WO2021112294A1 - Apparatus for continuously preparing nanopowder in which evaporation amount and speed of raw material are adjusted - Google Patents

Apparatus for continuously preparing nanopowder in which evaporation amount and speed of raw material are adjusted Download PDF

Info

Publication number
WO2021112294A1
WO2021112294A1 PCT/KR2019/017116 KR2019017116W WO2021112294A1 WO 2021112294 A1 WO2021112294 A1 WO 2021112294A1 KR 2019017116 W KR2019017116 W KR 2019017116W WO 2021112294 A1 WO2021112294 A1 WO 2021112294A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
crucible
nanopowder
reaction chamber
track
Prior art date
Application number
PCT/KR2019/017116
Other languages
French (fr)
Korean (ko)
Inventor
김태윤
Original Assignee
김태윤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김태윤 filed Critical 김태윤
Priority to PCT/KR2019/017116 priority Critical patent/WO2021112294A1/en
Publication of WO2021112294A1 publication Critical patent/WO2021112294A1/en
Priority to US17/805,322 priority patent/US20220297185A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma

Definitions

  • the present invention relates to a nanopowder manufacturing apparatus, and more particularly, to continuously produce nanopowders having a uniform particle size, thereby increasing the productivity of nanopowders and improving the quality of nanopowders by smooth evaporation of raw materials. It relates to a continuous manufacturing apparatus for nanopowder in which the evaporation amount and evaporation rate of raw materials to be increased are controlled.
  • nanopowder refers to a material with a size of 1 dimension less than 100 nm.
  • Nanopowder technology enables control and manipulation at the atomic and molecular level of materials, bringing about innovative changes not only in materials, but also in electrical, electronic, bio, chemical, environmental, and energy industries.
  • the manufacturing method of nanopowder using thermal plasma can be divided into a transfer type and a non-transferred type according to the structure of the torch.
  • all electrodes are mounted inside the torch to generate an arc from the electrodes inside the torch, and the arc is ejected by the carrier gas from the rear.
  • the cathode and the anode are spaced apart and spaced apart. to adjust the arc length.
  • Korean Patent Registration No. 10-0788412 discloses an apparatus for manufacturing nanopowder using thermal plasma.
  • the registered patent includes a power supply unit, a plasma torch unit, a reaction chamber, a vacuum pump, a cooling tube, a collecting unit, and a scrubber, and the sample evaporated by plasma in the reaction chamber is crystallized into nanopowder while passing through the cooling tube and collected collected from the department.
  • the evaporation amount and evaporation rate cannot be controlled in the vaporization process of the raw material, and the vaporization becomes unstable depending on the type, amount or location of the raw material, so there is a problem in that the quality of the nanopowder is deteriorated.
  • Patent Document 0001 Republic of Korea Patent Publication No. 10-0788412 (2007. 12. 24. Announcement)
  • the present invention has been proposed to solve the problems of the prior art as described above, and by continuously producing nanopowders having a uniform particle size, not only can the productivity of the nanopowder be increased, but also the nanopowder can be evaporated smoothly by
  • An object of the present invention is to provide a continuous manufacturing apparatus for nanopowder that can improve the quality of powder.
  • a reaction chamber for vaporizing raw materials using a plasma electrode and a crucible; a raw material supply unit connected to one side of the reaction chamber and supplying the raw material to the reaction chamber; a transport film that collects and transports the raw material or crystallized nanopowder vaporized in the upper inner portion of the reaction chamber and moves along a closed loop; and a collecting unit connected to the other side of the reaction chamber and configured to recover the nanopowder transferred through the transfer film
  • the reaction chamber includes: a rotating unit for rotating the crucible; and a rotating and elevating device having a; and an elevating unit for elevating and lowering the crucible and the plasma electrode independently from the inside through the rotation of the crucible by the rotating and elevating device and the elevating and lowering of the crucible and the plasma electrode.
  • the raw material is vaporized by the thermal plasma generated between the crucible electrode and the plasma electrode, and the nanopowder having a uniform particle size is continuously produced. Nanopowder can be mass-produced easily.
  • the evaporation amount and evaporation rate of a raw material according to the present invention is controlled, the amount of evaporation according to the type, amount or location of the raw material accommodated in the crucible as the crucible rotates and the crucible and the plasma electrode are raised and lowered And since the evaporation rate is controlled, the vaporization of the raw material can be facilitated, so that the quality of the nanopowder can be improved.
  • FIG. 1 is a schematic diagram for explaining the structure of a nanopowder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of a raw material according to the present invention are controlled.
  • Figure 2 is a perspective view in one direction showing the outer appearance of the nano-powder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled.
  • Figure 3 is a perspective view in another direction showing the outer appearance of the nano-powder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled.
  • Figure 4 is a cross-sectional view for explaining the structure of the nano-powder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled.
  • FIG. 5 is a side view of an automatic feeding device in a continuous nanopowder production apparatus in which the evaporation amount and evaporation rate of a raw material according to the present invention are controlled.
  • FIG. 6 is a detailed view of a crucible in a continuous nanopowder manufacturing apparatus in which the evaporation amount and evaporation rate of a raw material according to the present invention are controlled.
  • FIG. 7 is a detailed view of a crucible and a crucible electrode in the nanopowder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of the raw material are controlled according to the present invention.
  • FIG. 8 is a detailed view of a plasma electrode in a continuous nanopowder manufacturing apparatus in which the evaporation amount and evaporation rate of a raw material according to the present invention are controlled.
  • FIG. 9 is an exemplary view showing the modularization of the nanopowder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of the raw material are controlled according to the present invention.
  • FIG. 10 is a partial perspective view of a rotating and elevating device of a reaction chamber in a continuous nanopowder manufacturing apparatus in which the evaporation amount and evaporation rate of a raw material are controlled according to the present invention.
  • FIG. 11 is a side view of a rotating and elevating device of a reaction chamber in a continuous nanopowder manufacturing apparatus in which an evaporation amount and an evaporation rate of a raw material are controlled according to the present invention.
  • FIG. 12 is an exemplary view showing the rotation of the reaction chamber and the rotation of the crucible by the lifting device in the nano-powder continuous manufacturing apparatus in which the evaporation amount and the evaporation rate of the raw material are controlled according to the present invention.
  • FIG. 13 is an exemplary view showing the rotation of the reaction chamber and the lifting and lowering of the crucible by the lifting device in the nanopowder continuous manufacturing apparatus in which the evaporation amount and the evaporation rate of the raw material are controlled according to the present invention.
  • FIG 14 is an exemplary view showing the rotation of the reaction chamber and the elevation of the plasma electrode by the elevation device in the continuous nanopowder production apparatus in which the evaporation amount and the evaporation rate of the raw material are controlled according to the present invention.
  • the continuous nanopowder production apparatus (A) in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled, the reaction chamber 100; Raw material supply unit 200; transfer film 180; and a collection unit 300 .
  • the reaction chamber 100 of the present invention vaporizes the raw material using the plasma electrode 160 and the crucible 110 .
  • the reaction chamber 100 is provided with a plasma electrode 160, a crucible 110 and a transfer film 180 therein, a raw material supply unit 200 to which a raw material is supplied is connected to one side, and a nano material is provided to the other side.
  • a collection unit 300 to be collected is connected.
  • reaction chamber 100 is provided with a support frame 400 in the lower portion is located at a set height as the lower portion is supported by the support frame (400).
  • the support frame 400 supports not only the reaction chamber 100 but also the collecting unit 300 and the raw material supply unit 200 at a set height, respectively.
  • reaction chamber 100 is provided with a material supply port 101 connected to the raw material supply unit 200 on at least one surface, and a vacuum port 102 connected to the vacuum pump P and the like.
  • reaction chamber 100 and the collecting unit 300 and the raw material supply unit 200 connected thereto preferably maintain a vacuum state.
  • the crucible 110 and the plasma electrode 160 are disposed to be spaced apart from each other by a predetermined distance, and the plasma generated from the plasma electrode 160 generates an arc in the direction of the crucible 110 .
  • the crucible 110 of the reaction chamber 100 is connected to the crucible electrode 120 as shown in Figs. 6a to 6c and 7, can withstand a high-temperature atmosphere, and the current passes through graphite (Graphite) can be made with
  • the crucible electrode 120 is connected to the lower center of the crucible 110 , and cooling water may be separately introduced and discharged to the crucible electrode 120 .
  • the crucible central axis 130 is connected to the lower part of the crucible electrode 120 .
  • the crucible 110 may have a double structure.
  • the crucible 110 a first track 111 of a shape that is settling in the downward direction; a second track 112 having an inner circumference larger than the outer circumference of the first track 111 and having a shape that is recessed in the downward direction; and a barrier 113 provided between the first track 111 and the second track 112 to block the first track 111 and the second track 112 .
  • the raw material supplied from the automatic feeding device 210 described below may be accommodated in the first track 111 and the second track 112 , respectively, and the first track 111 and the second track 112 , respectively.
  • a plurality of plasma electrodes 160 may be disposed, for example, two plasma electrodes 160 on the first track 111 and four on the second track 112 .
  • the number and position of the plasma electrodes 160 may be determined in consideration of the circumference of the first track 111 or the second track 112 .
  • first track 111 and the second track 112 may each be supplied with a raw material of the same material or a raw material of a different material.
  • a plurality of automatic feeding devices 210 described below are applied to supply raw materials to the first track 111 and the second track 112 , respectively.
  • the automatic feeding device 210 supplies raw materials of the same material or different materials to the first track 111 and the second track 112 through each of the feeding nozzles 214 .
  • the crucible 110 having the double structure as described above can effectively control the evaporation amount and the evaporation rate due to the difference in the position and temperature of the first track 111 and the second track 112 when the raw material of the same material is supplied. Also, when raw materials of different materials are supplied, different raw materials can be synthesized in the gas phase, so that the composite nanopowder can be manufactured.
  • the plasma electrodes 160 of the reaction chamber 100 are provided to be spaced apart from the crucible 110 by a predetermined distance to form a hot cathode.
  • a tip 161 made of tungsten or graphite may be fastened to an end of the plasma electrode 160 as shown in FIG. 8 , and cooling water may be separately introduced and discharged at a lower portion thereof.
  • the plasma electrode 160 may include an electrode central axis 162 extending in a vertical direction and a connection terminal 163 connected to a power source at one side of the electrode central axis 162 .
  • the cooling water may be introduced into the electrode central shaft 162 .
  • the reaction chamber 100 as shown in FIGS. 10 and 11, a rotating part 150 for rotating the crucible 110; and a rotating and lifting device (D) having a; and a lifting unit (140) for independently lifting and lowering the crucible (110) and the plasma electrode (160).
  • the rotating unit 150 of the rotating and lifting device (D) includes a first gear 151 fixedly coupled to the lower end of the crucible central shaft 130 connected to the crucible 110 through the reaction chamber 100; and a second gear 152 that is engaged with the first gear 151 and rotates by driving the motor 153 .
  • the first gear 151 engaged therewith rotates
  • the crucible central shaft 130 to which the first gear 151 is coupled and the crucible 110 connected to the crucible central shaft 130 rotate clockwise or counterclockwise.
  • the motor 153 may have any conventional structure and method as long as it is capable of forward and reverse rotation, and the first gear 151 and the second gear 152 may be a spur gear, a worm gear, or a bevel gear.
  • the crucible 110 connected to the crucible central shaft 130 is rotated by the rotating part 150 of the rotating and lifting device D, so that the raw material accommodated in the crucible 110 when the raw material is vaporized in the reaction chamber 100
  • the evaporation amount and evaporation rate of the material are controlled.
