WO2021114282A1 - 阵列基板及其驱动方法、触控显示装置 - Google Patents

阵列基板及其驱动方法、触控显示装置 Download PDF

Info

Publication number
WO2021114282A1
WO2021114282A1 PCT/CN2019/125366 CN2019125366W WO2021114282A1 WO 2021114282 A1 WO2021114282 A1 WO 2021114282A1 CN 2019125366 W CN2019125366 W CN 2019125366W WO 2021114282 A1 WO2021114282 A1 WO 2021114282A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
row
electrodes
array substrate
Prior art date
Application number
PCT/CN2019/125366
Other languages
English (en)
French (fr)
Inventor
郭志轩
王凤国
方业周
武新国
刘弘
张诗雨
李磊
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2019/125366 priority Critical patent/WO2021114282A1/zh
Priority to US17/042,663 priority patent/US11762489B2/en
Priority to CN201980003024.3A priority patent/CN113260958B/zh
Publication of WO2021114282A1 publication Critical patent/WO2021114282A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present disclosure relates to the field of display technology, and in particular to an array substrate, a driving method thereof, and a touch display device.
  • the in-cell touch display device is a device in which the touch electrode is embedded inside the touch display device, and has the advantages of small thickness of the entire device and low manufacturing cost.
  • an array substrate in one aspect, includes a base substrate, a common electrode layer disposed on one side of the base substrate, a first conductive layer disposed on a side of the common electrode layer close to or far from the base substrate, and a common electrode layer disposed on the side of the base substrate.
  • the common electrode layer is close to or far from the second conductive layer on one side of the base substrate.
  • the common electrode layer includes a plurality of common electrodes arranged in an array; a part of the common electrodes of the plurality of common electrodes is multiplexed as the first touch electrode, and another part of the common electrodes of the plurality of common electrodes is multiplexed Used as the second touch electrode.
  • the first conductive layer includes a plurality of electrode connection lines; each row of first touch electrodes arranged along the first direction is connected in series by at least one electrode connection line of the plurality of electrode connection lines.
  • the second conductive layer includes a plurality of first touch signal lines and a plurality of second touch signal lines; each row of first touch electrodes arranged along the first direction and the plurality of first touch signal lines Is coupled to at least one first touch signal line of, and each first touch signal line is configured to transmit a first touch signal; each second touch electrode or each row of second touch electrodes arranged in the second direction
  • the electrode is coupled to at least one second touch signal line among the plurality of second touch signal lines, and each second touch signal line is configured to transmit a second touch signal. Wherein, the first direction crosses the second direction.
  • the first conductive layer is a gate electrode layer, and the first conductive layer is located between the base substrate and the common electrode layer.
  • the second conductive layer is a source and drain electrode layer, and the second conductive layer is located between the gate electrode layer and the common electrode layer.
  • the array substrate further includes: a first insulating layer disposed between the first conductive layer and the second conductive layer, and a first insulating layer disposed between the second conductive layer and the common electrode layer Between the second insulating layer.
  • the first insulating layer is provided with a plurality of first via holes penetrating the first insulating layer.
  • the second insulating layer is provided with a plurality of second via holes penetrating the second insulating layer.
  • Each row of the first touch electrode is sequentially coupled to the at least one electrode connection line through some second via holes in the plurality of second via holes and some first via holes in the plurality of first via holes .
  • the plurality of first vias corresponds to the plurality of second vias one-to-one, and each first via of the plurality of first vias is on the base substrate
  • the orthographic projection of and the orthographic projection of the corresponding second via on the base substrate at least partially overlap, so that the first via and the corresponding second via form a sleeve structure.
  • each row of first touch electrodes corresponds to at least one row of perforated structures; each perforated structure in each row of perforated structures is arranged along the first direction and is in line with each row of first touch electrodes.
  • Each of the first touch electrodes corresponds to each other.
  • each electrode connection line extends along the first direction; each electrode connection line passes through a row of sleeve holes corresponding to the first touch electrode in the row Structure, coupled with each first touch electrode in the row of first touch electrodes.
  • each row of the first touch electrode is coupled to the at least one first touch signal line through at least one second via of the plurality of second vias.
  • each first touch electrode in each row of first touch electrodes corresponds to at least one column of second via holes, and each second via hole in each column of second via holes is arranged along the second direction .
  • each first touch signal line extends along the second direction; each first touch signal line passes through the row A row of second via holes corresponding to a first touch electrode in the first touch electrodes is coupled to the row of first touch electrodes.
  • each first touch signal line passes through one of the first touch electrodes in the row.
  • a row of second via holes corresponding to the touch electrodes is coupled to the row of first touch electrodes, wherein the position of the row of second via holes corresponding to the first touch electrodes is the position of the row of first touch electrodes.
  • the first touch signal access point; the first touch signal access point of each row of the first touch electrode, the orthographic projection on the base substrate is arranged in an inverted V shape.
  • each first touch electrode in each row of first touch electrodes corresponds to at least one column of first via holes, and each first via hole in each column of first via holes is arranged along the second direction .
  • the second conductive layer further includes a plurality of virtual touch signal lines extending along the second direction; in each row of the first touch electrode, except for the first touch signal line coupled to the at least one first touch signal line Except for the touch electrodes, each of the other first touch electrodes corresponds to at least one virtual touch signal line.
  • Each virtual touch signal line in the at least one virtual touch signal line connects each electrode passing through the first via hole in the row through a row of first via holes corresponding to its corresponding first touch electrode Electrical connection.
  • At least one virtual touch signal line of the plurality of virtual touch signal lines has a plurality of fractures.
  • the orthographic projection of at least one of the plurality of fractures on the base substrate is located between the orthographic projections of two adjacent first touch electrodes on the base substrate along the second direction And/or, the orthographic projection of at least one of the plurality of fractures on the base substrate is located in a first touch electrode and a second touch electrode that are adjacent to each other along the second direction Between the orthographic projections on the base substrate.
  • the array substrate further includes: a second insulating layer disposed between the second conductive layer and the common electrode layer, and the second insulating layer is provided with a second insulating layer penetrating through the second insulating layer. Multiple third vias of the layer. Each second touch electrode or each column of second touch electrodes is coupled to the at least one second touch signal line through at least one third via hole among the plurality of third via holes.
  • each second touch electrode corresponds to at least one row of third via holes, and each third via hole in each row of third via holes is arranged along the second direction.
  • each second touch signal line extends along the second direction; each second touch signal line passes through the first A row of third via holes corresponding to the two touch electrodes is coupled to the second touch electrodes.
  • the array substrate has a touch area and a peripheral area located on at least one side of the touch area.
  • the second touch signal lines coupled to the second touch electrodes in each column are coupled to each other in the peripheral area.
  • each row of second touch electrodes corresponds to at least one row of third via holes, and in each row of third via holes, each third via hole is arranged along the second direction, and each third via hole is connected to each third via hole.
  • Each second touch electrode in the column of second touch electrodes corresponds to each other.
  • each second touch signal line extends along the second direction; each second touch signal line passes through the column A row of third via holes corresponding to the second touch electrode is coupled to the row of second touch electrodes.
  • the common electrode layer includes a plurality of first touch units and a plurality of second touch units.
  • each first touch unit in the plurality of first touch units includes at least one of the first touch electrode;
  • each second touch unit in the plurality of second touch units includes At least one of the second touch electrodes.
  • the first touch unit and the second touch unit are alternately arranged; and/or, along the second direction, the first touch unit and the The second touch control units are alternately arranged.
  • the first touch unit includes 2-8 first touch electrodes; the second touch unit includes 2-8 second touch electrodes.
  • the touch area of the array substrate is divided into a plurality of sub-areas, and each of the plurality of sub-areas is arranged with two first touch units and two second touch units. Touch unit.
  • Each of the first touch units includes four of the first touch electrodes, and each of the second touches includes four second touch electrodes.
  • a display device in another aspect, includes: the array substrate as described in any of the above embodiments, and a touch chip.
  • the touch chip is coupled to a plurality of first touch signal lines and a plurality of second touch signal lines of the array substrate; the touch chip is configured to transmit to the plurality of first touch signals
  • Each first touch signal line in the lines provides a first touch signal required for touch position detection, and each second touch signal line in the plurality of second touch signal lines provides for touch position detection The required second touch signal.
  • a method for driving an array substrate is provided, which is applied to the array substrate as described in any of the above-mentioned embodiments.
  • the driving method includes a plurality of driving periods, and each driving period of the plurality of driving periods includes a display phase and a touch phase.
  • a common voltage signal is transmitted to each common electrode of the array substrate.
  • the first touch signal is sequentially transmitted row by row to each row of the first touch electrode of the array substrate; from each second touch electrode or each column of the second touch electrode of the array substrate The electrode acquires the second touch signal.
  • the second touch signals are sequentially transmitted to each second touch electrode of the array substrate one by one; or, the second touch signals are sequentially transmitted column by column to each second touch electrode of the array substrate
  • the second touch signal; the first touch signal is obtained from the first touch electrodes of each row of the array substrate.
  • FIG. 1 is a top view of an array substrate provided according to some embodiments of the present disclosure
  • FIG. 2a is a layout diagram of the A11 part and the A12 part of the array substrate shown in FIG. 1;
  • FIG. 2b is a layout diagram of part A13 of the array substrate shown in FIG. 1;
  • FIG. 3 is a schematic cross-sectional view of the array substrate shown in FIG. 1 along the section line B1-B1;
  • FIG. 4 is a top view of another array substrate provided according to some embodiments of the present disclosure.
  • FIG. 5 is a top view of still another array substrate provided according to some embodiments of the present disclosure.
  • FIG. 6 is a top view of still another array substrate provided according to some embodiments of the present disclosure.
  • FIG. 7a is a layout diagram of the A21 part and the A22 part of the array substrate shown in FIG. 6;
  • FIG. 7b is a layout diagram of A23 of the array substrate shown in FIG. 6;
  • FIG. 8 is a schematic cross-sectional view of the array substrate shown in FIG. 6 along the section line B2-B2;
  • FIG. 9 is a top view of still another array substrate provided according to some embodiments of the present disclosure.
  • FIG. 10 is a top view of still another array substrate provided according to some embodiments of the present disclosure.
  • FIG. 11 is a top view of still another array substrate provided according to some embodiments of the present disclosure.
  • FIG. 12 is a top view of still another array substrate provided according to some embodiments of the present disclosure.
  • FIG. 13 is a side view structure diagram of a touch display device according to some embodiments of the present disclosure.
  • FIG. 14 is a timing diagram of driving the array substrate according to some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • the expressions “coupled” and “connected” and their extensions may be used.
  • the terms “connected” and “series connection” may be used to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components have direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C", and both include the following combinations of A, B, and C: only A, only B, only C, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • some embodiments of the present disclosure provide an array substrate 02.
  • an in-cell touch structure is adopted, and touch electrodes for realizing the touch function are integrated inside the array substrate 02 to realize the detection of the touch position.
  • the array substrate 02 includes: a base substrate 1, a common electrode layer 2 provided on one side of the base substrate 1, a first conductive layer 3, and a second conductive layer 4.
  • the first conductive layer 3 is disposed on the side of the common electrode layer 2 close to or far from the base substrate 1. For example, as shown in FIG. 3, the first conductive layer 3 is close to the base substrate 1 relative to the common electrode layer 2. For another example, in other embodiments, the first conductive layer 3 is far away from the base substrate 1 relative to the common electrode layer 2.
  • the second conductive layer 4 is arranged on the side of the common electrode layer 2 close to or far from the base substrate 1. For example, as shown in FIG. 3, the second conductive layer 4 is close to the base substrate 1 relative to the common electrode layer 2. For another example, in other embodiments, the second conductive layer 4 is far away from the base substrate 1 relative to the common electrode layer 2.
  • the common electrode layer 2 includes a plurality of common electrodes 21 arranged in an array.
  • the array arrangement may be arranged in multiple rows and multiple columns, for example, 4 rows and 6 columns are illustrated in FIG. 1. It is assumed that the row direction in which the plurality of common electrodes 21 are arranged is the first direction D1, and the column direction is the second direction D2. It can be understood that the row direction and the column direction of the arrangement of the multiple common electrodes cross each other, that is, the first direction D1 and the second direction D2 cross each other, for example, the first direction D1 and the second direction D2 are perpendicular to each other.
  • the common electrode layer 2 in the display stage of the array substrate 02 being driven, cooperates with the pixel electrode layer 7 of the array substrate 02 to form an electric field to drive each sub-pixel PX of the display panel for display.
  • a part of the common electrodes 21 of the plurality of common electrodes 21 of the common electrode layer 2 are multiplexed as the first touch electrodes 211, and the other of the plurality of common electrodes 21 A part of the common electrode 21 is multiplexed as the second touch electrode 212 to realize the detection of the touch position.
  • the common electrode layer 2 not only has the function of driving the display, but also has the function of detecting the touch position, which realizes the multiplexing of the common electrode layer 2. Therefore, compared to the technical solution in the related art that not only provides the common electrode layer for realizing the display function, but also provides the touch electrode layer for realizing the touch position detection function, the array substrate 02 provided by the embodiment of the present disclosure can be reduced. The overall thickness of the small array substrate 02 simplifies the internal structure of the array substrate 02.
  • the first conductive layer 3 includes a plurality of electrode connecting wires 31.
  • Each row of the first touch electrodes 211 arranged along the first direction D1 is connected in series by at least one of the plurality of electrode connection wires 31, which is equivalent to forming a plurality of rows of first touch electrodes extending along the first direction D1.
  • Control electrode strip 211C is equivalent to forming a plurality of rows of first touch electrodes extending along the first direction D1.
  • each row of the first touch electrodes 211 is connected in series by an electrode connecting line 31.
  • the wiring is relatively simple.
  • the first touch electrodes 211 in each row are connected in series by a plurality of electrode connecting wires 31.
  • the first touch signal S1 is transmitted through the multiple electrode connecting wires 31, which can improve the signal performance on the first touch electrode strips 211C.
  • the transmission speed and uniformity improve the accuracy of touch position positioning when the array substrate 02 realizes the touch position detection function.
  • a plurality of electrode connection lines 31 serially connected to a row of first touch electrodes 211 may all extend along the first direction D1 and be arranged in parallel along the second direction D2.
  • the number of the plurality of electrode connection lines 31 serially connected to a row of first touch electrodes 211 is illustrated by taking 4 as an example. In some other embodiments of the present disclosure, a row of first touch electrodes 211 are connected in series.
  • the number of the plurality of electrode connecting wires 31 can be 3, 5, 6, 7, 8, and so on.
  • the second conductive layer 4 includes a plurality of first touch signal lines 41 and a plurality of second touch signal lines 42.
  • each first touch signal line 41 is configured to transmit a first touch signal S1;
  • each second touch signal line 42 is configured to transmit a second touch signal S2.
  • each first touch signal line 41 and each second touch signal line 42 are electrically connected to the touch chip 01.
  • the conductive line marked with the first touch signal S1 on the left is the first touch signal line 41; the conductive line marked with the second touch signal S2 on the left is the second touch. ⁇ signal line 42.
  • each virtual touch signal line 46 appearing in the following is not connected to the touch chip 01.
  • the conductive lines marked with neither the first touch signal S1 nor the second touch signal S2 are the virtual touch signal lines 46. Regarding this, I won't repeat it in the following.
  • each row of first touch electrodes 211 (that is, each row of first touch electrode bars 211C) arranged along the first direction D1 and a plurality of first touch signals At least one first touch signal line 41 among the lines 41 is coupled.
  • each row of the first touch electrodes 211 can obtain the first touch signal S1 from the touch chip 01 through each of the first touch signal lines 41 to which they are coupled, or transmit the first touch signal S1 to the touch chip 01 A touch signal S1.
  • the first touch electrode 211 in the first row that is, the first touch electrode strip 211C in the first row
  • the first touch electrode 211 in the second column and a first touch electrode 211
  • the control signal line 41 is coupled. Since the first touch electrodes 211 in the first row are connected in series by the four electrode connecting wires 31, the first touch electrodes 211 in the first row are coupled to the first touch signal line 41. .
  • the number of the first touch signal line 41 coupled to each row of the first touch electrode 211 is illustrated by taking one as an example. In some other embodiments of the present disclosure, the number of the first touch signal lines 41 coupled to the first touch electrodes 211 in each row may be 2, 3, 4, 5, etc.
  • the nth row refers to the nth row in the second direction D2, counting from the top;
  • the mth column refers to the first direction D1, from the top Count the mth column from left to right.
  • the x-th electrode connection line 31 refers to the x-th electrode connection line 31 in the second direction D2, counting from top to bottom;
  • the second touch signal line 42 and the y-th virtual touch signal line 46 respectively refer to the y-th first touch signal line 41 and the y-th second touch signal line 41 and the y-th virtual touch signal line 41 counted from left to right in the first direction D1.
  • the control signal line 42 and the y-th virtual touch signal line 46 are examples of the y-th virtual touch signal line 46.
  • each second touch electrode 212 or each column of second touch electrodes 212 and a plurality of second touch signal lines 42 arranged along the second direction D2 At least one second touch signal line 42 is coupled to each other.
  • each second touch electrode 212 or each column of second touch electrodes 212 arranged along the second direction D2 can be connected from the touch chip 01 through each of the second touch signal lines 42 to which it is coupled.
  • each second touch electrode 212 is coupled to one second touch signal line 42.
  • each column of the second touch electrodes 212 arranged along the second direction D2 is coupled to a second touch signal line 42, which is equivalent to forming a plurality of lines extending along the second direction D2.
  • the number of the second touch signal lines 42 to which each second touch electrode 212 is coupled is taken as an example for illustration.
  • the number of the second touch signal lines 42 to which each column of the second touch electrodes 212 arranged along the second direction D2 is coupled takes one as an example for illustration.
  • the number of the second touch signal lines 42 to which each second touch electrode 212 or each column of the second touch electrode 212 arranged along the second direction D2 is coupled may be greater. Bars, such as 2, 3, 4, 5, etc.
  • each first touch signal line 41, each second touch signal line 42, and each electrode connection line 31, and their connection relationship with each common electrode 21 In addition, in FIG. 1, in order to clearly show each first touch signal line 41, each second touch signal line 42, and each electrode connection line 31, and their connection relationship with each common electrode 21, Each first touch signal line 42, each second touch signal line 42 and each electrode connection line 31 are drawn above each common electrode 21, but this does not represent their actual film layer position.
  • FIGS. 1 to 3 only illustrate a part of the array substrate 02, and the actual number of common electrodes 21 included in the array substrate 02 is far greater than the number illustrated in FIGS. 1 to 3.
  • the number of common electrodes 21 shown in FIGS. 1 to 3 is only an example.
  • the array substrate 02 provided by the above-mentioned embodiment of the present disclosure includes two kinds of touch electrodes, one is a multi-row first touch electrode strip 211C, and the other is a plurality of second touch electrodes 212 or a multi-row first touch electrode.
  • the 212 or multiple rows of second touch electrode strips 212C are configured as the other of the driving electrodes and the sensing electrodes.
  • a capacitor is formed between the driving electrode and the sensing electrode, that is, the driving electrode and the sensing electrode respectively constitute the two poles of the capacitor.
  • a human finger touches the touch area, it affects the coupling between the driving electrode and the sensing electrode near the touch point, thereby changing the capacitance between the driving electrode and the sensing electrode near the touch point.
  • the capacitance is detected, the driving electrode sends out a driving signal, and the sensing electrode receives the sensing signal.
  • the capacitance value between all driving electrodes and the sensing electrode that is, the capacitance change data of the entire touch screen, can be obtained.
  • the coordinates of each touch point can be calculated. In this way, even if there are multiple touch points in the touch area, the real coordinates of each touch can be calculated, that is, multi-touch can be realized.
  • the display function and touch control of the array substrate 02 provided by the embodiment of the present disclosure are time-sharing, the interference between the two functions is less and the touch sensitivity is higher.
