WO2021114331A1 - 一种牵引变流器 - Google Patents

一种牵引变流器 Download PDF

Info

Publication number
WO2021114331A1
WO2021114331A1 PCT/CN2019/126246 CN2019126246W WO2021114331A1 WO 2021114331 A1 WO2021114331 A1 WO 2021114331A1 CN 2019126246 W CN2019126246 W CN 2019126246W WO 2021114331 A1 WO2021114331 A1 WO 2021114331A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
converter
traction
terminal
mth
Prior art date
Application number
PCT/CN2019/126246
Other languages
English (en)
French (fr)
Inventor
刘可安
刘海涛
徐绍龙
刘永江
林珍君
唐雄辉
夏晶
薛新
Original Assignee
株洲中车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲中车时代电气股份有限公司 filed Critical 株洲中车时代电气股份有限公司
Priority to EP19955728.1A priority Critical patent/EP4020783A4/en
Publication of WO2021114331A1 publication Critical patent/WO2021114331A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/48Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by combination of static with dynamic converters; by combination of dynamo-electric with other dynamic or static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the technical field of EMUs, in particular to a traction converter.
  • EMUs have become one of the main means of transportation for people's daily travel, and various countries in the world are also vigorously developing their own EMU networks.
  • the EMU may malfunction during operation and needs to receive the rescued input voltage, or the EMU needs to output the rescue voltage to the faulty EMU during operation, and the existing converter does not have the above rescue function and the rescued function.
  • the intermediate circuit of the converter used in the current EMU is connected in parallel and contains a secondary filter circuit. The circuit structure is complicated, and the weight and volume of the converter are relatively large. At the same time, the failure of one device will cause the entire converter. The device cannot be used or even rescued.
  • the embodiment of the present invention provides a traction converter to solve the problems of the existing converters such as large volume, heavy weight, no rescue output function, and no rescued function.
  • the embodiment of the present invention discloses a traction converter.
  • the traction converter includes: at least one converter circuit, a charging resistor, a first contactor closed in rescue output mode and rescue input mode, and a first direct current The second contactor closed in switch, rescue input mode;
  • the input end of the converter circuit is connected to the secondary winding of the traction transformer, and the output end of the converter circuit is connected to the motor;
  • the first end of the first contactor is connected to the first end of the second contactor, and the first end of the first contactor is connected to the positive end of the intermediate circuit of the converter circuit through an inductance;
  • the traction converter when the traction converter includes n of the converter circuits, the traction converter further includes: n first AC switches and n switch switches that are closed in the rescue output mode, each The converter circuit corresponds to one of the first AC switch and the changeover switch;
  • the first end of the mth first AC switch is connected to the positive output end of the mth secondary winding of the traction transformer, and the second end of the mth first AC switch is connected to the mth
  • the positive input terminal of the converter circuit is connected, and the negative input terminal of the m-th converter circuit is connected to the negative output terminal of the m-th secondary winding of the traction transformer;
  • the first terminal of the m-th switch is connected to the first terminal of the first contactor, and the second terminal of the m-th switch is connected to the m-th converter circuit through the m-th inductor The positive end of the intermediate circuit is connected;
  • n is an integer greater than or equal to 2
  • m is a positive integer less than or equal to n.
  • the negative input terminal of the m-th converter circuit is connected to the negative output terminal of the m-th secondary winding of the traction transformer through the m-th AC isolation switch.
  • the traction converter further includes: n second AC switches closed in AC mode, n second DC switches closed in DC mode, each of the converter circuits corresponds to one of the second An AC switch and the second DC switch;
  • the first end of the mth second AC switch is connected to the negative input end of the mth converter circuit, the second end of the mth second AC switch is connected to a DC voltage, and the mth The second end of the second AC switch is connected to the negative output end of the m-th secondary winding of the traction transformer;
  • the first terminal of the m-th second DC switch is connected to the DC voltage, and the second terminal of the m-th second DC switch is connected to the second terminal of the m-th switch.
  • the first end of the mth second AC switch is connected to the negative input end of the mth converter circuit, the second end of the mth second AC switch is connected to a DC voltage, and the mth The second terminal of the second AC switch is connected to the negative output terminal of the m-th secondary winding of the traction transformer through the m-th AC isolating switch;
  • the first terminal of the m-th second DC switch is connected to the DC voltage, and the second terminal of the m-th second DC switch is connected to the second terminal of the m-th switch.
  • the traction converter further includes: n first resistors and n third AC switches closed in AC mode, each of the converter circuits corresponds to one of the third AC switch and the first A resistance
  • the first terminal of the m-th third AC switch is connected to the first terminal of the m-th said first AC switch, and the second terminal of the m-th said third AC switch passes through the m-th said first terminal.
  • the resistor is connected to the second end of the m-th first AC switch.
  • the traction converter further includes: n second resistors and n third DC switches closed in a DC mode, each of the converter circuits corresponds to one of the third DC switch and the first Two resistance;
  • the first end of the mth third DC switch is connected to the second end of the mth second DC switch, and the second end of the mth third DC switch passes through the mth second DC switch.
  • the resistor is connected to the first end of the m-th second DC switch.
  • the converter circuit includes: a four-quadrant rectifier, a supporting capacitor and a three-phase inverter;
  • the input terminal of the four-quadrant rectifier is connected with the secondary winding of the traction transformer, the output terminal of the four-quadrant rectifier is connected in parallel with the supporting capacitor, and the supporting capacitor is connected in parallel with the input terminal of the three-phase inverter , The output terminal of the three-phase inverter is connected with the motor.
  • the traction converter further includes: n-1 fourth DC switches;
  • the first end of the Mth fourth DC switch is connected to the second end of the Mth second AC switch, and the second end of the Mth fourth DC switch is connected to the M+1th The second end of the second AC switch is connected, and M is an integer greater than or equal to 1 and less than or equal to n-1.
  • the traction converter further includes: a DC fuse;
  • the second end of the first contactor is connected to the rescue port through the DC fuse.
  • a traction converter includes: at least one converter circuit, a charging resistor, a first contactor and a first contactor closed in rescue output mode and rescue input mode.
  • the second contactor closed in the flow switch and rescue input mode.
  • Fig. 1 is a schematic structural diagram of a traction converter provided by an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of another traction converter provided by an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of yet another traction converter provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another traction converter provided by an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of still another traction converter provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of still another traction converter provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the opening and closing of the components of the traction converter in the AC25kV/50Hz power supply mode provided by the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the opening and closing of the components of the traction converter in the AC15kV/16.7Hz power supply mode provided by the embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the opening and closing of the components of the traction converter in the DC3000V power supply mode provided by the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the opening and closing of the components of the traction converter in the DC1500V power supply mode according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of the opening and closing of the components of the traction converter in the rescue output mode provided by an embodiment of the present invention.
  • the terms “include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes no Other elements clearly listed, or also include elements inherent to this process, method, article, or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the process, method, article, or equipment that includes the element.
  • the existing converter includes a secondary filter circuit. Since there are a large number of isolation switches on the secondary filter circuit, the circuit structure is complicated, which will cause the weight and volume of the converter to be relatively large.
  • the EMU may malfunction during operation and needs to receive the rescued input voltage, or the EMU needs to output the rescue voltage to the faulty EMU during operation, and the existing converter does not have the above rescue function and the rescue function.
  • an embodiment of the present invention provides a traction converter, which includes: at least one converter circuit, a charging resistor, a first contactor closed in rescue output mode and rescue input mode, and a first direct current The second contactor closed in the switch, rescue input mode.
  • a traction converter which includes: at least one converter circuit, a charging resistor, a first contactor closed in rescue output mode and rescue input mode, and a first direct current The second contactor closed in the switch, rescue input mode.
  • the traction converter includes: at least one converter circuit 101, a charging resistor 102, a rescue output mode and a rescue input mode
  • the first contactor 103 and the first DC switch 104 are closed downward, and the second contactor 105 is closed in the rescue input mode.
  • the first end of the first contactor 103 is connected to the first end of the second contactor 105, and the first end of the first contactor 103 is connected to the positive end of the intermediate circuit of the converter circuit 101 through an inductor.
  • the second end of the second contactor 105 is connected to the second end of the first contactor 103 through the charging resistor 102, and the second end of the first contactor 103 is connected to the rescue port.
  • the first terminal of the first DC switch 104 is connected to the negative terminal of the intermediate loop of the converter circuit 101, and the second terminal of the first current switch 102 is grounded (which may be a rail ground).
  • the converter circuit 101 instructions include: a four-quadrant rectifier (4QS), a supporting capacitor (Cd) and a three-phase inverter (INV).
  • 4QS four-quadrant rectifier
  • Cd supporting capacitor
  • ISV three-phase inverter
  • the input of the four-quadrant rectifier is connected with the secondary winding of the traction transformer, the output of the four-quadrant rectifier is connected in parallel with the supporting capacitor, the supporting capacitor is connected in parallel with the input of the three-phase inverter, and the output of the three-phase inverter is connected with the motor .
  • the rescue input voltage and rescue output voltage of the traction converter are both DC3000V.
  • the rescue input voltage and rescue output voltage of the traction converter are not limited to DC3000V, and the rescue input voltage and rescue output voltage involved in the embodiment of the present invention are DC3000V for illustration only.
  • the rescue input voltage and rescue output voltage of the traction converter are also applicable to voltages of other values, and are not specifically limited in the embodiment of the present invention.
  • the rescued vehicle is connected to the rescue port.
  • the rescue port is connected to a device that inputs rescue voltage to the traction converter.