  • the raw material accommodated in the crucible 110 has different evaporation and evaporation rates depending on the type, amount, or location, but as the crucible 110 rotates, the raw material accommodated in the crucible 110 and the plasma electrode ( 160), the distance between them may be farther or closer, thereby controlling the evaporation amount and evaporation rate of the raw material, thereby facilitating the vaporization of the raw material.
  • the lifting unit 140 of the rotating and lifting device (D) is connected to the lower end of the crucible central shaft 130 leading to the lower portion of the crucible electrode 120 connected to the crucible 110, the lower portion from the fixed plate 141 A first lifting plate 143 coupled through a plurality of support rods 142 leading to the lower end; And the fixed plate 141 and the first lifting plate 143 is coupled to the lower end of the electrode center shaft 162 leading to the lower plasma electrode 160 penetrating the screw shaft 144 rotated by the motor 146 driving. and a second lifting plate 145 that ascends and descends according to the clockwise or counterclockwise rotation of the screw shaft by spiral engagement.
  • the crucible central shaft 130 is elevated and the crucible 110 connected to the crucible central shaft 130 is raised and lowered, and as shown in FIG. As shown, the plasma electrode 160 is raised and lowered by the lift of the second lifting plate 145 .
  • the first elevating plate 143 may be elevated by a separate elevating means.
  • a rod (not shown in the drawing) of a hydraulic or pneumatic cylinder (not shown in the drawing) is connected to the first elevating plate 143 so that the first elevating plate 143 can be elevated as the cylinder rod protrudes and retracts. .
  • the lifting and lowering of the second lifting plate 145 by the rotation of the screw shaft 144 may be performed simultaneously with the lifting of the first lifting plate 143 or with a time difference from the lifting and lowering of the first lifting plate 143.
  • the first elevating plate 143 is elevated together with the lowering of the second elevating plate 145, the crucible 110 and the plasma electrode Adjustment of the interval between 160 is more smooth.
  • the crucible 110 and the plasma electrode 160 are raised and lowered by the lifting unit 140 of the rotating and lifting device D, so that the raw material is accommodated in the crucible 110 when the raw material is vaporized in the reaction chamber 100 .
  • the amount of evaporation and the rate of evaporation are controlled.
  • the raw material accommodated in the crucible 110 has different evaporation and evaporation rates depending on the type, amount, or location, but as the crucible 110 and the plasma electrode 160 move up and down, the raw material is accommodated in the crucible 110. Since the distance between the raw material and the plasma electrode 160 may be increased or decreased, the evaporation amount and the evaporation rate of the raw material are controlled by this, so that the vaporization of the raw material is facilitated.
  • the motor 146 and the screw shaft 144 involved in the elevating of the second elevating plate 145 in the elevating unit 140 of the rotating and elevating device D are first elevated by a coupling member (not shown).
  • the second lifting plate 145 is raised and lowered by the rotation of the screw shaft 144 by the motor 146 driving.
  • the raw material supply unit 200 of the present invention is connected to one side of the reaction chamber 100 to supply the raw material to the reaction chamber 100 .
  • the raw material is vaporized and condensed inside the reaction chamber 100 to be changed into nanopowder, and the changed nanopowder is collected by the collecting unit 300 .
  • the raw material supply unit 200 may include an automatic feeding device 210 for supplying the raw material into the reaction chamber 100 .
  • the automatic feeding device 210 includes a feeding housing 211 as shown in FIG. 5; a feeding screw 212 provided in a spiral shape inside the feeding housing 211; a feeding motor 215 for driving the feeding screw 212; and a feeding nozzle 214 connected to the feeding housing 211 and supplying a raw material into the reaction chamber 100, so that the inside of the feeding housing 211 is in a vacuum state by rotation of the feeding screw 212 The raw material can be moved by the extrusion method.
  • the feeding housing 211 has a sealed structure in a cylindrical shape and maintains a vacuum state inside, and a feeding nozzle 214 is connected to one side of the feeding housing 211 and a feeding motor 215 is connected to the other side. .
  • the feeding housing 211 may be connected to one side of the reaction chamber 100 so that the feeding nozzle 214 smoothly supplies the raw material to the crucible 110 provided in the reaction chamber 100 .
  • the feeding housing 211 is provided with an opening 213 through which the raw material is supplied.
  • the opening/closing opening 213 preferably uses a load-lock type valve to minimize the influence on the internal vacuum environment of the feeding housing 211 .
  • the raw material introduced through the opening 213 is moved in the direction of the feeding nozzle 214 by the rotation of the feeding screw 212 , the crucible provided inside the reaction chamber 100 through the feeding nozzle 214 .
  • the raw material may be continuously supplied to (110).
  • a feeding heater 216 that heats the raw material accommodated in the feeding housing 211 to reach a set temperature may be connected to the outside of the feeding housing 211, and there may be a plurality of feeding heaters 216 .
  • one side of the feeding housing 211 is coupled to the material supply port 101 , and in this case, the feeding nozzle 214 connected to the feeding housing 211 is located inside the reaction chamber 100 .
  • the shape and structure of the feeding nozzle 214 may vary, and the feeding nozzle 214 may be plural.
  • the transport film 180 of the present invention collects and transports the vaporized raw material or crystallized nanopowder in the upper inner portion of the reaction chamber 100 and transports it along a closed loop.
  • the transfer film 180 is spaced apart from the crucible 110 by a certain distance, and some or all of it is located above the reaction chamber 100 .
  • the transfer film 180 may be formed of a metal to collect the raw material vaporized by electrical or magnetic properties on the surface.
  • the transfer film 180 is supported by the transfer shaft 181, each of both sides extending in the horizontal direction.
  • cooling water may be introduced into each of the transfer shafts 181 .
  • the transfer shaft 181 may be provided to pass through the reaction chamber 100 or the collecting unit 300 in a horizontal direction to facilitate the inflow or discharge of the coolant.
  • the transfer film 180 extends from the reaction chamber 100 in the direction of the collecting unit 300 to transfer the raw material collected in the reaction chamber 100 to the collecting unit 300 .
  • the transfer film 180 moves from the inside of the reaction chamber 100 to the inside of the collection unit 300 while moving on the caterpillar along the closed loop.
  • the rotation of the transfer film 180 or the transfer shaft 181 may be performed by driving a motor provided outside the reaction chamber 100 or the collection unit 300 .
  • the transfer film 180 may further include a cooling plate 182 .
  • the cooling plate 182 cools the transfer film 180 to a set temperature, and may be in contact with the inner surface of the transfer film 180 .
  • the vaporized raw material collected on the outer surface of the transfer film 180 is cooled to a set temperature through the cooling plate 182 and is condensed while moving in the reaction chamber 100 in the direction of the collecting unit 300 and condensed. It may crystallize into a powder.
  • the cooling of the transfer film 180 through the cooling plate 182 may be performed using cooling water or an inert gas having a set temperature.
  • a scraper 183 is provided on one side of the transfer film 180 .
  • the scraper 183 scrapes the nanopowder transferred by the transfer film 180 in contact with the transfer film 180 .
  • the scraper 183 is formed to extend in the width direction of the transfer film 180 , and is located in the collection unit 300 .
  • the scraper 183 is particularly in contact with the lower surface of the transfer film 180 , and the nanopowder is separated from the transfer film 180 by the scraper 183 and collected through the collecting unit 300 .
  • the collecting unit 300 of the present invention is connected to the other side of the reaction chamber 100 to recover the nanopowder transferred through the transfer film 180 .
  • the collecting unit 300 includes a first collecting unit 310 for collecting the nanopowder separated from the transfer film 180 ; a second collecting unit 320 connected to the first collecting unit 310 and collecting and transferring the nanopowder collected through the first collecting unit 310; and a powder recovery unit 330 in which the nanopowder moved through the second collection unit 320 is recovered.
  • the first collection unit 310 is provided with a vacuum port 102 connected to a vacuum pump (P), etc., and moves the nanopowder downward in an environment in which the inside is vacuum.
  • P vacuum pump
  • the first collecting unit 310 may be provided with a load lock valve or a gate valve, and various configurations for collecting and moving the nanopowder while maintaining a vacuum state may be additionally provided.
  • the second collecting unit 320 is provided with a vacuum port 102 connected to the vacuum pump P, etc., which may have the same configuration as the first collecting unit 310 .
  • the nanopowder that has passed through the first collecting unit 310 and the second collecting unit 320 is finally recovered by the powder collecting unit 330 .
  • first collecting unit 310 and the second collecting unit 320 are each independently created in a vacuum environment, and internal pressures may be different from each other.
  • a viewport 301 formed of a transparent material is provided on the upper portion of the collection unit 300 to visually check the internal condition of the collection unit 300 through the viewport 301 .
  • the powder recovery unit 330 may be connected to a packaging container, and a load lock valve is provided to move the nanopowder into the packaging container by a predetermined amount in a vacuum state.
  • the powder recovery unit 330 may be provided with a screw conveyor, which moves the nanopowder to a predetermined position while maintaining a vacuum state according to the rotation of the spirally wound screw.
  • the continuous nanopowder production apparatus (A) in which the evaporation amount and evaporation rate of the raw material according to the present invention are controlled can be operated as one module by connecting a plurality of them in parallel as shown in FIG. 9 .
  • the continuous nano-powder production apparatus (A) in which the evaporation amount and evaporation rate of raw materials are controlled according to the present invention, is operated as a module, vacuum is formed through the vacuum pump (P), raw material is supplied through the automatic feeding device 210 and cooling water It is possible to increase the efficiency of cooling, etc. through
  • the continuous nanopowder production apparatus (A) in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled includes an automatic feeding device 210 and a transfer film 180, and the supply of the raw material And since the collection of the nanopowder is made continuously, it is possible to continuously produce the nanopowder.
  • the continuous nanopowder production apparatus (A) in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled has a vacuum port 102 in all of the raw material supply unit 200 , the reaction chamber 100 and the collection unit 300 . Since it is provided and connected to the vacuum pump (P), the supply of raw materials and the generation and collection of nanopowders are carried out in a vacuum environment, it is possible to prevent surface oxidation of the nanopowder due to exposure to air.
  • a rotating and elevating device (D) is provided in the reaction chamber (100), and a crucible by the rotating and elevating device (D) As 110 rotates and the crucible 110 and the plasma electrode 160 move up and down, the evaporation amount and evaporation rate of the raw material can be adjusted in the process of vaporizing the raw material, so that the raw material can be vaporized smoothly.
  • reaction chamber 101 material supply port
  • first track 112 second track
  • blocking jaw 120 crucible electrode
  • first lifting plate 144 screw shaft
  • raw material supply unit 210 automatic feeding device
  • feeding housing 212 feeding screw
  • opening 214 feeding nozzle
  • feeding motor 216 feeding heater
  • first collection unit 320 second collection unit
  • support frame A nano-powder continuous manufacturing device
  • the present invention not only increases the productivity of the nanopowder by continuously producing the nanopowder having a uniform particle size, but also improves the quality of the nanopowder by facilitating the vaporization of the raw material, so that the nanopowder production-related industrial use There is a possibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention relates to an apparatus for continuously preparing nanopowder in which the evaporation amount and speed of a raw material are adjusted, the apparatus comprising: a reaction chamber for evaporating a raw material using a plasma electrode and a crucible; a raw material supply unit, connected to one side of the reaction chamber, for supplying the raw material to the reaction chamber; a transfer film capturing the evaporated raw material or crystallized nanopowder at an upper portion of the inside of the reaction chamber and transferring same, and moving along a closed loop; and a collection unit, connected to the other side of the reaction chamber, for collecting the nanopowder transferred through the transfer film, wherein the reaction chamber comprises a rotation and elevation apparatus including: a rotation portion for rotating the crucible; and an elevating portion for independently elevating the crucible and the plasma electrode, and thus, through rotation of the crucible and elevation of the crucible and the plasma electrode by means of the rotation and elevation apparatus, the evaporation amount and speed of the raw material internally evaporated are adjusted.

