WO2016043396A1 - Method for preparing nitrogen-doped graphene and nitrogen-doped graphene prepared thereby - Google Patents

Method for preparing nitrogen-doped graphene and nitrogen-doped graphene prepared thereby Download PDF

Info

Publication number
WO2016043396A1
WO2016043396A1 PCT/KR2015/003464 KR2015003464W WO2016043396A1 WO 2016043396 A1 WO2016043396 A1 WO 2016043396A1 KR 2015003464 W KR2015003464 W KR 2015003464W WO 2016043396 A1 WO2016043396 A1 WO 2016043396A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
graphene
doped
compound
doped graphene
Prior art date
Application number
PCT/KR2015/003464
Other languages
French (fr)
Korean (ko)
Inventor
후이관남
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2016043396A1 publication Critical patent/WO2016043396A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties

Definitions

  • the present invention relates to a method of preparing nitrogen-doped graphene, wherein carbon and nitrogen are supplied from a carbon compound and an amine compound, and Fe 2+ ions are used as graphene growth catalysts to control the content of pyridine-like arrays.
  • the present invention relates to a method for preparing nitrogen doped graphene, which has an improved content of nitrogen and shows excellent electrochemical activity for redox reactions.
  • Graphene is a hexagonal two-dimensional monolayer composed of carbon atoms. It is a 0-dimensional fullerene, a tube-shaped one-dimensional structure of carbon nanotubes, and 3 Due to the structural difference from graphite having a dimensional structure, graphene has excellent electrical, mechanical, and chemical properties, and has excellent conductivity. In other words, since graphene has a 2-dimensional ballistic transport property, the mobility of charge in graphene is very high, and thus the charge mobility of 15,000 cm 2 V -1 s -1 or higher is maintained at room temperature. see.
  • graphene has the advantage that it is very easy to process one-dimensional, two-dimensional nanopatterns made of carbon, which is a relatively light element, and it is possible to control semiconductor-conductor properties as well as the chemical bonding of carbon.
  • the diversity also enables the manufacture of a wide range of functional devices, including sensors and memories.
  • the nitrogen-doped graphene has a high surface area, excellent electrical conductivity, and a conjugation of the ⁇ -optal of graphene with the lone pair of nitrogen.
  • Chemical vapor deposition is a method in which gaseous components react chemically to form a graphene thin film on the surface of a substrate on which a specific metal is deposited. It is carried out under nitrogen urea and is the most common method of in situ doping with nitrogen. This manufacturing method provides relatively low defects of graphene, but the process temperature must be maintained at a high temperature in order to supply the raw materials of graphene to be manufactured in gaseous form. There is a need for a process that is only possible on metal-deposited surfaces and that the grown graphene must be transferred back to the desired substrate. In addition, it is difficult to grow the size by growing graphene.
  • nitrogen-doped carbon materials may be prepared through thermal decomposition of transition metal macrocyclic compounds, but these compounds are expensive or difficult to synthesize.
  • the present invention provides a nitrogen-doped graphene prepared by the above method as another problem.
  • Another object of the present invention is to provide an electrochemical energy device containing the nitrogen-doped graphene.
  • a second step of forming a compound including carbon atoms, nitrogen atoms and Fe 2+ ions by adding and stirring a solution containing Fe 2+ ions to the mixture solution containing carbon atoms and nitrogen atoms, and then obtaining them ;
  • nitrogen-doped graphene manufacturing method of the present invention carbon and nitrogen for the production of nitrogen-doped graphene from a carbon compound and an amine compound are supplied, in particular by using melamine as a nitrogen source, It is possible to improve the content of nitrogen, and furthermore, to control the content of the pyridine-like arrangement shows excellent electrochemical activity for the Oxygen Reduction Reaction (ORR).
  • ORR Oxygen Reduction Reaction
  • the added Fe 2+ ions function as growth catalysts for growing nitrogen-doped graphene and are formed as Fe substrates during the entire process of forming nitrogen-doped graphene, the nitrogen atoms to be doped By stabilizing them, it is possible to overcome the limitations of the substrate surface to form nitrogen-doped multilayered graphene and increase the size of the graphene.
  • the multilayered graphene can be prepared as a protein or a carbohydrate, it can be widely used in the field of electrochemical energy devices.
  • FIG. 1 is a schematic view showing a method for preparing a nitrogen doped multilayer graphene according to the present invention.
  • Figure 2 shows (a) TEM image, (b) AFM image, (c) XPS graph, (d) Raman spectrum of N-MLG-45min according to an embodiment of the present invention.
  • FIG. 3 shows an XPS graph according to an embodiment of the present invention.
  • A XPS graph for nitrogen of N-MLG-45min
  • b XPS graph for nitrogen of N-MLG-45min, N-MLG-90min, N-MLG-120min
  • Figure 4 shows the Raman spectrum of N-MLG-45min, N-MLG-90min, N-MLG-120min of the present invention.
  • Figure 5 is a linear scan voltage-current curve according to an embodiment of the present invention, (b) rotating disk voltage-current curve, (c) Koutecky-Levich graph, (d) the linear scan voltage according to the Fe content -Shows the current curve.
  • the present invention relates to a method for preparing nitrogen-doped graphene capable of improving nitrogen content and growing graphene, according to an aspect of the present invention.
  • a second step of forming a compound including carbon atoms, nitrogen atoms and Fe 2+ ions by adding and stirring a solution containing Fe 2+ ions to the mixture solution containing carbon atoms and nitrogen atoms, and then obtaining them ;
  • the first step is to prepare a mixture solution containing carbon atoms and nitrogen atoms by adding a carbon compound and an amine compound to an acidic solution and heating and stirring to decompose the carbon compound, wherein the carbon compound is a protein, a monosaccharide, a disaccharide, an oligosaccharide. It is characterized in that any one selected from the group consisting of polysaccharides and combinations thereof, more preferably characterized in that the protein is a milk protein.
  • the amine compound is melamine (C 3 H 6 N 6 ), ammonia (NH 3 ), hydrazine (NH 2 NH 2 ), pyridine (C 5 H 5 N), pyrrole (C 4 H 5 N), acetonitrile (CH 3 CN), triethanolamine (C 6 H 15 NO 3 ), aniline (C 6 H 7 N) 3-aminobenzoic acid (C 7 H 7 NO 2 ), 4-aminobenzoic acid, 3- (4-aminophenyl ) Benzoic acid (C 13 H 11 NO 2 ), 4- (4-aminophenyl) benzoic acid, 4- (3-aminophenyl) benzoic acid (C 13 H 11 NO 2 ), 5-aminoisophthalic acid (C 8 H 7 NO 4 ), 3- (4-aminophenoxy) benzoic acid (C 13 H 11 NO 3 ), 4- (4-aminophenoxy) benzoic acid, 3,4-diaminobenzoic acid (C 7 H 8 N 6
  • the base on which the Fe 2+ ions to be added in the second step can be stirred
  • a protein and a carbohydrate a group consisting of monosaccharides, disaccharides, oligosaccharides, polysaccharides, and combinations thereof
  • the protein and carbohydrates become a promising carbon source that can be widely applied in the field of electrical energy devices.
  • the amine compound melamine as a nitrogen source as described above, it is possible to form a nitrogen-doped multilayered graphene, which significantly improves the nitrogen content in the preparation of the nitrogen-doped graphene.
  • a protein including an amine group among carbon compounds used as a carbon source of nitrogen doped graphene it can also be used as a source of nitrogen doped.
  • the mixture solution containing the carbon atom and the nitrogen atom and the solution containing Fe 2+ ions are stirred under nitrogen protection.
  • the solution containing Fe 2+ ions is a solution further comprising an ammonium group, and supplies Fe 2+ ions to a mixture solution containing carbon and nitrogen atoms formed in the first step, as well as being doped. It can be a source of nitrogen atoms.
  • the added amount of Fe does not participate in the reaction, but prevents Fe 2+ ions from being oxidized to Fe 3+ ions.
  • the third step is to form a Fe substrate by heat-treating the compound obtained in the second step in a nitrogen atmosphere
  • the heat treatment of the third step is 850 ⁇ 1200 °C under nitrogen atmosphere for 45-120 minutes
  • the nitrogen content of the nitrogen-doped graphene is improved, and the multilayer nitrogen graphene formed forms a pyridine-like array 30. It includes ⁇ 35% to improve the function as a catalyst of the redox reaction.
  • the Fe substrate formed in the third step is similar to the function of the substrate in the CVD manufacturing method, but unlike the CVD manufacturing method, the Fe substrate of the present invention is formed during the entire process of forming the nitrogen-doped graphene Fe 2+ ions contribute to the stabilization of the nitrogen atoms doped together with the function as a growth catalyst to grow nitrogen doped graphene. That is, the size of nitrogen doped multilayer graphene can be grown by overcoming the limitation of the limited substrate surface, including nitrogen doped monolayer graphene and nitrogen doped multilayer graphene.