  • each first touch electrode strip 211C is configured as a driving electrode for being loaded with a driving signal TX when detecting a touch position.
  • Each second touch electrode 212 or each second touch electrode strip 212C is configured as a sensing electrode for generating a sensing signal RX under the action of the driving signal TX.
  • each first touch electrode bar 211C is configured as a driving electrode; correspondingly, each first touch signal line 41 is configured as a driving signal line. In the touch phase, each first touch signal line 41 transmits a driving signal TX required for touch position detection to each first touch electrode bar 211C to which it is coupled.
  • Each second touch electrode 212 or each second touch electrode bar 212C is configured as a sensing electrode; correspondingly, each second touch signal line 42 is configured as a sensing signal line.
  • each second touch signal line 42 obtains the sensing signal RX obtained by performing touch position detection from each second touch electrode 212 or each second touch electrode bar 212C to which it is coupled, and transmits it Induction signal RX.
  • each second touch electrode 212 or each second touch electrode strip 212C is configured as a driving electrode for being loaded with a driving signal TX when detecting a touch position.
  • Each first touch electrode strip 211C is configured as a sensing electrode for generating a sensing signal RX under the action of the driving signal TX.
  • each second touch electrode 212 or each second touch electrode bar 212C is configured as a driving electrode; correspondingly, each second touch signal line 42 is configured as a driving signal line.
  • each second touch signal line 42 transmits a driving signal TX required for touch position detection to each second touch electrode 212 or each second touch electrode bar 212C to which it is coupled.
  • Each first touch electrode bar 211C is configured as a sensing electrode; correspondingly, each first touch signal line 41 is configured as a sensing signal line.
  • each first touch signal line 41 obtains the sensing signal RX obtained by performing touch position detection from the first touch electrode bar 211C to which it is coupled, and transmits the sensing signal RX.
  • each sub-pixel of the array substrate 02 includes a thin film transistor TFT and a pixel electrode 71 arranged on the base substrate 1.
  • the common electrode layer 2 can be arranged between the thin film transistor TFT and the pixel electrode layer 7 where each pixel electrode 71 is located, or on the side of the pixel electrode layer 7 away from the base substrate 1.
  • each common electrode 21 located on the common electrode layer 2 is a block of independent block electrodes, and one common electrode 21 can correspond to one pixel electrode 71, as shown in FIG. 2a and FIG. As shown in 2b, it can also correspond to multiple adjacent pixel electrodes 71 (or "cover multiple adjacent pixel electrodes 71").
  • the thin film transistor TFT includes a gate 32, an active layer 10, a source 43 and a drain 44; the source 43 and the drain 44 are in contact with the active layer 10 respectively, and the drain 44 is electrically connected with the pixel electrode 71.
  • the gate 32 is located in the gate electrode layer 3', and the source 43 and the drain 44 are located in the source/drain electrode layer 4'.
  • the first conductive layer 3 is a gate electrode layer 3 ′, and the first conductive layer 3 is located between the base substrate 1 and the common electrode layer 2.
  • a plurality of electrode connecting wires 31 in the first conductive layer 3 are located in the gate electrode layer 3'.
  • the gate electrode layer 3' also includes a plurality of gates 32 and a plurality of gate lines (the gate lines are not shown in FIG. 3).
  • each electrode connection line 31, each gate 32, and each gate line 33 can be formed by the same patterning process, so there is no need to additionally provide a step of forming each electrode connection line 31, which simplifies the manufacturing process of the array substrate 02 Effect.
  • each electrode connection line 31 and each gate line 33 are arranged parallel to each other. It can be understood that each electrode connection line 31 is electrically insulated from each gate 32 and each gate line 33.
  • the second conductive layer 4 is a source and drain electrode layer 4 ′, and the second conductive layer 4 is located between the gate electrode layer 3 ′ and the common electrode layer 2. That is, the plurality of first touch signal lines 41 and the plurality of second touch signal lines 42 in the second conductive layer 4 are located in the source-drain electrode layer 4'. It can be understood that the source-drain electrode layer 4' also includes a plurality of source electrodes 43, a plurality of drain electrodes 44, and a plurality of data lines (data lines are not shown in FIG. 3).
  • each first touch signal line 41, each second touch signal 42, each source electrode 43, each drain electrode 44, and each data line can be formed by the same patterning process, so that there is no need for additional arrangements to form each The steps of the first touch signal line 41 and each second touch signal 42 achieve the effect of simplifying the manufacturing process of the array substrate 02.
  • each first touch signal line 41, each second touch signal 42 and each data line 45 are arranged in parallel with each other. It can be understood that each first touch signal line 41, each second touch signal 42, each source 43, each drain 44, and each data line 45 are electrically insulated from each other.
  • the gate electrode layer 3'and the source/drain electrode layer 4' are the film layers used to form the thin film transistor TFT in the array substrate 02, it is only necessary to make the above-mentioned design on their patterns and electrical connection relationship, and the A plurality of electrode connection lines 31 are arranged on the gate electrode layer 3', and a plurality of first touch signal lines 41 and a plurality of second touch signal lines 42 are arranged on the source and drain electrode layer 4', thereby eliminating the need to add a new conductive layer , You can achieve mutual capacitive touch.
  • the preparation of the plurality of electrode connecting lines 31 is compatible with the preparation of the gate electrode layer 3', and the preparation of the plurality of first touch signal lines 41 and the plurality of second touch signal lines 42 is compatible with the source and drain currents.
  • the preparation of the electrode layer 4' it is possible to integrate the structure for touch control inside the array substrate 02 without increasing the patterning process, and realize mutual capacitive touch control.
  • an insulating layer for isolation is provided between different conductive layers.
  • a gate insulating layer 11 and a device are provided between the active layer 10 and the gate electrode layer 3'.
  • the thin film transistor TFT in the embodiments of the present disclosure may be a bottom gate type thin film transistor or a top gate type thin film transistor.
  • the thin film transistor TFT when the thin film transistor TFT is a top-gate thin film transistor, in a direction perpendicular to the base substrate 1 and pointing away from the base substrate 1 from close to the base substrate 1, An active layer 10, a gate insulating layer 11, a gate electrode layer 3', an interlayer dielectric layer 5', a source and drain electrode layer 4', and a second insulating layer 6 are sequentially arranged on the base substrate 1.
  • a common electrode layer 2, a pixel electrode layer 7 and a third insulating layer 8 between the second insulating layer 6 and the base substrate 1 are further provided, wherein the common electrode layer 2 can be opposite to the pixel electrode.
  • the layer 7 is closer to or farther away from the base substrate 1.
  • the common electrode layer 2 is closer to the base substrate 1 relative to the pixel electrode layer 7 as an example.
  • an insulating layer is provided between the source and drain electrode layer 4'and the gate electrode layer 3', that is, an interlayer dielectric layer 5'.
  • an interlayer dielectric layer 5' is provided between the layer 3 and the second conductive layer 4.
  • the base substrate is sequentially provided with gates.
  • a common electrode layer, a pixel electrode layer and a fifth insulating layer located between the fourth insulating layer are further provided on the side of the fourth insulating layer away from the base substrate, wherein the common electrode layer can be closer to or farther away from the pixel electrode layer Base substrate.
  • an insulating layer that is, the gate insulating layer 11, is provided between the source and drain electrode layer 4'and the gate electrode layer 3'.
  • the first conductive layer 3 is the gate electrode layer 3'and the second conductive layer 4 is the source and drain electrode layer 4', for the array substrate 02 with bottom-gate thin film transistors, the first conductive layer A gate insulating layer 11 is provided between the layer 3 and the second conductive layer 4.
  • the array substrate 01 further includes: a first insulating layer 5 disposed between the first conductive layer 3 and the second conductive layer 4, and a first insulating layer 5 disposed on the second conductive layer 4 and the second insulating layer 6 between the common electrode layer 2.
  • the first conductive layer 3 is the gate electrode layer 3'
  • the second conductive layer 4 is the source and drain electrode layer 4'
  • the thin film transistor TFT of the array substrate 02 is a top-gate thin film transistor
  • the The first insulating layer 5 is the interlayer dielectric layer 5'.
  • the first insulating layer 5 is provided with a plurality of first vias P1 penetrating the first insulating layer 5
  • the second insulating layer 6 is provided with a plurality of first vias P1 penetrating the second insulating layer 6
  • two via P2. 1 and 3 each row of the first touch electrode 211 sequentially passes through some of the second vias P2 of the plurality of second vias P2 and some of the first vias P1 of the plurality of first vias P1 It is coupled to at least one electrode connecting wire 31 (only four electrode connecting wires 31 are taken as an example in FIG. 1 for illustration).
  • each first touch electrode 211 in each row of first touch electrodes 211 passes through 4 second via holes P2 and 4 first via holes P1 in turn, and 4 electrode connection lines 31 Coupling.
  • the plurality of first via holes P1 correspond to the plurality of second via holes P2 one-to-one, that is, one first via hole P1 corresponds to one second via hole P2.
  • the orthographic projection of each first via P1 of the plurality of first vias P1 on the base substrate 1 and the orthographic projection of the corresponding second via P2 on the base substrate 1 at least partially overlap, so that the first A via hole P1 and a corresponding second via hole P2 form a sleeve hole structure P.
  • a first insulation between the two film layers is required.
  • a via hole is made in layer 5 and the second insulating layer 6, and a via hole that penetrates the two insulating layers of the first insulating layer 5 and the second insulating layer 6 is directly made. Due to the large hole depth, engraving may occur. Bad corrosion.
  • a first via hole P1 and a second via hole P2 corresponding to the first via hole P1 are respectively formed to form a sleeve hole structure P penetrating two insulating layers, which can reduce etching It is difficult, and can improve the contact yield between the first touch electrode 211 and the electrode connecting line 31.
  • each row of the first touch electrodes 211 corresponds to at least one row of the hole structure P.
  • the perforation structures P in each row of perforation structures P are arranged along the first direction D1 and correspond to the first touch electrodes 211 in each row of the first touch electrodes 211 respectively.
  • the four first touch electrodes 211 in the first row correspond to the four rows of perforation structures P.
  • the perforation structure P in the first row includes four perforation structures P.
  • the four sleeve hole structures P correspond to the four first touch electrodes 211 in the first row one-to-one.
  • each row of perforation structures P in the second, third, and fourth rows of perforation structures P also includes four perforation structures P, and these four perforation structures P are also the same as the four perforation structures P in the first row.
  • the first touch electrodes 211 have a one-to-one correspondence. In other words, each of the four first touch electrodes 211 in the first row corresponds to the four hole structures P located in different rows.
  • each electrode connection line 31 extends along the first direction D1, and each electrode connection line 31 passes A row of perforation structures P corresponding to the row of first touch electrodes 211 is coupled to each of the first touch electrodes 211 in the row of first touch electrodes 211.
  • the first electrode connecting wire 31 is coupled to each first touch electrode 211 of the first touch electrode 211 in the first row through the sleeve hole structure P in the first row.
  • the embodiments of the present disclosure include but are not limited to the implementation manners provided in the following embodiments.
  • the second insulating layer 6 is provided with a plurality of second via holes P2 penetrating the second insulating layer 6.
  • each row of the first touch electrode 211 is coupled to at least one first touch signal line 41 through at least one second via P2 of the plurality of second vias P2.
  • each row of first touch electrodes 211 in each row of first touch electrodes 211, one of the first touch electrodes 211 is coupled to one first touch signal line 41 through four second via holes P2.
  • the other first touch electrodes 211 are connected to the first touch electrode 211 through four electrode connecting wires 31. In this way, each row of the first touch electrodes 211 is coupled to one first touch signal line 41.
  • the first touch electrodes 211 in the second column are coupled to one first touch signal line 41 through four second via holes P2. Since the first touch electrode 211 in the first row is connected in series by the four electrode connecting wires 31, in the touch phase, one of the first touch electrodes 211 in the first row and the second column can be coupled.
  • the first touch signal line 41 transmits the first touch signal S1 to the first touch electrode 211 in the first row and second column, and then the four electrode connecting lines of the first touch electrode 211 in the first row are connected in series. 31. Transmit the first touch signal to each of the remaining first touch electrodes 211 of the first row of first touch electrodes 211, so as to realize that the first row of first touch electrodes 211 are coupled to one first touch signal line 41 Pick up.
  • each first touch electrode 211 in each row of first touch electrodes 211 corresponds to at least one column of second via holes P2, and each column of second via holes P2 The two via holes P2 are arranged along the second direction D2.
  • the first touch electrode 211 in the first row and the second column corresponds to a column of second via holes P2, this column of second via holes P2 includes four second via holes P2, and the four second via holes P2 are arranged along the second direction D2 .
  • each first touch electrode 211 in each row of first touch electrodes 211 corresponds to a column of second via holes P2 for illustration.
  • the number of columns of the second via P2 corresponding to each first touch electrode 211 in each row of the first touch electrode 211 may be multiple columns, such as 2 columns, 3 columns, 4 columns, 5 columns, etc.
  • each first touch signal line 41 extends along the second direction D2.
  • Each first touch signal line 41 is coupled to the row of first touch electrodes 211 through a column of second via holes P2 corresponding to one of the first touch electrodes 211 of the row of first touch electrodes 211.
  • the second first touch signal line 41 extends along the second direction D2, and passes through a column of second via holes P2 corresponding to the first touch electrodes 211 in the first row and the second column, and is connected to the first touch in the first row.
  • the electrode 211 is coupled.
  • each first touch signal line 41 passes through one of the first touch electrodes 211 in the row
  • a row of second via holes P2 corresponding to one first touch electrode 211 is coupled to the row of first touch electrodes 211.
  • the position where the row of second via holes P2 corresponding to the first touch electrode 211 is located is referred to as the first touch signal access point 41L of the row of first touch electrode 211.
  • the first touch signal access point 41L is at least one first touch signal line 41 coupled to each row of the first touch electrode 211, and each first touch signal line 41 connects the first touch The control signal S1 is transmitted to the position of the first touch electrode 211 in the row. It can also be said that the first touch signal access point 41L is a position where each row of the first touch electrode 211 is coupled to each first touch signal line 41.
  • the first touch electrode 211 in the first row is coupled to a first touch signal line 41.
  • the first touch signal line 41 is coupled to the first touch electrode 211 in the first row through a column of second via holes P2 corresponding to the first touch electrode 211 in the first row and second column.
  • the position where a column of second via holes P2 corresponding to the first touch electrode 211 in the first row and the second column is located is the first touch signal access point 41L of the first touch electrode 211 in the first row.
  • first touch signal lines 41 to which the first touch electrodes 211 are coupled in each row is the same as the number of first touch signal access points 41L of the first touch electrodes 211 in each row. .
  • the number of the first touch signal line 41 to which the first touch electrode 211 of each row is coupled is one, and the first touch signal access point 41L of the first touch electrode 211 of each row The number is 1.
  • the number of the first touch signal line 41 to which the first touch electrode 211 of the first row is coupled is one, then the first touch electrode 211 of the first row The number of one touch signal access point 41L is one.
  • the number of the first touch signal lines 41 to which the first touch electrodes 211 of each row is coupled is two, and the first touch signal access point of the first touch electrodes 211 of each row The number of 41L is two.
  • the first touch signal access points 41L of the first touch electrodes 211 in each row are arranged in an inverted V shape on the base substrate 1 (in FIG. 5).
  • the dashed line W1 and W2 constitute the figure).
  • the first touch signal line 41 includes a first end 411 and a second end 412, wherein the first end 411 is configured to be connected to the touch chip 01.
  • the two sides of the array substrate 02 extending along the first direction D1 are respectively a first side 02A and a second side 02B, wherein, in the extending direction of the first touch signal line 41, the first end 411 points toward the second end 412 , The first side 02A is closer to the first end 411.
  • the distance from each first touch signal access point 41L to the first side 02A of the array substrate 02 is a first distance h.
  • the averaging line that divides the array substrate 02 into two equally along the first direction D1 is called the middle line W3 of the array substrate 02.
  • the distance between each first touch signal access point 41L and the middle line W3 of the array substrate 02 is the second distance d.
  • the relationship between the second distance d and the first distance h corresponding to each first touch signal access point 41L is: the second distance d becomes larger as the first distance h decreases. That is, among the first touch signal access points 41L of the first touch electrodes 211 in each row, the first distance h from each first touch signal access point 41L to the first side 02A of the array substrate 02 is greater than The first touch signal access point 41L is closer to the middle line W3 of the array substrate 02; the first distance h from each first touch signal access point 41L to the first side 02A of the array substrate 02 is smaller , The first touch signal access point 41L is farther away from the middle line W3 of the array substrate 02. In this way, the arrangement of the orthographic projection of each first touch signal access point 41L of each row of the first touch electrode 211 on the base substrate 1 is in an inverted V shape.
  • the first distance h from the first touch signal access point 41L of the first touch electrode 211 in the first row to the first side 02A of the array substrate 02 is the largest, and the first touch in the first row
  • the first touch signal access point 41L of the electrode 211 is closest to the middle line W3 of the array substrate 02.
  • the first touch signal access point 41L of the first touch electrode 211 of the first row, the second row, the third row, the fourth row, the fifth row, the sixth row, the seventh row, and the eighth row to the array substrate 02 The first distance h of the first side 02A of the first side 02A gradually becomes smaller, and the second distance d from the middle line W3 of the array substrate 02 gradually becomes larger.
  • the first touch signal access point 41L of the first touch electrode 211 in the first row, second row, third row, fourth row, fifth row, sixth row, seventh row, and eighth row The arrangement of the orthographic projection on the base substrate 1 is in an inverted V shape.
  • the effective section of each first touch signal line 41 that is, the section between each first touch signal access point 41L of each first touch signal line 41 and the first side 02A of the array substrate 02 is more
  • the long effective section is arranged closer to the middle of the array substrate 02, and the shorter effective section is arranged farther away from the middle of the array substrate 02.
  • the first touch signal line 41 is possible to reduce the probability that the effective section of each first touch signal line 41 is damaged when the edge portion of the array substrate 02 is damaged. For example, even if the upper left corner and
  • the second conductive layer 4 is provided with a plurality of virtual touch signal lines 46 extending along the second direction D2.
  • the driving signal attenuation of the first touch electrodes 211 in each row can be reduced and the detection signal distortion rate of the first touch electrodes 211 in each row can be reduced, thereby improving the positioning of the touch position in the touch phase. accuracy.
  • a plurality of virtual touch signal lines 46 and a plurality of first touch signal lines 41 and a plurality of second touch signal lines 42 are disposed on the second conductive layer 4 in the same layer. As shown in FIGS. 7a and 7a, each virtual touch signal line 46 and each first touch signal line 41 and each second touch signal line 42 are arranged in parallel with each other.
  • each first touch signal line 41 each second touch signal line 42, each source 43, each drain 44, each data line 45, and each virtual touch signal line 46 Electrically insulated from each other.
  • a first insulating layer 5 is provided between the first conductive layer 3 and the second conductive layer 4, and a plurality of first via holes P1 penetrating the first insulating layer 5 are provided in the first insulating layer 5.
  • each first touch electrode 211 in each row of first touch electrodes 211 corresponds to at least one column of first via holes P1, and each first via hole P1 in each column of first via holes P1 extends along the second Arrange in direction D2.
  • the second conductive layer 4 further includes a plurality of virtual touch signal lines 46 extending along the second direction D2. As shown in FIG. 6, in each row of first touch electrodes 211, except for the first touch electrodes 211 coupled to at least one first touch signal line 41, each of the other first touch electrodes 211 corresponds to at least one Virtual touch signal line 46.
  • each virtual touch signal line 46 of the at least one virtual touch signal line 46, through a row of first via holes P1 corresponding to its corresponding first touch electrode 211, will pass through the row of first via holes P1.
  • the electrode connecting wires 31 of a via P1 are electrically connected.
  • the plurality of virtual touch signal lines 46, the plurality of electrode connection lines 31, and the plurality of first touch signal lines 41 form an electrically connected network, and the intersection points (points pointed to by P) of the network are distributed On each first touch electrode 211 of each row of the first touch electrode 211.
  • the first touch signal S1 is transmitted to each first touch electrode 211 of each row of the first touch electrode 211 through the network.
  • the resistance of each first touch electrode 211 is reduced, thereby reducing the attenuation of the driving signal of each row of the first touch electrode 211 and reducing the distortion rate of the detection signal of each row of the first touch electrode 211, thereby improving the positioning of the touch position. accuracy.
  • each of the other three first touch electrodes 211 is the first The touch electrode 211 corresponds to one virtual touch signal line 46.
  • each virtual touch signal line 46 electrically connects each electrode connecting line 31 passing through the first via hole P1 of the row of the first via hole P1 corresponding to the corresponding first touch electrode 211.
  • the first row of the first touch electrode 211 corresponds to one virtual touch signal line 46
  • the first touch electrode 211 corresponds to a row of first vias P1
  • the row of first vias P1 includes four first vias. ⁇ P1.
