,此时得到补偿电阻R S1,R P1,R S2,R P2的具体值,然后按照求得的具体阻值将补偿电阻应用于电路中。
惠斯通电桥包括:第一电阻、第二电阻、第三电阻和第四电阻;所述第一电阻、第二电阻、第三电阻和第四电阻由半导体应变片构成;所述第一电阻和所述第二电阻串联组成第一支臂,所述第三电阻和所述第四电阻串联组成第二支臂,所述第一支臂和所述第二支臂并联.
补偿原则如下:
对所述第一电阻G1和所述第二电阻G2通过第一补偿电阻和第二补偿电阻进行串并联补偿,所述第一补偿电阻与所述第一电阻或者所述第二电阻串联或者并联;所述第二补偿电阻与所述第一电阻或者所述第二电阻串联或者并联;补偿满足以下原则:所述第一补偿电阻和所述第二补偿电阻不能同时与所述第 一电阻或者所述第二电阻并联或者串联;当所述第一补偿电阻和所述第二补偿电阻分别对第一支臂的两个电阻补偿时,两组补偿电阻与待补偿电阻的连接关系不同(所谓不同指的补偿电阻与待补偿电阻不能同时出现并联或者串联;可以理解,所述第一补偿电阻和所述第二补偿电阻也可以同时对第一支臂中的一个个电阻同时补偿);
对所述第三电阻G3和所述第四电阻G4通过第三补偿电阻和第四补偿电阻进行串并联补偿,所述第三补偿电阻与所述第三电阻或者所述第三电阻串联或者并联;所述第四补偿电阻与所述第三电阻或者所述第四电阻串联或者并联;补偿满足以下原则:所述第三补偿电阻和所述第四补偿电阻不能同时与所述第三电阻或者所述第四电阻并联或者串联;当所述第三补偿电阻和所述第四补偿电阻分别对第二支臂的两个电阻补偿时,两组补偿电阻与待补偿电阻的连接关系不同(所谓不同指的补偿电阻与待补偿电阻不能同时出现并联或者串联;可以理解,所述第三补偿电阻和所述第四补偿电阻也可以同时对第二支臂中的一个个电阻同时补偿)。排列组合共16种情况,参见表1。
表1 SCSG温度补偿电阻配置表(下角标S,表示串联,下角标P,表示并联)
Figure PCTCN2019126324-appb-000017
以表一configuration=3即图2电路中补偿电阻连接方式进行说明。将计算得到的补偿电阻按照图2电路连接方式连接。configuration=3的配置结果说明SCSG2需要一个并联电阻R P1并且串联一个电阻R S1,SCSG3需要并联一个电阻R P2,并且串联一个电阻R S2。因为R S1是属于G2的串联电阻,所以vp要从R S1上端输出。因为R S2是属于G3的串联电阻,所以vn要从R S2下端输出。
SCSG组成的位置传感器经过温度补偿之后,在补偿温度范围内一直保持电桥平衡状态,温度将不能对AFM位置传感器造成影响。从图3可看出惠斯通电桥的差分输出vpvn电压变化是对称的,在共模电压VCC/2的基础上上下浮动, 不会出现图3图4所示差分信号饱和溢出的现象。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (12)