  • the heat treatment reaction of the third step is carried out in a nitrogen atmosphere, it can be used also as a source of nitrogen to be doped.
  • the fourth step is a step of forming a nitrogen-doped graphene by diffusing carbon atoms and nitrogen atoms included in the compound on the Fe substrate by cooling after the third step.
  • the nitrogen-doped graphene is characterized in that the nitrogen-doped multilayer graphene.
  • the doped nitrogen is composed of pyridinic-N, pyrrolic-N, and graphite-N, graphitic-N. Pyridine-like arrangements contain 30-35%.
  • the amine compound is more preferably melamine.
  • the nitrogen-doped graphene manufacturing method of the present invention may further include a fifth step of removing the Fe substrate by reacting by adding an acid after the last fourth step.
  • the Fe substrate prepared in the fourth step is not removed.
  • the redox reaction is similar to that of the nitrogen doped graphene from which the Fe substrate prepared by further including the fifth step is removed, but the activity of the redox reaction is reduced. .
  • the nitrogen-doped graphene from which the Fe substrate is removed by further including the fifth step.
  • a nitrogen doped graphene characterized in that produced by the above-described method.
  • the present invention provides an electrochemical energy device containing the prepared nitrogen doped graphene.
  • the electrochemical energy device containing nitrogen-doped graphene includes a fuel cell and metal-air-batteries.
  • the solid obtained as above was dried in vacuo and then heat treated at 1000 ° C. under a nitrogen atmosphere.
  • a nitrogen-doped multilayer graphene soot was prepared by treatment with HCl (2.0 mol / L, 200 mL) at 80 ° C.
  • the prepared nitrogen-doped multilayer graphene soot is dispersed in water by centrifugation, and the upper centrifuge is obtained through filtration, washing, and drying, so that about 2 g of nitrogen-doped multilayer graphene is obtained. Obtained.
  • the manufacturing process of the nitrogen doped multilayer graphene according to the present embodiment is shown in FIG.
  • the reaction was heat-treated at 1000 ° C. under nitrogen atmosphere for 45 minutes, 90 minutes, and 120 minutes, respectively. Leveling was at N-MLG-45min, N-MLG-90min, N-MLG-120min. However, the samples were treated with HCl at 80 ° C. for 6 hours after the Fe substrate was prepared to remove the Fe substrate.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Fe substrate manufacturing step Heat treatment (1000 °C) Reaction time (min) 45 60 90 Fe removal reaction (HCl treatment time) 0 3 6 0 6 0 6
  • TEM images were measured using a high-resolution JEOL 2000F TEM system operating on LaB6 filaments at 2000 kV.
  • Atomic force microscopy (AFM) images were measured using a Nanonavi Probe Station and Seiko SPA 400 in tapping mode.
  • X-ray Photoelectron Spectroscopy (XPS), ESCALAB250 from VG Scientific Ltd, was used to measure the valence electron state and binding energy of the samples prepared from the above examples, and graphene surface materials were selected.
  • Raman spectra were measured using a micro-Raman spectrometer (Renishaw, InVia). The laser beam excited at the 514 nm wavelength was focused by the objective lens, with a numerical aperture of 0.75 on the sample about 1 ⁇ 2 .
  • TGA was measured using a Pyris Diamon TG / DTA thermogravimetric analyzer from Perkin-Elmer. The sample was measured by heating to 10 ° C. min ⁇ 1 from room temperature to 900 ° C. in air.
  • the polarization curve for the redox reaction was measured using a Rotating Disc Electrodes (RDE) while controlling the speed with Metrohm 628-10unit in 1.0M KOH solution.
  • RDE Rotating Disc Electrodes
  • Figure 2 shows the (a) TEM image, (b) AFM image, (c) XPS graph, (d) Raman spectrum for N-MLG-45min, through which the nitrogen doped multilayer graphene was formed. there was.
  • the surface material of the nitrogen-doped multilayer graphene is represented by carbon, nitrogen, and oxygen
  • the Fe atom only promotes the growth of graphene but is not a component.
  • the Raman spectrum of FIG. 2 (d) shows G-band, D-band, and 2D-band, graphene doped with nitrogen was formed.
  • Figure 3 (a) is an XPS graph for N (N) of N-MLG-45min
  • Figure 3 (b) is a nitrogen for N-MLG-45min, N-MLG-90min, N-MLG-120min respectively
  • the XPS graph is shown, through which the doped nitrogen type and its intensity and binding energy can be analyzed, and these data are summarized in Table 3 below.
  • N1 is a pyridinic-N with pyridine-like arrangement
  • N2 is a pyrrolic-N with pyrrole-like arrangement
  • N3 represents a nitrogen-like graphitic-N with graphite-like arrangement.
  • the nitrogen doped multilayer graphene of the present invention comprises three types of nitrogen doping, N1 (pyridinic-N), N2 (pyrrolic-N), N3 (graphitic-N), nitrogen-doped multilayer
  • N1 pyridinic-N
  • N2 pyrrolic-N
  • N3 graphitic-N
  • nitrogen-doped multilayer the total nitrogen content percentage including the three types of nitrogen doping decreases from 7.41% to 3.45% as the heat treatment time increases. It is believed that some nitrogen atoms are separated from the carbon plane as the heat treatment time increases.
  • each of the three types of nitrogen with respect to the total doped nitrogen content hardly changes the case of N2 (pyrrolic-N), but the content of N1 (pyridinic-N) From 34.6% to 24.8%, N3 (graphitic-N) content was found to increase from 34.8% to 45.1%. It is believed that pyridinic-N (N1) nitrogen type is changed to N3 (graphitic-N) as the heat treatment time increases at high temperature (1000 ° C).
  • the binding energy of each doped nitrogen type was found to be the lowest as 398.7eV when N1 (pyridinic-N), 402.0eV when the N3 (graphitic-N).
  • N1 (pyridinic-N) nitrogen type the nitrogen atom binds two carbon atoms and gives the ⁇ -electron, the lone pair, as an aromatic ⁇ system
  • N3 (graphitic-N) nitrogen type the nitrogen atom has three nitrogen atoms.
  • the binding force of the N3 nitrogen type was higher because the bonding energy of the N3 nitrogen type was higher than that of the N1 nitrogen type because it is bonded to the carbon atom and there is no lone pair around the nitrogen atom.
  • the nitrogen type (pyridinic-N) having a pyridine-like arrangement decreases and the nitrogen type (graphitic-N) having a graphite-like arrangement increases.
  • the heat treatment time was increased, it was determined that pyridine pseudo-array nitrogen (pyridinic-N) was converted into graphite pseudo-array nitrogen (graphitic-N), and thus the value of I G / I D was increased.
  • FIG. 5 (a) contains N-MLG-45min, N-MLG-90min, N-MLG-120min, CNTs, undoped graphene and 20wt% Pt in oxygen saturated 1.0 M KOH solution
  • the linear sweep voltammetry of Pt / C is shown.
  • the starting potential of N-MLG-45min is -0.05V
  • the CNTs starting potential is -0.25V.
  • the graphene (graphene) starting potential was found to be high compared to -0.24V.
  • N-MLG-45min (-0.05V) is slightly lower than the starting potential of Pt / C catalyst (0.01V), but is higher than most catalyst starting potentials not based on Pt, and moreover, N-MLG- The current density of 45 min was similar to that of the Pt / C catalyst.
  • N-MLG-45min which is nitrogen-doped multilayer graphene in Figure 5 (a)
  • the total nitrogen content of each is similar to 7.41%, 6.13%, but N-MLG-45min
  • the half-wave potential of -0.18V was higher than that of N-MLG-90min, compared to -0.23V.
  • the half-wave potential value of N-MLG-45min is higher than N-MLG-90min is the difference in the type of the doped nitrogen, that is, the content of the pyridine pseudo-array nitrogen (pyridinic-N), pyridine pseudo-array nitrogen (pyridinic-N) is believed to improve the electrocatalytic performance of the redox reaction.
  • the electrocatalytic activity of nitrogen doped multilayer graphene was found to be directly related to the nitrogen content and the ratio of pyridinic-array nitrogen (pyridinic-N) to the total doped nitrogen.
  • Figure 5 (b) shows a linear scan voltage-current curve using a rotating disk electrode, the voltage for N-MLG-45min with different rotational speed using the rotating disk electrode in 1.0M KOH solution saturated with O 2 -Shows the current curve.
  • Rotating Disc Electrodes were analyzed using Koutecky-Levich equation.
  • J K and J L are kinetic current density and diffusion limit current density, respectively.
  • the voltage-current was measured under various RDE rpms (800, 1200, 1600, 2000 rpm) to obtain n values through J K and B values in FIG. 5 (c).
  • the current remains almost constant in the potential range of 0.090V to 0.20V.
  • FIG. 5 (c) a constant value of the electron potential for the redox reaction is shown at different electrode potentials of ⁇ 0.2 V, ⁇ 0.25 V, and 0.40 V.