  • the virtual touch signal line 46 connects the four electrode connection lines 31 (that is, the first, second, third, and fourth electrode connection lines 31 from the top) that pass through the four first via holes P1. ) Electrical connection.
  • the first touch electrodes 211 in the first row respectively correspond to a virtual touch signal line 46, and the two virtual touch signal lines 46 also correspond to each other.
  • the four electrode connecting wires 31 are electrically connected.
  • three virtual touch signal lines, four electrode connection lines 31, and one first touch signal line 41 corresponding to the first touch electrode 211 in the first row form an electrically connected network.
  • the intersection points are distributed on the first touch electrodes 211 of the first touch electrodes 211 in the first row.
  • the first touch signal S1 is transmitted to each first touch electrode 211 of the first touch electrode 211 in the first row through the network.
  • the multiple virtual touch signal lines 46 are multiple first touch signal lines 41 that are not connected to the touch chip 01, and among the multiple virtual touch signal lines 46 At least one virtual touch signal line 46 has multiple breaks E. That is, the difference between the multiple virtual touch signal lines 46 and the multiple first touch signal lines 41 is that the multiple first touch signal lines 41 are connected to the touch chip 01, and the multiple virtual touch signal lines 43 are not connected to the touch chip 01.
  • the touch chip 01 is connected, and at least one virtual touch signal line 43 of the plurality of virtual touch signal lines 46 has a plurality of breaks E.
  • the multiple virtual touch signal lines 43 are not electrically connected to the touch chip 01, that is, each virtual touch signal line 46 of the multiple virtual touch signal lines 46 does not have a break E.
  • the positions of the multiple fractures E include at least but not limited to the following three situations:
  • the orthographic projection of at least one of the plurality of fractures E on the base substrate 1 is located on the base substrate of two adjacent first touch electrodes 211 along the second direction D2. Between the orthographic projections. That is, at least one of the multiple fractures E is between two adjacent first touch electrodes 211 along the second direction D2. It can also be said that at least one virtual touch signal line 46 of the plurality of virtual touch signal lines 46 is disconnected between two adjacent first touch electrodes 211 along the second direction D2. For example, as shown in FIG. 6, the first virtual touch signal line 46 is disconnected between the first touch electrode 211 in the first row and the first column and the first touch electrode 211 in the second row and the first column. .
  • the first touch signal S1 when the first touch signal S1 is loaded on the first touch electrode 211 in the second row and the first column, the first touch signal S1 is also loaded on the virtual touch signal line 46 coupled with it. If the virtual touch signal line 46 is not disconnected between the first touch electrode 211 in the first row and the first column and the first touch electrode 211 in the second row and the first column, then the first touch electrode 211 is loaded.
  • the virtual touch signal line 46 of the control signal S1 will affect the first touch electrode 211 in the first row and the first column, and easily cause the first touch electrode 211 in the first row and the first touch in the second row.
  • the signal crosstalk between the electrodes 211 affects the accuracy of the positioning of the touch position. .
  • the orthographic projection of at least one of the plurality of fractures E on the base substrate 1 is located in the adjacent first touch electrode 211 and one second touch electrode along the second direction D2.
  • the control electrode 212 is between the orthographic projections on the base substrate 1. That is, at least one of the multiple fractures E is between a first touch electrode 211 and a second touch electrode 212 that are adjacent to each other along the second direction D2, that is, multiple virtual touches
  • At least one virtual touch signal line 46 of the signal lines 46 is disconnected between a first touch electrode 211 and a second touch electrode 212 adjacent to each other along the second direction D2.
  • the first virtual touch signal line 46 is disconnected between the first touch electrode 211 in the second row and the first column and the second touch electrode 212 in the third row and the first column. .
  • the first touch signal S1 loaded on the first touch electrode 211 in the second row and the first column is different from the first touch signal S1 loaded on the second touch electrode 212 in the third row and the first column.
  • the loaded second touch signal S2 is two different types of signals. Of these two different types of signals, one is a drive signal and the other is an induction signal. If the virtual touch signal line 46 is not disconnected between the first touch electrode 211 in the second row and the first column and the second touch electrode 212 in the third row and the first column, then the second row and the first touch electrode 212 are not disconnected.
  • the first touch signal S1 loaded on the first touch electrode 211 of the column and the second touch signal S2 loaded on the second touch electrode 212 of the third row and the first column are likely to interfere with each other, affecting Accuracy of touch location positioning.
  • the orthographic projection of at least one of the multiple fractures E on the base substrate 1 is located between the orthographic projections of two adjacent first touch electrodes 211 on the base substrate 1 along the second direction D2 .
  • the orthographic projection of at least one of the multiple fractures E on the base substrate 1 is located on the adjacent first touch electrode 211 and one second touch electrode 212 along the second direction D2 on the substrate. Between the orthographic projections on the substrate 1.
  • the embodiments of the present disclosure include, but are not limited to, the implementation manners provided in the following embodiments.
  • each second touch electrode 212 is coupled to at least one second touch signal line 42 through at least one third via P3 of the plurality of third vias P3.
  • each second touch electrode 212 corresponds to at least one row of third via holes P3, and each third via hole P3 in each row of third via holes P3 is arranged along the second direction D2 .
  • each second touch signal line 42 extends along the second direction D2.
  • Each second touch signal line 42 is coupled to the second touch electrode 212 through a row of third via holes P3 corresponding to the second touch electrode 212.
  • the second touch electrode 212 in the fourth row and the first column is coupled to a second touch signal line 42, and the second touch signal line 42 extends along the second direction D2.
  • the second touch electrode 212 in the fourth row and the first column corresponds to a column of third via holes P3.
  • the column of third via holes P3 includes four third via holes P3, and the four third via holes P3 are arranged along the second direction D2 .
  • the second touch signal line 42 is coupled to the second touch electrode 212 in the fourth row and the first column through the four third via holes P3.
  • the array substrate provided by the embodiment of the present disclosure has a touch area 021 and a peripheral area 022 located on at least one side of the touch area 021.
  • the peripheral area 022 is located on the lower side of the touch area 021 along the second direction D2.
  • the second touch signal lines 42 coupled to the second touch electrodes 212 of each column are coupled to each other in the peripheral area 022, so that the second touch electrodes 212 of each column are connected in series. Pick up.
  • two second touch electrodes 212 of the second touch electrodes 212 in the first column are respectively coupled to one second touch signal line 42, and the two second touch signal lines 42 are coupled to each other in the peripheral area 022, so that the two second touch electrodes 212 in the first row of second touch electrodes 212 are connected in series.
  • a plurality of third via holes P3 penetrating through the second insulating layer 6 are provided in the second insulating layer 6.
  • the second touch electrodes 212 of each column are coupled to at least one second touch signal line 42 through at least one third via P3 of the plurality of third vias P3.
  • FIG. 10 illustrates that each column of the second touch electrode 212 is coupled to a second touch signal line 42 through eight third via holes P3 among the plurality of third via holes P3 as an example. It can be understood that the present invention The disclosed embodiments include but are not limited to this.
  • each row of second touch electrodes 212 corresponds to at least one row of third via holes P3.
  • the third via holes P3 are arranged along the second direction D2, and each row of third via holes P3 are arranged along the second direction D2.
  • the holes P3 correspond to the second touch electrodes 212 in each column of the second touch electrodes 212, respectively.
  • each second touch signal line 42 extends along the second direction D2.
  • Each second touch signal line 42 is coupled to the row of second touch electrodes 212 through a row of third via holes P3 corresponding to the row of second touch electrodes 212.
  • the second touch electrode 212 in the first column is taken as an example:
  • the first row of second touch electrodes 212 corresponds to a row of third vias P3, where the row of second touch electrodes 212 includes two second touch electrodes 212, and the row of third vias P3 includes eight third vias. ⁇ P3.
  • Each of the two second touch electrodes 212 corresponds to four third via holes P3.
  • the row of second touch electrodes 212 is coupled to a second touch signal line 42, and the second touch signal line 42 extends along the second direction D2.
  • the second touch signal line 42 is coupled to the first row of second touch electrodes 212 through the eight third via holes P3.
  • a part of the common electrodes 21 of the plurality of common electrodes 21 are multiplexed as the first touch electrodes 211 to form a plurality of first touch units X.
  • Another part of the common electrodes 21 among the plurality of common electrodes 21 is multiplexed into the second touch electrodes 212 to form a plurality of second touch units Y.
  • each of the plurality of first touch units X includes at least one first touch electrode 211; and the plurality of second touch units Y Each of the second touch units Y includes at least one second touch electrode 212.
  • each first touch unit X in the control unit X includes 4 first touch electrodes 211.
  • 12 common electrodes 21 are multiplexed as second touch electrodes 212, forming 3 second touch electrodes Unit Y, each of the three second touch units Y includes four second touch electrodes 212.
  • the arrangement of the first touch unit X and the second touch unit Y includes, but is not limited to, the following three methods:
  • the first touch unit X and the second touch unit Y are alternately arranged.
  • the first touch unit X and the second touch unit Y are alternately arranged.
  • the first touch unit X and the second touch unit Y are alternately arranged; and along the second direction D2, the first touch unit X and The second touch units Y are alternately arranged. In this way, the first touch unit X and the second touch unit Y can be evenly distributed in the entire touch area, thereby improving the touch effect.
  • the first touch unit X includes 2-8 first touch electrodes 211; the second touch unit Y includes 2-8 second touch electrodes 212.
  • FIG. 12 only takes the first touch unit X including four first touch electrodes 211 and the second touch unit Y including four second touch electrodes 212 as an example for illustration.
  • the touch area 021 of the array substrate 02 is divided into a plurality of sub-regions F, and each of the plurality of sub-regions F has two first touch controls arranged in each sub-region F.
  • 16 common electrodes 21 of the plurality of common electrodes 21 are divided into one sub-area F, forming a plurality of sub-areas F. Eight of the 16 common electrodes 21 are multiplexed as first touch electrodes 211 to form two first touch units X, and each first touch unit X includes four first touch electrodes 211. Eight of the 16 common electrodes 21 are multiplexed as second touch electrodes 212 to form two second touch units Y, and each second touch unit Y includes four second touch electrodes 212.
  • 16 common electrodes 21 among the plurality of common electrodes 21 are designed as a group.
  • other numbers can be designed as a group, for example, 15 common electrodes 21 are designed as a group, 17 common electrodes 21 are designed as a group, and 18 common electrodes 21 are designed as a group.
  • the boundary of the area adjacent to the first touch unit X and the second touch unit Y may not be completely linear gaps, for example, set as a curve or a broken line boundary that occludes each other, so that better touch control can be formed. effect.
  • each common electrode that is, each of the first touch electrode 211 and the second second touch electrode 212
  • the shape of each common electrode includes various shapes, such as square, rectangle, rhombus, Polygons and so on.
  • only the shape of each of the common electrodes in the plurality of common electrodes is square as an example for illustration. It should be understood that the embodiments of the present disclosure include but are not limited to this.
  • the common electrodes (ie, the first touch electrodes 211 and the second second touch electrodes 212) of the plurality of common electrodes have the same shape.
  • the shape of at least one common electrode in the plurality of common electrodes is different from the shape of other common electrodes in the plurality of common electrodes.
  • the common electrodes (ie, the first touch electrodes 211 and the second second touch electrodes 212) of the plurality of common electrodes have the same size. Or, the size of at least one common electrode in the plurality of common electrodes is different from the shape of other common electrodes in the plurality of common electrodes.
  • each first touch electrode 211 in the plurality of first touch electrodes 211 is the same as the shape of each first touch electrode 212 in the plurality of second touch electrodes 212.
  • the shape of each first touch electrode 211 in the plurality of first touch electrodes 211 and the shape of each first touch electrode 212 in the plurality of second touch electrodes 212 are both Square or rectangle or rhombus.
  • the shape of each first touch electrode 211 in the plurality of first touch electrodes 211 is different from the shape of each first touch electrode 212 in the plurality of second touch electrodes 212.
  • the size of each first touch electrode 211 in the plurality of first touch electrodes 211 is equal to the size of each first touch electrode 212 in the plurality of second touch electrodes 212.
  • the shape of each first touch electrode 211 in the plurality of first touch electrodes 211 is equal to the size of each first touch electrode 212 in the plurality of second touch electrodes 212.
  • the size of each first touch electrode 211 in the plurality of first touch electrodes 211 is not equal to the size of each first touch electrode 212 in the plurality of second touch electrodes 212.
  • an embodiment of the present disclosure also provides a touch display device 1A.
  • the touch display device 1A includes the array substrate 02 of any of the above-mentioned embodiments, and the touch chip 01.
  • the touch chip 01 is coupled to a plurality of first touch signal lines 41 and a plurality of second touch signal lines 42 of the array substrate 02.
  • the touch chip 01 is configured to provide a first touch signal S1 required for touch position detection to each of the plurality of first touch signal lines 41, and to provide a first touch signal S1 to the plurality of second touch signal lines 41.
  • Each second touch signal line 42 in the control signal line 42 provides a second touch signal S2 required for touch position detection.
  • the touch display device 1A is a liquid crystal display device, and the touch display device 1A may further include: an opposite substrate 03 disposed opposite to the array substrate 02; and located on the array substrate 02 and the liquid crystal layer 04 between the cell substrate 03.
  • the opposite substrate 03 may be a color filter substrate; or, when the array substrate 02 is a COA (color filter on array) type array substrate, that is, when a color filter film is formed on the array substrate 02, the opposite The substrate 03 may be a cover plate, for example, cover glass.
  • COA color filter on array
  • each sub-pixel includes a pixel electrode and a common electrode, and the array substrate 02 and the counter substrate 03 are packaged in a cell to form a liquid crystal display device
  • the liquid crystal display panel may be an AD-SDS type (Advanced-Super Dimensional Switching, advanced super dimensional field switch) panel, which passes through the edge generated between the pixel electrode and the common electrode on the side of the array substrate 02 The electric field enables the aligned liquid crystal molecules between the electrodes and above the electrodes to be deflected in a plane direction parallel to the display surface of the display panel, thereby increasing the viewing angle and improving the light transmission efficiency of the liquid crystal layer.
  • AD-SDS type Advanced-Super Dimensional Switching, advanced super dimensional field switch
  • the above-mentioned touch display device 1A may also include a backlight module that provides a backlight, a driving circuit part, etc., and the specific structure will not be repeated here.
  • the touch display device 1A may be any device that displays images regardless of motion (for example, video) or fixed (for example, still image), and regardless of text or picture. More specifically, it is expected that the described embodiments can be implemented in or associated with a variety of electronic devices, including but not limited to mobile phones, wireless devices, and personal data assistants (Portable Android Device, Abbreviated as PAD), handheld or portable computer, GPS (Global Positioning System) receiver/navigator, camera, MP4 (full name MPEG-4 Part 14) video player, camera, game console, watch , Clocks, calculators, TV monitors, flat panel displays, computer monitors, car displays (e.g., odometer displays, etc.), navigators, cockpit controllers and/or displays, camera view displays (e.g., vehicle rearview Camera displays), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging and aesthetic structures (for example, for displays that display an image of a piece of jewelry), etc.
  • GPS Global Positioning System
  • MP4 full name MPEG-4
  • the embodiment of the present disclosure further provides a driving method of the array substrate 02, which is applied to the array substrate 02 of any of the above-mentioned embodiments.
  • the driving method includes a plurality of driving cycles, and each driving cycle of the plurality of driving cycles includes a display phase and a touch phase.
  • S12 sequentially transmitting the first touch signal to each row of the first touch electrode of the array substrate row by row;
  • the embodiment of the present disclosure further provides a driving method of the array substrate 02, which is applied to the array substrate 02 of any of the above-mentioned embodiments;
  • the driving method includes a plurality of driving periods, and each driving period of the plurality of driving periods includes a display phase And the touch stage; among them, the display stage includes S21:
  • the touch phase includes S22 ⁇ S23:
  • S22 Transmit the second touch signals to each second touch electrode of the array substrate one by one; or, transmit the second touch signals to each second touch electrode of the array substrate in sequence column by column.
  • FIG. 14 exemplarily shows a driving sequence.
  • the following describes the driving methods of the above two array substrates with reference to FIG. 1 and FIG. 14, taking the i-th frame as an example:
  • the gate scan signal is transmitted to each gate signal line Gate1, Gate2...Gatep of the array substrate 02 in turn, and the common electrode signal is transmitted to each common electrode 21 in the common electrode layer 2.
  • the common electrode layer 2 and the pixel The electrode layer 7 cooperates to form an electric field to drive each sub-pixel to display, so as to realize the display function.
  • each first touch electrode strip 211C is configured as a driving electrode
  • each second touch electrode 212 or each second touch electrode strip 212C is configured as a sensing electrode
  • the touch chip 01 is configured as a driving electrode.
  • Rows sequentially transmit drive signals (ie, first touch signal S1) TX1, TX2...TX q to each row of first touch electrode strips 211C, from each second touch electrode 212 or each column of second touch electrode strips
  • the 212C obtains the sensing signals (second touch signal S2) RX1, RX2...RXq generated under the action of the driving signals TX1, TX2...TXq to realize the mutual capacitive touch function.
  • each first touch electrode bar 211C is configured as a sensing electrode
  • each second touch electrode 212 or each second touch electrode bar 212C is configured as a driving electrode
  • the touch chips 01 are configured one by one Transmit driving signals TX1, TX2...TXq to each second touch electrode 212 in turn, or transmit driving signals TX1, TX2...TXq to each second touch electrode strip 212C in turn column by column;
  • the touch electrode strip 211C obtains the sensing signals RX1, RX2...RXq generated under the action of the driving signals TX1, TX2...TXq to realize the mutual capacitive touch function.
  • the embodiments of the present disclosure provide a method for manufacturing the array substrate 02.
  • the manufacturing method of the array substrate 02 provided by the embodiment of the present disclosure includes S1 to S5.
  • a gate electrode layer 3' is formed on the base substrate 1 through one patterning process; the gate electrode layer 3'includes a plurality of gate lines, a plurality of gate electrodes 32 and a plurality of electrode connecting lines 31.
  • a first insulating layer 5 is formed on the side of the gate electrode layer 3'away from the base substrate 1; and in the first insulating layer 5, a plurality of first via holes P1 penetrating the first insulating layer 5 are formed.
  • a source-drain electrode layer 4' is formed on the side of the first insulating layer 5 away from the base substrate 1; the source-drain electrode layer 4'includes a plurality of first touch signal lines 41 and a plurality of first touch signal lines 41; Two touch signals 42, multiple sources 43, multiple drains 44, multiple data lines, and multiple virtual touch signal lines 46.
  • each of the plurality of first touch signal lines 41 and each of the plurality of virtual touch signal lines 46 pass through the plurality of first vias Some of the first via holes P1 in P1 are electrically connected to some of the electrode connecting wires 31 among the plurality of electrode connecting wires 31.
  • a second insulating layer 6 is formed on the side of the source and drain electrode layer 4'away from the base substrate 1; and in the second insulating layer 6, a plurality of second via holes P2 penetrating the second insulating layer 6 are formed.
  • a common electrode layer 2 is formed on the side of the second insulating layer 6 away from the base substrate 1; the common electrode layer 2 includes a plurality of common electrodes 21.
  • each common electrode 21 that is multiplexed as the first touch electrode 211 passes through some of the second via holes P2 in the plurality of second via holes P2, and is connected to a first touch signal.
  • the line 41 or a virtual touch signal line 46 is coupled.
  • each common electrode 21 that is multiplexed as the second touch electrode 212 is coupled to a second touch signal 42 through some second via holes P2 of the plurality of second via holes P2. Pick up.
  • the manufacturing method of the array substrate 02 provided by the embodiment of the present disclosure further includes S01 to S04:
  • a light-shielding layer LS is formed on the base substrate 1; the orthographic projection of the light-shielding layer LS on the base substrate 1 at least covers the area between the source 43 and the drain 44 of the thin film transistor TFT to be formed ( That is, the region where the channel is formed when the thin film transistor TFT is turned on).
  • the first insulating layer 5 and the gate insulating layer 11 are also provided with source vias for making electrical contact between the source 43 and the active layer 10, and for making the drain 44 and the active Layer 10 forms a drain via for electrical contact.
  • the source electrode forms electrical contact with the active layer 10 through the source electrode via hole
  • the drain electrode 44 forms electrical contact with the active layer 10 through the drain electrode via hole.
  • the manufacturing method of the array substrate 02 provided by the embodiment of the present disclosure further includes:
  • a third insulating layer 8 is formed on the side of the common electrode layer 2 away from the base substrate 1; and in the third insulating layer 8, a plurality of via holes N penetrating the third insulating layer 8 are formed.
  • a pixel electrode layer 7 is formed on the side of the third insulating layer 8 away from the base substrate 1; the pixel electrode layer 7 includes a plurality of pixel electrodes 71, and each pixel electrode 71 of the plurality of pixel electrodes 71 sequentially passes through the via M It forms electrical contact with the via hole N and the drain electrode 44.