  • the converter circuit 101 receives the rescue input voltage.
  • the specific component opening and closing states are: closing the second contactor 105, closing the first DC switch 104, and opening the first contactor 103.
  • the rescue input voltage charges the intermediate circuit of the converter circuit 101 through the charging resistor 102 and the inductor.
  • the voltage of the supporting capacitor (Cd) of the converter circuit 101 rises to a preset voltage value, the first contactor 103 is closed, the second contactor 105 and the three-phase inverter that start the converter circuit 101 are disconnected, Power the motor.
  • the traction converter When the rescue mode of the traction converter is the rescue output mode, the traction converter outputs the rescue voltage.
  • the specific switching states of the components are: close the first contactor 103, close the first DC switch 104, and the second contactor 105 is in the disconnected state.
  • the input voltage of the traction transformer is input to the converter circuit 101 through the secondary winding, the intermediate circuit of the converter circuit 101 outputs a rescue output voltage of DC3000V, and the rescue output voltage is transmitted to the rescued vehicle through the inductor and the first contactor 103.
  • the secondary filter loop of the traction converter is eliminated, which effectively reduces the volume and weight of the traction system.
  • the opening and closing states of the corresponding components in the traction converter it provides rescue output function and rescued function, which improves the reliability of the traction system.
  • FIG. 1 and FIG. 2 there is shown a schematic structural diagram of another traction converter provided by an embodiment of the present invention.
  • the traction converter includes n converter circuits 101
  • the traction converter It also includes: n first AC switches 106 and n switching switches 107 closed in the rescue output mode, and each converter circuit 101 corresponds to a first AC switch 106 and a switching switch 107.
  • the first terminal of the m-th first AC switch 106 is connected to the positive output terminal of the m-th secondary winding of the traction transformer, and the second terminal of the m-th first AC switch 106 is connected to the m-th converter circuit 101.
  • the positive input terminal is connected, and the negative input terminal of the m-th converter circuit 101 is connected to the negative output terminal of the m-th secondary winding of the traction transformer.
  • the first terminal of the m-th switch 107 is connected to the first terminal of the first contactor 103, and the second terminal of the m-th switch 107 is connected to the intermediate circuit of the m-th converter circuit 101 through the m-th inductance. Positive end connection.
  • n is an integer greater than or equal to 2
  • m is a positive integer less than or equal to n.
  • the traction converter includes two diverter switches 107.
  • the two diverter switches 107 (QS3.1 and QS3.2) in Figure 2 can be 2-pole isolating switches, and the 2-pole isolating switches include a set Normally open switch and a group of normally closed switches.
  • the switching state of the switch 107 can be controlled to determine which converter circuit 101 receives the rescue input voltage, for example: closing the m-th switch 107, other switches The switch 107 is turned off, so that the m-th converter circuit 101 receives the rescue input voltage.
  • the specific switching states of the components are: closing the m-th switch 107, closing the second contactor 105 and the m-th first DC switch 104, the first The contactor 103 and the other switch 107 are disconnected.
  • the rescue input voltage charges the intermediate circuit of the m-th converter circuit 101 through the charging resistor 102 and the m-th inductance.
  • the first contactor 103 is closed, the second contactor 105 is disconnected, and the three-phase reverse of the m-th converter circuit 101 is started.
  • Inverter supply power for the m-th motor.
  • the switching state of the switch 107 and the first AC switch 106 can be controlled to determine which converter circuit 101 outputs the rescue voltage, for example: The m switching switches 107 and the m-th first AC switch 106, and the other switching switches 107 and the first AC switch 106 are disconnected, so that the m-th converter circuit 101 outputs the rescue voltage.
  • the specific switching states of the components are: closing the m-th first AC switch 106, the m-th switch 107 and the first contactor 103, and the other first
  • the AC switch 106 and the transfer switch 107 are disconnected, and the second contactor 105 is disconnected.
  • the input voltage of the traction transformer is input to the m-th converter circuit 101 through the m-th secondary winding and the m-th first AC switch 106.
  • the intermediate circuit of the m-th converter circuit 101 outputs a rescue output voltage of DC3000V.
  • the rescue output voltage is transmitted to the rescued vehicle through the m-th inductor, the m-th switch 107 and the first contactor 103.
  • the switching state of the different switch and the first AC switch is controlled to determine which converter circuit receives or outputs the rescue voltage, so as to realize the traction converter Independent axis control of the machine.
  • FIG. 2 and FIG. 3 there is shown a schematic structural diagram of another traction converter provided by an embodiment of the present invention.
  • the traction converter further includes: n AC isolation switches 108, each converter
  • the circuit 101 corresponds to an AC isolating switch 108, and the AC isolating switch 108 includes a set of normally open switches (QS2.1 or QS2.3) and a set of normally closed switches (QS2.2 or QS2.4).
  • the AC voltage provided by the traction transformer includes but is not limited to: AC25kV/50Hz AC voltage and AC15kV/16.7Hz AC voltage.
  • the AC power supply mode of the traction converter is AC mode, which are AC25kV/50Hz power supply mode and AC15kV/16.7Hz power supply mode respectively.
  • the negative input terminal of the m-th converter circuit 101 is connected to the negative output terminal of the m-th secondary winding of the traction transformer through the m-th AC isolation switch 108.
  • the positive output terminal of the first secondary winding corresponding to the traction transformer mentioned above is terminal a1 in Figure 3, and the positive output terminal of the second secondary winding is shown in Figure 3.
  • the negative output terminals of the first secondary winding corresponding to the traction transformer are x11 and x12, and the negative output terminals of the second secondary winding of the traction transformer are x21 and x22.
  • the inductance corresponding to the traction converter is a3-x3 and a4-x4 shown in Figure 3.
  • the number of turns of the secondary winding is switched by the AC isolation switch 108, so that the power supply mode of the traction converter is AC25kV/50Hz power supply mode or AC15kV/16.7Hz power supply mode.
  • the first terminal of the m-th AC isolating switch 108 is connected to the negative output terminal of the m-th secondary winding, and the second terminal of the m-th AC isolating switch 108 is connected to the m-th converter circuit 101.
  • the negative input terminal is connected.
  • the first terminal of the switch QS2.1 is connected to the x11 terminal
  • the first terminal of the switch QS2.2 is connected to the x12 terminal
  • the second terminal of the switch QS2.1 and QS2.2 are both connected to the mth terminal.
  • the negative input terminal of the converter circuit 101 is connected.
  • the power supply mode of the traction converter when the power supply mode of the traction converter is AC25kV/50Hz power supply mode or AC15kV/16.7Hz power supply mode, it can output a rescue output voltage of DC3000V, and the traction converter outputs rescue output.
  • the opening and closing states of related components under voltage please refer to the related content in FIG. 2 of the above-mentioned embodiment of the present invention, which will not be repeated here.
  • the power supply mode of the traction converter is AC25kV/50Hz power supply mode or AC15kV/16.7Hz power supply mode to meet the power supply requirements of multiple voltage systems.
  • FIG. 3 and FIG. 4 there is shown a schematic structural diagram of still another traction converter provided by an embodiment of the present invention.
  • the traction converter further includes: n second AC switches 109 closed in AC mode , The n second DC switches 110 closed in the DC mode, and each converter circuit 101 corresponds to a second AC switch 109 and a second DC switch 110.
  • the first terminal of the m-th second DC switch 110 is connected to the DC voltage, and the second terminal of the m-th second DC switch 110 is connected to the second terminal of the m-th switch 107.
  • the DC voltage provided by the DC voltage includes but is not limited to DC3000V and DC1500V.
  • the DC power supply mode of the traction converter is DC mode, which are DC3000V power supply mode and DC1500V power supply mode respectively.
  • connection manner of the m-th second DC switch 110 to the DC voltage in the embodiment of the present invention includes but is not limited to the following two forms:
  • the first terminal of the m-th second DC switch 110 is directly connected to the DC voltage.
  • Form 2 As shown in Figure 4, the first terminal of the m-th second DC switch 110 is connected to the positive output terminal of the m-th secondary winding, so that the first terminal of the m-th second DC switch 110 in the DC mode The terminal is connected to the DC voltage through the m-th secondary winding.
  • the AC mode involved in the embodiment of the present invention is a dual-standard AC mode or a multi-standard AC mode
  • the DC mode is a dual-standard DC mode or a multi-standard DC mode.
  • the content of the AC mode and the DC mode is not specifically limited.
  • the power supply mode is determined to be AC25kV/50Hz power supply mode, AC15kV/16.7Hz power supply mode, DC3000V power supply mode or DC1500V power supply mode by controlling the opening and closing states of related components in the traction converter, which meets multiple voltages Standard power supply requirements.
  • FIG. 2 and FIG. 5 there is shown a schematic structural diagram of still another traction converter provided by an embodiment of the present invention.
  • the traction converter further includes: n second AC switches 109 closed in AC mode , The n second DC switches 110 closed in the DC mode, and each converter circuit 101 corresponds to a second AC switch 109 and a second DC switch 110.
  • the first terminal of the m-th second AC switch 109 is connected to the negative input terminal of the m-th converter circuit 101, the second terminal of the m-th second AC switch 109 is connected to the DC voltage, and the m-th second AC The second terminal of the switch 109 is connected to the negative output terminal of the m-th secondary winding of the traction transformer.
  • the first terminal of the m-th second DC switch 110 is connected to the DC voltage, and the second terminal of the m-th second DC switch 110 is connected to the second terminal of the m-th switch 107.
  • the power supply mode is determined to be the AC power supply mode and the DC power supply mode by controlling the opening and closing states of related components in the traction converter, so as to meet the power supply requirements of multiple voltage systems.
  • a schematic structural diagram of still another traction converter provided by an embodiment of the present invention.
  • the traction converter further includes: n first resistors 111 and closed in AC mode n third AC switches 112, n second resistors 113, n third DC switches 114 closed in DC mode, n ⁇ 1 fourth DC switches 115 and DC fuses 116.
  • Each converter circuit 101 corresponds to a third AC switch 112, a first resistor 111, a third DC switch 114, and a second resistor 113.
  • the first end of the m-th third AC switch 112 is connected to the first end of the m-th first AC switch 106, and the second end of the m-th third AC switch 112 connects to the m-th first resistor 111 through the m-th first resistance.
  • the second end of the first AC switch 106 is connected.
  • the first end of the Mth fourth DC switch 115 is connected to the second end of the Mth second AC switch 109, and the second end of the Mth fourth DC switch 115 is connected to the M+1th second AC switch 109 The second end of the connection.
  • M is an integer greater than or equal to 1 and less than or equal to n-1.
  • the traction converter includes two second AC switches 109, the fourth DC switch 115 (QS1.2) and two second AC switches 109 (QS1.1 and QS1.3) in Figure 6