  • FIG. 5 (c) a constant value of the electron potential for the redox reaction is shown at different electrode potentials of ⁇ 0.2 V, ⁇ 0.25 V, and 0.40 V.
  • the number n of electrons transferred through Koutecky-Levich equations (1) to (3) is measured to be about 4, which is the target product H 2 O directly without passing through H 2 O 2 as an intermediate in the reduction reaction of oxygen.
  • the reaction proceeds to obtain a total of four electron transfer means. This can be confirmed through the following schemes (4) to (8).
  • the oxygen reduction proceeds by transferring four electrons in the oxygen reduction for N-MLG-45min, the oxygen molecules are graphene in an aqueous solvent as shown in Equation (4) After being adsorbed on the sheet, four electrons are transferred as shown in Equations (5) to (8), thereby forming nitrogen-doped multilayer graphene (N-MLG) and H 2 O.
  • N-MLG nitrogen-doped multilayered graphene
  • H 2 O hydrogen peroxide
  • Catalyst (Fe) activity was analyzed to the extent of oxidation according to the Fe content.
  • 5d and 6 show linear scan voltage-current graphs and TGA curves according to Fe content for Examples 1 to 3 (heat treatment time 45 minutes, HCl treatment time 0, 3, 6h), respectively.
  • Example 1 (0h) without Fe removal is similar half-waves.
  • Example 2 (3h) with reduced Fe content is similar half-waves.
  • Example 3 (6h) with Fe removed is similar half-waves.
  • Example 1 (0h) which has similar functionality in the redox reaction but is high in Fe content, caused a reduction in redox activity.
  • Fe contributes to the function of the growth catalyst for growing graphene and the stabilization of the doped nitrogen, but it does not seem to have a functional in the redox reaction.
  • Example 1 (0h) includes Fe at about 26.45 at% in nitrogen-doped graphene, and the Fe is not removed, which is the TGA analysis graph Example 1 (0h) of FIG. 6. 61.7wt%). That is, because the original content of Fe in Example 1 is 67.5wt%.
  • Example 2 Fe was partially removed, and the Fe content was about 33.1 wt%, and in Example 3 (6h), almost all Fe was removed, so that the Fe content was about 5 wt%. In other words, after 6 hours of treatment with HCl, Fe can be seen to be removed.
  • Example 4 the Fe content in each nitrogen doped graphene for Example 4 to Example 7 with or without the removal of Fe and the heat treatment was carried out at 60 ° C or 90 ° C Table 1 with Example 1, Example 3 4 is shown collectively.
  • milk powder can be used as a precursor of a nitrogen-doped graphene (N-MLG) synthesis of a multi-layer structure According to the heat treatment time, it was confirmed that the nitrogen content on the nitrogen-doped multilayer graphene (N-MLG) has a distinct effect on the type of nitrogen and the doped nitrogen.
  • N-MLG nitrogen-doped graphene
  • N-MLG nitrogen-doped multilayered graphene
  • CNTs carbon nanotubes
  • the Fe atoms of the nitrogen-doped multilayer graphene do not act as a synergy catalyst for the redox reaction, but it acts as a catalytic growth material for the formation of nitrogen-doped multilayer graphene to promote and stabilize the N atoms. there was.
  • the content of the doped nitrogen can be improved and further control the content of the pyridine-like arrangement, showing excellent electrochemical activity for the redox reaction It seems to be.
  • Fe can form a graphene-doped multilayer graphene and increase the graphene size while stabilizing the nitrogen atoms functioning and doping as a growth catalyst of graphene, but it is not considered to be functional in the redox reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for preparing nitrogen-doped graphene, the method comprising: a first step for preparing a mixed solution containing carbon atoms and nitrogen atoms by putting a carbon compound and an amine compound into an acidic solution, followed by heating, stirring, and thermal decomposition; a second step for forming a compound containing carbon atoms, nitrogen atoms, and Fe2+, and then obtaining the compound, the compound being formed by adding an Fe2+-containing solution to the mixed solution containing carbon atoms and nitrogen atoms, followed by stirring; a third step for forming an Fe substrate by thermally treating the compound, which is obtained in the second step, under a nitrogen ambience; and a fourth step for forming nitrogen-doped graphene by, after the third step, diffusing the carbon atoms and the nitrogen atoms, which are contained in the compound, into the Fe substrate through cooling. More preferably, the method further comprises a fifth step for removing, after the fourth step, the Fe substrate by adding an acid to cause a reaction.

Description

질소 도핑된 그래핀의 제조방법 및 이로부터 제조된 질소 도핑된 그래핀Process for preparing nitrogen doped graphene and nitrogen doped graphene prepared therefrom
본 발명은 질소 도핑된 그래핀의 제조방법에 관한 것으로서, 탄소화합물과 아민화합물로부터 탄소 및 질소가 공급되고, Fe2+이온이 그래핀 성장 촉매로 사용되어, 피리딘 유사 배열의 함량을 제어할 수 있으면서 질소의 함량이 향상되어 산화환원 반응에 대한 우수한 전기 화학적 활성을 나타내는, 질소가 도핑된 그래핀의 제조방법에 관한 것이다.The present invention relates to a method of preparing nitrogen-doped graphene, wherein carbon and nitrogen are supplied from a carbon compound and an amine compound, and Fe 2+ ions are used as graphene growth catalysts to control the content of pyridine-like arrays. The present invention relates to a method for preparing nitrogen doped graphene, which has an improved content of nitrogen and shows excellent electrochemical activity for redox reactions.
그래핀(graphene)은 탄소 원자로 이루어진 육방정계(hexagonal) 2차원 단일층을 이루는 구조로, 0차원의 풀러렌(Fullerene), 관(tube) 모양의 1차원 구조인 탄소나노튜브(Carbon Nanotube) 및 3차원 구조를 가진 그래파이트(Graphite)와 구조적 차이를 가짐에 따라, 그래핀은 전기적, 기계적, 화학적인 특성이 매우 안정적이고 우수한 전도성을 가진다. 즉, 그래핀은 이차원 탄도 이동(2-dimensional ballistic transport) 특성을 가지므로, 그래핀 내에서 전하의 이동도(mobility)는 매우 높아 상온에서 15,000 cm2V-1s-1이상의 전하 이동도를 보인다.Graphene is a hexagonal two-dimensional monolayer composed of carbon atoms. It is a 0-dimensional fullerene, a tube-shaped one-dimensional structure of carbon nanotubes, and 3 Due to the structural difference from graphite having a dimensional structure, graphene has excellent electrical, mechanical, and chemical properties, and has excellent conductivity. In other words, since graphene has a 2-dimensional ballistic transport property, the mobility of charge in graphene is very high, and thus the charge mobility of 15,000 cm 2 V -1 s -1 or higher is maintained at room temperature. see.
또한, 그래핀은 상대적으로 가벼운 원소인 탄소만으로 이루어져 1차원, 2차원 나노패턴을 가공하기가 매우 용이하다는 장점이 있으며, 이를 활용하면 반도체-도체 성질을 조절할 수 있을 뿐 아니라 탄소가 가지는 화학결합의 다양성을 이용해 센서, 메모리 등 광범위한 기능성 소자의 제작도 가능하다.In addition, graphene has the advantage that it is very easy to process one-dimensional, two-dimensional nanopatterns made of carbon, which is a relatively light element, and it is possible to control semiconductor-conductor properties as well as the chemical bonding of carbon. The diversity also enables the manufacture of a wide range of functional devices, including sensors and memories.
상기 언급한 다양한 기능성 소자에 그래핀을 적용하기 위해서는, 그래핀의 면저항, 전하 이동성 등의 전기적 특성을 개선시킬 수 있는 도핑 공정이 필수적이다.In order to apply graphene to the above-mentioned various functional devices, a doping process that can improve electrical characteristics such as sheet resistance and charge mobility of graphene is essential.
이에 따른, 질소가 도핑된 그래핀은 높은 표면영역, 우수한 전기적 전도성, 그리고 질소의 비공유 전자쌍과 그래핀의 π-오피탈과의 컨쥬케이션을 가지게 된다.As a result, the nitrogen-doped graphene has a high surface area, excellent electrical conductivity, and a conjugation of the π-optal of graphene with the lone pair of nitrogen.
질소가 도핑된 그래핀을 제조하기 위한 방법은 일반적으로 세가지로 분류된다.Methods for preparing graphene doped with nitrogen generally fall into three categories.