Description

원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치Nanopowder continuous manufacturing device in which the evaporation amount and evaporation rate of raw materials are controlled
본 발명은 나노분말 제조장치에 관한 것으로, 더욱 상세하게는 균일한 입도를 갖는 나노분말을 연속적으로 생산함으로써 나노분말의 생산성을 높일 수 있도록 할 뿐만 아니라 원료물질의 기화가 원활함으로써 나노분말의 품질을 높일 수 있도록 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치에 관한 것이다.The present invention relates to a nanopowder manufacturing apparatus, and more particularly, to continuously produce nanopowders having a uniform particle size, thereby increasing the productivity of nanopowders and improving the quality of nanopowders by smooth evaporation of raw materials. It relates to a continuous manufacturing apparatus for nanopowder in which the evaporation amount and evaporation rate of raw materials to be increased are controlled.
일반적으로 나노분말은 1dimension의 크기가 100nm 미만의 소재를 지칭한다.In general, nanopowder refers to a material with a size of 1 dimension less than 100 nm.
나노분말에 대한 기술은 물질의 원자 및 분자 수준에서 제어 및 조작을 가능케 함으로써 소재는 물론 전기, 전자, 바이오, 화학, 환경, 에너지 등 전 산업분야에서 혁신적인 변화를 몰고 오고 있다.Nanopowder technology enables control and manipulation at the atomic and molecular level of materials, bringing about innovative changes not only in materials, but also in electrical, electronic, bio, chemical, environmental, and energy industries.
이러한 나노분말을 제조하는 방법으로 습식법, 기계적 분쇄법 등이 있으나 습식법의 경우 공정이 복잡하고 생산성이 낮으며 환경에 유해한 물질이 배출되는 문제가 있고, 기계적 분쇄법은 일정 크기 이하의 나노분말을 제조하는데 어려움이 있다.There are wet methods and mechanical pulverization methods for manufacturing such nanopowders, but the wet method has problems in that the process is complicated, the productivity is low, and harmful substances are discharged to the environment, and the mechanical pulverization method produces nanopowders of a certain size or less. have difficulty doing
상기의 문제로 인하여 최근 플라즈마를 이용하여 나노 분말을 제조하는 방법이 이용되고 있다.Due to the above problem, a method for producing nanopowders using plasma has recently been used.
열 플라즈마를 이용한 나노분말의 제조는 10000℃ 정도의 열원을 갖는 초고온의 열플라즈마에 원료 입자를 투입하면 높은 온도에 의해 완전히 원자 상태로 기화 되었다가 다시 냉각이 되면서 기화되었던 원자들이 나노입자로 핵생성되는 원리를 이용한다.In the production of nanopowders using thermal plasma, when raw material particles are put into an ultra-high temperature thermal plasma with a heat source of about 10000°C, they are completely vaporized into an atomic state by a high temperature and then cooled again, and the vaporized atoms are nucleated into nanoparticles. use the principle that
열 플라즈마를 이용한 나노분말의 제조공법은 토치의 구조에 따라 이송식(Transferred type)과 비이송식(Non-transferred type)으로 구분할 수 있다.The manufacturing method of nanopowder using thermal plasma can be divided into a transfer type and a non-transferred type according to the structure of the torch.
비이송식의 경우 모든 전극이 토치 내부에 장착되어 토치 내부의 전극에서 아크를 발생시키고 아크는 후방에서 나오는 캐리어가스에 의해 외부로 분출되며, 이송식의 경우 음극과 양극이 일정 간격 이격되며 이격 간격을 조절하여 아크 길이를 조절한다.In the case of the non-transfer type, all electrodes are mounted inside the torch to generate an arc from the electrodes inside the torch, and the arc is ejected by the carrier gas from the rear. In the case of the transfer type, the cathode and the anode are spaced apart and spaced apart. to adjust the arc length.
대한민국 등록특허 제 10-0788412호에서는 열 플라즈마를 이용하여 나노분말을 제조하는 장치가 개시되어 있다.Korean Patent Registration No. 10-0788412 discloses an apparatus for manufacturing nanopowder using thermal plasma.
상기 등록특허는 전원공급부, 플라즈마 토치부, 반응 챔버, 진공 펌프, 냉각 튜브, 포집부, 스크러버를 포함하는 것으로, 반응 챔버에서 플라즈마에 의해 증발된 시료는 냉각 튜브를 통과하면서 나노 분말로 결정화되고 포집부에서 수거된다.The registered patent includes a power supply unit, a plasma torch unit, a reaction chamber, a vacuum pump, a cooling tube, a collecting unit, and a scrubber, and the sample evaporated by plasma in the reaction chamber is crystallized into nanopowder while passing through the cooling tube and collected collected from the department.
그러나 위와 같은 구조를 이용하는 경우 원료물질의 연속 공급이 어려울 뿐만 아니라 나노분말의 수거가 복잡하므로 나노분말의 생산성이 저하되는 문제가 있었다.However, when the above structure is used, it is difficult to continuously supply raw materials, and since the collection of the nanopowder is complicated, there is a problem that the productivity of the nanopowder is lowered.
또한, 상기 구조를 이용하는 경우 원료물질의 기화과정에서 증발량 및 증발속도 조절이 이루어질 수 없어 원료물질의 종류, 양 또는 위치 등에 따라서는 기화가 불안정해지므로 나노분말의 품질이 저하되는 문제가 있었다.In addition, in the case of using the above structure, the evaporation amount and evaporation rate cannot be controlled in the vaporization process of the raw material, and the vaporization becomes unstable depending on the type, amount or location of the raw material, so there is a problem in that the quality of the nanopowder is deteriorated.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 0001) 대한민국 등록특허공보 제10-0788412호(2007. 12. 24. 공고)(Patent Document 0001) Republic of Korea Patent Publication No. 10-0788412 (2007. 12. 24. Announcement)
본 발명은, 상기와 같은 종래 기술의 문제점을 해소하기 위하여 제안된 것으로, 균일한 입도를 갖는 나노분말을 연속적으로 생산함으로써 나노분말의 생산성을 높일 수 있도록 할 뿐만 아니라 원료물질의 기화가 원활함으로써 나노분말의 품질을 높일 수 있도록 하는 나노분말 연속제조장치를 제공하는데 그 목적이 있다.The present invention has been proposed to solve the problems of the prior art as described above, and by continuously producing nanopowders having a uniform particle size, not only can the productivity of the nanopowder be increased, but also the nanopowder can be evaporated smoothly by An object of the present invention is to provide a continuous manufacturing apparatus for nanopowder that can improve the quality of powder.
상기의 목적을 달성하기 위하여 본 발명은,In order to achieve the above object, the present invention
플라즈마 전극 및 도가니를 이용하여 원료물질을 기화시키는 반응챔버; 상기 반응챔버의 일측에 연결되며 상기 원료물질을 상기 반응챔버로 공급시키는 원료공급부; 상기 반응챔버의 내측 상부에서 기화된 상기 원료물질 또는 결정화된 나노분말을 포집 및 이송시키며 폐 루프를 따라 이동하는 이송필름; 및 상기 반응챔버의 타측에 연결되며 상기 이송필름을 통해 이송된 상기 나노분말을 회수하는 수거부;를 포함하되, 상기 반응챔버는, 상기 도가니를 회전 시키는 회전부; 및 상기 도가니와 상기 플라즈마 전극을 각각 독립적으로 승강시키는 승강부;를 구비하는 회전 및 승강장치를 포함하여, 상기 회전 및 승강장치에 의한 상기 도가니의 회전 및 상기 도가니와 상기 플라즈마 전극의 승강을 통해 내부에서 기화되는 상기 원료물질의 증발량 및 증발속도를 조절하는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치를 제안한다.a reaction chamber for vaporizing raw materials using a plasma electrode and a crucible; a raw material supply unit connected to one side of the reaction chamber and supplying the raw material to the reaction chamber; a transport film that collects and transports the raw material or crystallized nanopowder vaporized in the upper inner portion of the reaction chamber and moves along a closed loop; and a collecting unit connected to the other side of the reaction chamber and configured to recover the nanopowder transferred through the transfer film, wherein the reaction chamber includes: a rotating unit for rotating the crucible; and a rotating and elevating device having a; and an elevating unit for elevating and lowering the crucible and the plasma electrode independently from the inside through the rotation of the crucible by the rotating and elevating device and the elevating and lowering of the crucible and the plasma electrode. We propose a continuous manufacturing apparatus for nanopowder in which the evaporation amount and evaporation rate of the raw material are controlled, characterized in that the evaporation amount and the evaporation rate of the raw material to be vaporized are controlled.
본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치는, 도가니 전극과 플라즈마 전극 사이에서 발생하는 열 플라즈마에 의해 원료물질이 기화되는바, 균일한 입도를 갖는 나노분말을 연속적으로 생산할 수 있어 나노분말의 대량 생산이 용이할 수 있다.In the continuous nanopowder production apparatus in which the evaporation amount and evaporation rate of a raw material are controlled according to the present invention, the raw material is vaporized by the thermal plasma generated between the crucible electrode and the plasma electrode, and the nanopowder having a uniform particle size is continuously produced. Nanopowder can be mass-produced easily.
또한, 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치는, 도가니가 회전하고 도가니 및 플라즈마 전극이 승강함에 따라 도가니에 수용되는 원료물질의 종류, 양 또는 위치 등에 따라 증발량 및 증발속도가 조절되는바, 원료물질의 기화가 원활해질 수 있어 나노분말의 품질을 높일 수 있다.In addition, in the continuous nanopowder manufacturing apparatus in which the evaporation amount and evaporation rate of a raw material according to the present invention is controlled, the amount of evaporation according to the type, amount or location of the raw material accommodated in the crucible as the crucible rotates and the crucible and the plasma electrode are raised and lowered And since the evaporation rate is controlled, the vaporization of the raw material can be facilitated, so that the quality of the nanopowder can be improved.
도 1은 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치의 구조를 설명하기 위한 개략도이다.1 is a schematic diagram for explaining the structure of a nanopowder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of a raw material according to the present invention are controlled.
도 2는 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치의 외형을 보인 일 방향 사시도이다.Figure 2 is a perspective view in one direction showing the outer appearance of the nano-powder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled.
도 3은 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치의 외형을 보인 다른 방향 사시도이다.Figure 3 is a perspective view in another direction showing the outer appearance of the nano-powder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled.
도 4는 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치의 구조를 설명하기 위한 단면도이다.Figure 4 is a cross-sectional view for explaining the structure of the nano-powder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled.
도 5는 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치에서 자동피딩장치의 측면도이다.5 is a side view of an automatic feeding device in a continuous nanopowder production apparatus in which the evaporation amount and evaporation rate of a raw material according to the present invention are controlled.
도 6은 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치에서 도가니의 상세도이다.6 is a detailed view of a crucible in a continuous nanopowder manufacturing apparatus in which the evaporation amount and evaporation rate of a raw material according to the present invention are controlled.
도 7은 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치에서 도가니 및 도가니전극의 상세도이다.7 is a detailed view of a crucible and a crucible electrode in the nanopowder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of the raw material are controlled according to the present invention.
도 8은 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치에서 플라즈마 전극의 상세도이다.8 is a detailed view of a plasma electrode in a continuous nanopowder manufacturing apparatus in which the evaporation amount and evaporation rate of a raw material according to the present invention are controlled.
도 9는 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치의 모듈화를 보인 예시도이다.9 is an exemplary view showing the modularization of the nanopowder continuous manufacturing apparatus in which the evaporation amount and evaporation rate of the raw material are controlled according to the present invention.