  1. 一种应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥的温度补偿方法,其中,所述惠斯通电桥包括:第一电阻、第二电阻、第三电阻和第四电阻;所述第一电阻、第二电阻、第三电阻和第四电阻由半导体应变片构成;所述第一电阻和所述第二电阻串联组成第一支臂,所述第三电阻和所述第四电阻串联组成第二支臂,所述第一支臂和所述第二支臂并联;
    其特征在于,包括:
    对所述第一电阻和所述第二电阻通过第一补偿电阻和第二补偿电阻进行串并联补偿,补偿满足以下原则:所述第一补偿电阻和所述第二补偿电阻不能同时与所述第一电阻或者所述第二电阻并联或者串联;当所述第一补偿电阻和所述第二补偿电阻分别对第一支臂的两个电阻补偿时,两组补偿电阻与待补偿电阻的连接关系不同;
    对所述第三电阻和所述第四电阻通过第三补偿电阻和第四补偿电阻进行串并联补偿,补偿满足以下原则:所述第三补偿电阻和所述第四补偿电阻不能同时与所述第三电阻或者所述第四电阻并联或者串联;当所述第三补偿电阻和所述第四补偿电阻分别对第二支臂的两个电阻补偿时,两组补偿电阻与待补偿电阻的连接关系不同。
    其中,所述第一补偿电阻、所述第二补偿电阻、所述第三补偿电阻和所述第四补偿电阻的阻值满足在预设温度区间内静态下要使得惠斯通电桥的差分输出为零,以及,在动态下要使得惠斯通电桥的共模电压满足供电电压的一半。
  2. 如权利要求1所述的应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥的温度补偿方法,其特征在于,所述半导体应变片是P类型半导体应变片。
  3. 如权利要求1所述的应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥的温度补偿方法,其特征在于,所述半导体应变片是N类型半导体应变片。
  4. 如权利要求1所述的应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥的温度补偿方法,其特征在于,所述第一补偿电阻、所述第二补偿电阻、所述第三补偿电阻和所述第四补偿电阻的阻值求解方法如下:
    将惠斯通电桥放入恒温环境中,在预设温度区间取某个温度点,在该温度点下记录此时的所述第一电阻、第二电阻、第三电阻和第四电阻的阻值;
    在该温度点下,根据以下条件列出方程组:静态下要使得惠斯通电桥的差分输出为零,以及,在动态下要使得惠斯通电桥的共模电压满足供电电压的一半;
    将该温度点下记录此时的所述第一电阻、第二电阻、第三电阻和第四电阻的阻值代入方程组求解出所述第一补偿电阻、所述第二补偿电阻、所述第三补偿电阻和所述第四补偿电阻的阻值。
  5. 如权利要求1所述的应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥的温度补偿方法,其特征在于,所述半导体应变片是N类型半导体应变片。
  6. 如权利要求1所述的应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥的温度补偿方法,其特征在于,所述第一补偿电阻、所述第二补偿电阻、所述第三补偿电阻和所述第四补偿电阻的阻值求解方法如下:
  7. 如权利要求1所述的应用于AFM-SEM混合显微镜系统中作为AFM位置传感器的惠斯通电桥的温度补偿方法,其特征在于,所述第一支臂和所述第二支臂的补偿方式相同或者不同。
  8. 一种应用于AFM-SEM混合显微镜系统中作为位置传感器的惠斯通电桥,其特征在于,由权利要求1到5任一项所述的温度补偿方法获得。
  9. 一种兼容SEM的AFM,其特征在于,包括权利要求6所述的惠斯通电桥。
  10. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1到5任一项所述方法的步骤。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1到5任一项所述方法的步骤。
  12. 一种处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1到5任一项所述的方法。
PCT/CN2019/126324 2019-12-12 2019-12-18 作为afm位置传感器的惠斯通电桥的温度补偿方法 WO2021114335A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911274831.7 2019-12-12
CN201911274831.7A CN111175542B (zh) 2019-12-12 2019-12-12 作为afm位置传感器的惠斯通电桥的温度补偿方法

Publications (1)

Publication Number Publication Date
WO2021114335A1 true WO2021114335A1 (zh) 2021-06-17

Family

ID=70624519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126324 WO2021114335A1 (zh) 2019-12-12 2019-12-18 作为afm位置传感器的惠斯通电桥的温度补偿方法

Country Status (2)