화학적 기상 증착법(Chemical vapor deposition, CVD)은 기체상의 성분들이 화학적으로 반응하여 특정 금속이 증착된 기판표면 위에 그래핀 박막을 형성시키는 방법으로, 질소가 도핑된 그래핀의 제조에 있어서 화학적 기상 증착법은 질소 요소 하에서 시행되며, 질소가 도핑된 인시튜 도핑(in situ doping)의 가장 일반적인 방법이다. 이 제조 방법을 통해서는 비교적 결함이 적은 그래핀을 얻을 수 있지만, 제조하고자 하는 그래핀의 원료물질을 가스형태로 공급하기 위해 공정 온도를 고온으로 유지시켜야 하며 질소가 도핑된 그래핀 성장은 오직 특정 금속이 증착된 표면에서만 가능하고 성장된 그래핀을 다시 원하는 기판에 옮겨야 하는 공정이 필요하다. 뿐만 아니라 그래핀을 성장시켜 크기를 키우는 것에도 어려움이 있다.Chemical vapor deposition (CVD) is a method in which gaseous components react chemically to form a graphene thin film on the surface of a substrate on which a specific metal is deposited. It is carried out under nitrogen urea and is the most common method of in situ doping with nitrogen. This manufacturing method provides relatively low defects of graphene, but the process temperature must be maintained at a high temperature in order to supply the raw materials of graphene to be manufactured in gaseous form. There is a need for a process that is only possible on metal-deposited surfaces and that the grown graphene must be transferred back to the desired substrate. In addition, it is difficult to grow the size by growing graphene.
또한, 질소 플라즈마 방법의 경우는 그래핀을 전기로에 두고 고온에서 질소를 플라즈마 상태로 넣어 그래핀 탄소를 질소로 치환시키는 방법으로서, 이와 같은 포스트-도핑(post-doping) 방법은, 질소 플라즈마 방법 이외에도 그래핀과 암모니아의 열적 어닐링, 그래핀과 피리딘/암모니아와의 아크방전(arc-discharge), 그래핀과 암모니아와의 고출력 전기 어닐링를 통해 질소 원자를 그래핀 격자에 결합시키는 방법이 있다. 이들 방법은 고순도의 그래핀을 얻을 수 있으나 종종 제조된 질소가 도핑된 그래핀에서 질소 함량이 낮아 질소가 도핑됨에 따른 표면성질을 갖지 못하여 산화환원 반응 촉매 활성에 영향을 줄 수 있으며, 대량 생산에 관한 문제점도 가지고 있다.In the case of the nitrogen plasma method, graphene is placed in an electric furnace and nitrogen is put into a plasma state at a high temperature to replace graphene carbon with nitrogen. Such a post-doping method may be used in addition to the nitrogen plasma method. There is a method of bonding nitrogen atoms to the graphene lattice by thermal annealing of graphene and ammonia, arc-discharge of graphene and pyridine / ammonia, and high power electrical annealing of graphene and ammonia. These methods can obtain high purity graphene but often have a low nitrogen content in the prepared nitrogen-doped graphene, which does not have surface properties due to nitrogen doping, which may affect the catalytic activity of the redox reaction. There is also a problem.
또한, 질소가 도핑된 탄소물질이 전이금속 거대고리 화합물의 열분해를 통해 제조될 수 있으나, 이들 화합물들은 고가이거나 합성되기 어려운 문제점들이 있다.In addition, nitrogen-doped carbon materials may be prepared through thermal decomposition of transition metal macrocyclic compounds, but these compounds are expensive or difficult to synthesize.
이에 본 발명에서는 상기의 문제점을 해결하기 위하여, 탄소 및 질소의 공급원으로 탄소화합물과 아민화합물을 사용하고, Fe2+ 이온을 그래핀 성장 촉매로 사용하여, 피리딘 유사 배열의 함량을 제어할 수 있으면서 질소의 함량이 향상되어 산화환원 반응에 대한 우수한 전기 화학적 활성을 나타내는, 질소 도핑된 그래핀의 제조방법을 제공하는 것을 그 해결과제로 한다.In the present invention, in order to solve the above problems, by using a carbon compound and an amine compound as a source of carbon and nitrogen, and Fe 2 + ions as a graphene growth catalyst, while controlling the content of the pyridine-like arrangement It is an object of the present invention to provide a method for preparing nitrogen-doped graphene, in which the content of nitrogen is improved to exhibit excellent electrochemical activity for redox reactions.
또한 본 발명은 상기 방법에 의하여 제조된 질소 도핑된 그래핀을 제공하는 것을 다른 해결 과제로 한다.In another aspect, the present invention provides a nitrogen-doped graphene prepared by the above method as another problem.
또한, 본 발명은 상기 질소 도핑된 그래핀을 함유하는 전기화학적 에너지 장치를 제공하는 것을 또 다른 해결 과제로 한다.In addition, another object of the present invention is to provide an electrochemical energy device containing the nitrogen-doped graphene.
상기 과제를 해결하기 위한 본 발명의 일 측면에 따르면,According to an aspect of the present invention for solving the above problems,
탄소화합물과 아민화합물을 산성용액에 투입하여 가열 및 교반하여 열분해함으로써 탄소원자 및 질소원자를 포함하는 혼합물 용액을 제조하는 제1 단계;A first step of preparing a mixture solution containing carbon atoms and nitrogen atoms by adding a carbon compound and an amine compound to an acidic solution, followed by heating and stirring to pyrolyze;
상기 탄소원자 및 질소원자를 포함하는 혼합물 용액에 Fe2+이온을 포함하는 용액을 첨가하여 교반시킴으로써 탄소원자, 질소원자 및 Fe2+이온을 포함하는 화합물을 형성한 후, 이를 수득하는 제2 단계;A second step of forming a compound including carbon atoms, nitrogen atoms and Fe 2+ ions by adding and stirring a solution containing Fe 2+ ions to the mixture solution containing carbon atoms and nitrogen atoms, and then obtaining them ;
상기 제2 단계에서 수득한 화합물을 질소 분위기 하에서 열처리하여 Fe 기판을 형성하는 제3 단계; 및 A third step of forming a Fe substrate by heat-treating the compound obtained in the second step in a nitrogen atmosphere; And
상기 제3 단계를 거친 후, 냉각시킴으로써 상기 화합물에 포함된 탄소원자 및 질소원자를 상기 Fe 기판 상에 확산하여 질소가 도핑된 그래핀을 형성하는 제4 단계를 포함하는, 질소 도핑된 그래핀의 제조방법이 제공된다.After the third step, by cooling the carbon atoms and nitrogen atoms contained in the compound comprising a fourth step of forming a nitrogen-doped graphene by diffusing on the Fe substrate, of the nitrogen-doped graphene A manufacturing method is provided.
또한, 본 발명의 다른 과제를 해결하기 위하여, 상기 방법에 의하여 제조된 질소 도핑된 그래핀이 제공된다.In addition, in order to solve another object of the present invention, there is provided a nitrogen doped graphene prepared by the above method.
상기 본 발명의 질소 도핑된 그래핀의 제조방법에 의할 경우, 탄소화합물과 아민화합물로 부터 질소 도핑된 그래핀 제조를 위한 탄소 및 질소가 공급되며, 특히 질소 공급원으로서 멜라민을 사용함에 따라, 도핑되는 질소의 함량을 향상시킬 수 있고, 더욱이 피리딘 유사 배열의 함량을 제어할 수 있어 산화환원 반응(Oxygen Reduction Reaction, ORR)에 대한 우수한 전기 화학적 활성을 나타내게 된다.According to the nitrogen-doped graphene manufacturing method of the present invention, carbon and nitrogen for the production of nitrogen-doped graphene from a carbon compound and an amine compound are supplied, in particular by using melamine as a nitrogen source, It is possible to improve the content of nitrogen, and furthermore, to control the content of the pyridine-like arrangement shows excellent electrochemical activity for the Oxygen Reduction Reaction (ORR).
또한, 첨가되는 Fe2+이온이 질소 도핑된 그래핀을 성장시키는 성장 촉매제로서 기능을 함과 동시에 질소가 도핑된 그래핀이 형성되는 전 과정 동안 Fe기판으로서 형성되어져 있음에 따라, 도핑되는 질소 원자들을 안정화시키면서 기판 표면의 한계를 극복하여 질소가 도핑된 다층 그래핀을 형성하고 그래핀의 크기를 키울 수 있다.In addition, as the added Fe 2+ ions function as growth catalysts for growing nitrogen-doped graphene and are formed as Fe substrates during the entire process of forming nitrogen-doped graphene, the nitrogen atoms to be doped By stabilizing them, it is possible to overcome the limitations of the substrate surface to form nitrogen-doped multilayered graphene and increase the size of the graphene.
또한, 본 발명에서 다층 그래핀을 단백질 또는 탄수화물로서 제조할 수 있음을 제시함에 따라, 전기화학적 에너지 장치 분야에서 폭넓게 활용될 수 있다.In addition, as the present invention suggests that the multilayered graphene can be prepared as a protein or a carbohydrate, it can be widely used in the field of electrochemical energy devices.
도 1은 본 발명에 따른 질소 도핑된 다층 그래핀의 제조방법을 모식화하여 나타낸 것이다.1 is a schematic view showing a method for preparing a nitrogen doped multilayer graphene according to the present invention.