도 10은 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치에서 반응챔버의 회전 및 승강장치 부분사시도이다.10 is a partial perspective view of a rotating and elevating device of a reaction chamber in a continuous nanopowder manufacturing apparatus in which the evaporation amount and evaporation rate of a raw material are controlled according to the present invention.
도 11은 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치에서 반응챔버의 회전 및 승강장치 측면도이다.11 is a side view of a rotating and elevating device of a reaction chamber in a continuous nanopowder manufacturing apparatus in which an evaporation amount and an evaporation rate of a raw material are controlled according to the present invention.
도 12는 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치에서 반응챔버의 회전 및 승강장치에 의한 도가니 회전을 보인 예시도이다.12 is an exemplary view showing the rotation of the reaction chamber and the rotation of the crucible by the lifting device in the nano-powder continuous manufacturing apparatus in which the evaporation amount and the evaporation rate of the raw material are controlled according to the present invention.
도 13은 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치에서 반응챔버의 회전 및 승강장치에 의한 도가니 승강을 보인 예시도이다.13 is an exemplary view showing the rotation of the reaction chamber and the lifting and lowering of the crucible by the lifting device in the nanopowder continuous manufacturing apparatus in which the evaporation amount and the evaporation rate of the raw material are controlled according to the present invention.
도 14는 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치에서 반응챔버의 회전 및 승강장치에 의한 플라즈마 전극 승강을 보인 예시도이다.14 is an exemplary view showing the rotation of the reaction chamber and the elevation of the plasma electrode by the elevation device in the continuous nanopowder production apparatus in which the evaporation amount and the evaporation rate of the raw material are controlled according to the present invention.
이하, 첨부 도면에 의거 본 발명에 대하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail based on the accompanying drawings.
도 1 내지 도 4에 도시된 바와 같이 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치(A)는, 반응챔버(100); 원료공급부(200); 이송필름(180); 및 수거부(300);를 포함한다.1 to 4, the continuous nanopowder production apparatus (A) in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled, the reaction chamber 100; Raw material supply unit 200; transfer film 180; and a collection unit 300 .
본 발명의 반응챔버(100)는 플라즈마 전극(160) 및 도가니(110)를 이용하여 원료물질을 기화시킨다.The reaction chamber 100 of the present invention vaporizes the raw material using the plasma electrode 160 and the crucible 110 .
반응챔버(100)는, 내부에 플라즈마 전극(160), 도가니(110) 및 이송필름(180)이 구비되고, 일측에 원료물질이 공급되는 원료공급부(200)가 연결되며, 타측에 나노물질이 수거되는 수거부(300)가 연결된다.The reaction chamber 100 is provided with a plasma electrode 160, a crucible 110 and a transfer film 180 therein, a raw material supply unit 200 to which a raw material is supplied is connected to one side, and a nano material is provided to the other side. A collection unit 300 to be collected is connected.
그리고 반응챔버(100)는 하부에 지지프레임(400)이 구비되어 지지프레임(400)에 의해 하부가 지지됨에 따라 설정된 높이에 위치한다.And the reaction chamber 100 is provided with a support frame 400 in the lower portion is located at a set height as the lower portion is supported by the support frame (400).
여기서, 지지프레임(400)은 반응챔버(100) 뿐만 아니라 수거부(300) 및 원료공급부(200)를 각각 설정된 높이로 지지한다.Here, the support frame 400 supports not only the reaction chamber 100 but also the collecting unit 300 and the raw material supply unit 200 at a set height, respectively.
그리고 반응챔버(100)는, 적어도 어느 하나의 일면에 원료공급부(200)와 연결되는 소재공급포트(101)와, 진공펌프(P) 등과 연결되는 진공포트(102)가 구비된다.In addition, the reaction chamber 100 is provided with a material supply port 101 connected to the raw material supply unit 200 on at least one surface, and a vacuum port 102 connected to the vacuum pump P and the like.
여기서, 반응챔버(100) 및 이에 연결되는 수거부(300)와 원료공급부(200)는 진공상태를 유지하는 것이 바람직하다.Here, the reaction chamber 100 and the collecting unit 300 and the raw material supply unit 200 connected thereto preferably maintain a vacuum state.
그리고 반응챔버(100)에서 도가니(110)와 플라즈마 전극(160)은 서로 일정 거리 이격되도록 배치되며, 플라즈마 전극(160)에서 발생되는 플라즈마는 도가니(110)의 방향으로 아크를 발생시킨다.In addition, in the reaction chamber 100 , the crucible 110 and the plasma electrode 160 are disposed to be spaced apart from each other by a predetermined distance, and the plasma generated from the plasma electrode 160 generates an arc in the direction of the crucible 110 .
그리고 반응챔버(100)의 도가니(110)는, 도 6a 내지 도 6c와 도 7에 도시된 바와 같이 도가니전극(120)과 연결되되, 고온의 분위기에 견딜 수 있으며 전류가 통하도록 그래파이트(Graphite)로 이루어질 수 있다.And the crucible 110 of the reaction chamber 100 is connected to the crucible electrode 120 as shown in Figs. 6a to 6c and 7, can withstand a high-temperature atmosphere, and the current passes through graphite (Graphite) can be made with
도가니전극(120)은 도가니(110)의 하부 중심에 연결되고, 도가니전극(120)에는 냉각수가 별도로 유입 및 배출될 수 있다.The crucible electrode 120 is connected to the lower center of the crucible 110 , and cooling water may be separately introduced and discharged to the crucible electrode 120 .
이때, 도가니전극(120) 하부로는 도가니중심축(130)이 이어진다.At this time, the crucible central axis 130 is connected to the lower part of the crucible electrode 120 .
또한, 도가니(110)는 이중구조를 가질 수 있다.In addition, the crucible 110 may have a double structure.
더욱 구체적으로 도가니(110)는, 아랫방향으로 침강된 형상의 제1트랙(111); 제1트랙(111)의 외측 둘레보다 큰 내측 둘레를 가지며 아랫방향으로 침강된 형상의 제2트랙(112); 및 제1트랙(111)과 제2트랙(112)의 사이에 구비되어 제1트랙(111)과 제2트랙(112)을 차단시키는 차단턱(113);을 포함할 수 있다.More specifically, the crucible 110, a first track 111 of a shape that is settling in the downward direction; a second track 112 having an inner circumference larger than the outer circumference of the first track 111 and having a shape that is recessed in the downward direction; and a barrier 113 provided between the first track 111 and the second track 112 to block the first track 111 and the second track 112 .
여기서 제1트랙(111)과 제2트랙(112)에는 각각 아래에서 설명하는 자동피딩장치(210)로부터 공급된 원료물질이 수용될 수 있고, 제1트랙(111)과 제2트랙(112)에 맞추어 플라즈마 전극(160)은 복수, 예컨대 플라즈마 전극(160)은 제1트랙(111)에 2개 및 제2트랙(112)에 4개 배치될 수 있다.Here, the raw material supplied from the automatic feeding device 210 described below may be accommodated in the first track 111 and the second track 112 , respectively, and the first track 111 and the second track 112 , respectively. A plurality of plasma electrodes 160 may be disposed, for example, two plasma electrodes 160 on the first track 111 and four on the second track 112 .
이때, 플라즈마 전극(160)은 제1트랙(111) 또는 제2트랙(112)의 둘레를 고려하여 그 개수와 위치가 결정될 수 있다.In this case, the number and position of the plasma electrodes 160 may be determined in consideration of the circumference of the first track 111 or the second track 112 .
또한, 제1트랙(111) 및 제2트랙(112) 각각에는 같은 소재의 원료물질이 공급되거나 서로 다른 소재의 원료물질이 공급될 수 있다.In addition, the first track 111 and the second track 112 may each be supplied with a raw material of the same material or a raw material of a different material.
이 경우 아래에서 설명하는 자동피딩장치(210)는 복수로 적용되어 제1트랙(111) 및 제2트랙(112)에 각각 원료물질을 공급한다.In this case, a plurality of automatic feeding devices 210 described below are applied to supply raw materials to the first track 111 and the second track 112 , respectively.
즉, 아래에서 설명하는 자동피딩장치(210)는 피딩노즐(214) 각각을 통해 제1트랙(111) 및 제2트랙(112)에 같은 소재이거나 다른 소재의 원료물질을 공급한다.That is, the automatic feeding device 210 to be described below supplies raw materials of the same material or different materials to the first track 111 and the second track 112 through each of the feeding nozzles 214 .
상기와 같이 이중구조를 갖는 도가니(110)는, 같은 소재의 원료물질이 공급된 경우 제1트랙(111)과 제2트랙(112)의 위치와 온도의 차이로 인하여 증발량 및 증발속도를 효과적으로 조절할 수 있고, 서로 다른 소재의 원료물질이 공급된 경우 서로 다른 원료물질을 기상에서 합성할 수 있으므로 복합나노분말의 제조가 이루어질 수 있다.The crucible 110 having the double structure as described above can effectively control the evaporation amount and the evaporation rate due to the difference in the position and temperature of the first track 111 and the second track 112 when the raw material of the same material is supplied. Also, when raw materials of different materials are supplied, different raw materials can be synthesized in the gas phase, so that the composite nanopowder can be manufactured.
그리고 반응챔버(100)의 플라즈마 전극(160)은 도가니(110)에서 일정 거리 이격 구비되며 열음극을 형성한다.In addition, the plasma electrodes 160 of the reaction chamber 100 are provided to be spaced apart from the crucible 110 by a predetermined distance to form a hot cathode.
이때, 플라즈마 전극(160)의 단부에는 도 8에 도시된 바와 같이 텅스텐 또는 그래파이트로 이루어지는 팁(161)이 체결될 수 있으며, 하부에는 냉각수가 별도로 유입 및 배출될 수 있다.At this time, a tip 161 made of tungsten or graphite may be fastened to an end of the plasma electrode 160 as shown in FIG. 8 , and cooling water may be separately introduced and discharged at a lower portion thereof.
또한, 상기 플라즈마 전극(160)은, 수직방향으로 연장 형성된 전극중심축(162) 및 전극중심축(162)의 일측에 전원과 연결되는 연결단자(163)가 구비될 수 있다.In addition, the plasma electrode 160 may include an electrode central axis 162 extending in a vertical direction and a connection terminal 163 connected to a power source at one side of the electrode central axis 162 .
이 경우 냉각수는 전극중심축(162)의 내부로 유입될 수 있다.In this case, the cooling water may be introduced into the electrode central shaft 162 .
한편, 반응챔버(100)는, 도 10 및 도 11에 도시된 바와 같이 도가니(110)를 회전 시키는 회전부(150); 및 도가니(110)와 플라즈마 전극(160)을 각각 독립적으로 승강시키는 승강부(140);를 구비하는 회전 및 승강장치(D)를 포함한다.On the other hand, the reaction chamber 100, as shown in FIGS. 10 and 11, a rotating part 150 for rotating the crucible 110; and a rotating and lifting device (D) having a; and a lifting unit (140) for independently lifting and lowering the crucible (110) and the plasma electrode (160).
이때, 회전 및 승강장치(D)의 회전부(150)는, 반응챔버(100)를 관통하여 도가니(110)에 연결되는 도가니중심축(130) 하단부에 고정 결합되는 제1기어(151); 제1기어(151)와 맞물리되, 모터(153) 구동에 의해 회전하는 제2기어(152);를 포함한다.At this time, the rotating unit 150 of the rotating and lifting device (D) includes a first gear 151 fixedly coupled to the lower end of the crucible central shaft 130 connected to the crucible 110 through the reaction chamber 100; and a second gear 152 that is engaged with the first gear 151 and rotates by driving the motor 153 .
따라서, 도 12에 도시된 바와 같이 모터(153)의 구동에 의해 제2기어(152)가 수직선을 중심으로 시계방향 또는 반시계방향으로 회전함에 따라 이와 맞물리는 제1기어(151)가 회전하여 제1기어(151)가 결합된 도가니중심축(130) 및 도가니중심축(130)에 연결된 도가니(110)가 시계방향 또는 반시계방향으로 회전한다.Accordingly, as the second gear 152 rotates clockwise or counterclockwise around the vertical line by the driving of the motor 153 as shown in FIG. 12 , the first gear 151 engaged therewith rotates The crucible central shaft 130 to which the first gear 151 is coupled and the crucible 110 connected to the crucible central shaft 130 rotate clockwise or counterclockwise.
여기서, 모터(153)는 정역 회전이 가능한 것이라면 통상의 어떠한 구조 및 방식의 것이어도 무방하며, 제1기어(151)와 제2기어(152)는 스퍼기어, 웜기어 또는 베벨기어 등일 수 있다.Here, the motor 153 may have any conventional structure and method as long as it is capable of forward and reverse rotation, and the first gear 151 and the second gear 152 may be a spur gear, a worm gear, or a bevel gear.
이와 같이 회전 및 승강장치(D)의 회전부(150)에 의해 도가니중심축(130)과 연결된 도가니(110)가 회전함으로써 반응챔버(100)에서의 원료물질 기화시 도가니(110)에 수용되는 원료물질의 증발량 및 증발속도가 조절된다.As such, the crucible 110 connected to the crucible central shaft 130 is rotated by the rotating part 150 of the rotating and lifting device D, so that the raw material accommodated in the crucible 110 when the raw material is vaporized in the reaction chamber 100 The evaporation amount and evaporation rate of the material are controlled.