  • a 3-pole isolating switch can be used, and the 3-pole isolating switch includes a set of normally open switches and two sets of normally closed switches. That is, when the fourth DC switch 115 is closed, the two second AC switches 109 are opened, and when the fourth DC switch 115 is opened, the two second AC switches 109 are closed.
  • the second end of the first contactor 103 is connected to the rescue port through a DC fuse 116.
  • the secondary filter loop of the traction converter is eliminated, which effectively reduces the volume and weight of the traction system.
  • FIG. 7 In order to better explain the different power supply modes of the above-mentioned traction converters, the content shown in FIG. 7 will be illustrated in conjunction with FIG. 6. It should be noted that the content shown in FIG. 7 is only for example.
  • FIG. 7 shows a schematic diagram of the opening and closing of the components of the traction converter in the AC25kV/50Hz power supply mode provided by an embodiment of the present invention.
  • the power supply mode of the traction converter is AC25kV/50Hz power supply mode, the AC voltage main circuit breaker is closed, the DC voltage main circuit breaker is opened, and the traction transformer is energized.
  • the AC isolating switch 108 acts, as QS2.1 and QS2.3 in Figure 6 are closed, and QS2.2 and QS2.4 in Figure 5 are open.
  • the opening and closing states of the first AC switch 106 and the third AC switch 112 are controlled, and the second AC switch 109 is closed. Among them, the first AC switch 106, the third AC switch 112 and the first resistor 111 constitute a first charging circuit.
  • the input power through the traction voltage converter passes through the secondary winding (a1-x11 and a2-x21), the second AC switch 109, the first charging circuit and the converter circuit 101.
  • Motor power supply (M1 and M2).
  • Each converter circuit 101 is completely independent and does not affect each other.
  • the third AC switch 112 when controlling the opening and closing states of the components in the first charging circuit, the third AC switch 112 is closed, and the first AC switch 106 is opened.
  • the voltage across the supporting capacitor (Cd) in FIG. 7 rises to a preset voltage value, the first AC switch 106 is closed, and the third AC switch 112 is opened.
  • FIG. 8 In order to better explain the different power supply modes of the above-mentioned traction converter, the content shown in FIG. 8 will be used as an example in conjunction with FIG. 6. It should be noted that the content shown in FIG. 8 is only for example.
  • FIG. 8 shows a schematic diagram of the opening and closing of the components of the traction converter in the AC15kV/16.7Hz power supply mode provided by the embodiment of the present invention .
  • the power supply mode of the traction converter is AC15kV/16.7Hz power supply mode, the AC voltage main circuit breaker is closed, the DC voltage main circuit breaker is opened, and the traction transformer is energized.
  • the AC isolating switch 108 does not act, as QS2.2 and QS2.4 in FIG. 6 are closed, and QS2.1 and QS2.3 in FIG. 6 are disconnected.
  • the second AC switch 109 is closed, and the opening and closing states of the first AC switch 106 and the third AC switch are controlled.
  • the input power through the traction voltage converter passes through the secondary winding (a1-x11 and a2-x21), the second AC switch 109, the first charging circuit and the converter circuit 101 Supply power to the motor (M1 and M2).
  • Each converter circuit 101 is completely independent and does not affect each other.
  • the third AC switch 112 when controlling the opening and closing states of the components in the first charging circuit, the third AC switch 112 is closed, and the first AC switch 106 is opened.
  • the voltage across the supporting capacitor (Cd) in FIG. 8 rises to a preset voltage value, the first AC switch 106 is closed, and the third AC switch 112 is opened.
  • the power supply mode of the traction converter in the AC mode, by controlling the action of the AC isolation switch, the power supply mode of the traction converter is switched to AC25kV/50Hz power supply mode or AC15kV/16.7Hz power supply mode to meet the AC voltage of different standards.
  • each converter circuit is completely independent and does not affect each other, which improves the reliability of the traction system.
  • FIG. 9 is used as an example in conjunction with FIG. 6. It should be noted that the content shown in FIG. 9 is only for example.
  • FIG. 9 shows a schematic diagram of the opening and closing of the components of the traction converter in the DC3000V power supply mode provided by an embodiment of the present invention.
  • the power supply mode of the traction converter is the DC3000V power supply mode, the DC voltage main circuit breaker is closed, the AC voltage main circuit breaker is opened, and the traction transformer loses power.
  • the AC isolation switch 108 does not operate, that is, QS2.4 in Figure 9 is closed.
  • the opening and closing states of the second DC switch 110 and the third DC switch 114 are controlled, and the fourth DC switch 115 and the first DC switch 104 are closed.
  • the second DC switch 110, the third DC switch 114 and the second resistor form a second charging circuit.
  • the input power of DC3000V passes through the fourth DC switch 115, the switch QS2.4 of the AC isolation switch 108, the secondary winding of the traction transformer (a2-x22), the second charging circuit and two inductors (a3-x3 and a4-x4) ,
  • the positive terminal of the intermediate circuit of the converter circuit 101 is input, and the negative terminal of the intermediate circuit of the converter circuit 101 is grounded through the first DC switch 104.
  • the third DC switch 114 when controlling the opening and closing states of the components in the second charging circuit, the third DC switch 114 is closed, and the second DC switch 110 is opened.
  • the voltage across the supporting capacitor (Cd) in FIG. 9 rises to a preset voltage value, the second DC switch 110 is closed, and the third DC switch 114 is opened.
  • This input power supplies power to the motors (M1 and M2) through the three-phase inverters (INV1 and INV2) of the converter circuit 101.
  • the second DC switch 110 and the third DC switch 114 corresponding to the failed converter circuit 101 can be disconnected to isolate the failed converter circuit 101 to prevent it from Affect other converter circuits 101 that have not failed.
  • FIG. 10 is used as an example in conjunction with FIG. 6. It should be noted that the content shown in FIG. 10 is only for example.
  • FIG. 10 shows a schematic diagram of the opening and closing of the components of the traction converter in the DC1500V power supply mode provided by an embodiment of the present invention.
  • the power supply mode of the traction converter is the DC1500V power supply mode, the DC voltage main circuit breaker is closed, the AC voltage main circuit breaker is opened, and the traction transformer loses power.
  • the AC isolating switch 108 does not operate, and QS2.2 and QS2.4 in FIG. 10 are closed.
  • the fourth DC switch 115 and the first DC switch 104 are closed, and the opening and closing states of the first AC switch 106 and the third AC switch 112 are controlled.
  • the first AC switch 106, the third AC switch 112 and the first resistor 111 constitute a first charging circuit.
  • the input power of DC1500V passes through the fourth DC switch 115, the switch QS2.2 of the AC isolating switch 108, the switch QS2.4 of the AC isolating switch 108, the two secondary windings (a1-x12 and a2-x22) and the first charging circuit , Input the four-quadrant rectifier (4QS1 and Q4S2) of the converter circuit 101, the four-quadrant rectifier boosts and chops to the positive end of the intermediate circuit of the converter circuit 101, and the negative end of the intermediate circuit of the converter circuit 101 passes through the first A DC switch 104 is grounded.
  • the third AC switch 112 when controlling the opening and closing states of the components in the first charging circuit, the third AC switch 112 is closed, and the first AC switch 106 is opened.
  • the voltage across the supporting capacitor (Cd) in FIG. 10 rises to a preset voltage value, the first AC switch 106 is closed, and the third AC switch 112 is opened.
  • the secondary winding of the traction transformer and a bridge arm of the four-quadrant rectifier form a step-up chopper circuit to boost the DC1500V to DC3000V.
  • This input power supplies power to the motors (M1 and M2) through the three-phase inverters (INV1 and INV2) of the converter circuit 101.
  • the first AC switch 106 and the third AC switch 112 corresponding to the failed converter circuit 101 can be disconnected to isolate the failed converter circuit 101 so as not to Affect other converter circuits 101 that have not failed.
  • the power supply mode of the traction converter in the DC mode, is switched to the DC3000V power supply mode or the DC1500V power supply mode by controlling the opening and closing states of the various components of the traction converter to meet the requirements of different standards of DC At the same time, it can isolate the faulty converter circuit, and the multiple converter circuits do not affect each other, which improves the reliability of the traction system.
  • rescue input voltage and rescue output voltage of the traction converter are both DC3000V.
  • the switching state of the switch 107 can be controlled to determine which converter circuit 101 receives the rescue input voltage, for example: closing the m-th switch 107, other switching The switch 107 is turned off, so that the m-th converter circuit 101 receives the rescue input voltage.
  • the switching state of the switch 107 and the first AC switch 106 can be controlled to determine which converter circuit 101 outputs the rescue voltage, for example: closing the m-th switch The switch 107 and the m-th first AC switch 106, and the other switch 107 and the first AC switch 106 are disconnected, so that the m-th converter circuit 101 outputs the rescue voltage.
  • the rescue mode of the traction converter is the DC3000V power supply mode and the rescue mode is the rescue output mode, combined with the content in Figure 6, close the m-th second DC switch 110, the m-th switch 107 and the first contactor 103, Directly output the rescue voltage of DC3000V to the rescued vehicle.
  • the power supply mode of the traction converter is AC25kV/50Hz power supply mode, AC15kV/16.7Hz power supply mode or DC1500V power supply mode, and the rescue mode of the traction converter is rescue output mode
  • the content shown in Fig. 11 is used for explanation, It should be noted that the content shown in FIG. 11 is only for example.
  • FIG. 11 shows the opening and closing of the components of the traction converter in the rescue input mode and the rescue output mode provided by the embodiment of the present invention Schematic.
  • the first contactor 103, the m-th switch 107 and the m-th first DC switch 104 are closed.
  • the rescue output power of DC3000V is output from the intermediate circuit of the m-th converter circuit 101, and the rescue output power is transmitted to the rescued vehicle through the m-th inductor, the m-th switch 107 and the first contactor 103.
  • the power supply mode of the traction converter is DC3000V power supply mode, AC25kV/50Hz power supply mode, AC15kV/16.7Hz power supply mode or DC1500V power supply mode, it can output the rescue output voltage of DC3000V to the rescued vehicle.
  • the second contactor 105 is closed, and the intermediate circuit of the m-th converter circuit 101 is charged through the charging resistor 102.
  • the voltage of the supporting capacitor (Cd) of the m-th converter circuit 101 rises to the preset voltage value, the first contactor 103 is closed, the second contactor 105 is disconnected, and the m-th converter circuit 101 is activated.
  • the three-phase inverter supplies power to the m-th motor.
  • the power supply mode of the traction converter when the power supply mode of the traction converter is DC3000V power supply mode, AC25kV/50Hz power supply mode, AC15kV/16.7Hz power supply mode or DC1500V power supply mode, it can provide the rescued vehicle with a rescue output voltage of DC3000V. At the same time, it can also determine which heavy converter circuit receives the rescue input voltage by controlling the opening and closing state of the corresponding components. At the same time, it provides rescue output function and rescue input function for the traction converter to improve the reliability of the traction system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