Abstract

一种阵列基板,包括衬底基板、公共电极层、第一导电层,以及第二导电层。公共电极层包括阵列式布置的多个公共电极;多个公共电极中的一部分被复用为第一触控电极,另一部分被复用为第二触控电极。第一导电层包括多条电极连接线;沿第一方向排列的每行第一触控电极被至少一条电极连接线串接。第二导电层包括多条第一触控信号线和多条第二触控信号线;沿第一方向排列的每行第一触控电极与至少一条第一触控信号线耦接,每条第一触控信号线被配置为传输第一触控信号;每个第二触控电极或每列第二触控电极与至少一条第二触控信号线耦接,每条第二触控信号线被配置为传输第二触控信号。其中,第一方向与第二方向相交叉。

Description

阵列基板及其驱动方法、触控显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种阵列基板及其驱动方法、触控显示装置。
背景技术
随着显示技术的快速发展,触控显示装置已经普及到人们的日常生活中。其中,内嵌式触控显示装置,是将触控电极内嵌在触控显示装置内部的一种装置,具有装置整体的厚度小、制作成本低的优点。
发明内容
一方面,提供一种阵列基板。所述阵列基板包括衬底基板、设置于所述衬底基板一侧的公共电极层、设置于所述公共电极层靠近或远离所述衬底基板一侧的第一导电层,以及设置于所述公共电极层靠近或远离所述衬底基板一侧的第二导电层。所述公共电极层包括阵列式布置的多个公共电极;所述多个公共电极中的一部分公共电极被复用为第一触控电极,所述多个公共电极中的另一部分公共电极被复用为第二触控电极。所述第一导电层包括多条电极连接线;沿第一方向排列的每行第一触控电极被所述多条电极连接线中的至少一条电极连接线串接。所述第二导电层包括多条第一触控信号线和多条第二触控信号线;沿第一方向排列的每行第一触控电极与所述多条第一触控信号线中的至少一条第一触控信号线耦接,每条第一触控信号线被配置为传输第一触控信号;每个第二触控电极或沿第二方向排列的每列第二触控电极与所述多条第二触控信号线中的至少一条第二触控信号线耦接,每条第二触控信号线被配置为传输第二触控信号。其中,所述第一方向与所述第二方向相交叉。
在一些实施例中,所述第一导电层为栅电极层,所述第一导电层位于所述衬底基板与所述公共电极层之间。所述第二导电层为源漏电极层,所述第二导电层位于所述栅电极层与所述公共电极层之间。
在一些实施例中,所述阵列基板还包括:设置于所述第一导电层与所述第二导电层之间第一绝缘层,以及设置于所述第二导电层与所述公共电极层之间的第二绝缘层。所述第一绝缘层中设有贯通所述第一绝缘层的多个第一过孔。所述第二绝缘层中设有贯通所述第二绝缘层的多个第二过孔。每行第一触控电极依次通过所述多个第二过孔中的一些第二过孔和所述多个第一过孔中的一些第一过孔与所述至少一条电极连接线耦接。
在一些实施例中,所述多个第一过孔与所述多个第二过孔一一对应,所述多个第一过孔中的每个第一过孔在所述衬底基板上的正投影与相对应的第二过孔在所述衬底基板上的正投影至少部分重叠,以使所述第一过孔与相对应的第二过孔形成套孔结构。
在一些实施例中,每行第一触控电极对应至少一行套孔结构;每行套孔结构中的各套孔结构,沿所述第一方向排列,且与每行第一触控电极中的各第一触控电极分别相对应。串接每行第一触控电极的所述至少一条电极连接线中,每条电极连接线沿所述第一方向延伸;每条电极连接线通过该行第一触控电极对应的一行套孔结构,与该行第一触控电极中的各第一触控电极耦接。
在一些实施例中,每行第一触控电极通过所述多个第二过孔中的至少一个第二过孔与所述至少一条第一触控信号线耦接。
在一些实施例中,每行第一触控电极中的每个第一触控电极对应至少一列第二过孔,每列第二过孔中的各第二过孔沿所述第二方向排列。每行第一触控电极所耦接的所述至少一条第一触控信号线中,每条第一触控信号线沿所述第二方向延伸;每条第一触控信号线通过该行第一触控电极中的一个第一触控电极对应的一列第二过孔,与该行第一触控电极耦接。
在一些实施例中,每行第一触控电极所耦接的所述至少一条第一触控信号线中,每条第一触控信号线通过该行第一触控电极中的一个第一触控电极对应的一列第二过孔,与该行第一触控电极耦接,其中,该个第一触控电极对应的一列第二过孔所在的位置为该行第一触控电极的第一触控信号接入点;各行第一触控电极的各个第一触控信号接入点,在所述衬底基板上的正投影排布呈倒V字形。
在一些实施例中,每行第一触控电极中的每个第一触控电极对应至少一列第一过孔,每列第一过孔中的各第一过孔沿所述第二方向排列。所述第二导电层还包括沿所述第二方向延伸的多条虚拟触控信号线;每行第一触控电极中,除与所述至少一条第一触控信号线耦接的第一触控电极外,其它每个第一触控电极对应至少一条虚拟触控信号线。所述至少一条虚拟触控信号线中的每条虚拟触控信号线,通过其对应的第一触控电极所对应的一列第一过孔,将经过该列第一过孔的各电极连接线电性连通。
在一些实施例中,所述多条虚拟触控信号线中的至少一条虚拟触控信号线具有多处断口。所述多处断口中的至少一处断口在所述衬底基板上的正投影位于沿所述第二方向的相邻两个第一触控电极在所述衬底基板上的正投影 之间;和/或,所述多处断口中的至少一处断口在所述衬底基板上的正投影位于沿所述第二方向的相邻的一个第一触控电极和一个第二触控电极在所述衬底基板上的正投影之间。
在一些实施例中,所述阵列基板还包括:设置于所述第二导电层与所述公共电极层之间的第二绝缘层,所述第二绝缘层中设有贯通所述第二绝缘层的多个第三过孔。每个第二触控电极或每列第二触控电极通过所述多个第三过孔中的至少一个第三过孔与所述至少一条第二触控信号线耦接。
在一些实施例中,每个第二触控电极对应至少一列第三过孔,每列第三过孔中的各第三过孔沿所述第二方向排列。每个第二触控电极所耦接的所述至少一条第二触控信号线中,每条第二触控信号线沿所述第二方向延伸;每条第二触控信号线通过该第二触控电极对应的一列第三过孔,与该第二触控电极耦接。
在一些实施例中,所述阵列基板具有触控区域,和位于所述触控区域至少一侧的周边区域。每列第二触控电极所耦接的各第二触控信号线在所述周边区域相互耦接。
在一些实施例中,每列第二触控电极对应至少一列第三过孔,每列第三过孔中,各第三过孔沿所述第二方向排列,且各第三过孔与每列第二触控电极中的各第二触控电极分别相对应。每列第二触控电极所耦接的所述至少一条第二触控信号线中,每条第二触控信号线沿所述第二方向延伸;每条第二触控信号线通过该列第二触控电极对应的一列第三过孔,与该列第二触控电极耦接。
在一些实施例中,所述公共电极层包括具有多个第一触控单元和多个第二触控单元。其中,所述多个第一触控单元中的每个第一触控单元包括至少一个所述第一触控电极;所述多个第二触控单元中的每个第二触控单元包括至少一个所述第二触控电极。
在一些实施例中,沿所述第一方向,所述第一触控单元和所述第二触控单元交替布置;和/或,沿所述第二方向,所述第一触控单元和所述第二触控单元交替布置。
在一些实施例中,所述第一触控单元包括2~8个所述第一触控电极;所述第二触控单元包括2~8个所述第二触控电极。
在一些实施例中,所述阵列基板的触控区域被划分为多个子区域,所述多个子区域中的每个子区域内布置有两个所述第一触控单元和两个所述第二触控单元。每个所述第一触控单元包括四个所述第一触控电极,每个所述第 二触控包括四个第二触控电极。
另一方面,提供一种显示装置。所述显示装置包括:如上述任一实施例所述的阵列基板,以及触控芯片。所述触控芯片与所述阵列基板的多条第一触控信号线和多条第二触控信号线耦接;所述触控芯片被配置为,向所述多条第一触控信号线中的每条第一触控信号线提供进行触摸位置检测所需的第一触控信号,所述多条第二触控信号线中的每条第二触控信号线提供进行触摸位置检测所需的第二触控信号。
又一方面,提供一种阵列基板的驱动方法,应用于如上述任一实施例所述的阵列基板。所述驱动方法包括多个驱动周期,所述多个驱动周期中的每个驱动周期包括显示阶段和触控阶段。其中,在所述显示阶段,向所述阵列基板的各公共电极传输公共电压信号。在所述触控阶段,逐行依次向所述阵列基板的每行第一触控电极传输第一触控信号;从所述阵列基板的每个第二触控电极或每列第二触控电极获取第二触控信号。或者,在所述触控阶段,逐个依次向所述阵列基板的每个第二触控电极传输第二触控信号;或,逐列依次向所述阵列基板的每列第二触控电极传输第二触控信号;从所述阵列基板的每行第一触控电极获取第一触控信号。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开一些实施例提供的一种阵列基板的俯视图;
图2a为图1所示的阵列基板的A11部分和A12部分的布局图;
图2b为图1所示的阵列基板的A13部分的布局图;
图3为图1所示的阵列基板沿剖面线B1-B1的剖视示意图;
图4为根据本公开一些实施例提供的另一种阵列基板的俯视图;
图5为根据本公开一些实施例提供的再一种阵列基板的俯视图;
图6为根据本公开一些实施例提供的又一种阵列基板的俯视图;
图7a为图6所示的阵列基板的A21部分和A22部分的布局图;
图7b为图6所示的阵列基板的A23的布局图;
图8为图6所示的阵列基板沿剖面线B2-B2的剖视示意图;
图9为根据本公开一些实施例提供的又一种阵列基板的俯视图;
图10为根据本公开一些实施例提供的又一种阵列基板的俯视图;
图11为根据本公开一些实施例提供的又一种阵列基板的俯视图;
图12为根据本公开一些实施例提供的又一种阵列基板的俯视图;
图13为根据本公开一些实施例提供的一种触控显示装置的侧视结构图;
图14为根据本公开一些实施例提供的阵列基板进行驱动的时序图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”和“串接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含 义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
“上/上方”、“下/下方”、“行/行方向”以及“列/列方向”等指示的方位或位置关系的术语为基于附图所示的方位或位置关系,仅是为了便于说明本公开的技术方案的简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
例如,在某些情况下,涉及“行方向”的实施例可以在“列方向”的情况下实施等等,相反亦如此。将本公开所述方案进行90°旋转或镜像后亦属本公开要求保护的权利范畴。
如图1、图2a、图2b以及图3所示,本公开的一些实施例提供一种阵列基板02。在该阵列基板02中,采用内嵌式(in cell)的触控结构,将用于实现触控功能的触控电极集成于阵列基板02的内部,实现对触摸位置的检测。
请参阅图3,该阵列基板02包括:衬底基板1、设置于衬底基板1一侧的公共电极层2、第一导电层3以及第二导电层4。
第一导电层3设置于公共电极层2靠近或远离衬底基板1的一侧。例如,如图3所示,第一导电层3相对于公共电极层2靠近衬底基板1。再如,在另一些实施例中,第一导电层3相对于公共电极层2远离衬底基板1。
第二导电层4设置于公共电极层2靠近或远离衬底基板1的一侧。例如,如图3所示,第二导电层4相对于公共电极层2靠近衬底基板1。再如,在另一些实施例中,第二导电层4相对于公共电极层2远离衬底基板1。
请参阅图1、图2a和图2b,其中,公共电极层2包括阵列式布置的多个公共电极21。
此处,阵列式布置可以是排布成多行和多列,例如,图1中以4行6列进行示意。设定多个公共电极21排列的行方向为第一方向D1,列方向为第二方向D2。可以理解的是,多个公共电极排列的行方向和列方向相互交叉,即第一方向D1与第二方向D2相互交叉,例如第一方向D1与第二方向D2相互垂直。
在本公开实施例中,在阵列基板02驱动的显示阶段,公共电极层2与阵列基板02的像素电极层7配合形成电场,以驱动显示面板的各子像素PX进行显示。请参阅图1,在阵列基板02驱动的触控阶段,公共电极层2的多个公共电极21中的一部分公共电极21被复用为第一触控电极211,多个公共电 极21中的另一部分公共电极21被复用为第二触控电极212,以实现触摸位置的检测。即,公共电极层2既具有驱动显示的功能,又具有触摸位置检测的功能,实现了对公共电极层2的复用。由此,相对于相关技术中,既设置用于实现显示功能的公共电极层,又设置用于实现触摸位置检测功能的触控电极层的技术方案,本公开实施例提供的阵列基板02可以减小阵列基板02的整体厚度,简化阵列基板02的内部结构。
请参阅图1、图2a、图2b和图3,第一导电层3包括多条电极连接线31。沿第一方向D1排列的每行第一触控电极211被多条电极连接线31中的至少一条电极连接线31串接,这相当于形成了沿第一方向D1延伸的多行第一触控电极条211C。
示例性地,如图4所示,每行第一触控电极211被一条电极连接线31串接。这样,在实现每行第一触控电极211被串接成一行第一触控电极条211C的前提下,布线较简单。
示例性地,如图1所示,每行第一触控电极211被多条电极连接线31串接。这样,每行第一触控电极条211C中的各个第一触控电极211之间,通过多条电极连接线31传输第一触控信号S1,可以提高第一触控电极条211C上信号的传输速度和均一性,从而在阵列基板02实现触摸位置检测功能时,提高触摸位置定位的准确性。
在本公开实施例中,如图1所示,串接一行第一触控电极211的多条电极连接线31可以均沿第一方向D1延伸,且沿第二方向D2并列设置。
在图1中,串接一行第一触控电极211的多条电极连接线31的数量以4条为例进行示意,在本公开的其他一些实施例中,串接一行第一触控电极211的多条电极连接线31的数量可以是3条、5条、6条、7条、8条等。
请继续参阅图1、图2a、图2b和图3,第二导电层4包括多条第一触控信号线41和多条第二触控信号线42。其中,每条第一触控信号线41被配置为传输第一触控信号S1;每条第二触控信号线42被配置为传输第二触控信号S2。
需要说明的是,在本公开的实施例中,每条第一触控信号线41和每条第二触控信号线42均与触控芯片01电连接。在本公的实施例的附图中,左侧标有第一触控信号S1的导电线是第一触控信号线41;左侧标有第二触控信号S2的导电线是第二触控信号线42。以及,出现在下文中的各条虚拟触控信号线46,与触控芯片01不连接。并且在各个附图中,沿第二方向D2延伸的导电线中,既没有标第一触控信号S1也没有标第二触控信号S2的导电线,是 虚拟触控信号线46。对此,下文中不再赘述。
请继续参阅图1、图2a、图2b和图3,沿第一方向D1排列的每行第一触控电极211(即每行第一触控电极条211C)与多条第一触控信号线41中的至少一条第一触控信号线41耦接。这样,每行第一触控电极211,可以通过其所耦接的各条第一触控信号线41,从触控芯片01处获得第一触控信号S1,或者向触控芯片01传输第一触控信号S1。
示例性地,如图1所示,第1行第一触控电极211(即第1行第一触控电极条211C)中,位于第2列的第一触控电极211与一条第一触控信号线41耦接。又因第1行的各第一触控电极211被4条电极连接线31串接,这样一来,第1行的各第一触控电极211与该条第一触控信号线41耦接。
此处,在图1中,与每行第一触控电极211耦接的第一触控信号线41的数量以1条为例进行示意。在本公开的其他一些实施例中,与每行第一触控电极211耦接的第一触控信号线41的数量可以是2条、3条、4条、5条等。
此处需要说明的是,在本公开提供的实施例中,第n行是指在第二方向D2上,从上往下数第n行;第m列是指在第一方向D1上,从左往右数第m列。另外,在下文中提到的,第x条电极连接线31是指在第二方向D2上,从上往下数第x条电极连接线31;第y条第一触控信号线41、第y条第二触控信号线42、第y条虚拟触控信号线46分别是指在第一方向D1上,从左往右数第y条第一触控信号线41、第y条第二触控信号线42、第y条虚拟触控信号线46。
请继续参阅图1、图2a、图2b和图3,每个第二触控电极212或沿第二方向D2排列的每列第二触控电极212与多条第二触控信号线42中的至少一条第二触控信号线42耦接。这样,每个第二触控电极212或沿第二方向D2排列的每列第二触控电极212,可以通过其所耦接的各条第二触控信号线42,从触控芯片01处获得第二触控信号S2,或者向触控芯片01传输第二触控信号S2。
示例性地,如图1所示,每个第二触控电极212与一条第二触控信号线42耦接。
示例性地,如图10所示,沿第二方向D2排列的每列第二触控电极212与一条第二触控信号线42耦接,这相当于形成了沿第二方向D2延伸的多列第二触控电极条212C。
此处,在图1中,每个第二触控电极212所耦接的第二触控信号线42的数量以1条为例进行示意。在图10中,沿第二方向D2排列的每列第二触控 电极212所耦接的第二触控信号线42的数量以1条为例进行示意。在本公开的其他一些实施例中,每个第二触控电极212或沿第二方向D2排列的每列第二触控电极212所耦接的第二触控信号线42的数量可以是多条,例如2条、3条、4条、5条等。