예를 들어, 도가니(110)에 수용되는 원료물질은 종류, 양 또는 위치 등에 따라 증발량 및 증발속도가 다르게 되나, 도가니(110)가 회전함에 따라 도가니(110)에 수용되는 원료물질과 플라즈마 전극(160) 사이의 간격이 멀어지거나 가까워질 수 있어 이에 의해 원료물질의 증발량 및 증발속도가 조절되므로 원료물질의 기화가 원활해진다.For example, the raw material accommodated in the crucible 110 has different evaporation and evaporation rates depending on the type, amount, or location, but as the crucible 110 rotates, the raw material accommodated in the crucible 110 and the plasma electrode ( 160), the distance between them may be farther or closer, thereby controlling the evaporation amount and evaporation rate of the raw material, thereby facilitating the vaporization of the raw material.
그리고 회전 및 승강장치(D)의 승강부(140)는, 도가니(110)에 연결되는 도가니전극(120)의 하부로 이어지는 도가니중심축(130) 하단에 연결되되, 고정플레이트(141)로부터 하부로 이어지는 복수의 지지봉(142) 하단을 관통하여 결합되는 제1승강플레이트(143); 및 고정플레이트(141)와 제1승강플레이트(143)를 관통하는 플라즈마 전극(160) 하부로 이어지는 전극중심축(162) 하단에 결합되되, 모터(146) 구동에 의해 회전하는 스크류축(144)에 나선물림하여 스크류축의 시계방향 또는 반시계방향 회전에 따라 승강하는 제2승강플레이트(145);를 포함한다.And the lifting unit 140 of the rotating and lifting device (D) is connected to the lower end of the crucible central shaft 130 leading to the lower portion of the crucible electrode 120 connected to the crucible 110, the lower portion from the fixed plate 141 A first lifting plate 143 coupled through a plurality of support rods 142 leading to the lower end; And the fixed plate 141 and the first lifting plate 143 is coupled to the lower end of the electrode center shaft 162 leading to the lower plasma electrode 160 penetrating the screw shaft 144 rotated by the motor 146 driving. and a second lifting plate 145 that ascends and descends according to the clockwise or counterclockwise rotation of the screw shaft by spiral engagement.
따라서, 제1승강플레이트(143) 승강에 의해 도 13에 도시된 바와 같이 도가니중심축(130)이 승강하여 도가니중심축(130)에 연결된 도가니(110)의 승강이 이루어지고, 도 14에 도시된 바와 같이 제2승강플레이트(145)의 승강에 의해 플라즈마 전극(160)의 승강이 이루어진다.Therefore, as shown in FIG. 13 by the lifting of the first lifting plate 143, the crucible central shaft 130 is elevated and the crucible 110 connected to the crucible central shaft 130 is raised and lowered, and as shown in FIG. As shown, the plasma electrode 160 is raised and lowered by the lift of the second lifting plate 145 .
여기서, 제1승강플레이트(143)는 별도의 승강수단에 의해 승강될 수 있다.Here, the first elevating plate 143 may be elevated by a separate elevating means.
예컨대, 유압 또는 공압 실린더(도면상 미도시)의 로드(도면상 미도시)가 제1승강플레이트(143)에 연결되어 실린더의 로드가 출몰함에 따라 제1승강플레이트(143)의 승강이 이루어질 수 있다.For example, a rod (not shown in the drawing) of a hydraulic or pneumatic cylinder (not shown in the drawing) is connected to the first elevating plate 143 so that the first elevating plate 143 can be elevated as the cylinder rod protrudes and retracts. .
그리고 스크류축(144) 회전에 의한 제2승강플레이트(145)의 승강은 제1승강플레이트(143)의 승강과 동시에 이루어지거나, 제1승강플레이트(143)의 승강과 시간 차이를 두고 이루어질 수 있다.In addition, the lifting and lowering of the second lifting plate 145 by the rotation of the screw shaft 144 may be performed simultaneously with the lifting of the first lifting plate 143 or with a time difference from the lifting and lowering of the first lifting plate 143. .
제2승강플레이트(145)와 제1승강플레이트(143)가 동시 승강, 예컨대 제2승강플레이트(145)의 하강과 함께 제1승강플레이트(143)의 상승이 이루어지면 도가니(110)와 플라즈마 전극(160) 사이의 간격 조절이 더욱 원활하다.When the second elevating plate 145 and the first elevating plate 143 are simultaneously elevated, for example, the first elevating plate 143 is elevated together with the lowering of the second elevating plate 145, the crucible 110 and the plasma electrode Adjustment of the interval between 160 is more smooth.
이와 같이 회전 및 승강장치(D)의 승강부(140)에 의해 도가니(110)와 플라즈마 전극(160)이 승강함으로써 반응챔버(100)에서의 원료물질 기화시 도가니(110)에 수용되는 원료물질의 증발량 및 증발속도가 조절된다.As such, the crucible 110 and the plasma electrode 160 are raised and lowered by the lifting unit 140 of the rotating and lifting device D, so that the raw material is accommodated in the crucible 110 when the raw material is vaporized in the reaction chamber 100 . The amount of evaporation and the rate of evaporation are controlled.
예를 들어, 도가니(110)에 수용되는 원료물질은 종류, 양 또는 위치 등에 따라 증발량 및 증발속도가 다르게 되나, 도가니(110)와 플라즈마 전극(160)이 승강함에 따라 도가니(110)에 수용되는 원료물질과 플라즈마 전극(160) 사이의 간격이 멀어지거나 가까워질 수 있어 이에 의해 원료물질의 증발량 및 증발속도가 조절되므로 원료물질의 기화가 원활해진다.For example, the raw material accommodated in the crucible 110 has different evaporation and evaporation rates depending on the type, amount, or location, but as the crucible 110 and the plasma electrode 160 move up and down, the raw material is accommodated in the crucible 110. Since the distance between the raw material and the plasma electrode 160 may be increased or decreased, the evaporation amount and the evaporation rate of the raw material are controlled by this, so that the vaporization of the raw material is facilitated.
그리고 회전 및 승강장치(D)의 승강부(140)에서 제1승강플레이트(143)를 관통하는 플라즈마 전극(160)의 외면은 벨로우즈(147)로 감싸짐으로써 벨로우즈(147)의 신장 및 수축에 의해 제1승강플레이트(143)의 승강이 원활하다.And the outer surface of the plasma electrode 160 passing through the first lifting plate 143 in the lifting unit 140 of the rotating and lifting device D is wrapped with the bellows 147 to prevent the extension and contraction of the bellows 147. Elevation of the first lifting plate 143 by the smooth.
그리고 회전 및 승강장치(D)의 승강부(140)에서 제2승강플레이트(145)의 승강에 관여하는 모터(146) 및 스크류축(144)은 결합부재(도면부호 미표시)에 의해 제1승강플레이트(143)에 고정됨으로써 모터(146) 구동에 의한 스크류축(144)의 회전에 의해 제2승강플레이트(145)의 승강이 이루어진다.And the motor 146 and the screw shaft 144 involved in the elevating of the second elevating plate 145 in the elevating unit 140 of the rotating and elevating device D are first elevated by a coupling member (not shown). By being fixed to the plate 143, the second lifting plate 145 is raised and lowered by the rotation of the screw shaft 144 by the motor 146 driving.
본 발명의 원료공급부(200)는, 반응챔버(100)의 일측에 연결되어 원료물질을 반응챔버(100)로 공급한다.The raw material supply unit 200 of the present invention is connected to one side of the reaction chamber 100 to supply the raw material to the reaction chamber 100 .
이때, 원료물질은 반응챔버(100)의 내부에서 기화 및 응축되어 나노분말로 변화되고, 변화된 나노분말은 수거부(300)에서 수거된다.At this time, the raw material is vaporized and condensed inside the reaction chamber 100 to be changed into nanopowder, and the changed nanopowder is collected by the collecting unit 300 .
원료공급부(200)는 원료물질을 반응챔버(100) 내부로 공급하는 자동피딩장치(210)를 포함할 수 있다.The raw material supply unit 200 may include an automatic feeding device 210 for supplying the raw material into the reaction chamber 100 .
자동피딩장치(210)는, 도 5에 도시된 바와 같이 피딩하우징(211); 피딩하우징(211) 내부에 나선상으로 구비된 피딩스크류(212); 피딩스크류(212)를 구동시키는 피딩모터(215); 및 피딩하우징(211)에 연결되며 원료물질을 반응챔버(100) 내부로 공급하는 피딩노즐(214);을 구비함으로써 피딩하우징(211)의 내부가 진공상태에서 피딩스크류(212)의 회전에 의해 압출방식으로 원료물질을 이동시킬 수 있다.The automatic feeding device 210 includes a feeding housing 211 as shown in FIG. 5; a feeding screw 212 provided in a spiral shape inside the feeding housing 211; a feeding motor 215 for driving the feeding screw 212; and a feeding nozzle 214 connected to the feeding housing 211 and supplying a raw material into the reaction chamber 100, so that the inside of the feeding housing 211 is in a vacuum state by rotation of the feeding screw 212 The raw material can be moved by the extrusion method.
여기서, 피딩하우징(211)은 원통형상으로 밀폐구조를 갖고 내부에서 진공 상태를 유지하며, 피딩하우징(211)의 일측에 피딩노즐(214)이 연결되고 타측에 피딩모터(215)가 연결될 수 있다.Here, the feeding housing 211 has a sealed structure in a cylindrical shape and maintains a vacuum state inside, and a feeding nozzle 214 is connected to one side of the feeding housing 211 and a feeding motor 215 is connected to the other side. .
또한, 피딩하우징(211)은 피딩노즐(214)이 반응챔버(100)의 내부에 구비된 도가니(110)로 원료물질을 원활히 공급하도록 반응챔버(100)의 일측과 연결될 수 있다.In addition, the feeding housing 211 may be connected to one side of the reaction chamber 100 so that the feeding nozzle 214 smoothly supplies the raw material to the crucible 110 provided in the reaction chamber 100 .
그리고 피딩하우징(211)에는 원료 물질이 공급되는 개폐구(213)가 구비된다.And the feeding housing 211 is provided with an opening 213 through which the raw material is supplied.
여기서, 개폐구(213)는 피딩하우징(211)의 내부 진공 환경에 영향을 최소화하도록 로드락 방식의 밸브를 이용하는 것이 바람직하다.Here, the opening/closing opening 213 preferably uses a load-lock type valve to minimize the influence on the internal vacuum environment of the feeding housing 211 .
이때, 개폐구(213)를 통해 유입된 원료물질은 피딩스크류(212)의 회전에 의해 피딩노즐(214)의 방향으로 이동되므로 피딩노즐(214)을 통해 반응챔버(100)의 내부에 구비된 도가니(110)로 원료물질을 연속적으로 공급할 수 있다.At this time, since the raw material introduced through the opening 213 is moved in the direction of the feeding nozzle 214 by the rotation of the feeding screw 212 , the crucible provided inside the reaction chamber 100 through the feeding nozzle 214 . The raw material may be continuously supplied to (110).
또한, 피딩하우징(211)의 외측에는 피딩하우징(211)의 내부에 수용되는 원료물질이 설정된 온도에 이르도록 가열하는 피딩히터(216)가 연결될 수 있으며, 피딩히터(216)는 복수일 수 있다.In addition, a feeding heater 216 that heats the raw material accommodated in the feeding housing 211 to reach a set temperature may be connected to the outside of the feeding housing 211, and there may be a plurality of feeding heaters 216 .
그리고 피딩하우징(211)의 일측은 소재공급포트(101)와 결합되며, 이 경우 피딩하우징(211)에 연결된 피딩노즐(214)은 반응챔버(100)의 내부에 위치한다.And one side of the feeding housing 211 is coupled to the material supply port 101 , and in this case, the feeding nozzle 214 connected to the feeding housing 211 is located inside the reaction chamber 100 .
피딩노즐(214)의 형상과 구조는 다양할 수 있으며, 피딩노즐(214)은 복수일 수 있다.The shape and structure of the feeding nozzle 214 may vary, and the feeding nozzle 214 may be plural.
본 발명의 이송필름(180)은 반응챔버(100)의 내측 상부에서 기화된 원료물질 또는 결정화된 나노 분말을 포집 및 이송시키며 폐 루프를 따라 이송시킨다.The transport film 180 of the present invention collects and transports the vaporized raw material or crystallized nanopowder in the upper inner portion of the reaction chamber 100 and transports it along a closed loop.
이송필름(180)은, 도가니(110)로부터 일정 거리 이격되며, 일부 또는 전부가 반응챔버(100)의 상부에 위치한다.The transfer film 180 is spaced apart from the crucible 110 by a certain distance, and some or all of it is located above the reaction chamber 100 .
이때, 이송필름(180)은 금속으로 형성되어 전기적 또는 자기적 성질에 의해 기화된 원료물질을 표면에 포집시킬 수 있다.At this time, the transfer film 180 may be formed of a metal to collect the raw material vaporized by electrical or magnetic properties on the surface.
그리고 이송필름(180)은 양 측 각각이 수평방향으로 이어지는 이송축(181)에 의해 지지된다.And the transfer film 180 is supported by the transfer shaft 181, each of both sides extending in the horizontal direction.
이때, 이송축(181)의 내부로는 각각 냉각수가 유입될 수 있다.At this time, cooling water may be introduced into each of the transfer shafts 181 .
이송축(181)은 냉각수의 유입 또는 배출이 용이하도록 반응챔버(100) 또는 수거부(300)를 수평방향으로 관통하도록 구비될 수 있다.The transfer shaft 181 may be provided to pass through the reaction chamber 100 or the collecting unit 300 in a horizontal direction to facilitate the inflow or discharge of the coolant.