一种牵引变流器,该变流器包括:至少一个变流器电路(101)、充电电阻(102)、救援输出模式下和救援输入模式下闭合的第一接触器(103)和第一直流开关(104)、救援输入模式下闭合的第二接触器(105)。通过控制第一接触器(103)和第二接触器(105)的开合状态,确定输出救援电压或者接收救援输入电压。取消二次滤波回路,以及提供被救援功能和救援功能,降低牵引系统的体积和重量,提高牵引系统的可靠性。

Description

一种牵引变流器
本申请要求于2019年12月11日提交中国专利局、申请号为201911267174.3、发明名称为“一种牵引变流器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及动车组技术领域,具体涉及一种牵引变流器。
背景技术
随着科学技术的发展,动车已经成为人们日常出行的主要交通方式之一,世界上各个国家也在大力发展自身的动车组网络。
动车在运行过程中可能出现故障,需要接收被救援输入电压,或者,动车在运行过程中需要向故障动车输出救援电压,而现有的变流器并不具备上述救援功能和被救援功能。另一方面,目前的动车所采用的变流器的中间回路并联,并且包含二次滤波电路,电路结构复杂,变流器的重量和体积较大,同时一个器件的故障会导致整台变流器无法使用,甚至无法被救援。
因此,开发被救援功能和救援输出功能,并在现有变流器的基础上取消二次滤波电路,是现如今亟需解决的问题。
发明内容
有鉴于此,本发明实施例提供一种牵引变流器,以解决现有变流器存在的体积大、重量大、无救援输出功能和无被救援功能等问题。
为实现上述目的,本发明实施例提供如下技术方案:
本发明实施例公开一种牵引变流器,所述牵引变流器包括:至少一个变流器电路、充电电阻、救援输出模式下和救援输入模式下闭合的第一接触器和第一直流开关、救援输入模式下闭合的第二接触器;
所述变流器电路的输入端与牵引变压器的次边绕组连接,所述变流器电路的输出端与电机连接;
所述第一接触器的第一端与所述第二接触器的第一端连接,所述第一接触器的第一端通过电感与所述变流器电路的中间回路的正端连接;
所述第二接触器的第二端通过所述充电电阻与所述第一接触器的第二端连接,所述第一接触器的第二端与救援端口连接;
所述第一直流开关的第一端与所述变流器电路的中间回路的负端连接,所述第一流开关的第二端接地。
优选的,当所述牵引变流器包括n个所述变流器电路时,所述牵引变流器还包括:救援输出模式下闭合的n个第一交流开关和n个切换开关,每一所述变流器电路对应 一个所述第一交流开关和所述切换开关;
第m个所述第一交流开关的第一端与所述牵引变压器的第m个次边绕组的正输出端连接,第m个所述第一交流开关的第二端与第m个所述变流器电路的正输入端连接,第m个所述变流器电路的负输入端与所述牵引变压器的第m个次边绕组的负输出端连接;
第m个所述切换开关的第一端与所述第一接触器的第一端连接,第m个所述切换开关的第二端通过第m个电感与第m个所述变流器电路的中间回路的正端连接;
其中,n为大于或等于2的整数,m为小于或等于n的正整数。
优选的,所述牵引变流器还包括:n个交流隔离开关,每一所述变流器电路对应一个所述交流隔离开关,所述交流隔离开关包含一组常开开关和一组常闭开关;
第m个所述变流器电路的负输入端通过第m个所述交流隔离开关与所述牵引变压器的第m个次边绕组的负输出端连接。
优选的,所述牵引变流器还包括:交流模式下闭合的n个第二交流开关,直流模式下闭合的n个第二直流开关,每一所述变流器电路对应一个所述第二交流开关和所述第二直流开关;
第m个所述第二交流开关的第一端与第m个所述变流器电路的负输入端连接,第m个所述第二交流开关的第二端与直流电压连接,第m个所述第二交流开关的第二端与所述牵引变压器的第m个次边绕组的负输出端连接;
第m个所述第二直流开关的第一端与所述直流电压连接,第m个所述第二直流开关的第二端与第m个所述切换开关的第二端连接。
优选的,所述牵引变流器还包括:交流模式下闭合的n个第二交流开关,直流模式下闭合的n个第二直流开关,每一所述变流器电路对应一个所述第二交流开关和所述第二直流开关;
第m个所述第二交流开关的第一端与第m个所述变流器电路的负输入端连接,第m个所述第二交流开关的第二端与直流电压连接,第m个所述第二交流开关的第二端通过第m个所述交流隔离开关与所述牵引变压器的第m个次边绕组的负输出端连接;
第m个所述第二直流开关的第一端与所述直流电压连接,第m个所述第二直流开关的第二端与第m个所述切换开关的第二端连接。
优选的,所述牵引变流器还包括:n个第一电阻和交流模式下闭合的n个第三交流开关,每一所述变流器电路对应一个所述第三交流开关和所述第一电阻;
第m个所述第三交流开关的第一端与第m个所述第一交流开关的第一端连接,第m个所述第三交流开关的第二端通过第m个所述第一电阻与第m个所述第一交流开关的第二端连接。
优选的,所述牵引变流器还包括:n个第二电阻和直流模式下闭合的n个第三直流开关,每一所述变流器电路对应一个所述第三直流开关和所述第二电阻;
第m个所述第三直流开关的第一端与第m个所述第二直流开关的第二端连接,第m个所述第三直流开关的第二端通过第m个所述第二电阻与第m个所述第二直流开关 的第一端连接。
优选的,所述变流器电路包括:四象限整流器、支撑电容和三相逆变器;
所述四象限整流器的输入端与所述牵引变压器的次边绕组连接,所述四象限整流器的输出端与所述支撑电容并联,所述支撑电容与所述三相逆变器的输入端并联,所述三相逆变器的输出端与所述电机连接。
优选的,所述牵引变流器还包括:n-1个第四直流开关;
第M个所述第四直流开关的第一端与所述第M个第二交流开关的第二端连接,第M个所述第四直流开关的第二端与第M+1个所述第二交流开关的第二端连接,M为大于等于1小于等于n-1的整数。
优选的,所述牵引变流器还包括:直流熔断器;
所述第一接触器的第二端通过所述直流熔断器与救援端口连接。
基于上述本发明实施例提供的一种牵引变流器,该变流器包括:至少一个变流器电路、充电电阻、救援输出模式下和救援输入模式下闭合的第一接触器和第一直流开关、救援输入模式下闭合的第二接触器。通过控制第一接触器和第二接触器的开合状态,确定输出救援电压或者接收救援输入电压。取消二次滤波回路,以及提供被救援功能和救援功能,降低牵引系统的体积和重量,提高牵引系统的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种牵引变流器的结构示意图;
图2为本发明实施例提供的另一种牵引变流器的结构示意图;
图3为本发明实施例提供的又一种牵引变流器的结构示意图;
图4为本发明实施例提供的再一种牵引变流器的结构示意图;
图5为本发明实施例提供的再一种牵引变流器的结构示意图;
图6为本发明实施例提供的再一种牵引变流器的结构示意图;
图7为本发明实施例提供的AC25kV/50Hz供电模式下牵引变流器的元器件开合示意图;
图8为本发明实施例提供的AC15kV/16.7Hz供电模式下牵引变流器的元器件开合示意图;
图9为本发明实施例提供的DC3000V供电模式下牵引变流器的元器件开合示意图;
图10为本发明实施例提供的DC1500V供电模式下牵引变流器的元器件开合示意图;
图11为本发明实施例提供的救援输出模式下牵引变流器的元器件开合示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
由背景技术可知,现有的变流器包含二次滤波电路,由于二次滤波电路上具有大量的隔离开关,电路结构复杂,会造成变流器的重量和体积较大。并且动车在运行过程中可能出现故障,需要接收被救援输入电压,或者,动车在运行过程中需要向故障动车输出救援电压,而现有的变流器并不具备上述救援功能和被救援功能。
因此,本发明实施例提供一种牵引变流器,该变流器包括:至少一个变流器电路、充电电阻、救援输出模式下和救援输入模式下闭合的第一接触器和第一直流开关、救援输入模式下闭合的第二接触器。通过控制第一接触器和第二接触器的开合状态,确定输出救援电压或者接收救援输入电压。取消二次滤波回路,以降低牵引系统的体积和重量,同时提供救援功能和被救援功能,以提高牵引系统的可靠性。
参见图1,示出了本发明实施例提供的一种牵引变流器的结构示意图,该牵引变流器包括:至少一个变流器电路101、充电电阻102、救援输出模式下和救援输入模式下闭合的第一接触器103和第一直流开关104、救援输入模式下闭合的第二接触器105。
变流器电路101的输入端与牵引变压器的次边绕组连接,变流器电路101的输出端与电机连接。
第一接触器103的第一端与第二接触器105的第一端连接,第一接触器103的第一端通过电感与变流器电路101的中间回路的正端连接。
第二接触器105的第二端通过充电电阻102与第一接触器103的第二端连接,第一接触器103的第二端与救援端口连接。
第一直流开关104的第一端与变流器电路101的中间回路的负端连接,第一流开关102的第二端接地(可以是铁轨地)。
优选的,变流器电路101指示包括:四象限整流器(4QS)、支撑电容(Cd)和三相逆变器(INV)。