도 2는 본 발명의 일 실시예에 따른 N-MLG-45min의 (a) TEM 이미지, (b) AFM 이미지, (c) XPS 그래프, (d) 라만 스펙트럼을 나타낸 것이다.Figure 2 shows (a) TEM image, (b) AFM image, (c) XPS graph, (d) Raman spectrum of N-MLG-45min according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 XPS 그래프를 나타낸 것이다. ((a) N-MLG-45min의 질소에 대한 XPS 그래프, (b) N-MLG-45min, N-MLG-90min, N-MLG-120min의 질소에 대한 XPS 그래프)3 shows an XPS graph according to an embodiment of the present invention. (A) XPS graph for nitrogen of N-MLG-45min, (b) XPS graph for nitrogen of N-MLG-45min, N-MLG-90min, N-MLG-120min)
도 4는 본 발명의 N-MLG-45min, N-MLG-90min, N-MLG-120min의 라만 스펙트럼을 나타낸 것이다.Figure 4 shows the Raman spectrum of N-MLG-45min, N-MLG-90min, N-MLG-120min of the present invention.
도 5는 본 발명의 일 실시예에 따른 (a) 선형 주사 전압-전류곡선, (b) 회전 원판 전압-전류곡선, (c) Koutecky-Levich 그래프, (d) Fe함량에 따른, 선형 주사 전압-전류 곡선을 나타낸 것이다.Figure 5 is a linear scan voltage-current curve according to an embodiment of the present invention, (b) rotating disk voltage-current curve, (c) Koutecky-Levich graph, (d) the linear scan voltage according to the Fe content -Shows the current curve.
도 6은 본 발명의 실시예 1 내지 실시예 3에 따른 TGA 곡선을 나타낸 것이다.6 shows TGA curves according to Examples 1 to 3 of the present invention.
이하, 본 발명에 대하여 보다 상세히 설명한다. 본 발명의 명세서에 기재되지 않은 내용은 본 발명의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로 그 설명을 생략한다. 또한, 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있으며, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니다.Hereinafter, the present invention will be described in more detail. Details that are not described in the specification of the present invention can be sufficiently recognized and inferred by those skilled in the art or similar fields of the present invention, so description thereof is omitted. In addition, specific details of the embodiments are included in the detailed description and drawings, the present invention is not limited to the embodiments disclosed below.
본 발명은 질소 함량을 향상시키고 그래핀을 성장 시킬 수 있는 질소 도핑된 그래핀의 제조방법에 관한 것으로서 본 발명의 일 측면에 따르면,The present invention relates to a method for preparing nitrogen-doped graphene capable of improving nitrogen content and growing graphene, according to an aspect of the present invention.
탄소화합물과 아민화합물을 산성용액에 투입하여 가열 및 교반하여 열분해함으로써 탄소원자 및 질소원자를 포함하는 혼합물 용액을 제조하는 제1 단계;A first step of preparing a mixture solution containing carbon atoms and nitrogen atoms by adding a carbon compound and an amine compound to an acidic solution, followed by heating and stirring to pyrolyze;
상기 탄소원자 및 질소원자를 포함하는 혼합물 용액에 Fe2+이온을 포함하는 용액을 첨가하여 교반시킴으로써 탄소원자, 질소원자 및 Fe2+이온을 포함하는 화합물을 형성한 후, 이를 수득하는 제2 단계;A second step of forming a compound including carbon atoms, nitrogen atoms and Fe 2+ ions by adding and stirring a solution containing Fe 2+ ions to the mixture solution containing carbon atoms and nitrogen atoms, and then obtaining them ;
상기 제2 단계에서 수득한 화합물을 질소 분위기 하에서 열처리하여 Fe 기판을 형성하는 제3 단계; 및 A third step of forming a Fe substrate by heat-treating the compound obtained in the second step in a nitrogen atmosphere; And
상기 제3 단계를 거친 후, 냉각시킴으로써 상기 화합물에 포함된 탄소원자 및 질소원자를 상기 Fe 기판 상에 확산하여 질소가 도핑된 그래핀을 형성하는 제4 단계를 포함하는 질소 도핑된 그래핀의 제공방법이 제공된다. After the third step, by cooling to provide a nitrogen-doped graphene comprising a fourth step of forming a nitrogen-doped graphene by diffusing carbon atoms and nitrogen atoms contained in the compound on the Fe substrate A method is provided.
먼저, 제1 단계는 탄소화합물과 아민화합물을 산성용액에 투입하여 가열 및 교반하여 열분해함으로써 탄소원자 및 질소원자를 포함하는 혼합물 용액을 제조하는 단계로, 상기 탄소화합물이 단백질, 단당류, 이당류, 올리고당, 다당류 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하며, 보다 바람직하게는 상기 단백질이 우유단백질인 것을 특징으로 한다.First, the first step is to prepare a mixture solution containing carbon atoms and nitrogen atoms by adding a carbon compound and an amine compound to an acidic solution and heating and stirring to decompose the carbon compound, wherein the carbon compound is a protein, a monosaccharide, a disaccharide, an oligosaccharide. It is characterized in that any one selected from the group consisting of polysaccharides and combinations thereof, more preferably characterized in that the protein is a milk protein.
또한, 상기 아민화합물은 멜라민(C3H6N6), 암모니아(NH3), 히드라진(NH2NH2), 피리딘(C5H5N), 피롤(C4H5N), 아세토니트릴(CH3CN), 트리에탄올아민(C6H15NO3), 아닐린(C6H7N) 3-아미노벤조산(C7H7NO2), 4-아미노벤조산, 3-(4-아미노페닐)벤조산(C13H11NO2), 4-(4-아미노페닐)벤조산, 4-(3-아미노페닐)벤조산(C13H11NO2), 5-아미노이소프탈산(C8H7NO4), 3-(4-아미노페녹시)벤조산(C13H11NO3), 4-(4-아미노페녹시)벤조산, 3,4-디아미노벤조산(C7H8N2O2), 3,5-디아미노벤조산, 3-아미노벤조아마이드(C7H8N2O), 4-아미노벤조아마이드 및 이들의 조합으로 이루어진 군 중에서 선택되는 어느 하나의 화합물인 것을 특징으로 하며, 더욱 바람직하게는 상기 아민화합물이 멜라민인 것을 특징으로 한다.In addition, the amine compound is melamine (C 3 H 6 N 6 ), ammonia (NH 3 ), hydrazine (NH 2 NH 2 ), pyridine (C 5 H 5 N), pyrrole (C 4 H 5 N), acetonitrile (CH 3 CN), triethanolamine (C 6 H 15 NO 3 ), aniline (C 6 H 7 N) 3-aminobenzoic acid (C 7 H 7 NO 2 ), 4-aminobenzoic acid, 3- (4-aminophenyl ) Benzoic acid (C 13 H 11 NO 2 ), 4- (4-aminophenyl) benzoic acid, 4- (3-aminophenyl) benzoic acid (C 13 H 11 NO 2 ), 5-aminoisophthalic acid (C 8 H 7 NO 4 ), 3- (4-aminophenoxy) benzoic acid (C 13 H 11 NO 3 ), 4- (4-aminophenoxy) benzoic acid, 3,4-diaminobenzoic acid (C 7 H 8 N 2 O 2 ) , 3,5-diaminobenzoic acid, 3-aminobenzoamide (C 7 H 8 N 2 O), 4-aminobenzoamide and any one compound selected from the group consisting of a combination thereof, Preferably, the amine compound is characterized in that the melamine.
보다 상세하게는 본 발명에 있어서 상기 제1 단계는, 탄소원자 및 질소원자를 포함하는 혼합물로 탄소화합물과 아민화합물을 열분해함에 따라, 제2 단계에서 첨가될 Fe2+이온이 교반될 수 있는 기반을 조성하게 되고, 본 발명의 그래핀 제조에 있어서 탄소공급원인 탄소화합물로서 단백질과 탄수화물(단당류, 이당류, 올리고당, 다당류 및 이들의 조합으로 이루어진 군)을 사용하고 있어, 이를 기반으로 제조되는 그래핀이 전기 에너지 장치 분야에 적용될 수 있으므로, 상기 단백질과 탄수화물은 전기에너지 장치 분야에서 넓게 적용할 수 있는 유망한 탄소공급원이 된다.More specifically, in the first step of the present invention, as the pyrolysis of the carbon compound and the amine compound into a mixture containing carbon atoms and nitrogen atoms, the base on which the Fe 2+ ions to be added in the second step can be stirred In the production of graphene of the present invention, a protein and a carbohydrate (a group consisting of monosaccharides, disaccharides, oligosaccharides, polysaccharides, and combinations thereof) are used as a carbon compound as a carbon source. Since this can be applied in the field of electrical energy devices, the protein and carbohydrates become a promising carbon source that can be widely applied in the field of electrical energy devices.
또한, 상기와 같이 질소공급원으로서 아민화합물인 멜라민을 이용할 경우, 질소 도핑된 그래핀의 제조시 질소의 함량을 현저하게 향상시킨, 질소 도핑된 다층 그래핀을 형성할 수 있다. 본 발명의 일 실시예에서는 7.41%의 질소 함량을 가지는 질소 도핑 다층 그래핀을 제조하였다. In addition, when using the amine compound melamine as a nitrogen source as described above, it is possible to form a nitrogen-doped multilayered graphene, which significantly improves the nitrogen content in the preparation of the nitrogen-doped graphene. In one embodiment of the present invention to prepare a nitrogen doped multilayer graphene having a nitrogen content of 7.41%.