한편, 이송필름(180)은 반응챔버(100)에서 수거부(300)의 방향으로 연장되어 반응챔버(100)에서 포집된 원료물질을 수거부(300)로 이송시킨다.Meanwhile, the transfer film 180 extends from the reaction chamber 100 in the direction of the collecting unit 300 to transfer the raw material collected in the reaction chamber 100 to the collecting unit 300 .
즉, 이송필름(180)은 폐 루프를 따라 무한궤도 상에서 이동하면서 반응챔버(100)의 내부에서 수거부(300)의 내부로 이동한다.That is, the transfer film 180 moves from the inside of the reaction chamber 100 to the inside of the collection unit 300 while moving on the caterpillar along the closed loop.
여기서, 이송필름(180) 또는 이송축(181)의 회전은 반응챔버(100) 또는 수거부(300)의 외측에 구비되는 모터 구동에 의해 이루어질 수 있다.Here, the rotation of the transfer film 180 or the transfer shaft 181 may be performed by driving a motor provided outside the reaction chamber 100 or the collection unit 300 .
또한, 이송필름(180)은 냉각판(182)을 더 포함할 수 있다.In addition, the transfer film 180 may further include a cooling plate 182 .
냉각판(182)은 이송필름(180)을 설정된 온도로 냉각시키며, 이송필름(180)의 내측 면에 접촉될 수 있다.The cooling plate 182 cools the transfer film 180 to a set temperature, and may be in contact with the inner surface of the transfer film 180 .
이 경우 이송필름(180)의 외측면에 포집되는 기화된 원료물질은 냉각판(182)을 통해 설정된 온도로 냉각되어 반응챔버(100)에서 상기 수거부(300)의 방향으로 이동되면서 응축되어 나노분말로 결정화될 수 있다.In this case, the vaporized raw material collected on the outer surface of the transfer film 180 is cooled to a set temperature through the cooling plate 182 and is condensed while moving in the reaction chamber 100 in the direction of the collecting unit 300 and condensed. It may crystallize into a powder.
냉각판(182)을 통한 이송필름(180)의 냉각은 냉각수를 이용하거나 설정된 온도의 불활성기체를 이용한 것일 수 있다.The cooling of the transfer film 180 through the cooling plate 182 may be performed using cooling water or an inert gas having a set temperature.
그리고 이송필름(180)의 일측에는 스크래퍼(183)가 구비된다.And a scraper 183 is provided on one side of the transfer film 180 .
스크래퍼(183)는 이송필름(180)에 접촉하여 이송필름(180)에 의해 이송되는 나노분말을 긁어낸다.The scraper 183 scrapes the nanopowder transferred by the transfer film 180 in contact with the transfer film 180 .
이때, 스크래퍼(183)는, 이송필름(180)의 폭 방향으로 연장 형성되며, 수거부(300)에 위치된다.At this time, the scraper 183 is formed to extend in the width direction of the transfer film 180 , and is located in the collection unit 300 .
여기서, 스크래퍼(183)는 특히 이송필름(180)의 하부 표면에 접촉하며, 스크래퍼(183)에 의해 나노분말은 이송필름(180)에서 이탈하여 수거부(300)를 통해 수거된다.Here, the scraper 183 is particularly in contact with the lower surface of the transfer film 180 , and the nanopowder is separated from the transfer film 180 by the scraper 183 and collected through the collecting unit 300 .
본 발명의 수거부(300)는 반응챔버(100)의 타측에 연결되어 이송필름(180)을 통해 이송된 나노분말을 회수한다.The collecting unit 300 of the present invention is connected to the other side of the reaction chamber 100 to recover the nanopowder transferred through the transfer film 180 .
이때, 수거부(300)은, 이송필름(180)에서 이탈된 나노분말을 포집하는 제1포집부(310); 제1포집부(310)와 연결되며 제1포집부(310)를 통해 포집된 나노분말을 포집 및 이송시키는 제2포집부(320); 및 제2포집부(320)를 통해 이동된 나노분말이 회수되는 분말회수부(330);를 포함한다.At this time, the collecting unit 300 includes a first collecting unit 310 for collecting the nanopowder separated from the transfer film 180 ; a second collecting unit 320 connected to the first collecting unit 310 and collecting and transferring the nanopowder collected through the first collecting unit 310; and a powder recovery unit 330 in which the nanopowder moved through the second collection unit 320 is recovered.
제1포집부(310)에는 진공펌프(P) 등과 연결된 진공포트(102)가 구비되고, 내부가 진공인 환경에서 나노분말을 하부 방향으로 이동시킨다.The first collection unit 310 is provided with a vacuum port 102 connected to a vacuum pump (P), etc., and moves the nanopowder downward in an environment in which the inside is vacuum.
그리고 제1포집부(310)에는 로드락(Load lock)밸브나 게이트밸브가 구비될 수 있으며 진공 상태를 유지하면서 나노분말을 포집 및 이동시키기 위한 다양한 구성이 추가로 구비될 수 있다.In addition, the first collecting unit 310 may be provided with a load lock valve or a gate valve, and various configurations for collecting and moving the nanopowder while maintaining a vacuum state may be additionally provided.
제2포집부(320)에는 진공펌프(P) 등과 연결된 진공포트(102)가 구비되고, 이는 제1포집부(310)와 동일한 구성을 가질 수 있다.The second collecting unit 320 is provided with a vacuum port 102 connected to the vacuum pump P, etc., which may have the same configuration as the first collecting unit 310 .
제1포집부(310)와 제2포집부(320)를 통과한 나노분말은 분말회수부(330)에서 최종적으로 회수된다.The nanopowder that has passed through the first collecting unit 310 and the second collecting unit 320 is finally recovered by the powder collecting unit 330 .
제1포집부(310)와 제2포집부(320)는 각각 독립적으로 진공 환경이 조성되는 것이 바람직하며, 내부 압력은 서로 다를 수 있다.It is preferable that the first collecting unit 310 and the second collecting unit 320 are each independently created in a vacuum environment, and internal pressures may be different from each other.
또한, 수거부(300)의 상부에는 투명 소재로 형성된 뷰포트(301)가 구비되어 뷰포트(301)를 통해 수거부(300)의 내부 상황을 시각적으로 확인할 수 있다.In addition, a viewport 301 formed of a transparent material is provided on the upper portion of the collection unit 300 to visually check the internal condition of the collection unit 300 through the viewport 301 .
그리고 분말회수부(330)는 포장용기가 연결될 수 있으며, 로드락밸브가 구비되어 진공상태에서 정해진 양만큼 포장용기의 내부로 나노분말을 이동시킨다.And the powder recovery unit 330 may be connected to a packaging container, and a load lock valve is provided to move the nanopowder into the packaging container by a predetermined amount in a vacuum state.
또한, 분말회수부(330)에는 스크류컨베어가 구비될 수 있으며, 스크류컨베어는 나선상으로 감긴 스크류의 회전에 따라 진공상태를 유지하면서 나노분말을 정해진 위치로 이동시킨다.In addition, the powder recovery unit 330 may be provided with a screw conveyor, which moves the nanopowder to a predetermined position while maintaining a vacuum state according to the rotation of the spirally wound screw.
한편, 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치(A)는 도 9에 도시된 바와 같이 복수 개를 병렬로 연결하여 하나의 모듈로 운용될 수 있다.On the other hand, the continuous nanopowder production apparatus (A) in which the evaporation amount and evaporation rate of the raw material according to the present invention are controlled can be operated as one module by connecting a plurality of them in parallel as shown in FIG. 9 .
본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치(A)가 모듈로 운용되면 진공펌프(P)를 통한 진공형성, 자동피딩장치(210)를 통한 원료물질공급 및 냉각수를 통한 냉각 등의 효율을 높일 수 있으므로 나노분말의 생산성을 높일 수 있다.When the continuous nano-powder production apparatus (A), in which the evaporation amount and evaporation rate of raw materials are controlled according to the present invention, is operated as a module, vacuum is formed through the vacuum pump (P), raw material is supplied through the automatic feeding device 210 and cooling water It is possible to increase the efficiency of cooling, etc. through
상기에서 설명한 바와 같이 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치(A)는, 자동피딩장치(210) 및 이송필름(180)을 포함하는바, 원료물질의 공급 및 나노분말의 포집이 연속적으로 이루어지므로 나노분말을 연속하여 생산할 수 있다.As described above, the continuous nanopowder production apparatus (A) in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled includes an automatic feeding device 210 and a transfer film 180, and the supply of the raw material And since the collection of the nanopowder is made continuously, it is possible to continuously produce the nanopowder.
또한, 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치(A)는 원료공급부(200), 반응챔버(100) 및 수거부(300) 모두에 진공포트(102)가 구비되어 진공펌프(P)와 연결되는바, 진공 환경에서 원료물질의 공급, 나노분말의 생성 및 수거가 진행되므로 대기 노출로 인한 나노분말의 표면 산화를 방지할 수 있다.In addition, the continuous nanopowder production apparatus (A) in which the evaporation amount and evaporation rate of the raw material according to the present invention is controlled has a vacuum port 102 in all of the raw material supply unit 200 , the reaction chamber 100 and the collection unit 300 . Since it is provided and connected to the vacuum pump (P), the supply of raw materials and the generation and collection of nanopowders are carried out in a vacuum environment, it is possible to prevent surface oxidation of the nanopowder due to exposure to air.
또한, 본 발명에 의한 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치(A)는 반응챔버(100)에 회전 및 승강장치(D)가 마련되어 회전 및 승강장치(D)에 의해 도가니(110)가 회전하고 도가니(110) 및 플라즈마 전극(160)이 승강하는바, 원료물질의 기화 과정에서 원료물질의 증발량 및 증발속도가 조절될 수 있으므로 원료물질의 기화가 원활해질 수 있다.In addition, in the continuous nanopowder production apparatus (A) in which the evaporation amount and evaporation rate of the raw material according to the present invention are controlled, a rotating and elevating device (D) is provided in the reaction chamber (100), and a crucible by the rotating and elevating device (D) As 110 rotates and the crucible 110 and the plasma electrode 160 move up and down, the evaporation amount and evaporation rate of the raw material can be adjusted in the process of vaporizing the raw material, so that the raw material can be vaporized smoothly.
이상에서 설명한 바와 같은 본 발명은 상기한 실시예에 한정되지 아니하므로 청구범위에서 청구하는 본 발명의 요지를 벗어나지 않는 범위 내에서 변경 가능하며, 그와 같은 변경은 이하 청구범위 기재에 의하여 정의되는 본 발명의 보호범위 내에 있게 된다.Since the present invention as described above is not limited to the above-described embodiments, it can be changed within the scope without departing from the gist of the present invention claimed in the claims, and such changes are the present invention defined by the following claims fall within the protection scope of the invention.
[부호의 설명][Explanation of code]
100 : 반응챔버 101 : 소재공급포트100: reaction chamber 101: material supply port
102 : 진공포트 110 : 도가니102: vacuum port 110: crucible
111 : 제1트랙 112 : 제2트랙111: first track 112: second track
113 : 차단턱 120 : 도가니전극113: blocking jaw 120: crucible electrode
130 : 도가니중심축 140 : 승강부130: crucible central axis 140: elevating part
141 : 고정플레이트 142 : 지지봉141: fixed plate 142: support bar
143 : 제1승강플레이트 144 : 스크류축143: first lifting plate 144: screw shaft
145 : 제2승강플레이트 146 : 모터145: second lifting plate 146: motor
150 : 회전부 151 : 제1기어150: rotating part 151: first gear
152 : 제2기어 153 : 모터152: second gear 153: motor
160 : 플라즈마 전극 161 : 팁160: plasma electrode 161: tip
162 : 전극중심축 163 : 연결단자162: electrode central axis 163: connection terminal
180 : 이송필름 181 : 이송축180: transfer film 181: transfer shaft
182 : 냉각판 183 : 스크래퍼182: cooling plate 183: scraper
200 : 원료공급부 210 : 자동피딩장치200: raw material supply unit 210: automatic feeding device
211 : 피딩하우징 212 : 피딩스크류211: feeding housing 212: feeding screw
213 : 개폐구 214 : 피딩노즐213: opening 214: feeding nozzle
215 : 피딩모터 216 : 피딩히터215: feeding motor 216: feeding heater
300 : 수거부 301 : 뷰포트300: collection unit 301: viewport
310 : 제1포집부 320 : 제2포집부310: first collection unit 320: second collection unit
330 : 분말회수부 340 : 포장용기330: powder recovery unit 340: packaging container
400 : 지지프레임 A : 나노분말 연속제조장치400: support frame A: nano-powder continuous manufacturing device
D : 회전 및 승강장치 P : 진공펌프D : Rotating and lifting device P : Vacuum pump
본 발명은, 균일한 입도를 갖는 나노분말을 연속적으로 생산함으로써 나노분말의 생산성을 높일 수 있도록 할 뿐만 아니라 원료물질의 기화가 원활함으로써 나노분말의 품질을 높일 수 있도록 하므로 나노분말 생산 관련 산업상 이용가능성이 있다.The present invention not only increases the productivity of the nanopowder by continuously producing the nanopowder having a uniform particle size, but also improves the quality of the nanopowder by facilitating the vaporization of the raw material, so that the nanopowder production-related industrial use There is a possibility.