并且,在图1中,为了清楚地示出各条第一触控信号线41、各条第二触控信号线42和各条电极连接线31,以及它们与各个公共电极21的连接关系,将各条第一触控信号线42、各条第二触控信号线42和各条电极连接线31画在了各个公共电极21的上方,但是这并不代表它们的实际膜层位置。
另外,图1~图3仅示意出了阵列基板02的局部,该阵列基板02中包括的公共电极21的实际数量远多于图1~图3示意出的数量。图1~图3所示出的公共电极21的数量仅为示例。
基于此,本公开上述实施例提供的阵列基板02包括了两种触控电极,一种为多行第一触控电极条211C,另一种为多个第二触控电极212或多列第二触控电极条212C。这两种触控电极形成了互容式触控结构,即在触控阶段,多行第一触控电极条211C被配置为驱动电极和感应电极中的一种,多个第二触控电极212或多列第二触控电极条212C被配置为驱动电极和感应电极中的另一种。驱动电极和感应电极之间形成电容,即驱动电极和感应电极分别构成了电容的两极。
在人的手指触摸触控区域时,影响触摸点附近驱动电极和感应电极之间的耦合,从而改变了触摸点附近驱动电极和感应电极之间的电容量。在进行触摸检测时,检测电容大小,驱动电极发出驱动信号,感应电极接收感应信号,这样可以得到所有驱动电极和感应电极之间的电容值大小,即整个触控屏的电容变化量数据,从而可以计算出每一个触摸点的坐标。这样,即使触控区域有多个触摸点,也能计算出每个触摸的真实坐标,即可以实现多点触控。
而且,由于本公开实施例提供的阵列基板02的显示功能和触控分时进行,两种功能相互之间的干扰较少,因此触控灵敏度较高。
在一些实施例中,各第一触控电极条211C被配置为驱动电极,用于在进行触摸位置检测时被加载驱动信号TX。各第二触控电极212或各第二触控电极条212C被配置为感应电极,用于在驱动信号TX的作用下产生感应信号RX。
示例性的,各第一触控电极条211C被配置为驱动电极;相应地,各条第一触控信号线41被配置为驱动信号线。在触控阶段,各条第一触控信号线41 向其所耦接的各第一触控电极条211C传输进行触摸位置检测所需的驱动信号TX。各第二触控电极212或各第二触控电极条212C被配置为感应电极;相应地,各第二触控信号线42被配置为感应信号线。在触控阶段,各第二触控信号线42从其所耦接的各第二触控电极212或各第二触控电极条212C处获取进行触摸位置检测所得到的感应信号RX,并传输感应信号RX。
在一些实施例中,各第二触控电极212或各第二触控电极条212C被配置为驱动电极,用于在进行触摸位置检测时被加载驱动信号TX。各第一触控电极条211C被配置为感应电极,用于在驱动信号TX的作用下产生感应信号RX。
示例性的,各第二触控电极212或各第二触控电极条212C被配置为驱动电极;相应地,各条第二触控信号线42被配置为驱动信号线。在触控阶段,各条第二触控信号线42向其所耦接的各第二触控电极212或各第二触控电极条212C传输进行触摸位置检测所需的驱动信号TX。各第一触控电极条211C被配置为感应电极;相应地,各条第一触控信号线41被配置为感应信号线。在触控阶段,各第一触控信号线41从其所耦接的第一触控电极条211C处获取进行触摸位置检测所得到的感应信号RX,并传输感应信号RX。
需要说明的是,如图2a、图2b和图3所示,阵列基板02的每个子像素均包括设置于衬底基板1上的薄膜晶体管TFT和像素电极71。公共电极层2可设置在薄膜晶体管TFT和各个像素电极71所在的像素电极层7之间,或者设置在像素电极层7远离衬底基板1的一侧。
需要说明的是,在本公开提供的各实施例中,位于公共电极层2的各公共电极21为一块块独立的块状电极,一个公共电极21可以对应一个像素电极71,如图2a和图2b所示,也可以对应多个相邻的像素电极71(或者说“覆盖相邻的多个像素电极71”)。
薄膜晶体管TFT包括栅极32、有源层10、源极43和漏极44;源极43和漏极44分别与有源层10接触,漏极44与像素电极71电连接。其中,栅极32处于栅电极层3'中,源极43和漏极44位于源漏电极层4'中。
在一些实施例中,如图3所示,第一导电层3为栅电极层3',第一导电层3位于衬底基板1与公共电极层2之间。也就是说,第一导电层3中的多条电极连接线31位于栅电极层3'中。可以理解的是,栅电极层3'还包括多个栅极32和多条栅线(图3中未示意出栅线)。由此,各条电极连接线31、各个栅极32和各条栅线33可以通过同一构图工艺形成,从而无需额外设置形成各条电极连接线31的步骤,达到了简化阵列基板02的制作工艺的效果。
例如,如图2a和图2b所示,各条电极连接线31与各条栅线33之间相互平行设置。可以理解的是,各条电极连接线31与各个栅极32和各条栅线33之间相互电性绝缘。
请继续参阅图3,在一些实施例中,第二导电层4为源漏电极层4',第二导电层4位于栅电极层3'与公共电极层2之间。也就是说,第二导电层4中的多条第一触控信号线41和多条第二触控信号42线位于源漏电极层4'中。可以理解的是,源漏电极层4'还包括多个源极43、多个漏极44、多条数据线(图3中未示意出数据线)。由此,各条第一触控信号线41、各条第二触控信号42、各源极43、各漏极44以及各条数据线可以通过同一构图工艺形成,从而无需额外设置形成各条第一触控信号线41和各条第二触控信号42的步骤,达到了简化阵列基板02的制作工艺的效果。
例如,如图2a和图2b所示,各条第一触控信号线41、各条第二触控信号42和各条数据线45之间相互平行设置。可以理解的是,各条第一触控信号线41、各条第二触控信号42、各源极43、各漏极44以及各条数据线45之间相互电性绝缘。
基于此,由于栅电极层3'和源漏电极层4'为阵列基板02中用于形成薄膜晶体管TFT的膜层,只需要对它们的图案和电连接关系做出上述的设计,即可将多条电极连接线31设置于栅电极层3',将多条第一触控信号线41和多条第二触控信号线42设置于源漏电极层4',从而无需增加新的导电层,即可实现互容式触控。也就是说,将多条电极连接线31的制备兼容于栅电极层3'的制备中,将多条第一触控信号线41和多条第二触控信号线42的制备兼容于源漏电极层4'的制备中,从而能够在不增加构图工艺的前提下,将用于触控的结构集成于阵列基板02内部,并且实现互容式触控。
在阵列基板02中,不同导电层之间设有起隔离作用的绝缘层,例如,如图3所示,设于有源层10和栅电极层3'之间的栅极绝缘层11、设于栅电极层3'和源漏电极层4'之间的层间介质层5'、设于源漏电极层4'和公共电极层2之间的第二绝缘层6、设于像素电极层7与公共电极层2之间的第三绝缘层8。
本公开实施例中的薄膜晶体管TFT可以是底栅型薄膜晶体管,也可以是顶栅型薄膜晶体管。
在一些实施例中,如图3所示,在薄膜晶体管TFT是顶栅型薄膜晶体管的情况下,在垂直于衬底基板1且由靠近衬底基板1指向远离衬底基板1的方向上,衬底基板1上依次设置有有源层10、栅极绝缘层11、栅电极层3'、 层间介质层5'、源漏电极层4'和第二绝缘层6。在第二绝缘层6远离衬底基板1的一侧还设置有公共电极层2、像素电极层7和位于二者之间的第三绝缘层8,其中,公共电极层2可相对于像素电极层7更靠近或者更远离衬底基板1,本公开实施例的附图中以公共电极层2相对于像素电极层7更靠近衬底基板1为例进行示意。
可见,基于上述结构,源漏电极层4'和栅电极层3'之间设有一层绝缘层,即层间介质层5'。也就是说,在第一导电层3为栅电极层3',第二导电层4为源漏电极层4'的情况下,对于具有顶栅型薄膜晶体管的阵列基板01而言,第一导电层3与第二导电层4之间设有层间介质层5'。
在一些实施例中,在薄膜晶体管TFT是底栅型薄膜晶体管的情况下,在垂直于衬底基板且由靠近衬底基板指向远离衬底基板1的方向上,衬底基板上依次设置有栅电极层、栅极绝缘层、有源层、源漏电极层和第四绝缘层。在第四绝缘层远离衬底基板的一侧还设置有公共电极层、像素电极层和位于二者之间的第五绝缘层,其中,公共电极层可相对于像素电极层更靠近或者更远离衬底基板。
可见,基于上述结构,源漏电极层4'和栅电极层3'之间设有一层绝缘层,即栅极绝缘层11。也就是说,在第一导电层3为栅电极层3',第二导电层4为源漏电极层4'的情况下,对于具有底栅型薄膜晶体管的阵列基板02而言,第一导电层3与第二导电层4之间设有栅极绝缘层11。
下面以本公开实施例提供的阵列基板02的薄膜晶体管TFT是顶栅型薄膜晶体管为例,对如何利用电极连接线31将沿第一方向D1排列的每行第一触控电极211串接进行说明。可以理解的是,本公开的实施例包括但不限于下述实施例中提供的实现方式。
在一些实施例中,如图1和图3所示,阵列基板01还包括:设置于第一导电层3与第二导电层4之间的第一绝缘层5,及设置于第二导电层4与公共电极层2之间的第二绝缘层6。由上面的描述可知,在第一导电层3为栅电极层3',第二导电层4为源漏电极层4'且阵列基板02的薄膜晶体管TFT是顶栅型薄膜晶体管的情况下,该第一绝缘层5即为层间介质层5'。
继续参阅图1和图3,第一绝缘层5中设有贯通第一绝缘层5的多个第一过孔P1,以及第二绝缘层6中设有贯通第二绝缘层6的多个第二过孔P2。结合图1和图3所示,每行第一触控电极211依次通过多个第二过孔P2中的一些第二过孔P2和多个第一过孔P1中的一些第一过孔P1与至少一条电极连接线31耦接(图1中仅以四条电极连接线31为例进行示意)。
示例性的,如图1所示,每行第一触控电极211中的各第一触控电极211依次通过4个第二过孔P2和4个第一过孔P1与4条电极连接线31耦接。
在一些实施例中,如图3所示,多个第一过孔P1与多个第二过孔P2一一对应,也就是说,一个第一过孔P1对应于一个第二过孔P2。多个第一过孔P1中的每个第一过孔P1在衬底基板1上的正投影与相对应的第二过孔P2在衬底基板1上的正投影至少部分重叠,以使第一过孔P1与相对应的第二过孔P2形成套孔结构P。
基于此,如图3所示,实现公共电极层2中的第一触控电极211与栅电极层3'中的电极连接线31的电连接,需要在两个膜层之间的第一绝缘层5和第二绝缘层6中制作过孔,而直接制作一个穿透第一绝缘层5和第二绝缘层6这两个绝缘层的过孔,由于孔深较大,因此可能会出现刻蚀不良。上述实施例通过分别制作一个第一过孔P1和与该第一过孔P1相对应的一个第二过孔P2,以形成一个穿透两个绝缘层的套孔结构P,这样可以降低刻蚀难度,并且可提高第一触控电极211与电极连接线31之间的接触良率。
在一些实施例中,如图1所示,每行第一触控电极211对应至少一行套孔结构P。每行套孔结构P中的各套孔结构P,沿第一方向D1排列,且与每行第一触控电极211中的各第一触控电极211分别相对应。
例如,如图1所示,第1行的4个第一触控电极211对应4行套孔结构P。在这4行套孔结构P中,第1行的套孔结构P包括4个套孔结构P。这4个套孔结构P与第1行的4个第一触控电极211一一对应。
同样,第2行、第3行、第4行的套孔结构P中的各行套孔结构P也分别包括4个套孔结构P,这4个套孔结构P也与第1行的4个第一触控电极211一一对应。也就是说,第1行的4个第一触控电极211中的各个第一触控电极211,对应4个位于不同行的套孔结构P。
基于此,如图1所示,将串接每行第一触控电极211的至少一条电极连接线31中,每条电极连接线31沿第一方向D1延伸设置,每条电极连接线31通过该行第一触控电极211对应的一行套孔结构P,与该行第一触控电极211中的各第一触控电极211耦接。
例如,如图1所示,第1条电极连接线31,通过第1行的套孔结构P与第1行的第一触控电极211中的各第一触控电极211耦接。
下面仍以本公开实施例提供的阵列基板02的薄膜晶体管TFT是顶栅型薄膜晶体管为例,对如何将沿第一方向D1排列的每行第一触控电极211与第一触控信号线41耦接进行说明。可以理解的是,本公开的实施例包括但不限于 下述实施例中提供的实现方式。
如图3所示,第二绝缘层6中设有贯通第二绝缘层6的多个第二过孔P2。请参阅图1,每行第一触控电极211通过多个第二过孔P2中的至少一个第二过孔P2与至少一条第一触控信号线41耦接。
示例性的,如图1所示,在每行第一触控电极211中,其中一个第一触控电极211,通过4个第二过孔P2与一条第一触控信号线41耦接,其他第一触控电极211,通过4条电极连接线31与该个第一触控电极211连接。这样,每行第一触控电极211则与一条第一触控信号线41耦接。
以第1行第一触控电极211为例:
第1行第一触控电极211中,处于第2列的第一触控电极211通过4个第二过孔P2与一条第一触控信号线41耦接。又因第1行第一触控电极211被4条电极连接线31串接,这样一来,在触控阶段,可以通过第1行第2列的第一触控电极211所耦接的一条第一触控信号线41,向第1行第2列的第一触控电极211传输第一触控信号S1,再由串接第1行第一触控电极211的这4条电极连接线31,将第一触控信号传输给第1行第一触控电极211的其余各个第一触控电极211,从而实现第1行第一触控电极211与一条第一触控信号线41耦接。
在一些实施例中,如图1所示,每行第一触控电极211中的每个第一触控电极211对应至少一列第二过孔P2,每列第二过孔P2中的各第二过孔P2沿第二方向D2排列。
示例性的,如图1所示,以第1行第2列第一触控电极211为例:
第1行第2列第一触控电极211对应一列第二过孔P2,这列第二过孔P2包括4个第二过孔P2,这4个第二过孔P2沿第二方向D2排列。
图1中以每行第一触控电极211中的每个第一触控电极211对应一列第二过孔P2为例进行示意。在本公开的一些实施例中,每行第一触控电极211中的每个第一触控电极211所对应的第二过孔P2的列数可以是多列,例如2列、3列、4列、5列等。
基于此,请继续参阅图1,将每行第一触控电极211所耦接的至少一条第一触控信号线41中,每条第一触控信号线41沿第二方向D2延伸设置。每条第一触控信号线41,通过该行第一触控电极211中的一个第一触控电极211对应的一列第二过孔P2,与该行第一触控电极211耦接。
示例性的,如图1所示,以第2条第一触控信号线41为例:
第2条第一触控信号线41沿第二方向D2延伸设置,并且通过第1行第 2列的第一触控电极211对应的一列第二过孔P2,与第1行第一触控电极211耦接。
请继续参阅图1,每行第一触控电极211所耦接的至少一条第一触控信号线41中,每条第一触控信号线41,通过该行第一触控电极211中的一个第一触控电极211对应的一列第二过孔P2,与该行第一触控电极211耦接。其中,该个第一触控电极211对应的一列第二过孔P2所在的位置称为该行第一触控电极211的第一触控信号接入点41L。也就是说,第一触控信号接入点41L是每行第一触控电极211所耦接的至少一条第一触控信号线41中,每条第一触控信号线41将第一触控信号S1传输给该行第一触控电极211的位置。也可以说,第一触控信号接入点41L是每行第一触控电极211与每条第一触控信号线41耦接的位置。
例如,如图1所示,以第1行第一触控电极211为例:
第1行第一触控电极211耦接有一条第一触控信号线41。其中,该条第一触控信号线41,通过第1行第2列第一触控电极211对应的一列第二过孔P2,与第1行第一触控电极211耦接。第1行第2列第一触控电极211对应的一列第二过孔P2所述在的位置,即为第1行第一触控电极211的第一触控信号接入点41L。
可以理解的是,每行第一触控电极211所耦接的第一触控信号线41的条数,与每行第一触控电极211的第一触控信号接入点41L的数量一致。
在一些实施例中,每行第一触控电极211所耦接的第一触控信号线41的条数为一条,则每行第一触控电极211的第一触控信号接入点41L的数量为1个。例如,如图1和图5所示,第1行第一触控电极211所耦接的第一触控信号线41的条数为1条,则第1行第一触控电极211的第一触控信号接入点41L的数量为1个。
在一些实施例中,每行第一触控电极211所耦接的第一触控信号线41的条数为两条,则每行第一触控电极211的第一触控信号接入点41L的数量为两个。
在一些实施例中,请参阅图5,各行第一触控电极211的各个第一触控信号接入点41L,在衬底基板1上的正投影的排布呈倒V字形(图5中虚线W1和W2组成的图形)。
下面参考图5,对上述各行第一触控电极211的各个第一触控信号接入点41L,在衬底基板1上的正投影的排布所呈现的“倒V字形”进行说明:
如图5所示,第一触控信号线41包括第一端411和第二端412,其中, 第一端411被配置为与触控芯片01连接。阵列基板02沿第一方向D1延伸的两侧分别为第一侧02A和第二侧02B,其中,在第一触控信号线41延伸方向上,第一端411指向第二端412的方向上,第一侧02A更靠近第一端411。各个第一触控信号接入点41L到阵列基板02的第一侧02A的距离为第一距离h。
沿第一方向D1将阵列基板02均分为两份的均分线称为阵列基板02的中间线W3。各个第一触控信号接入点41L到阵列基板02的中间线W3的距离为第二距离d。