四象限整流器的输入端与牵引变压器的次边绕组连接,四象限整流器的输出端与支撑电容并联,支撑电容与三相逆变器的输入端并联,三相逆变器的输出端与电机连接。
需要说明的是,牵引变流器的救援输入电压和救援输出电压均为DC3000V。相应的,牵引变流器的救援输入电压和救援输出电压并不局限于DC3000V,在本发明实施 例中涉及的救援输入电压和救援输出电压为DC3000V仅用于举例说明。牵引变流器的救援输入电压和救援输出电压也同样适用于其它数值的电压,在本发明实施例中不做具体限定。
进一步需要说明的是,当牵引变流器处于救援输出模式时,救援端口中连接的为被救援车辆。当牵引变流器的工作状态处于救援输入模式时,即牵引变流器的工作状态处于被救援模式时,救援端口连接的为向牵引变流器输入救援电压的设备。
当牵引变流器的救援模式为救援输入模式时,变流器电路101接收救援输入电压。具体的元器件开合状态为:闭合第二接触器105,闭合第一直流开关104,断开第一接触器103。救援输入电压通过充电电阻102和电感,为变流器电路101的中间回路充电。待变流器电路101的支撑电容(Cd)的电压上升至预设电压值时,闭合第一接触器103,断开第二接触器105和启动变流器电路101的三相逆变器,为电机供电。
当牵引变流器的救援模式为救援输出模式时,牵引变流器输出救援电压,具体的元器件开合状态为:闭合第一接触器103,闭合第一直流开关104,第二接触器105处于断开状态。牵引变压器的输入电压通过次边绕组输入变流器电路101,变流器电路101的中间回路输出DC3000V的救援输出电压,该救援输出电压通过电感和第一接触器103传输至被救援车辆。
在本发明实施例中,取消牵引变流器的二次滤波回路,有效降低牵引系统的体积和重量。同时通过控制牵引变流器中对应元器件的开合状态,提供救援输出功能和被救援功能,提高牵引系统的可靠性。
优选的,结合图1,参见图2,示出了本发明实施例提供的另一种牵引变流器的结构示意图,当牵引变流器包括n个变流器电路101时,牵引变流器还包括:救援输出模式下闭合的n个第一交流开关106和n个切换开关107,每一变流器电路101对应一个第一交流开关106和切换开关107。
第m个第一交流开关106的第一端与牵引变压器的第m个次边绕组的正输出端连接,第m个第一交流开关106的第二端与第m个变流器电路101的正输入端连接,第m个变流器电路101的负输入端与牵引变压器的第m个次边绕组的负输出端连接。
第m个切换开关107的第一端与第一接触器103的第一端连接,第m个切换开关107的第二端通过第m个电感与第m个变流器电路101的中间回路的正端连接。
需要说明的是,n为大于或等于2的整数,m为小于或等于n的正整数。
假设n为2,即牵引变流器包含2个切换开关107,图2中的两个切换开关107(QS3.1和QS3.2)可采用2极隔离开关,该2极隔离开关包括一组常开开关和一组常闭开关。
当牵引变流器的工作状态处于救援输入模式时,可通过控制切换开关107的开合状态确定哪一个变流器电路101接收救援输入电压,例如:闭合第m个切换开关107,其它的切换开关107断开,使第m个变流器电路101接收救援输入电压。
当牵引变流器的工作状态处于救援输入模式时,具体的元器件开合状态为:闭合第m个切换开关107,闭合第二接触器105和第m个第一直流开关104,第一接触器103和其它的切换开关107断开。
救援输入电压通过充电电阻102和第m个电感,为第m个变流器电路101的中间回路充电。待第m个变流器电路101的支撑电容的电压上升至预设电压值时,闭合第一接触器103,断开第二接触器105和启动第m个变流器电路101的三相逆变器,为第m个电机供电。
同理,当牵引变流器的工作状态处于救援输出模式时,可通过控制切换开关107和第一交流开关106的开合状态,确定哪一个变流器电路101输出救援电压,例如:闭合第m个切换开关107和第m个第一交流开关106,其它的切换开关107和第一交流开关106断开,使第m个变流器电路101输出救援电压。
当牵引变流器的工作状态处于救援输出模式时,具体的元器件开合状态为:闭合第m个第一交流开关106、第m个切换开关107和第一接触器103,其它的第一交流开关106和切换开关107断开,第二接触器105断开。牵引变压器的输入电压经过第m个次边绕组和第m个第一交流开关106输入第m个变流器电路101,第m个变流器电路101的中间回路输出DC3000V的救援输出电压,该救援输出电压通过第m个电感、第m个切换开关107和第一接触器103传输至被救援车辆。
在本发明实施例中,在启动牵引变流器的救援功能时,通过控制不同切换开关和第一交流开关的开合状态,确定哪一个变流器电路接收或输出救援电压,实现牵引变流器的独立轴控。
优选的,结合图2,参见图3,示出了本发明实施例提供的又一种牵引变流器的结构示意图,牵引变流器还包括:n个交流隔离开关108,每一变流器电路101对应一个交流隔离开关108,交流隔离开关108包含一组常开开关(QS2.1或QS2.3)和一组常闭开关(QS2.2或QS2.4)。
需要说明的是,牵引变压器所提供的交流电压包括但不仅限于:AC25kV/50Hz交流电压和AC15kV/16.7Hz交流电压。也就是说,牵引变流器的交流供电模式为交流模式,分别是AC25kV/50Hz供电模式和AC15kV/16.7Hz供电模式。
第m个变流器电路101的负输入端通过第m个交流隔离开关108与牵引变压器的第m个次边绕组的负输出端连接。
需要说明的是,假设n为2,则上述提及到的牵引变压器对应的第一个次边绕组的正输出端为图3中的a1端,第二个次边绕组的正输出端为图3中的a2端。牵引变压器对应的第一个次边绕组的负输出端为x11和x12,牵引变压器的第二个次边绕组的负输出端为x21和x22。
若n为2,牵引变流器对应的电感为图3中所示的a3-x3和a4-x4。
在交流模式下,通过交流隔离开关108切换次边绕组的线圈匝数,从而使牵引变流器的供电模式为AC25kV/50Hz供电模式或AC15kV/16.7Hz供电模式。
进一步需要说明的是,第m个交流隔离开关108的第一端与第m个次边绕组的负输出端连接,第m个交流隔离开关108的第二端与第m个变流器电路101的负输入端连接。例如:图3中的开关QS2.1的第一端与x11端连接,开关QS2.2的第一端与x12端连接,开关QS2.1和开关QS2.2的第二端都与第m个变流器电路101的负输入端连接。
相应的,结合上述图2示出的内容,牵引变流器的供电模式为AC25kV/50Hz供电模式或AC15kV/16.7Hz供电模式时,都能输出DC3000V的救援输出电压,牵引变流器输出救援输出电压时相关元器件的开合状态,请参见上述本发明实施例图2中的相关内容,在此不再进行赘述。
在本发明实施例中,通过控制交流隔离开关的状态,确定牵引变流器的供电模式为AC25kV/50Hz供电模式或AC15kV/16.7Hz供电模式,满足多种电压制式的供电需求。
优选的,结合图3,参见图4,示出了本发明实施例提供的再一种牵引变流器的结构示意图,牵引变流器还包括:交流模式下闭合的n个第二交流开关109,直流模式下闭合的n个第二直流开关110,每一变流器电路101对应一个第二交流开关109和第二直流开关110。
第m个第二交流开关109的第一端与第m个变流器电路101的负输入端连接,第m个第二交流开关109的第二端与直流电压连接,第m个第二交流开关109的第二端通过第m个交流隔离开关108与牵引变压器的第m个次边绕组的负输出端连接。
第m个第二直流开关110的第一端与直流电压连接,第m个第二直流开关110的第二端与第m个切换开关107的第二端连接。
需要说明的是,直流电压提供的直流电压包括但不仅限于DC3000V和DC1500V。也就是说,牵引变流器的直流供电模式为直流模式,分别是DC3000V供电模式和DC1500V供电模式。
进一步需要说明的是,本发明实施例中的第m个第二直流开关110与直流电压的连接方式包括但不仅限于以下两种形式:
形式一、第m个第二直流开关110的第一端直接与直流电压连接。
形式二、如图4所示,第m个第二直流开关110的第一端与第m个次边绕组的正输出端连接,使在直流模式下第m个第二直流开关110的第一端通过第m个次边绕组与直流电压连接。
根据图4中的内容可知,牵引变流器的工作状态在交流模式或直流模式时,都可控制相关元器件的开合状态,选择为哪一个电机供电。也就是说,为电机供电的供电电路之间不互相影响,实现牵引变流器的独立轴控。
优选的,本发明实施例中涉及的交流模式为双制式交流模式或多制式交流模式,直流模式为双制式直流模式或多制式直流模式,对于交流模式和直流模式的内容不做具体限定。
在本发明实施例中,通过控制牵引变流器中相关元器件的开合状态确定供电模式为AC25kV/50Hz供电模式、AC15kV/16.7Hz供电模式、DC3000V供电模式或DC1500V供电模式,满足多种电压制式的供电需求。
相应的,结合图2,参见图5,示出了本发明实施例提供的再一种牵引变流器的结构示意图,牵引变流器还包括:交流模式下闭合的n个第二交流开关109,直流模式下闭合的n个第二直流开关110,每一变流器电路101对应一个第二交流开关109和第二直流开关110。