또한, 질소 도핑된 그래핀의 탄소 공급원으로서 사용되는 탄소화합물 중 특히 아민기를 포함하는 단백질을 사용함에 따라, 도핑되는 질소의 공급원으로서도 사용이 가능하다. In addition, by using a protein including an amine group among carbon compounds used as a carbon source of nitrogen doped graphene, it can also be used as a source of nitrogen doped.
다음으로 제2 단계는, 상기 탄소원자 및 질소원자를 포함하는 혼합물 용액에 Fe2+이온을 포함하는 용액을 첨가하여 교반시킴으로써 탄소원자, 질소원자 및 Fe2+이온을 포함하는 화합물을 형성한 후, 이를 수득하는 단계로, 질소 프로텍션 하에서 상기 탄소원자 및 질소원자를 포함하는 혼합물 용액과 Fe2+이온을 포함하는 용액을 교반한다.Next, in the second step, after adding a solution containing Fe 2+ ions to the mixture solution containing the carbon atom and the nitrogen atom, the mixture is stirred to form a compound including the carbon atom, the nitrogen atom, and the Fe 2+ ion. In a step of obtaining the same, the mixture solution containing the carbon atom and the nitrogen atom and the solution containing Fe 2+ ions are stirred under nitrogen protection.
보다 상세하게는 상기 Fe2+이온을 포함하는 용액은 암모늄 기를 더 포함하는 용액으로서, 상기 제1 단계에서 형성된 탄소원자 및 질소원자를 포함하는 혼합물 용액에 Fe2+이온을 공급함은 물론, 도핑되는 질소 원자의 공급원이 될 수 있다. In more detail, the solution containing Fe 2+ ions is a solution further comprising an ammonium group, and supplies Fe 2+ ions to a mixture solution containing carbon and nitrogen atoms formed in the first step, as well as being doped. It can be a source of nitrogen atoms.
또한, 상기 Fe2+이온을 공급할 때 미량의 Fe를 더 포함시켜줌으로서, 첨가되는 상기 미량의 Fe는 반응에 참여하지 않으나, Fe2+이온이 Fe3+이온으로 산화되는 것을 방지하게 된다.In addition, by adding a small amount of Fe when supplying the Fe 2+ ions, the added amount of Fe does not participate in the reaction, but prevents Fe 2+ ions from being oxidized to Fe 3+ ions.
다음 제3 단계는, 상기 제2 단계에서 수득한 화합물을 질소 분위기 하에서 열처리하여 Fe 기판을 형성하는 단계로서, 상세하게는 상기 제3 단계의 열처리는 45~120분 동안 질소 분위기 하에서 850~1200℃ 범위에서 수행하는 것을 특징으로 하며, 특히, 상기 열처리 조건에서 45~90분 동안 반응이 실행됨에 따라, 질소 도핑된 그래핀의 질소 함량이 향상되며, 형성되는 질소 다층 그래핀은 피리딘 유사 배열을 30~35%를 포함하여, 산화환원 반응의 촉매로서의 기능을 향상시킨다.The third step is to form a Fe substrate by heat-treating the compound obtained in the second step in a nitrogen atmosphere, in detail, the heat treatment of the third step is 850 ~ 1200 ℃ under nitrogen atmosphere for 45-120 minutes In particular, as the reaction is carried out for 45 to 90 minutes under the heat treatment conditions, the nitrogen content of the nitrogen-doped graphene is improved, and the multilayer nitrogen graphene formed forms a pyridine-like array 30. It includes ˜35% to improve the function as a catalyst of the redox reaction.
또한, 상기 제3 단계에서 형성되는 Fe 기판은 CVD 제조방법에 있어서의 기판의 기능과 유사하나, CVD 제조방법과 달리 본 발명의 상기 Fe 기판은 질소 도핑된 그래핀이 형성되는 전 과정 동안 형성되어 있으며, Fe2+이온이 질소 도핑된 그래핀을 성장시키는 성장 촉매제로서 기능과 함께 도핑되는 질소 원자들의 안정화에 기여한다. 즉, 제한된 기판 표면의 한계를 극복하여 질소가 도핑된 단층 그래핀, 질소가 도핑된 다층 그래핀을 비롯하여 질소가 도핑된 다층 그래핀의 크기를 성장시킬 수 있다.In addition, the Fe substrate formed in the third step is similar to the function of the substrate in the CVD manufacturing method, but unlike the CVD manufacturing method, the Fe substrate of the present invention is formed during the entire process of forming the nitrogen-doped graphene Fe 2+ ions contribute to the stabilization of the nitrogen atoms doped together with the function as a growth catalyst to grow nitrogen doped graphene. That is, the size of nitrogen doped multilayer graphene can be grown by overcoming the limitation of the limited substrate surface, including nitrogen doped monolayer graphene and nitrogen doped multilayer graphene.
또한, 상기 제3 단계의 열처리 반응이 질소 분위기 하에서 실행됨에 따라, 도핑되는 질소의 공급원으로서도 사용될 수 있게 된다.Further, as the heat treatment reaction of the third step is carried out in a nitrogen atmosphere, it can be used also as a source of nitrogen to be doped.
마지막으로 제4 단계는, 상기 제3 단계를 거친 후, 냉각시킴으로써 상기 화합물에 포함된 탄소원자 및 질소원자를 상기 Fe 기판 상에 확산하여 질소가 도핑된 그래핀을 형성하는 단계이다. Finally, the fourth step is a step of forming a nitrogen-doped graphene by diffusing carbon atoms and nitrogen atoms included in the compound on the Fe substrate by cooling after the third step.
이때 상기 질소가 도핑된 그래핀은 질소 도핑된 다층 그래핀인 것을 특징으로 한다. In this case, the nitrogen-doped graphene is characterized in that the nitrogen-doped multilayer graphene.
또한, 상기 본 발명에 따라 형성된 질소 도핑된 그래핀에 있어서 도핑된 질소는 피리딘 유사배열(pyridinic-N), 피롤 유사 배열(pyrrolic-N) 및 그라파이트 유사배열(graphitic-N)로 이루어지고, 상기 피리딘 유사 배열이 30~35%로 포함된다. In addition, in the nitrogen-doped graphene formed according to the present invention, the doped nitrogen is composed of pyridinic-N, pyrrolic-N, and graphite-N, graphitic-N. Pyridine-like arrangements contain 30-35%.
또한 상기 도핑되는 질소원자의 공급원으로는, 상기 아민화합물 이외에도 질소 도핑된 그래핀 제조 반응 시 형성되는 질소 분위기에 따른 질소, 상기 제2 단계에서 첨가되는 암모늄 기를 더 포함하는 Fe2+이온용액상의 질소, 상기 제1 단계의 탄소화합물인 단백질에 포함된 질소가 있으며, 상기 아민화합물은 멜라민인 것이 더욱 바람직하다.In addition, the source of the doped nitrogen atoms, in addition to the amine compound, nitrogen according to the nitrogen atmosphere formed during the nitrogen-doped graphene production reaction, the Fe 2+ ion solution nitrogen further comprising an ammonium group added in the second step In addition, there is nitrogen contained in the protein which is the carbon compound of the first step, and the amine compound is more preferably melamine.
본 발명의 질소 도핑된 그래핀의 제조방법은, 상기 마지막 제4 단계를 거친 후, 산을 첨가하여 반응시킴으로써 Fe 기판을 제거하는 제5 단계를 더 포함할 수 있다.The nitrogen-doped graphene manufacturing method of the present invention may further include a fifth step of removing the Fe substrate by reacting by adding an acid after the last fourth step.
본 발명에서 있어서 Fe는 그래핀을 성장 시키는 촉매적 역할과 도핑되는 질소를 안정화 시키는 기능은 하지만 산화 환원 반응에 대한 촉매 기능은 가지지 않기 때문에, 상기 제4 단계로 제조된 Fe 기판이 제거되지 않은 질소 도핑된 그래핀의 경우는, 상기 제5 단계를 더 포함시켜 제조된 Fe 기판을 제거한 질소 도핑된 그래핀의 경우와 비교하여, 산화환원 반응 작용에서는 비슷하나, 산화환원 반응에 대한 활성이 감소된다.In the present invention, since Fe has a catalytic role of growing graphene and a function of stabilizing doped nitrogen, but does not have a catalytic function for redox reaction, the Fe substrate prepared in the fourth step is not removed. In the case of doped graphene, the redox reaction is similar to that of the nitrogen doped graphene from which the Fe substrate prepared by further including the fifth step is removed, but the activity of the redox reaction is reduced. .
따라서, 상기 제5 단계를 더 포함하여 Fe 기판을 제거한 질소 도핑된 그래핀을 제조하는 것이 더욱 바람직하다. Therefore, it is more preferable to manufacture the nitrogen-doped graphene from which the Fe substrate is removed by further including the fifth step.