Claims (10)

  1. 플라즈마 전극(160) 및 도가니(110)를 이용하여 원료물질을 기화시키는 반응챔버(100);a reaction chamber 100 for vaporizing raw materials using the plasma electrode 160 and the crucible 110;
    상기 반응챔버(100)의 일측에 연결되며 상기 원료물질을 상기 반응챔버(100)로 공급시키는 원료공급부(200);a raw material supply unit 200 connected to one side of the reaction chamber 100 and supplying the raw material to the reaction chamber 100;
    상기 반응챔버(100)의 내측 상부에서 기화된 상기 원료물질 또는 결정화된 나노분말을 포집 및 이송시키며 폐 루프를 따라 이동하는 이송필름(180); 및a transport film 180 that collects and transports the raw material or crystallized nanopowder vaporized in the upper inner portion of the reaction chamber 100 and moves along a closed loop; and
    상기 반응챔버(100)의 타측에 연결되며 상기 이송필름(180)을 통해 이송된 상기 나노분말을 회수하는 수거부(300);를 포함하되,A collection unit 300 connected to the other side of the reaction chamber 100 and configured to recover the nanopowder transferred through the transfer film 180;
    상기 반응챔버(100)는, 상기 도가니(110)를 회전 시키는 회전부(150); 및 상기 도가니(110)와 상기 플라즈마 전극(160)을 각각 독립적으로 승강시키는 승강부(140);를 구비하는 회전 및 승강장치(D)를 포함하여, 상기 회전 및 승강장치(D)에 의한 상기 도가니(110)의 회전 및 상기 도가니(110)와 상기 플라즈마 전극(160)의 승강을 통해 내부에서 기화되는 상기 원료물질의 증발량 및 증발속도를 조절하는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치.The reaction chamber 100 includes a rotating part 150 for rotating the crucible 110; and a lifting unit 140 for independently lifting and lowering the crucible 110 and the plasma electrode 160, respectively. The evaporation amount and evaporation rate of the raw material, characterized in that by adjusting the evaporation amount and the evaporation rate of the raw material vaporized inside through the rotation of the crucible 110 and the raising and lowering of the crucible 110 and the plasma electrode 160 Controlled Nanopowder Continuous Manufacturing Equipment.
  2. 제1항에 있어서,According to claim 1,
    상기 회전부(150)는, 상기 반응챔버(100)를 관통하여 상기 도가니(110)에 연결되는 도가니중심축(130) 하단부에 고정 결합되는 제1기어(151); 및 상기 제1기어(151)와 맞물리되, 모터 구동에 의해 회전하는 제2기어(152);를 포함하는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치.The rotating unit 150 includes a first gear 151 fixedly coupled to the lower end of the crucible central shaft 130 connected to the crucible 110 through the reaction chamber 100; and a second gear (152) that is engaged with the first gear (151) and rotates by driving a motor;
  3. 제1항에 있어서,According to claim 1,
    상기 승강부(140)는, 상기 도가니(110)에 연결되는 도가니전극(120)의 하부로 이어지는 도가니중심축(130) 하단에 연결되되, 고정플레이트(141)로부터 하부로 이어지는 복수의 지지봉(142) 하단을 관통하여 결합되는 제1승강플레이트(143); 및 상기 고정플레이트(141)와 상기 제1승강플레이트(143)를 관통하는 상기 플라즈마 전극(160) 하부로 이어지는 전극중심축(162) 하단에 결합되되, 모터(146) 구동에 의해 회전하는 스크류축(144)에 나선물림하여 상기 스크류축(144)의 시계방향 또는 반시계방향 회전에 따라 승강하는 제2승강플레이트(145);를 포함하는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치.The lifting unit 140 is connected to the lower end of the crucible central shaft 130 that leads to the lower part of the crucible electrode 120 connected to the crucible 110 , and a plurality of support rods 142 extending downward from the fixed plate 141 . ) a first elevating plate 143 coupled through the lower end; and a screw shaft coupled to the lower end of the electrode central shaft 162 leading to the lower portion of the plasma electrode 160 penetrating the fixing plate 141 and the first lifting plate 143 , and rotating by driving the motor 146 . A second lifting plate 145 that is spirally engaged with the screw shaft 144 and ascends and descends according to the clockwise or counterclockwise rotation of the screw shaft 144; Nanopowder continuous manufacturing equipment.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 제2승강플레이트(145)는 상기 제1승강플레이트(143)의 승강과 동시 또는 시간 차를 두고 승강하는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치.The second elevating plate 145 is a continuous manufacturing apparatus for nanopowder in which the evaporation amount and evaporation rate of the raw material is controlled, characterized in that the elevating and elevating of the first elevating plate 143 at the same time or with a time difference.
  5. 제1항에 있어서,According to claim 1,
    상기 플라즈마 전극(160)은, 상기 도가니(110)에 인접하는 길이 방향 선단에 체결되되, 텅스텐 또는 그래파이트로 이루어지는 팁(161); 길이 방향 말단으로부터 수직방향으로 연장 형성되는 전극중심축(162); 및 상기 전극중심축(162)의 일측에 배치되어 전원과 연결되는 연결단자(163);를 포함하는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치.The plasma electrode 160, the tip 161 is fastened to the longitudinal end adjacent to the crucible 110, made of tungsten or graphite; an electrode central axis 162 extending in the vertical direction from the longitudinal end; and a connection terminal 163 disposed on one side of the electrode central shaft 162 and connected to a power source.
  6. 제1항에 있어서,According to claim 1,
    상기 도가니(110)는, 아랫방향으로 침강된 형상의 제1트랙(111); 상기 제1트랙(111)의 외측 둘레보다 큰 내측 둘레를 가지며 아랫방향으로 침강된 형상의 제2트랙(112); 및 상기 제1트랙(111)과 상기 제2트랙(112)의 사이에 구비되며 상기 제1트랙(111)과 상기 제2트랙(112)을 차단시키는 차단턱(113);을 포함하는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치.The crucible 110, a first track 111 of a shape that is settling in the downward direction; a second track (112) having an inner circumference larger than the outer circumference of the first track (111) and having a downwardly depressed shape; and a blocking protrusion 113 provided between the first track 111 and the second track 112 and blocking the first track 111 and the second track 112. A continuous production device for nanopowder in which the evaporation amount and evaporation rate of raw materials are controlled.
  7. 제1항에 있어서,According to claim 1,
    상기 원료공급부(200)는, 피딩하우징(211); 상기 피딩하우징(211) 내부에 나선상으로 구비된 피딩스크류(212); 상기 피딩스크류(212)를 구동시키는 피딩모터(215); 및 상기 피딩하우징(211)에 연결되며 상기 원료물질을 상기 반응챔버(100) 내부로 공급하는 피딩노즐(214);을 구비하는 자동피딩장치(210)를 포함하는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치.The raw material supply unit 200, a feeding housing 211; a feeding screw 212 provided in a spiral shape inside the feeding housing 211; a feeding motor 215 for driving the feeding screw 212; and a feeding nozzle 214 connected to the feeding housing 211 and supplying the raw material into the reaction chamber 100; an automatic feeding device 210 having; and an apparatus for continuously producing nanopowders in which the evaporation rate is controlled.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 자동피딩장치(210)는 복수로 마련되어 상기 도가니(110)의 제1트랙(111) 및 제2트랙(112) 각각에 같은 소재의 상기 원료물질 또는 서로 다른 소재의 상기 원료물질을 공급하는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치.The automatic feeding device 210 is provided in plurality to supply the raw material of the same material or the raw material of different materials to each of the first track 111 and the second track 112 of the crucible 110 . A continuous production device for nanopowder in which the evaporation amount and evaporation rate of the raw material are controlled.
  9. 제1항에 있어서,According to claim 1,
    상기 이송필름(180)은 양 측 각각이 수평방향으로 이어지는 이송축(181)에 의해 지지되고, 상기 이송축(181)은 내부로 냉각수가 유입되는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치.The transfer film 180 is supported by a transfer shaft 181 on both sides extending in the horizontal direction, and the transfer shaft 181 has an evaporation amount and an evaporation rate of the raw material, characterized in that cooling water is introduced therein. Controlled Nanopowder Continuous Manufacturing Equipment.
  10. 제1항에 있어서,According to claim 1,
    상기 수거부(300)는, 상기 이송필름(180)에서 이탈된 나노분말을 포집하는 제1포집부(310); 상기 제1포집부(310)와 연결되며 상기 제1포집부(310)를 통해 포집된 나노분말을 포집 및 이송시키는 제2포집부(320); 및 상기 제2포집부(320)를 통해 이동된 나노분말이 회수되는 분말회수부(330);를 포함하는 것을 특징으로 하는 원료물질의 증발량 및 증발속도가 조절되는 나노분말 연속제조장치.The collecting unit 300 includes: a first collecting unit 310 for collecting the nanopowder separated from the transfer film 180; a second collecting unit 320 connected to the first collecting unit 310 and collecting and transferring the nanopowder collected through the first collecting unit 310; and a powder recovery unit 330 in which the nanopowder moved through the second collection unit 320 is recovered.
PCT/KR2019/017116 2019-12-05 2019-12-05 Apparatus for continuously preparing nanopowder in which evaporation amount and speed of raw material are adjusted WO2021112294A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2019/017116 WO2021112294A1 (en) 2019-12-05 2019-12-05 Apparatus for continuously preparing nanopowder in which evaporation amount and speed of raw material are adjusted
US17/805,322 US20220297185A1 (en) 2019-12-05 2022-06-03 Apparatus for continuously preparing nanopowder in which evaporation amount and speed of raw material are adjusted