其中,各个第一触控信号接入点41L对应的第二距离d和第一距离h的关系为:第二距离d随着第一距离h的减小而变大。也就是说,各行第一触控电极211的各个第一触控信号接入点41L中,每个第一触控信号接入点41L到阵列基板02的第一侧02A的第一距离h越大,该个第一触控信号接入点41L越靠近阵列基板02的中间线W3;每个第一触控信号接入点41L到阵列基板02的第一侧02A的第一距离h越小,该个第一触控信号接入点41L越远离阵列基板02的中间线W3。这样使得各行第一触控电极211的各个第一触控信号接入点41L,在衬底基板1上的正投影的排布呈倒V字形。
例如,如图5所示,第一行第一触控电极211的第一触控信号接入点41L到阵列基板02的第一侧02A的第一距离h最大,第一行第一触控电极211的第一触控信号接入点41L最靠近阵列基板02的中间线W3。第一行、第二行、第三行、第四行、第五行、第六行、第七行、第八行第一触控电极211的第一触控信号接入点41L到阵列基板02的第一侧02A的第一距离h依次逐渐变小,它们到阵列基板02的中间线W3的第二距离d依次逐渐变大。这样,第一行、第二行、第三行、第四行、第五行、第六行、第七行、第八行第一触控电极211的第一触控信号接入点41L在衬底基板1上的正投影的排布呈倒V字形。这样,各个第一触控信号线41的有效段,即各个第一触控信号线41的各个第一触控信号接入点41L到阵列基板02的第一侧02A之间的这一段,较长的有效段排布在较靠近阵列基板02中间的位置,较短的有效段排布在较远离阵列基板02中间的位置。由此,可以减小在阵列基板02的边缘部分被损坏时,各个第一触控信号线41的有效段被破坏的几率,例如即使左上角和/或右上角被损坏了,也不会切断第一触控信号线41。
如图6、图7a、图7a和图8所示,在本公开的一些实施例中,在第二导电层4设置有沿第二方向D2延伸的多条虚拟触控信号线46。通过设置该多条虚拟触控信号线46,可以减弱各行第一触控电极211的驱动信号衰减和降 低各行第一触控电极211的检测信号失真率,进而提高触控阶段触控位置定位的准确性。
下面仍以本公开实施例提供的阵列基板02的薄膜晶体管TFT是顶栅型薄膜晶体管为例,对如何通过在第二导电层4设置沿第二方向D2延伸的多条虚拟触控信号线46,提高触控阶段触控位置定位的准确性的这些实施例进行说明。
在一些实施例中,如图8所示,多条虚拟触控信号线46与多条第一触控信号线41和多条第二触控信号线42同层设置于第二导电层4。如图7a、图7a所示,各条虚拟触控信号线46与各条第一触控信号线41和各条第二触控信号线42相互平行设置。
可以理解的是,各条第一触控信号线41、各条第二触控信号线42、各源极43、各漏极44各条数据线45以及各条虚拟触控信号线46之间相互电性绝缘。
如图8所示,第一导电层3与第二导电层4之间设置有第一绝缘层5,第一绝缘层5中设有贯通第一绝缘层5的多个第一过孔P1。请参阅图6,每行第一触控电极211中的每个第一触控电极211对应至少一列第一过孔P1,每列第一过孔P1中的各第一过孔P1沿第二方向D2排列。
请参阅图6、图7a、图7a和图8,第二导电层4还包括沿第二方向D2延伸的多条虚拟触控信号线46。如图6所示,每行第一触控电极211中,除与至少一条第一触控信号线41耦接的第一触控电极211外,其它每个第一触控电极211对应至少一条虚拟触控信号线46。
请继续参阅图6,至少一条虚拟触控信号线46中的每条虚拟触控信号线46,通过其对应的第一触控电极211所对应的一列第一过孔P1,将经过该列第一过孔P1的各电极连接线31电性连通。
这样一来,多条虚拟触控信号线46、多条电极连接线31以及多条第一触控信号线41形成一个电性连通的网络,该网络的交汇点(位于P指向的点)分布于各行第一触控电极211的各第一触控电极211上。在触控阶段,第一触控信号S1通过该网络传输至各行第一触控电极211的各第一触控电极211。从而使得各第一触控电极211电阻减小,进而减弱各行第一触控电极211的驱动信号衰减和降低各行第一触控电极211的检测信号失真率,以此提高了触控位置定位的准确性。
例如,以第1行第一触控电极211为例:
第1行第一触控电极211中,除与一条第一触控信号线41耦接的第2列 第一触控电极211外,其它3个第一触控电极211中的每个第一触控电极211对应1条虚拟触控信号线46。其中,每条虚拟触控信号线46,通过其对应的第一触控电极211所对应的一列第一过孔P1,将经过该列第一过孔P1的各电极连接线31电性连通。
例如,第1列第一触控电极211对应1条虚拟触控信号线46,且该第一触控电极211对应一列第一过孔P1,该列第一过孔P1包括4个第一过孔P1。该条虚拟触控信号线46,将经过该4个第一过孔P1的4条电极连接线31(即,上起第1条、第2条、第3条、第4条电极连接线31)电性连通。
同样,第1行第一触控电极211中,第3列、第4列的第一触控电极211也分别对应的一条虚拟触控信号线46,这两条虚拟触控信号线46也将该4条电极连接线31电性连通。
这样一来,第1行第一触控电极211所对应的3虚拟触控信号线、4条电极连接线31,以及1条第一触控信号线41形成一个电性连通的网络,该网络的交汇点分布于第1行第一触控电极211的各第一触控电极211上。在触控阶段,第一触控信号S1通过该网络传输至第1行第一触控电极211的各第一触控电极211。
在一些实施例中,如图6所示,多条虚拟触控信号线46为多条不与触控芯片01连接的第一触控信号线41,且多条虚拟触控信号线46中的至少一条虚拟触控信号线46具有多处断口E。即,多条虚拟触控信号线46与多条第一触控信号线41的区别在于多条第一触控信号线41与触控芯片01连接,而多条虚拟触控信号线43不与触控芯片01连接,并且多条虚拟触控信号线46中的至少一条虚拟触控信号线43具有多处断口E。
在另外一些实施例中,多条虚拟触控信号线43不与触控芯片01电连接,即,多条虚拟触控信号线46中的各条虚拟触控信号线46不具有断口E。
在本公开的实施例中,多处断口E的位置至少包括但不限于以下三种情形:
一、如图6所示,多处断口E中的至少一处断口E在衬底基板1上的正投影位于沿第二方向D2的相邻两个第一触控电极211在衬底基板上的正投影之间。即,多处断口E中的至少一处断口E在沿第二方向D2的相邻两个第一触控电极211之间。也可以说,多条虚拟触控信号线46中的至少一条虚拟触控信号线46,在沿第二方向D2的相邻两个第一触控电极211之间断开。例如,如图6所示,第1条虚拟触控信号线46,在第1行第1列的第一触控电极211,与第2行第1列的第一触控电极211之间断开。
可以理解的是,当第2行第1列的第一触控电极211上加载有第一触控信号S1时,与其耦合的虚拟触控信号线46上也加载有第一触控信号S1,如果该条虚拟触控信号线46,在第1行第1列的第一触控电极211,与第2行第1列的第一触控电极211之间不断开,则加载有第一触控信号S1的该条虚拟触控信号线46将会对第1行第1列的第一触控电极211造成影响,容易引起第1行第一触控电极211与第2行第一触控电极211之间的信号串扰,影响触控位置定位的准确性。。
二、如图6所示,多处断口E中的至少一处断口E在衬底基板1上的正投影位于沿第二方向D2的相邻的一个第一触控电极211和一个第二触控电极212在衬底基板1上的正投影之间。即,多处断口E中的至少一处断口E在沿第二方向D2的相邻的一个第一触控电极211和一个第二触控电极212之间,也就是说,多条虚拟触控信号线46中的至少一条虚拟触控信号线46,在沿第二方向D2的相邻的一个第一触控电极211和一个第二触控电极212之间断开。例如,如图6所示,第一条虚拟触控信号线46,在第2行第1列的第一触控电极211,与第3行第1列的第二触控电极212之间断开。
可以理解的是,在触控阶段,第2行第1列的第一触控电极211上所加载的第一触控信号S1,与第3行第1列的第二触控电极212上所加载的第二触控信号S2为两种不同种类的信号。这两种不同种类的信号,一者为驱动信号,另一者为感应信号。如果该条虚拟触控信号线46,在第2行第1列的第一触控电极211,与第3行第1列的第二触控电极212之间不断开,则第2行第1列的第一触控电极211上所加载的第一触控信号S1,与第3行第1列的第二触控电极212上所加载的第二触控信号S2之间容易相互干扰,影响触控位置定位的准确性。
三、多处断口E中的至少一处断口E在衬底基板1上的正投影位于沿第二方向D2的相邻两个第一触控电极211在衬底基板1上的正投影之间。并且,多处断口E中的至少一处断口E在衬底基板1上的正投影位于沿第二方向D2的相邻的一个第一触控电极211和一个第二触控电极212在衬底基板1上的正投影之间。
下面仍以本公开实施例提供的阵列基板02的薄膜晶体管TFT是顶栅型薄膜晶体管为例,对如何实现每个第二触控电极212或沿第二方向D2排列的每列第二触控电极212与第二触控信号线42耦接进行说明。可以理解的是,本公开的实施例包括但不限于下述实施例中提供的实现方式。
在一些实施例中,如图8所示,第二绝缘层6中设有贯通第二绝缘层6 的多个第三过孔P3。请参阅图6,每个第二触控电极212通过多个第三过孔P3中的至少一个第三过孔P3与至少一条第二触控信号线42耦接。
请继续参阅图6,在一些实施例中,每个第二触控电极212对应至少一列第三过孔P3,每列第三过孔P3中的各第三过孔P3沿第二方向D2排列。
基于此,将每个第二触控电极212所耦接的至少一条第二触控信号线42中,每条第二触控信号线42沿第二方向D2延伸设置。每条第二触控信号线42通过该第二触控电极212对应的一列第三过孔P3,与该第二触控电极212耦接。
例如,如图6所示,第4行第1列第二触控电极212耦接有一条第二触控信号线42,该条第二触控信号线42沿第二方向D2延伸设置。第4行第1列第二触控电极212对应一列第三过孔P3,该列第三过孔P3包括4个第三过孔P3,这4个第三过孔P3沿第二方向D2排列。该条第二触控信号线42通过该4个第三过孔P3,与第4行第1列第二触控电极212耦接。
可以理解的是,如图9所示,本公开实施例提供的阵列基板具有触控区域021,和位于触控区域021至少一侧的周边区域022。例如,在一些实施例中,如图9所示,周边区域022位于触控区域021沿第二方向D2的下侧。
请继续参阅图9,在一些实施例,每列第二触控电极212所耦接的各第二触控信号线42在周边区域022相互耦接,以使每列第二触控电极212串接。
例如,如图9所示,第1列第二触控电极212中的两个第二触控电极212,分别耦接有一条第二触控信号线42,这两条第二触控信号线42在周边区域022相互耦接,以使第1列第二触控电极212中的两个第二触控电极212串接在一起。
在一些实施例中,如图8所示,第二绝缘层6中设有贯通第二绝缘层6的多个第三过孔P3。请参阅图10,每列第二触控电极212通过多个第三过孔P3中的至少一个第三过孔P3与至少一条第二触控信号线42耦接。
图10以每列第二触控电极212通过多个第三过孔P3中的8个第三过孔P3与一条第二触控信号线42耦接为例进行示意,可以理解的是,本公开的实施例包括但不限于此。
请继续参阅图10,每列第二触控电极212对应至少一列第三过孔P3,每列第三过孔P3中,各第三过孔P3沿第二方向D2排列,且各第三过孔P3与每列第二触控电极212中的各第二触控电极212分别相对应。每列第二触控电极212所耦接的至少一条第二触控信号线42中,每条第二触控信号线42沿第二方向D2延伸。每条第二触控信号线42通过该列第二触控电极212对 应的一列第三过孔P3,与该列第二触控电极212耦接。
例如,如图10所示,以第1列第二触控电极212为例:
第1列第二触控电极212对应一列第三过孔P3,其中,该列第二触控电极212包括两个第二触控电极212,该列第三过孔P3包括8个第三过孔P3。该两个第二触控电极212中的各个第二触控电极212对应4个第三过孔P3。该列第二触控电极212耦接有一条第二触控信号线42,该条第二触控信号线42沿第二方向D2延伸。该条第二触控信号线42通过上述8个第三过孔P3,与第1列第二触控电极212耦接。
请参阅图11和图12,在一些实施例中,多个公共电极21中的一部分公共电极21被复用为第一触控电极211,形成了多个第一触控单元X。多个公共电极21中的另一部分公共电极21被复用为第二触控电极212,形成了多个第二触控单元Y。
请继续参阅图11,在一些实施例中,多个第一触控单元X中的每个第一触控单元X包括至少一个第一触控电极211;以及多个第二触控单元Y中的每个第二触控单元Y包括至少一个第二触控电极212。
示例性的,如图11所示,24个公共电极21中,12个公共电极21被复用为第一触控电极211,形成了3个第一触控单元X,这3个第一触控单元X中各个第一触控单元X包括4第一触控电极211。24个公共电极中,12个公共电极21被复用为第二触控电极212,形成了3个第二触控单元Y,这3个第二触控单元Y中各个第二触控单元Y包括4个第二触控电极212。
本公开提供的实施例,关于第一触控单元X和第二触控单元Y的布置方式,包括但不限于以下三种方式:
一、如图12所示,在一些实施例中,沿第一方向D1,第一触控单元X和第二触控单元Y交替布置。
二、如图12所示,在一些实施例中,沿第二方向D2,第一触控单元X和第二触控单元Y交替布置。
三、如图12所示,在一些实施例中,沿第一方向D1,第一触控单元X和第二触控单元Y交替布置;以及沿第二方向D2,第一触控单元X和第二触控单元Y交替布置。这样,可以使得第一触控单元X和第二触控单元Y在整个触控区域内均匀分布,从而提高触控效果。
在一些实施例中,第一触控单元X包括2~8个第一触控电极211;第二触控单元Y包括2~8个第二触控电极212。图12仅以第一触控单元X包括4个第一触控电极211,第二触控单元Y包括4个第二触控电极212为例进行 示意。
在一些实施例中,如图11和图12所示,阵列基板02的触控区域021被划分为多个子区域F,多个子区域F中的每个子区域F内布置有两个第一触控单元X和两个第二触控单元Y;每个第一触控单元X包括四个第一触控电极211,每个第二触控单元Y包括四个第二触控电极212。
也就是说,如图11和图12所示,在阵列基板的触控区域021,多个公共电极21中的16个公共电极21被划分为一个子区域F,形成多个子区域F。这16个公共电极21中的8个被复用为第一触控电极211,形成两个第一触控单元X,每个第一触控单元X包括四个第一触控电极211。这16个公共电极21中的8个被复用为第二触控电极212,形成两个第二触控单元Y,每个第二触控单元Y包括四个第二触控电极212。
即,在阵列基板的触控区域021,多个公共电极21中的16个公共电极21为一组进行设计。当然也可以是其他个数为一组进行设计,例如15个公共电极21为一组进行设计,17个公共电极21为一组进行设计,18个公共电极21为一组进行设计。
在一些实施例中,第一触控单元X和第二触控单元Y相邻的区域边界可以不完全是直线空隙,例如设置为相互咬合的曲线或者折线边界,这样可以形成更好的触控效果。
在本公开的实施例中,多个公共电极中的各公共电极(即各第一触控电极211和第二第二触控电极212)的形状包括多种形状,例如正方形,矩形、菱形、多边形等。在上述实施例以及下述实施例中,仅以多个公共电极中的各公共电极的形状为正方形为例进行示意,可以理解的是,在本公开的实施例包括但不限于此。
在本公开的实施例中,多个公共电极中的各公共电极(即各第一触控电极211和第二第二触控电极212)的形状相同。或者,多个公共电极中至少一个公共电极的形状与多个公共电极中其他公共电极的形状不相同。
在本公开的实施例中,多个公共电极中的各公共电极(即各第一触控电极211和第二第二触控电极212)的大小相同。或者,多个公共电极中至少一个公共电极的大小与多个公共电极中其他公共电极的形状不相同。
在本公开的实施例中,多个第一触控电极211中的各第一触控电极211的形状,与多个第二触控电极212中的各第一触控电极212的形状相同。例如,如图3所示,多个第一触控电极211中的各第一触控电极211的形状,以及多个第二触控电极212中的各第一触控电极212的形状均为正方形或矩 形或菱形。或者,多个第一触控电极211中的各第一触控电极211的形状,与多个第二触控电极212中的各第一触控电极212的形状不相同。
在本公开的实施例中,多个第一触控电极211中的各第一触控电极211的大小,与多个第二触控电极212中的各第一触控电极212的大小相等。例如,如图3所示,多个第一触控电极211中的各第一触控电极211的形状,与多个第二触控电极212中的各第一触控电极212的大小相等。或者,多个第一触控电极211中的各第一触控电极211的大小,与多个第二触控电极212中的各第一触控电极212的大小不相等。
如图13所示,本公开的实施例还提供一种触控显示装置1A,该触控显示装置1A包括上述任一实施例的阵列基板02,以及触控芯片01。
请参阅图1,触控芯片01与阵列基板02的多条第一触控信号线41和多条第二触控信号线42耦接。触控芯片01被配置为,向多条第一触控信号线41中的每条第一触控信号线41提供进行触摸位置检测所需的第一触控信号S1,向多条第二触控信号线42中的每条第二触控信号线42提供进行触摸位置检测所需的第二触控信号S2。
请参阅图13,在一些实施例中,该触控显示装置1A为液晶显示装置,该触控显示装置1A还可包括:与该阵列基板02相对设置的对向基板03;以及,位于阵列基板02与对盒基板03之间的液晶层04。