본 발명은 다른 측면에 따르면, 상술한 방법에 의하여 제조되는 것을 특징으로 하는 질소 도핑된 그래핀이 제공된다.According to another aspect of the present invention, there is provided a nitrogen doped graphene, characterized in that produced by the above-described method.
또한, 본 발명은 또 다른 측면에 따르면, 상기 제조된 질소 도핑된 그래핀을 함유하는 전기화학적 에너지 장치가 제공된다. Further, according to another aspect, the present invention provides an electrochemical energy device containing the prepared nitrogen doped graphene.
바람직하게는 상기 질소 도핑된 그래핀을 함유하는 전기화학적 에너지 장치로는 연료전지와 메탈-에어-배터리(metal-air-batteries)가 있다.Preferably, the electrochemical energy device containing nitrogen-doped graphene includes a fuel cell and metal-air-batteries.
하기에서 실시예와 분석은 도면을 참고하여 설명하기로 하며, 상기에 서술한 바와 같이 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니다.In the following examples and analysis will be described with reference to the drawings, as described above, the present invention is not limited to the embodiments disclosed below.
<실시예> <Example>
질소 도핑된 다층 그래핀의 제조Preparation of Nitrogen Doped Multilayer Graphene
18.1g의 밀크파우더, 1.9g의 멜라민을 HCl 용액(6.0mol/L, 500ml)에 첨가하여 107℃에서 24시간 동안 교반한 후 냉각하고 감압 여과하였다. 그리고 10% NaOH 용액을 상기 혼합물 용액의 pH가 5.0에 가까워져 완충되어질때까지 첨가하였다.18.1 g of milk powder and 1.9 g of melamine were added to HCl solution (6.0 mol / L, 500 ml), stirred at 107 ° C. for 24 hours, cooled and filtered under reduced pressure. And 10% NaOH solution was added until the pH of the mixture solution approached 5.0 and buffered.
상기 혼합물 용액에 여분의 100mg Fe를 포함하는 Fe(NH4)2(SO4)2(1.0mol/L, 200mL)를 첨가한 후, 어느 정도의 구연산 완충액(0.1mol/L)를 상기 혼합물 용액의 pH가 6.5에 가까워질때까지 첨가하였다. 이 후, 혼합물을 실온에서 질소 분위기 하에서 12시간 동안 교반하고, 마지막으로 원심분리를 통해 고체를 분리하는데, 상기 과정은 충분한 Fe2+이온이 상기 혼합물에 첨가될 수 있도록 세 번 반복하였다(두 번의 원심분리와 물로 세척하는 사이클 포함).To the mixture solution was added Fe (NH 4 ) 2 (SO 4 ) 2 (1.0 mol / L, 200 mL) containing excess 100 mg Fe, and then some citric acid buffer (0.1 mol / L) was added to the mixture solution. Was added until the pH was close to 6.5. Thereafter, the mixture was stirred at room temperature under a nitrogen atmosphere for 12 hours, and finally the solid was separated by centrifugation, which was repeated three times so that sufficient Fe 2+ ions could be added to the mixture (two times). Cycles of centrifugation and washing with water).
상기와 같이 수득된 고체를 진공상태에서 건조한 후, 질소 분위기 하에서 1000℃에서 열처리하였다.The solid obtained as above was dried in vacuo and then heat treated at 1000 ° C. under a nitrogen atmosphere.
이 후 80℃에서 HCl(2.0mol/L, 200mL)로 처리함으로써 질소 도핑된 다층 그래핀 수트(graphene soot)를 제조하였다.Thereafter, a nitrogen-doped multilayer graphene soot was prepared by treatment with HCl (2.0 mol / L, 200 mL) at 80 ° C.
상기 제조된 질소 도핑된 다층 그래핀 수트(graphene soot)은 원심분리하여 물에 분산되어지고, 상층의 원심물을 여과, 세척, 그리고 건조를 통하여 얻음에 따라, 약 2g의 질소 도핑된 다층 그래핀을 수득하였다.The prepared nitrogen-doped multilayer graphene soot is dispersed in water by centrifugation, and the upper centrifuge is obtained through filtration, washing, and drying, so that about 2 g of nitrogen-doped multilayer graphene is obtained. Obtained.
본 실시예에 따른 질소 도핑된 다층 그래핀의 제조과정은 도 1에 나타내었다. The manufacturing process of the nitrogen doped multilayer graphene according to the present embodiment is shown in FIG.
열처리 시간에 따른 질소 도핑 다층 그래핀의 제조Preparation of Nitrogen Doped Multilayer Graphene According to Heat Treatment Time
상기 질소 도핑된 다층 그래핀의 제조에 있어서, Fe기판을 제조하기 위하여 Fe2+이온을 포함하는 화합물 수득 후 질소 분위기 하에서 1000℃로 열처리하는 반응을 45분, 90분, 120분으로 실시하여 각각 N-MLG-45min, N-MLG-90min, N-MLG-120min으로 레벨링하였다. 단, 이 시료들은 Fe 기판을 제조한 후에 80℃에서 HCl로 6시간 동안 처리하여 상기 Fe 기판을 제거하였다.In the preparation of the nitrogen-doped multilayered graphene, to obtain a compound containing Fe 2+ ions in order to prepare the Fe substrate, the reaction was heat-treated at 1000 ° C. under nitrogen atmosphere for 45 minutes, 90 minutes, and 120 minutes, respectively. Leveling was at N-MLG-45min, N-MLG-90min, N-MLG-120min. However, the samples were treated with HCl at 80 ° C. for 6 hours after the Fe substrate was prepared to remove the Fe substrate.
표 1
N-MLG-45min N-MLG-90min N-MLG-120min
Fe기판제조단계열처리(1000℃) 반응시간(min) 45 90 120
Table 1
N-MLG-45min N-MLG-90min N-MLG-120min
Fe substrate manufacturing step Heat treatment (1000 ℃) Reaction time (min) 45 90 120
Fe 함량에 따른 질소 도핑 다층 그래핀의 제조Preparation of Nitrogen Doped Multilayer Graphene According to Fe Content
상기 질소 도핑된 다층 그래핀의 제조에 있어서, Fe기판을 제조하기 위한 열처리 반응을 45분, 60분, 90분으로 실시하고, Fe 제거를 위해서 80℃에서 HCl로 0h, 3h, 6h로 처리한 Fe 함량이 상이한 질소 도핑된 다층 그래핀을 제조하였고, 그 조건은 하기 표 2에 나타내었다.In the preparation of the nitrogen-doped multilayered graphene, a heat treatment reaction for producing Fe substrates was performed for 45 minutes, 60 minutes, and 90 minutes, and treated with 0 h, 3 h, and 6 h with HCl at 80 ° C. to remove Fe. Nitrogen doped multilayer graphene having different Fe contents was prepared, and the conditions are shown in Table 2 below.
표 2
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7
Fe기판제조단계열처리(1000℃) 반응시간(min) 45 60 90
Fe제거반응(HCl 처리시간) 0 3 6 0 6 0 6
TABLE 2
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
Fe substrate manufacturing step Heat treatment (1000 ℃) Reaction time (min) 45 60 90
Fe removal reaction (HCl treatment time) 0 3 6 0 6 0 6
<특성 분석><Characteristic analysis>
분석방법Analysis method
TEM(Transmission Electron Microscopy, 투과전자현미경) 이미지는 2000kV에서 LaB6 필라멘트로 작동하는 고해상도 JEOL 2000F TEM 시스템을 사용하여 측정하였다.Transmission Electron Microscopy (TEM) images were measured using a high-resolution JEOL 2000F TEM system operating on LaB6 filaments at 2000 kV.
AFM(Atomic Force Microscopy) 이미지는 태핑모드로 Nanonavi Probe Station과 Seiko SPA 400을 사용하여 측정하였다.Atomic force microscopy (AFM) images were measured using a Nanonavi Probe Station and Seiko SPA 400 in tapping mode.
VG Scientific Ltd의 ESCALAB250인 XPS (X-ray Photoelectron Spectroscopy, X-선 광전자 분광법)를 사용하여, 상기 실시예로부터 제조된 시료의 원자가 전자 상태 및 결합에너지의 측정, 그래핀 표면 물질을 선별하였다.X-ray Photoelectron Spectroscopy (XPS), ESCALAB250 from VG Scientific Ltd, was used to measure the valence electron state and binding energy of the samples prepared from the above examples, and graphene surface materials were selected.
라만 스펙트럼은 micro-Raman 분광기(Renishaw, InVia)를 사용하여 측정하였다. 514nm 파장에서 여기된 레이저 빔은 대물렌즈에 의해 초점이 맞춰지고, 이때, 개구수는 시료 약 1㎛2 상에 0.75개를 가졌다.Raman spectra were measured using a micro-Raman spectrometer (Renishaw, InVia). The laser beam excited at the 514 nm wavelength was focused by the objective lens, with a numerical aperture of 0.75 on the sample about 1 탆 2 .