第m个第二交流开关109的第一端与第m个变流器电路101的负输入端连接,第m个第二交流开关109的第二端与直流电压连接,第m个第二交流开关109的第二端与牵引变压器的第m个次边绕组的负输出端连接。
第m个第二直流开关110的第一端与直流电压连接,第m个第二直流开关110的第二端与第m个切换开关107的第二端连接。
在本发明实施例中,通过控制牵引变流器中相关元器件的开合状态确定供电模式为交流供电模式和直流供电模式,满足多种电压制式的供电需求。
优选的,结合图4,参见图6,示出了本发明实施例提供的再一种牵引变流器的结构示意图,牵引变流器还包括:n个第一电阻111和交流模式下闭合的n个第三交流开关112,n个第二电阻113和直流模式下闭合的n个第三直流开关114,n-1个第四直流开关115和直流熔断器116。每一变流器电路101对应一个第三交流开关112、第一电阻111、第三直流开关114和第二电阻113。
第m个第三交流开关112的第一端与第m个第一交流开关106的第一端连接,第m个第三交流开关112的第二端通过第m个第一电阻111与第m个第一交流开关106的第二端连接。
第m个第三直流开关114的第一端与第m个第二直流开关110的第二端连接,第m个第三直流开关114的第二端通过第m个第二电阻113与第m个第二直流开关110的第一端连接。
第M个第四直流开关115的第一端与第M个第二交流开关109的第二端连接,第M个第四直流开关115的第二端与第M+1个第二交流开关109的第二端连接。M为大于等于1小于等于n-1的整数。
假设n为2,即牵引变流器包含2个第二交流开关109,图6中的第四直流开关115(QS1.2)和两个第二交流开关109(QS1.1和QS1.3)可采用3极隔离开关,该3极隔离开关包括一组常开开关和两组常闭开关。即当第四直流开关115闭合时,两个第二交流开关109断开,当第四直流开关115断开时,两个第二交流开关109闭合。
第一接触器103的第二端通过直流熔断器116与救援端口连接。
需要说明的是,在救援输出模式下,当被救援车辆出现短路故障时,直流熔断器116断开,从而保证牵引变流器的运行安全。
在本发明实施例中,取消牵引变流器的二次滤波回路,有效降低牵引系统的体积和重量。通过控制牵引变流器中对应元器件的开合状态,以满足多种电压制式的供电需求,并且为牵引变流器提供救援输出功能和被救援功能,提高牵引系统的可靠性。
为更好解释说明上述涉及的牵引变流器的不同供电模式,结合图6,通过图7示出的内容进行举例说明。需要说明的是,图7示出的内容仅用于举例。
当图6中牵引变流器的所有开关元器件处于断开状态下时,参见图7,示出了本发明实施例提供的AC25kV/50Hz供电模式下牵引变流器的元器件开合示意图。
牵引变流器的供电模式为AC25kV/50Hz供电模式,交流电压主断路器闭合,直流电压主断路器断开,牵引变压器得电。交流隔离开关108动作,如图6中的QS2.1和QS2.3 闭合,图5中的QS2.2和QS2.4断开。控制第一交流开关106和第三交流开关112的开合状态,闭合第二交流开关109。其中,第一交流开关106、第三交流开关112和第一电阻111构成第一充电回路。
牵引变流器处于AC25kV/50Hz供电模式时,通过牵引压器的输入电经过次边绕组(a1-x11和a2-x21)、第二交流开关109、第一充电回路和变流器电路101给电机供电(M1和M2)。每个变流器电路101完全独立且不互相影响。
需要说明的是,在控制第一充电回路中各个元器件的开合状态时,闭合第三交流开关112,第一交流开关106断开。待图7中的支撑电容(Cd)两端的电压上升至预设电压值时,闭合第一交流开关106,断开第三交流开关112。
为更好解释说明上述涉及的牵引变流器的不同供电模式,结合图6,通过图8示出的内容进行举例说明。需要说明的是,图8示出的内容仅用于举例。
当图6中牵引变流器的所有开关元器件处于断开状态下时,参见图8,示出了本发明实施例提供的AC15kV/16.7Hz供电模式下牵引变流器的元器件开合示意图。
牵引变流器的供电模式为AC15kV/16.7Hz供电模式,交流电压主断路器闭合,直流电压主断路器断开,牵引变压器得电。交流隔离开关108不动作,如图6中的QS2.2和QS2.4闭合,图6中的QS2.1和QS2.3断开。闭合第二交流开关109,控制第一交流开关106和第三交流开关的开合状态。
牵引变流器处于AC15kV/16.7Hz供电模式时,通过牵引压器的输入电经过次边绕组(a1-x11和a2-x21)、第二交流开关109、第一充电回路和变流器电路101给电机供电(M1和M2)。每个变流器电路101完全独立且不互相影响。
需要说明的是,在控制第一充电回路中各个元器件的开合状态时,闭合第三交流开关112,第一交流开关106断开。待图8中的支撑电容(Cd)两端的电压上升至预设电压值时,闭合第一交流开关106,断开第三交流开关112。
在本发明实施例中,在交流模式下,通过控制交流隔离开关的动作,将牵引变流器的供电模式切换为AC25kV/50Hz供电模式或AC15kV/16.7Hz供电模式,满足不同制式的交流电压,同时每重变流器电路完全独立且不互相影响,提高牵引系统的可靠性。
为更好解释说明上述涉及的牵引变流器的不同供电模式,结合图6,通过图9示出的内容进行举例说明,需要说明的是,图9示出的内容仅用于举例。
当图6中牵引变流器的所有开关元器件处于断开状态下时,参见图9,示出了本发明实施例提供的DC3000V供电模式下牵引变流器的元器件开合示意图。
牵引变流器的供电模式为DC3000V供电模式,直流电压主断路器闭合,交流电压主断路器断开,牵引变压器失电。如图9中的内容,交流隔离开关108不动作,即图9中的QS2.4闭合。控制第二直流开关110和第三直流开关114的开合状态,闭合第四直流开关115和第一直流开关104。其中,第二直流开关110、第三直流开关114和第二电阻构成第二充电回路。
DC3000V的输入电经过第四直流开关115、交流隔离开关108的开关QS2.4、牵引变压器的次边绕组(a2-x22)、第二充电回路和两个电感(a3-x3和a4-x4),输入变流器 电路101的中间回路的正端,变流器电路101的中间回路的负端通过第一直流开关104接地。
需要说明的是,在控制第二充电回路中各元器件的开合状态时,闭合第三直流开关114,第二直流开关110断开。待图9中的支撑电容(Cd)两端的电压上升至预设电压值时,闭合第二直流开关110,断开第三直流开关114。
该输入电通过变流器电路101的三相逆变器(INV1和INV2)给电机(M1和M2)供电。当任意一个变流器电路101故障时,可通过断开发生故障的变流器电路101对应的第二直流开关110和第三直流开关114,隔离发生故障的变流器电路101,使之不影响到其它未发生故障的变流器电路101。
为更好解释说明上述涉及的牵引变流器的不同供电模式,结合图6,通过图10示出的内容进行举例说明,需要说明的是,图10示出的内容仅用于举例。
当图6中牵引变流器的所有开关元器件处于断开状态下时,参见图10,示出了本发明实施例提供的DC1500V供电模式下牵引变流器的元器件开合示意图。
牵引变流器的供电模式为DC1500V供电模式,直流电压主断路器闭合,交流电压主断路器断开,牵引变压器失电。交流隔离开关108不动作,如图10中的QS2.2和QS2.4闭合。闭合第四直流开关115和第一直流开关104,控制第一交流开关106和第三交流开关112的开合状态。其中,第一交流开关106、第三交流开关112和第一电阻111构成第一充电回路。
DC1500V的输入电经过第四直流开关115、交流隔离开关108的开关QS2.2、交流隔离开关108的开关QS2.4、两个次边绕组(a1-x12和a2-x22)和第一充电回路,输入变流器电路101的四象限整流器(4QS1和Q4S2),四象限整流器升压斩波到变流器电路101的中间回路的正端,变流器电路101的中间回路的负端通过第一直流开关104接地。
需要说明的是,在控制第一充电回路中各个元器件的开合状态时,闭合第三交流开关112,第一交流开关106断开。待图10中的支撑电容(Cd)两端的电压上升至预设电压值时,闭合第一交流开关106,断开第三交流开关112。
更进一步需要说明的是,利用牵引变压器的次边绕组和四象限整流器的一个桥臂构成升压斩波回路,将DC1500V升压至DC3000V。
该输入电通过变流器电路101的三相逆变器(INV1和INV2)给电机(M1和M2)供电。当任意一个变流器电路101故障时,可通过断开发生故障的变流器电路101对应的第一交流开关106和第三交流开关112,隔离发生故障的变流器电路101,使之不影响到其它未发生故障的变流器电路101。
在本发明实施例中,在直流模式下,通过控制牵引变流器的各个元器件的开合状态,将牵引变流器的供电模式切换为DC3000V供电模式或DC1500V供电模式,满足不同制式的直流电压,同时可以隔离发生故障的变流器电路,多重变流器电路之间互不影响,提高牵引系统的可靠性。
为更好解释说明上述涉及的牵引变流器的救援模式,当图6中牵引变流器的所有开关元器件处于断开状态下时,结合图6,对救援输入模式和救援输出模式下牵引变流器 的元器件的开合状态进行举例说明。