示例性的,该对向基板03可以为彩膜基板;或者,当该阵列基板02为COA(color filter on array)型阵列基板时,即阵列基板02上制作有彩色滤色膜时,对向基板03可以为盖板,例如为盖板玻璃(Cover glass)。
在上述触控显示装置1A为液晶显示装置的情况下,在上述阵列基板02中,每个子像素均包括有像素电极和公共电极,该阵列基板02与对向基板03对盒封装形成液晶显示装置所包括的液晶显示面板后,该液晶显示面板可以为AD-SDS型(Advanced-Super Dimensional Switching,高级超维场开关)面板,通过位于阵列基板02侧的像素电极与公共电极之间产生的边缘电场,使电极间以及电极上方的取向液晶分子都能在平行于显示面板显示面的平面方向内发生偏转,从而可在增大视角的同时提高液晶层的透光效率。
上述触控显示装置1A还可包括提供背光的背光模组、驱动电路部分等,具体结构此处不再赘述。
本公开实施例提供的触控显示装置1A可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是图画的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联, 所述多种电子装置包括但不限于移动电话、无线装置、个人数据助理(Portable Android Device,缩写为PAD)、手持式或便携式计算机、GPS(Global Positioning System,全球定位系统)接收器/导航器、相机、MP4(全称为MPEG-4 Part 14)视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于显示一件珠宝的图像的显示器)等。
本公开的实施例又提供一种阵列基板02的驱动方法,应用于如上述任一实施例的阵列基板02。
该驱动方法包括多个驱动周期,该多个驱动周期中的每个驱动周期包括显示阶段和触控阶段。
在显示阶段包括S11:
S11:向阵列基板的各公共电极传输公共电压信号。
在触控阶段包括S11~S12:
S12:逐行依次向阵列基板的每行第一触控电极传输第一触控信号;
S13:从阵列基板的每个第二触控电极或每列第二触控电极获取第二触控信号。
本公开的实施例再提供一种阵列基板02的驱动方法,应用于如上述任一实施例的阵列基板02;驱动方法包括多个驱动周期,多个驱动周期中的每个驱动周期包括显示阶段和触控阶段;其中,在显示阶段包括S21:
S21:向阵列基板的各公共电极传输公共电压信号。
其中,在触控阶段包括S22~S23:
S22:逐个依次向阵列基板的每个第二触控电极传输第二触控信号;或,逐列依次向阵列基板的每列第二触控电极传输第二触控信号。
S23:从阵列基板的每行第一触控电极获取第一触控信号。
请参阅图14,示例性地给出了一种驱动时序,下面结合图1和图14,以第i帧为例,对上述两种阵列基板的驱动方法进行说明:
在显示时间段,向阵列基板02的每条栅极信号线Gate1、Gate2……Gatep依次传输栅扫描信号,向公共电极层2中的各公共电极21传输公共电极信号,公共电极层2与像素电极层7配合形成电场,驱动各子像素进行显示,以实现显示功能。
在各第一触控电极条211C被配置为驱动电极,各第二触控电极212或各 第二触控电极条212C被配置为感应电极的情况下,在触控阶段,触控芯片01逐行依次向每行第一触控电极条211C传输驱动信号(即第一触控信号S1)TX1、TX2……TX q,从每个第二触控电极212或每列第二触控电极条212C获取在驱动信号TX1、TX2……TX q的作用下产生的感应信号(第二触控信号S2)RX1、RX2……RX q,以实现互容式触控功能。
在各第一触控电极条211C被配置为感应电极,各第二触控电极212或各第二触控电极条212C被配置为驱动电极的情况下,在触控阶段,触控芯片01逐个依次向每个第二触控电极212传输驱动信号TX1、TX2……TXq,或,逐列依次向每列第二触控电极条212C传输驱动信号TX1、TX2……TXq;从每行第一触控电极条211C获取在驱动信号TX1、TX2……TXq的作用下产生的感应信号RX1、RX2……RXq,以实现互容式触控功能。
这样一来,使用本公开实施例提供的阵列基板的驱动方法,可以实现显示和互容式触控两种功能的分时实施。
为了更加清楚地说明和理解本公开提供的上述各实施例,本公开的实施例提供了一种阵列基板02的制作方法。
需要说明的是,下面提供的实施例,以图8所示的阵列基板02为例进行说明。可以理解的是,本公开的实施例提供的阵列基板02的制作方法包括但不限于此。
本公开的实施例提供的阵列基板02的制作方法包括S1~S5。
S1、通过一次构图工艺,在衬底基板1形成栅电极层3';该栅电极层3'包括多条栅线、多个栅极32和多条电极连接线31。
S2、在栅电极层3'远离衬底基板1的一侧形成第一绝缘层5;并在第一绝缘层5中,形成贯通第一绝缘层5的多个第一过孔P1。
S3、通过一次构图工艺,在第一绝缘层5远离衬底基板1的一侧形成源漏电极层4';该源漏电极层4'包括多条第一触控信号线41、多条第二触控信号42、多个源极43、多个漏极44、多条数据线以及多条虚拟触控信号线46。
其中,多条第一触控信号线41中的每条第一触控信号线41,以及多条虚拟触控信号线46中的每条虚拟触控信号线46,通过多个第一过孔P1中的一些第一过孔P1,与多条电极连接线31中的一些电极连接线31电连接。
S4、在源漏电极层4'远离衬底基板1的一侧形成第二绝缘层6;并在第二绝缘层6中,形成贯通第二绝缘层6的多个第二过孔P2。
S5、在第二绝缘层6远离衬底基板1的一侧形成公共电极层2;该公共电 极层2包括多个公共电极21。
其中,多个公共电极21中,被复用为第一触控电极211的每个公共电极21,通过多个第二过孔P2中的一些第二过孔P2,与一条第一触控信号线41或一条虚拟触控信号线46耦接。多个公共电极21中,被复用为第二触控电极212的每个公共电极21,通过多个第二过孔P2中的一些第二过孔P2,与一条第二触控信号42耦接。
本公开的实施例提供的阵列基板02的制作方法还包括S01~S04:
S01、在S1之前,在衬底基板1上形成遮光层LS;该遮光层LS在衬底基板1上的正投影至少覆盖待形成薄膜晶体管TFT的源极43和漏极44之间的区域(即在薄膜晶体管TFT导通的情况下形成沟道的区域)。
S02、在遮光层LS远离衬底基板1的一侧形成缓冲层9。
S03、在缓冲层9远离衬底基板1的一侧形成多个有源层10。
S04、在多个有源层10远离衬底基板1的一侧形成栅绝缘层11。
需要说明的是,在第一绝缘层5和栅极绝缘层11中还设置有用于使源极43与有源层10形成电接触的源极过孔,及用于使漏极44与有源层10形成电接触的漏极过孔。在形成源漏电极层4'的过程中,源极通过该源极过孔与有源层10形成电接触,漏极44通过该漏极过孔与有源层10形成电接触。
本公开的实施例提供的阵列基板02的制作方法还包括:
S41、在S4中形成第二绝缘层6之后,在S5中在第二绝缘层6上形成公共电极层2之前,在第二绝缘层6中,形成贯通第二绝缘层6的多个过孔M。
S6、在公共电极层2远离衬底基板1的一侧形成第三绝缘层8;并在第三绝缘层8中,形成贯通第三绝缘层8的多个过孔N。
S7、第三绝缘层8远离衬底基板1的一侧形成像素电极层7;该像素电极层7包括多个像素电极71,多个像素电极71中的每个像素电极71依次通过过孔M和过孔N与漏极44形成电接触。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种阵列基板,包括:
    衬底基板;
    设置于所述衬底基板一侧的公共电极层,所述公共电极层包括阵列式布置的多个公共电极;所述多个公共电极中的一部分公共电极被复用为第一触控电极,所述多个公共电极中的另一部分公共电极被复用为第二触控电极;
    设置于所述公共电极层靠近或远离所述衬底基板一侧的第一导电层,所述第一导电层包括多条电极连接线;沿第一方向排列的每行第一触控电极被所述多条电极连接线中的至少一条电极连接线串接;
    设置于所述公共电极层靠近或远离所述衬底基板一侧的第二导电层,所述第二导电层包括多条第一触控信号线和多条第二触控信号线;沿第一方向排列的每行第一触控电极与所述多条第一触控信号线中的至少一条第一触控信号线耦接,每条第一触控信号线被配置为传输第一触控信号;每个第二触控电极或沿第二方向排列的每列第二触控电极与所述多条第二触控信号线中的至少一条第二触控信号线耦接,每条第二触控信号线被配置为传输第二触控信号;
    其中,所述第一方向与所述第二方向相交叉。
  2. 根据权利要求1所述的阵列基板,其中,
    所述第一导电层为栅电极层,所述第一导电层位于所述衬底基板与所述公共电极层之间;
    所述第二导电层为源漏电极层,所述第二导电层位于所述栅电极层与所述公共电极层之间。
  3. 根据权利要求2所述的阵列基板,所述阵列基板还包括:
    设置于所述第一导电层与所述第二导电层之间的第一绝缘层,所述第一绝缘层中设有贯通所述第一绝缘层的多个第一过孔;和
    设置于所述第二导电层与所述公共电极层之间的第二绝缘层,所述第二绝缘层中设有贯通所述第二绝缘层的多个第二过孔;
    每行第一触控电极依次通过所述多个第二过孔中的一些第二过孔和所述多个第一过孔中的一些第一过孔与所述至少一条电极连接线耦接。
  4. 根据权利要求3所述的阵列基板,其中,所述多个第一过孔与所述多个第二过孔一一对应,所述多个第一过孔中的每个第一过孔在所述衬底基板上的正投影与相对应的第二过孔在所述衬底基板上的正投影至少部分重叠,以使所述第一过孔与相对应的第二过孔形成套孔结构。
  5. 根据权利要求4所述的阵列基板,其中,每行第一触控电极对应至少一行套孔结构;每行套孔结构中的各套孔结构,沿所述第一方向排列,且与每行第一触控电极中的各第一触控电极分别相对应;
    串接每行第一触控电极的所述至少一条电极连接线中,每条电极连接线沿所述第一方向延伸;每条电极连接线通过该行第一触控电极对应的一行套孔结构,与该行第一触控电极中的各第一触控电极耦接。
  6. 根据权利要求3所述的阵列基板,其中,每行第一触控电极通过所述多个第二过孔中的至少一个第二过孔与所述至少一条第一触控信号线耦接。
  7. 根据权利要求6所述的阵列基板,其中,每行第一触控电极中的每个第一触控电极对应至少一列第二过孔,每列第二过孔中的各第二过孔沿所述第二方向排列;
    每行第一触控电极所耦接的所述至少一条第一触控信号线中,每条第一触控信号线沿所述第二方向延伸;每条第一触控信号线通过该行第一触控电极中的一个第一触控电极对应的一列第二过孔,与该行第一触控电极耦接。
  8. 根据权利要求7所述的阵列基板,每行第一触控电极所耦接的所述至少一条第一触控信号线中,每条第一触控信号线通过该行第一触控电极中的一个第一触控电极对应的一列第二过孔,与该行第一触控电极耦接,其中,该个第一触控电极对应的一列第二过孔所在的位置为该行第一触控电极的第一触控信号接入点;
    各行第一触控电极的各个第一触控信号接入点,在所述衬底基板上的正投影排布呈倒V字形。
  9. 根据权利要求7所述的阵列基板,其中,每行第一触控电极中的每个第一触控电极对应至少一列第一过孔,每列第一过孔中的各第一过孔沿所述 第二方向排列;
    所述第二导电层还包括沿所述第二方向延伸的多条虚拟触控信号线;每行第一触控电极中,除与所述至少一条第一触控信号线耦接的第一触控电极外,其它每个第一触控电极对应至少一条虚拟触控信号线;
    所述至少一条虚拟触控信号线中的每条虚拟触控信号线,通过其对应的第一触控电极所对应的一列第一过孔,将经过该列第一过孔的各电极连接线电性连通。
  10. 根据权利要求9所述的阵列基板,所述多条虚拟触控信号线中的至少一条虚拟触控信号线具有多处断口;
    所述多处断口中的至少一处断口在所述衬底基板上的正投影位于沿所述第二方向的相邻两个第一触控电极在所述衬底基板上的正投影之间;和/或,
    所述多处断口中的至少一处断口在所述衬底基板上的正投影位于沿所述第二方向的相邻的一个第一触控电极和一个第二触控电极在所述衬底基板上的正投影之间。
  11. 根据权利要求2~10中任一项所述的阵列基板,所述阵列基板还包括:
    设置于所述第二导电层与所述公共电极层之间的第二绝缘层,所述第二绝缘层中设有贯通所述第二绝缘层的多个第三过孔;
    每个第二触控电极或每列第二触控电极通过所述多个第三过孔中的至少一个第三过孔与所述至少一条第二触控信号线耦接。
  12. 根据权利要求11所述的阵列基板,其中,每个第二触控电极对应至少一列第三过孔,每列第三过孔中的各第三过孔沿所述第二方向排列;
    每个第二触控电极所耦接的所述至少一条第二触控信号线中,每条第二触控信号线沿所述第二方向延伸;每条第二触控信号线通过该第二触控电极对应的一列第三过孔,与该第二触控电极耦接。
  13. 根据权利要求12所述的阵列基板,所述阵列基板具有触控区域,和位于所述触控区域至少一侧的周边区域;
    每列第二触控电极所耦接的各第二触控信号线在所述周边区域相互耦 接。
  14. 根据权利要求11所述的阵列基板,其中,每列第二触控电极对应至少一列第三过孔,每列第三过孔中,各第三过孔沿所述第二方向排列,且各第三过孔与每列第二触控电极中的各第二触控电极分别相对应;
    每列第二触控电极所耦接的所述至少一条第二触控信号线中,每条第二触控信号线沿所述第二方向延伸;每条第二触控信号线通过该列第二触控电极对应的一列第三过孔,与该列第二触控电极耦接。
  15. 根据权利要求1~14中任一项所述的阵列基板,所述公共电极层包括具有多个第一触控单元和多个第二触控单元;其中,
    所述多个第一触控单元中的每个第一触控单元包括至少一个所述第一触控电极;
    所述多个第二触控单元中的每个第二触控单元包括至少一个所述第二触控电极。
  16. 根据权利要求15所述的阵列基板,其中,
    沿所述第一方向,所述第一触控单元和所述第二触控单元交替布置;和/或,
    沿所述第二方向,所述第一触控单元和所述第二触控单元交替布置。
  17. 根据权利要求16所述的阵列基板,其中,
    所述第一触控单元包括2~8个所述第一触控电极;
    所述第二触控单元包括2~8个所述第二触控电极。
  18. 根据权利要求17所述的阵列基板,其中,所述阵列基板的触控区域被划分为多个子区域,所述多个子区域中的每个子区域内布置有两个所述第一触控单元和两个所述第二触控单元;
    每个所述第一触控单元包括四个所述第一触控电极,每个所述第二触控包括四个第二触控电极。
  19. 一种触控显示装置,包括:
    如权利要求1~18中任一项所述的阵列基板;
    触控芯片,所述触控芯片与所述阵列基板的多条第一触控信号线和多条第二触控信号线耦接;所述触控芯片被配置为,向所述多条第一触控信号线中的每条第一触控信号线提供进行触摸位置检测所需的第一触控信号,所述多条第二触控信号线中的每条第二触控信号线提供进行触摸位置检测所需的第二触控信号。
  20. 一种阵列基板的驱动方法,应用于如权利要求1~17中任一项所述的阵列基板;所述驱动方法包括多个驱动周期,所述多个驱动周期中的每个驱动周期包括显示阶段和触控阶段;其中,
    在所述显示阶段,向所述阵列基板的各公共电极传输公共电压信号;
    在所述触控阶段,
    逐行依次向所述阵列基板的每行第一触控电极传输第一触控信号;
    从所述阵列基板的每个第二触控电极或每列第二触控电极获取第二触控信号;
    或者,在所述触控阶段,
    逐个依次向所述阵列基板的每个第二触控电极传输第二触控信号;或,逐列依次向所述阵列基板的每列第二触控电极传输第二触控信号;
    从所述阵列基板的每行第一触控电极获取第一触控信号。
PCT/CN2019/125366 2019-12-13 2019-12-13 阵列基板及其驱动方法、触控显示装置 WO2021114282A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/125366 WO2021114282A1 (zh) 2019-12-13 2019-12-13 阵列基板及其驱动方法、触控显示装置
US17/042,663 US11762489B2 (en) 2019-12-13 2019-12-13 Array substrate and method of driving the same, touch display device
CN201980003024.3A CN113260958B (zh) 2019-12-13 2019-12-13 阵列基板及其驱动方法、触控显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125366 WO2021114282A1 (zh) 2019-12-13 2019-12-13 阵列基板及其驱动方法、触控显示装置