Country Link
CN (1) CN111175542B (zh)
WO (1) WO2021114335A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117949137A (zh) * 2024-03-26 2024-04-30 锐马(福建)电气制造有限公司 一种六维力传感器温度补偿方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197334A (en) * 1991-06-04 1993-03-30 Schlumberger Industries, Inc. Programmable compensation of bridge circuit thermal response
JPH09166619A (ja) * 1995-12-15 1997-06-24 Matsushita Electric Works Ltd 半導体加速度センサの温度補償方法
JPH09229962A (ja) * 1996-02-26 1997-09-05 Matsushita Electric Works Ltd 加速度センサ回路
CN2284949Y (zh) * 1995-12-04 1998-06-24 李明义 半导体电阻应变称重传感器
CN104458121A (zh) * 2014-12-15 2015-03-25 中国燃气涡轮研究院 一种硅压力传感器温漂补偿电路及电路构建方法
CN104655003A (zh) * 2013-11-19 2015-05-27 吴凯 耐高温磁阻转角位置传感器驱动器及传感器系统
CN105675184A (zh) * 2016-02-19 2016-06-15 沈阳埃克斯邦科技有限公司 一种硅应变片桥式电路零点温度漂移的补偿方法
CN209372289U (zh) * 2019-02-26 2019-09-10 厦门乃尔电子有限公司 一种硅压阻式压力传感器的高精度温度补偿电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368179A (en) * 1966-03-30 1968-02-06 Gen Electric Temperature compensated semiconductor strain gage
KR101471202B1 (ko) * 2008-08-25 2014-12-09 현대모비스 주식회사 솔레노이드 밸브 구동회로 및 이를 이용한 구동전류 보상방법
CN201413215Y (zh) * 2009-06-16 2010-02-24 季刚 一种多用途充油型扩散硅压阻式压力传感器
CN102353806B (zh) * 2011-06-24 2012-09-05 清华大学 热敏流速传感器温度补偿电路及方法和功率自动调节方法
CN102368086B (zh) * 2011-08-31 2014-12-31 华东光电集成器件研究所 一种惠斯通电桥补偿电阻的测试方法
CN102507081A (zh) * 2011-10-24 2012-06-20 山东佰测仪表有限公司 使用温敏电阻对扩散硅压力传感器温敏系数的归一化补偿电路
CN109324210B (zh) * 2018-12-13 2024-03-15 江苏集萃微纳自动化系统与装备技术研究所有限公司 补偿控制器及mems加速度计闭环伺服专用集成电路
CN109520527A (zh) * 2019-01-24 2019-03-26 成都新欣神风电子科技有限公司 一种具有温度补偿功能的霍尔传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197334A (en) * 1991-06-04 1993-03-30 Schlumberger Industries, Inc. Programmable compensation of bridge circuit thermal response
CN2284949Y (zh) * 1995-12-04 1998-06-24 李明义 半导体电阻应变称重传感器
JPH09166619A (ja) * 1995-12-15 1997-06-24 Matsushita Electric Works Ltd 半導体加速度センサの温度補償方法
JPH09229962A (ja) * 1996-02-26 1997-09-05 Matsushita Electric Works Ltd 加速度センサ回路
CN104655003A (zh) * 2013-11-19 2015-05-27 吴凯 耐高温磁阻转角位置传感器驱动器及传感器系统
CN104458121A (zh) * 2014-12-15 2015-03-25 中国燃气涡轮研究院 一种硅压力传感器温漂补偿电路及电路构建方法
CN105675184A (zh) * 2016-02-19 2016-06-15 沈阳埃克斯邦科技有限公司 一种硅应变片桥式电路零点温度漂移的补偿方法
CN209372289U (zh) * 2019-02-26 2019-09-10 厦门乃尔电子有限公司 一种硅压阻式压力传感器的高精度温度补偿电路

Also Published As

Publication number Publication date
CN111175542A (zh) 2020-05-19
CN111175542B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Zhou et al. A closed-loop controlled nanomanipulation system for probing nanostructures inside scanning electron microscopes
CN105423885B (zh) 内置应变片式压电陶瓷的位移检测装置及检测方法
CN110780088B (zh) 多桥路隧道磁阻双轴加速度计
Santosh Kumar et al. Development of a MEMS-based barometric pressure sensor for micro air vehicle (MAV) altitude measurement
Sarkar et al. CMOS-MEMS atomic force microscope
WO2021114335A1 (zh) 作为afm位置传感器的惠斯通电桥的温度补偿方法
Hosseini et al. A monolithic MEMS position sensor for closed-loop high-speed atomic force microscopy
CN106569155A (zh) 一种基于超磁致伸缩薄膜的悬臂梁叉指电容磁场传感探头
WO2005057587A1 (en) Height calibration of scanning probe microscope actuators
CN202853817U (zh) Mems隧道磁阻高度压力传感器
CN107131819A (zh) 基于隧道磁阻效应的单轴微机械位移传感器
US6194813B1 (en) Extended-range xyz linear piezo-mechanical scanner for scanning-probe and surface force applications
CN109374192B (zh) 一种用于微压测量的压力传感器
CN110082568A (zh) 一种扫描电化学显微镜及其校正方法
Du et al. A charge-amplifier based self-sensing method for measurement of piezoelectric displacement
Wan et al. A digital compensation method for piezoresistive pressure sensor
Lyu et al. Current-related sensitivity optimization of CMOS five-contact vertical Hall sensor
Tong et al. A novel eddy current sensor for displacement measurement with high accuracy and long range
CN216144871U (zh) 一种温度补偿电流传感器
CN206905691U (zh) 一种基于隧道磁阻效应的单轴微机械位移传感器
CN111983260B (zh) 一种原子力显微镜探针振幅的校准方法
WO2021114334A1 (zh) 应用于afm-sem混合显微镜系统的prc及其制造方法
JPH05346357A (ja) 静電容量の変化を利用したセンサ用の信号処理回路
Talantsev et al. Magnetic tunnel junction platforms for linear positioning and nanoscale displacement sensing
Gu A piezoelectric-driven nanoindentation system for scanning electron microscope with improved analog compensation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956159

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19956159

Country of ref document: EP

Kind code of ref document: A1