需要说明的是,牵引变流器的救援输入电压和救援输出电压均为DC3000V。
当牵引变流器的救援模式为救援输入模式时,可通过控制切换开关107的开合状态确定哪一个变流器电路101接收救援输入电压,例如:闭合第m个切换开关107,其它的切换开关107断开,使第m个变流器电路101接收救援输入电压。
当牵引变流器的工作状态处于救援输出模式时,可通过控制切换开关107和第一交流开关106的开合状态,确定哪一个变流器电路101输出救援电压,例如:闭合第m个切换开关107和第m个第一交流开关106,其它的切换开关107和第一交流开关106断开,使第m个变流器电路101输出救援电压。
救援输入模式和救援输出模式下牵引变流器的元器件闭合状态如以下解释说明:
当牵引变流器的供电模式为DC3000V供电模式和救援模式为救援输出模式,结合图6中的内容,闭合第m个第二直流开关110、第m个切换开关107和第一接触器103,直接将DC3000V的救援电压输出给被救援车辆。
当牵引变流器的供电模式为AC25kV/50Hz供电模式、AC15kV/16.7Hz供电模式或DC1500V供电模式,并且牵引变流器的救援模式为救援输出模式,通过图11示出的内容,进行说明,需要说明的是,图11示出的内容仅用于举例。
当图6中牵引变流器的所有开关元器件处于断开状态下时,参见图11,示出了本发明实施例提供的救援输入模式和救援输出模式下牵引变流器的元器件开合示意图。
闭合第一接触器103、第m个切换开关107和第m个第一直流开关104。从第m个变流器电路101的中间回路输出DC3000V的救援输出电,该救援输出电通过第m个电感、第m个切换开关107和第一接触器103传输至被救援车辆。
通过上述内容可知,无论牵引变流器的供电模式为DC3000V供电模式、AC25kV/50Hz供电模式、AC15kV/16.7Hz供电模式或DC1500V供电模式,都可将DC3000V的救援输出电压输出给被救援车辆。
当牵引变流器的救援模式为救援输入模式,结合图11中的内容,闭合第m个切换开关107确定第m个变流器电路101需要接收救援输入电压,闭合第m个第一直流开关104。
闭合第二接触器105,通过充电电阻102为第m个变流器电路101的中间回路充电。待第m个变流器电路101的支撑电容(Cd)的电压上升至预设电压值时,闭合第一接触器103,断开第二接触器105和启动第m个变流器电路101的三相逆变器,为第m个电机供电。
在本发明实施例中,当牵引变流器的供电模式为DC3000V供电模式、AC25kV/50Hz供电模式、AC15kV/16.7Hz供电模式或DC1500V供电模式时,均可向被救援车辆提供DC3000V的救援输出电压,同时也可通过控制对应元器件的开合状态,确定哪一重变流器电路接收救援输入电压。同时为牵引变流器提供救援输出功能和救援输入功能,提高牵引系统的可靠性。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。本领域普通 技术人员在不付出创造性劳动的情况下,即可以理解并实施。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种牵引变流器,其特征在于,所述牵引变流器包括:至少一个变流器电路、充电电阻、救援输出模式下和救援输入模式下闭合的第一接触器和第一直流开关、救援输入模式下闭合的第二接触器;
    所述变流器电路的输入端与牵引变压器的次边绕组连接,所述变流器电路的输出端与电机连接;
    所述第一接触器的第一端与所述第二接触器的第一端连接,所述第一接触器的第一端通过电感与所述变流器电路的中间回路的正端连接;
    所述第二接触器的第二端通过所述充电电阻与所述第一接触器的第二端连接,所述第一接触器的第二端与救援端口连接;
    所述第一直流开关的第一端与所述变流器电路的中间回路的负端连接,所述第一流开关的第二端接地。
  2. 根据权利要求1所述的牵引变流器,其特征在于,当所述牵引变流器包括n个所述变流器电路时,所述牵引变流器还包括:救援输出模式下闭合的n个第一交流开关和n个切换开关,每一所述变流器电路对应一个所述第一交流开关和所述切换开关;
    第m个所述第一交流开关的第一端与所述牵引变压器的第m个次边绕组的正输出端连接,第m个所述第一交流开关的第二端与第m个所述变流器电路的正输入端连接,第m个所述变流器电路的负输入端与所述牵引变压器的第m个次边绕组的负输出端连接;
    第m个所述切换开关的第一端与所述第一接触器的第一端连接,第m个所述切换开关的第二端通过第m个电感与第m个所述变流器电路的中间回路的正端连接;
    其中,n为大于或等于2的整数,m为小于或等于n的正整数。
  3. 根据权利要求2所述的牵引变流器,其特征在于,所述牵引变流器还包括:n个交流隔离开关,每一所述变流器电路对应一个所述交流隔离开关,所述交流隔离开关包含一组常开开关和一组常闭开关;
    第m个所述变流器电路的负输入端通过第m个所述交流隔离开关与所述牵引变压器的第m个次边绕组的负输出端连接。
  4. 根据权利要求2所述的牵引变流器,其特征在于,所述牵引变流器还包括:交流模式下闭合的n个第二交流开关,直流模式下闭合的n个第二直流开关,每一所述变流器电路对应一个所述第二交流开关和所述第二直流开关;
    第m个所述第二交流开关的第一端与第m个所述变流器电路的负输入端连接,第m个所述第二交流开关的第二端与直流电压连接,第m个所述第二交流开关的第二端与所述牵引变压器的第m个次边绕组的负输出端连接;
    第m个所述第二直流开关的第一端与所述直流电压连接,第m个所述第二直流开关的第二端与第m个所述切换开关的第二端连接。
  5. 根据权利要求3所述的牵引变流器,其特征在于,所述牵引变流器还包括:交流模式下闭合的n个第二交流开关,直流模式下闭合的n个第二直流开关,每一所述 变流器电路对应一个所述第二交流开关和所述第二直流开关;
    第m个所述第二交流开关的第一端与第m个所述变流器电路的负输入端连接,第m个所述第二交流开关的第二端与直流电压连接,第m个所述第二交流开关的第二端通过第m个所述交流隔离开关与所述牵引变压器的第m个次边绕组的负输出端连接;
    第m个所述第二直流开关的第一端与所述直流电压连接,第m个所述第二直流开关的第二端与第m个所述切换开关的第二端连接。
  6. 根据权利要求5所述的牵引变流器,其特征在于,所述牵引变流器还包括:n个第一电阻和交流模式下闭合的n个第三交流开关,每一所述变流器电路对应一个所述第三交流开关和所述第一电阻;
    第m个所述第三交流开关的第一端与第m个所述第一交流开关的第一端连接,第m个所述第三交流开关的第二端通过第m个所述第一电阻与第m个所述第一交流开关的第二端连接。
  7. 根据权利要求5所述的牵引变流器,其特征在于,所述牵引变流器还包括:n个第二电阻和直流模式下闭合的n个第三直流开关,每一所述变流器电路对应一个所述第三直流开关和所述第二电阻;
    第m个所述第三直流开关的第一端与第m个所述第二直流开关的第二端连接,第m个所述第三直流开关的第二端通过第m个所述第二电阻与第m个所述第二直流开关的第一端连接。
  8. 根据权利要求1所述的牵引变流器,其特征在于,所述变流器电路包括:四象限整流器、支撑电容和三相逆变器;
    所述四象限整流器的输入端与所述牵引变压器的次边绕组连接,所述四象限整流器的输出端与所述支撑电容并联,所述支撑电容与所述三相逆变器的输入端并联,所述三相逆变器的输出端与所述电机连接。
  9. 根据权利要求5所述的牵引变流器,其特征在于,所述牵引变流器还包括:n-1个第四直流开关;
    第M个所述第四直流开关的第一端与所述第M个第二交流开关的第二端连接,第M个所述第四直流开关的第二端与第M+1个所述第二交流开关的第二端连接,M为大于等于1小于等于n-1的整数。
  10. 根据权利要求1-9中任一所述的牵引变流器,其特征在于,所述牵引变流器还包括:直流熔断器;
    所述第一接触器的第二端通过所述直流熔断器与救援端口连接。
PCT/CN2019/126246 2019-12-11 2019-12-18 一种牵引变流器 WO2021114331A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19955728.1A EP4020783A4 (en) 2019-12-11 2019-12-18 TRACTION CONVERTER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911267174.3A CN112953255B (zh) 2019-12-11 2019-12-11 一种牵引变流器
CN201911267174.3 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021114331A1 true WO2021114331A1 (zh) 2021-06-17