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/017116 WO2021112294A1 (en) 2019-12-05 2019-12-05 Apparatus for continuously preparing nanopowder in which evaporation amount and speed of raw material are adjusted

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/805,322 Continuation US20220297185A1 (en) 2019-12-05 2022-06-03 Apparatus for continuously preparing nanopowder in which evaporation amount and speed of raw material are adjusted

Publications (1)

Publication Number Publication Date
WO2021112294A1 true WO2021112294A1 (en) 2021-06-10

Family

ID=76222011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017116 WO2021112294A1 (en) 2019-12-05 2019-12-05 Apparatus for continuously preparing nanopowder in which evaporation amount and speed of raw material are adjusted

Country Status (2)

Country Link
US (1) US20220297185A1 (en)
WO (1) WO2021112294A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721511A (en) * 1971-02-18 1973-03-20 M Schlienger Rotating arc furnace crucible
JP2008179509A (en) * 2007-01-24 2008-08-07 Ulvac Japan Ltd Silicon refining device and silicon refining method
KR20140106044A (en) * 2013-02-25 2014-09-03 주식회사 선익시스템 Evaporation source and apparatus for deposition
KR20160034740A (en) * 2014-09-22 2016-03-30 주식회사 선익시스템 Crucible for evaporation source and evaporation source including the same
KR20180135760A (en) * 2017-06-13 2018-12-21 한국기계연구원 An appratus for producing nano powders and a method of producing using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721511A (en) * 1971-02-18 1973-03-20 M Schlienger Rotating arc furnace crucible
JP2008179509A (en) * 2007-01-24 2008-08-07 Ulvac Japan Ltd Silicon refining device and silicon refining method
KR20140106044A (en) * 2013-02-25 2014-09-03 주식회사 선익시스템 Evaporation source and apparatus for deposition
KR20160034740A (en) * 2014-09-22 2016-03-30 주식회사 선익시스템 Crucible for evaporation source and evaporation source including the same
KR20180135760A (en) * 2017-06-13 2018-12-21 한국기계연구원 An appratus for producing nano powders and a method of producing using the same

Also Published As

Publication number Publication date
US20220297185A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2014098458A1 (en) Method and apparatus for purifying organic material using ionic liquid
WO2017057913A1 (en) Method for manufacturing perovskite crystal structure and device for manufacturing perovskite crystal structure therefor
JP2002266065A5 (en) Film forming method, method for manufacturing light emitting device, and film forming apparatus
WO2013094840A1 (en) Method for manufacturing large-scale three-dimensional transparent graphene electrodes by electrospraying, and large-scale three-dimensional transparent graphene electrode manufactured by using the method
WO2021112294A1 (en) Apparatus for continuously preparing nanopowder in which evaporation amount and speed of raw material are adjusted
KR20110035867A (en) Apparatus and method for manufacturing organic el device, and apparatus and method for forming film
WO2021112295A1 (en) Nanopowder continuous production device for improving nanopowder collection efficiency
WO2013058458A1 (en) Method and apparatus for manufacturing a low melting point nano glass powder
WO2016043396A1 (en) Method for preparing nitrogen-doped graphene and nitrogen-doped graphene prepared thereby
WO2016114546A1 (en) Method for preparing hybrid metal pattern through electrical wire explosion and light sintering, and hybrid metal pattern prepared thereby
WO2016032227A1 (en) Method for preparing in situ nanomaterial having functional material coating, and nanomaterial prepared by means of same
WO2020059956A1 (en) Apparatus for continuously preparing nanopowder by using transferred thermal plasma and method for continuously preparing composite nanopowder by using transferred thermal plasma
WO2018186634A1 (en) Mass production equipment of high resolution amoled devices using plane type evaporation source
WO2021141261A1 (en) Device for manufacturing organic light emitting diode for lighting
WO2019132116A1 (en) Equipment for mass production of high-resolution amoled elements in cluster type by using vertical plane evaporation source
WO2018048090A1 (en) Organic-inorganic hybrid nanowire applicable to photoelectric device, and method for producing same
WO2021235590A1 (en) Method and apparatus for preparing boron nitride nanotubes through heat treatment of boron precursor
WO2022231020A1 (en) High-purity piezoelectric ceramic nanopowder for low-temperature calcination and preparation method therefor
WO2014148687A1 (en) Refining device and refining method for titanium scraps and sponge titanium using deoxidising gas
KR102162973B1 (en) Method for manufacturing nanopowder using thermal plasma
KR20210027032A (en) Shutter apparatus, film formation apparatus, film formation method, and manufacturing method of electronic device
WO2015163734A1 (en) Organic material having protective layer
WO2013019041A2 (en) Method for manufacturing solid electrolyte thin film and manufacturing device thereof
WO2023153672A1 (en) Vacuum evaporation source module including shutter and method for manufacturing organic light emitting display device using same
KR20200032499A (en) Apparatus for manufacturing nanopowder using thermal plasma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955389

Country of ref document: EP

Kind code of ref document: A1