Publications (1)

Publication Number Publication Date
WO2021114282A1 true WO2021114282A1 (zh) 2021-06-17

Family

ID=76329176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125366 WO2021114282A1 (zh) 2019-12-13 2019-12-13 阵列基板及其驱动方法、触控显示装置

Country Status (3)

Country Link
US (1) US11762489B2 (zh)
CN (1) CN113260958B (zh)
WO (1) WO2021114282A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217702A (zh) * 2021-12-10 2022-03-22 武汉华星光电半导体显示技术有限公司 触控面板及移动终端
WO2023024024A1 (zh) * 2021-08-26 2023-03-02 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442852B (zh) * 2022-01-28 2023-03-10 北京奕斯伟计算技术股份有限公司 触控面板、触控方法、电子装置和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204101862U (zh) * 2014-11-14 2015-01-14 京东方科技集团股份有限公司 触摸光栅盒和触摸立体显示装置
CN104898892A (zh) * 2015-07-09 2015-09-09 京东方科技集团股份有限公司 一种触控显示面板及其制作方法、触控显示装置
CN106933426A (zh) * 2017-05-09 2017-07-07 京东方科技集团股份有限公司 一种触控显示面板、其测试方法及显示装置
CN107132685A (zh) * 2017-06-23 2017-09-05 厦门天马微电子有限公司 一种显示基板、显示面板和显示装置
CN109725771A (zh) * 2018-12-28 2019-05-07 厦门天马微电子有限公司 一种触控显示面板及触控显示装置
US20190212839A1 (en) * 2016-06-20 2019-07-11 Boe Technology Group Co., Ltd. Touch panel, method for manufacturing the same and touch device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103838430B (zh) * 2014-02-24 2017-01-11 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
US10120473B2 (en) * 2015-12-03 2018-11-06 Lg Display Co., Ltd. Touch sensor integrated type display device
CN105677076B (zh) * 2015-12-28 2018-09-25 上海天马微电子有限公司 触控显示装置、触控显示面板及阵列基板
CN105468202B (zh) * 2016-01-29 2018-09-14 上海中航光电子有限公司 阵列基板、触控显示面板及触控显示装置
CN105549792B (zh) * 2016-02-05 2019-02-12 上海天马微电子有限公司 阵列基板以及显示面板
CN106201114B (zh) * 2016-08-26 2019-03-12 京东方科技集团股份有限公司 触控结构、阵列基板和显示装置
CN108255355B (zh) * 2016-12-29 2021-01-15 南京瀚宇彩欣科技有限责任公司 内嵌式触控显示面板
CN106896556B (zh) * 2017-02-28 2023-11-03 厦门天马微电子有限公司 阵列基板及其制造方法、显示面板以及显示装置
CN107170764B (zh) * 2017-07-26 2020-06-05 上海天马微电子有限公司 阵列基板、阵列基板的制造方法、显示面板和显示装置
CN108227326A (zh) * 2018-02-01 2018-06-29 京东方科技集团股份有限公司 阵列基板及其制造方法、触控显示面板
CN108628047B (zh) * 2018-04-02 2021-07-30 上海中航光电子有限公司 一种阵列基板、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204101862U (zh) * 2014-11-14 2015-01-14 京东方科技集团股份有限公司 触摸光栅盒和触摸立体显示装置
CN104898892A (zh) * 2015-07-09 2015-09-09 京东方科技集团股份有限公司 一种触控显示面板及其制作方法、触控显示装置
US20190212839A1 (en) * 2016-06-20 2019-07-11 Boe Technology Group Co., Ltd. Touch panel, method for manufacturing the same and touch device
CN106933426A (zh) * 2017-05-09 2017-07-07 京东方科技集团股份有限公司 一种触控显示面板、其测试方法及显示装置
CN107132685A (zh) * 2017-06-23 2017-09-05 厦门天马微电子有限公司 一种显示基板、显示面板和显示装置
CN109725771A (zh) * 2018-12-28 2019-05-07 厦门天马微电子有限公司 一种触控显示面板及触控显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023024024A1 (zh) * 2021-08-26 2023-03-02 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板
CN114217702A (zh) * 2021-12-10 2022-03-22 武汉华星光电半导体显示技术有限公司 触控面板及移动终端
CN114217702B (zh) * 2021-12-10 2023-11-28 武汉华星光电半导体显示技术有限公司 触控面板及移动终端

Also Published As

Publication number Publication date
CN113260958B (zh) 2023-08-08
US11762489B2 (en) 2023-09-19
US20230118501A1 (en) 2023-04-20
CN113260958A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
US10705367B2 (en) Touch display panel having touch line formed on the same layer as the gate line
US9665222B2 (en) In-cell touch panel and display device with self-capacitance electrodes
CN107589576B (zh) 阵列基板及其制作方法、触控显示面板
US11139317B2 (en) Array substrate, touch panel and manufacturing method of array substrate
US9529482B2 (en) Capacitive in-cell touch screen and display device
US10198130B2 (en) In-cell touch panel and display device
US10042490B2 (en) Array substrate, display device and driving method
US9772723B2 (en) Capacitive in-cell touch panel and display device
US9678594B2 (en) In-cell touch panel and display device
JP6161782B2 (ja) 静電容量式インセル型タッチパネル及び表示装置
WO2020186949A1 (zh) 触控基板、触控屏及触控显示装置
WO2015180312A1 (zh) 内嵌式触摸屏及显示装置
WO2017004986A1 (zh) 触控显示面板及其制作方法、触控显示装置
WO2021114282A1 (zh) 阵列基板及其驱动方法、触控显示装置
US20180275809A1 (en) In-cell touch screen and display device
KR20160145121A (ko) 어레이 기판, 그 제조 방법 및 구동 방법, 및 디스플레이 디바이스
CN105739193A (zh) 内嵌式触摸液晶显示装置及其制造方法
CN112654917B (zh) 显示基板、显示装置、显示基板的制作方法及驱动方法
CN106980422A (zh) 具有内置触摸屏的显示装置及其制造方法
CN105278730A (zh) 触控显示装置及其驱动方法
KR101305071B1 (ko) 어레이 기판 및 이를 갖는 표시패널
WO2016206245A1 (zh) 内嵌式触摸屏及显示装置
US20120162109A1 (en) Display apparatus
WO2017012260A1 (zh) 电容式触控基板和触控显示屏
CN110134274A (zh) 触控阵列基板、触控面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955548

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19955548

Country of ref document: EP

Kind code of ref document: A1