Family

ID=76233948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126246 WO2021114331A1 (zh) 2019-12-11 2019-12-18 一种牵引变流器

Country Status (3)

Country Link
EP (1) EP4020783A4 (zh)
CN (1) CN112953255B (zh)
WO (1) WO2021114331A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195077A (ja) * 2008-02-18 2009-08-27 Mitsubishi Heavy Ind Ltd 救援システムおよびそれを用いた救援方法
CN103350647A (zh) * 2013-06-24 2013-10-16 长春轨道客车股份有限公司 一种接触网和储能装置混合供电的动车组牵引系统
CN105711604A (zh) * 2014-12-02 2016-06-29 永济新时速电机电器有限责任公司 动车组救援回送装置
CN206327159U (zh) * 2016-11-02 2017-07-14 中车大连电力牵引研发中心有限公司 辅助电源系统
CN109383299A (zh) * 2018-09-30 2019-02-26 中车青岛四方机车车辆股份有限公司 一种蓄电池应急供电系统、供电方法及轨道车辆
CN109698615A (zh) * 2017-10-20 2019-04-30 株洲中车时代电气股份有限公司 一种双流制独立轴控的牵引变流器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2862742A1 (de) * 2013-10-16 2015-04-22 Siemens Aktiengesellschaft Mehrsystem-Stromrichteranordnung
CN106026691B (zh) * 2016-05-30 2018-08-21 株洲中车时代电气股份有限公司 一种可独立轴控的列车主辅一体牵引变流器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195077A (ja) * 2008-02-18 2009-08-27 Mitsubishi Heavy Ind Ltd 救援システムおよびそれを用いた救援方法
CN103350647A (zh) * 2013-06-24 2013-10-16 长春轨道客车股份有限公司 一种接触网和储能装置混合供电的动车组牵引系统
CN105711604A (zh) * 2014-12-02 2016-06-29 永济新时速电机电器有限责任公司 动车组救援回送装置
CN206327159U (zh) * 2016-11-02 2017-07-14 中车大连电力牵引研发中心有限公司 辅助电源系统
CN109698615A (zh) * 2017-10-20 2019-04-30 株洲中车时代电气股份有限公司 一种双流制独立轴控的牵引变流器
CN109383299A (zh) * 2018-09-30 2019-02-26 中车青岛四方机车车辆股份有限公司 一种蓄电池应急供电系统、供电方法及轨道车辆

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NI QIANG, MA XIAOMING: "Principle Analysis of Fire-free Return Self-generating System of High-speed EMUs", RAILWAY QUALITY CONTROL, vol. 46, no. 8, 1 January 2018 (2018-01-01), pages 40 - 50, XP055819811, ISSN: 1006-9178 *
See also references of EP4020783A4

Also Published As

Publication number Publication date
EP4020783A4 (en) 2022-09-28
CN112953255B (zh) 2024-01-23
CN112953255A (zh) 2021-06-11
EP4020783A1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
US9722507B2 (en) Electric power conversion apparatus
WO2010150139A1 (en) Circuit arrangement for power distribution in a motor vehicle
CN109698615B (zh) 一种双流制独立轴控的牵引变流器
US11760218B2 (en) Charging circuit for a vehicle-side electrical energy store
US11472305B2 (en) Charging circuit for a vehicle-side electrical energy store
WO2021114331A1 (zh) 一种牵引变流器
CN111315614B (zh) 包括dc/dc转换器的车辆充电器
US20220360094A1 (en) Power supply system
JP4751306B2 (ja) 電気車用電源装置
JPH04165901A (ja) 電気自動車用電力変換器
EP3681030B1 (en) Power conversion device
KR20230088793A (ko) 직류 단자와 교류 단자를 갖는 충전 회로 및 충전 회로를 갖는 차량 전기 시스템
JP6437683B2 (ja) デルタ―レス高調波相殺装置
SU1723627A1 (ru) Устройство дл симметрировани неполнофазных режимов
WO2020152733A1 (ja) 電力変換装置
CN115151441A (zh) 用于充电器的单相和三相混合滤波系统
EP3581429A1 (en) Traction converter with ac and dc operation modes
CN112550006B (zh) 可配置的多相充电器
JPH0556661A (ja) 交流電気車制御装置
JP3560766B2 (ja) 電力変換装置
WO2017122317A1 (ja) 電力変換装置
US20230121220A1 (en) Converter system for transferring power
CN111245208B (zh) 电力机车牵引变压器、牵引系统及滤波调节电路控制方法
JPH11113102A (ja) 交直両用電気車制御装置
JP2933997B2 (ja) 開閉器の駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019955728

Country of ref document: EP

Effective date: 20220324

NENP Non-entry into the national phase

Ref country code: DE