TGA는 Perkin-Elmer사의 Pyris Diamon TG/DTA 열중량 분석기를 사용하여 측정하였다. 시료는 공기 중에서 실온으로부터 900℃까지 10℃min-1으로 가열하여 측정하였다.TGA was measured using a Pyris Diamon TG / DTA thermogravimetric analyzer from Perkin-Elmer. The sample was measured by heating to 10 ° C. min −1 from room temperature to 900 ° C. in air.
전기 화학적 특성의 측정은 potentiostat CHI 660D를 사용하여, 실온에서 세가지 전극 테스트 전지를 사용하여 실행하였다. 유리상 탄소전극(glassy carbon electrode, GCE), Pt gauze 그리고, Hg/HgO/KOH(1.0M)이 각각 작업전극, 보조전극 및 기준전극으로서 사용되어졌다. Measurement of electrochemical properties was carried out using a three-electrode test cell at room temperature using potentiostat CHI 660D. Glassy carbon electrodes (GCE), Pt gauze and Hg / HgO / KOH (1.0 M) were used as working electrodes, auxiliary electrodes and reference electrodes, respectively.
또한, 산화 환원 반응을 위한 분극 곡선은 1.0M KOH 용액에서 Metrohm 628-10unit로 속도를 제어하면서 회전원판전극(RDE, Rotating Disc Electrodes)를 이용하여 측정하였다.In addition, the polarization curve for the redox reaction was measured using a Rotating Disc Electrodes (RDE) while controlling the speed with Metrohm 628-10unit in 1.0M KOH solution.
질소 도핑된 다층 그래핀의 형성 확인(N-MLG-45min)Confirmation of Formation of Nitrogen Doped Multilayer Graphene (N-MLG-45min)
도 2는 N-MLG-45min에 대한 (a) TEM 이미지, (b) AFM 이미지, (c) XPS 그래프, (d) 라만 스펙트럼을 나타낸 것으로, 이를 통해 질소 도핑된 다층 그래핀이 형성되었음을 확인할 수 있었다.Figure 2 shows the (a) TEM image, (b) AFM image, (c) XPS graph, (d) Raman spectrum for N-MLG-45min, through which the nitrogen doped multilayer graphene was formed. there was.
즉, 도 2(a)의 TEM 이미지로부터 질소 도핑된 다층 그래핀이 1㎛2 이상의 넓은 영역에 존재하며, 도 2(b) AFM 이미지를 통해 800nm~2㎛의 측면 크기와 약 1.7nm의 두께를 가지며 이는 적어도 10층의 그래핀으로 구성되어 있음을 알 수 있고, 도 2(c)의 XPS 그래프를 통해, 질소가 도핑된 다층 그래핀의 표면 물질이 탄소, 질소, 산소로 나타남에 따라, Fe 원자는 그래핀의 성장을 촉진할 뿐 구성 성분이 되지 않음을 알 수 있었다. 또한, 도 2(d)의 라만 스펙트럼이 G-band, D-band, 2D-band를 나타냄에 따라, 질소가 도핑된 그래핀이 형성되었음을 알 수 있었다.That is, FIG. 2 (a) nitrogen-doped multilayer yes from a TEM image of a pin 1㎛ is present in a large area of 2 or more, Fig. 2 (b) through an AFM image of 800nm ~ 2㎛ side size and a thickness of about 1.7nm It can be seen that it consists of at least 10 layers of graphene, and through the XPS graph of FIG. 2 (c), as the surface material of the nitrogen-doped multilayer graphene is represented by carbon, nitrogen, and oxygen, It was found that the Fe atom only promotes the growth of graphene but is not a component. In addition, it can be seen that as the Raman spectrum of FIG. 2 (d) shows G-band, D-band, and 2D-band, graphene doped with nitrogen was formed.
XPS 분석XPS Analysis
도 3(a)는 N-MLG-45min의 질소(N)에 대한 XPS 그래프이고, 도 3(b)는 N-MLG-45min, N-MLG-90min, N-MLG-120min 각각에 대한 질소에 대한 XPS 그래프를 나타낸 것으로, 이를 통해 도핑된 질소 유형 및 그에 해당하는 세기, 결합에너지를 분석할 수 있으며, 이 데이터는 하기 표 3에 정리하였다.Figure 3 (a) is an XPS graph for N (N) of N-MLG-45min, Figure 3 (b) is a nitrogen for N-MLG-45min, N-MLG-90min, N-MLG-120min respectively The XPS graph is shown, through which the doped nitrogen type and its intensity and binding energy can be analyzed, and these data are summarized in Table 3 below.
단, N1은 피리딘 유사 배열을 가지는 질소 유형(pyridinic-N), N2는 피롤 유사 배열을 가지는 질소 유형(pyrrolic-N)이며, N3는 그라파이트 유사 배열을 가지는 질소 유형(graphitic-N)을 나타내는 것이다. N1 is a pyridinic-N with pyridine-like arrangement, N2 is a pyrrolic-N with pyrrole-like arrangement, and N3 represents a nitrogen-like graphitic-N with graphite-like arrangement. .
표 3
시료 총질소(N)함량 (at.%) XPS 분석(%) 결합 에너지(eV)
N N1 N2 N3 N1 N2 N3
N-MLG-45min 7.41 34.6 30.6 34.8 398.7 400.3 402.0
N-MLG-90min 6.13 30.4 29.9 39.7
N-MLG-120min 3.45 24.8 30.1 45.1
TABLE 3
sample Total nitrogen (N) content (at.%) XPS Analysis (%) Binding energy (eV)
N N1 N2 N3 N1 N2 N3
N-MLG-45min 7.41 34.6 30.6 34.8 398.7 400.3 402.0
N-MLG-90min 6.13 30.4 29.9 39.7
N-MLG-120min 3.45 24.8 30.1 45.1
상기 표 3을 참고하면, 본 발명의 질소 도핑된 다층 그래핀은 N1(pyridinic-N), N2(pyrrolic-N), N3(graphitic-N) 세가지 유형의 질소 도핑을 포함하며, 질소 도핑된 다층 그래핀에서 상기 세가지 유형의 질소 도핑을 포함한 총 질소의 함량%는 열처리 시간이 증가할수록 7.41 %에서 3.45%로 줄어드는 것을 확인할 수 있었다. 이는 열처리 시간이 증가함에 따라 탄소 평면으로부터 일부 질소 원자들이 분리되는 것으로 판단된다. Referring to Table 3, the nitrogen doped multilayer graphene of the present invention comprises three types of nitrogen doping, N1 (pyridinic-N), N2 (pyrrolic-N), N3 (graphitic-N), nitrogen-doped multilayer In graphene, the total nitrogen content percentage including the three types of nitrogen doping decreases from 7.41% to 3.45% as the heat treatment time increases. It is believed that some nitrogen atoms are separated from the carbon plane as the heat treatment time increases.
더욱 상세하게는, 총 도핑된 질소 함량에 대한 상기 세가지 유형의 질소 각각은 열처리 반응 시간이 증가함에 따라, N2(pyrrolic-N)의 경우는 거의 변화하지 않으나, N1 (pyridinic-N)의 함량은 34.6%에서 24.8%로 감소되어지고 N3 (graphitic-N)의 함량은 34.8%에서 45.1%로 증가되어짐을 확인할 수 있었다. 이는 N1(pyridinic-N) 질소 유형은 높은 온도(1000℃)에서 열처리 시간이 증가함에 따라, N3(graphitic-N)으로 변화되는 것으로 판단된다.More specifically, each of the three types of nitrogen with respect to the total doped nitrogen content, as the heat treatment reaction time increases, hardly changes the case of N2 (pyrrolic-N), but the content of N1 (pyridinic-N) From 34.6% to 24.8%, N3 (graphitic-N) content was found to increase from 34.8% to 45.1%. It is believed that pyridinic-N (N1) nitrogen type is changed to N3 (graphitic-N) as the heat treatment time increases at high temperature (1000 ° C).
또한, 도핑되는 질소 유형별 결합 에너지는 N1 (pyridinic-N)일 때 398.7eV으로 가장 낮고, N3 (graphitic-N)일 때 402.0eV로 가장 높음을 확인할 수 있었다. 이는, N1 (pyridinic-N) 질소 유형의 경우는 질소원자가 두 개의 탄소원자와 결합하고 고립전자쌍인 π-전자를 방향족 π계로 주는 반면, N3 (graphitic-N) 질소 유형의 경우는 질소원자가 3개의 탄소 원자와 결합하고 질소원자 주위에 고립전자쌍이 존재하지 않기 때문에 N1 질소 유형과 비교할 때, N3 질소 유형의 결합력이 더 강하여 결합 에너지가 더 높음을 알 수 있었다.In addition, the binding energy of each doped nitrogen type was found to be the lowest as 398.7eV when N1 (pyridinic-N), 402.0eV when the N3 (graphitic-N). In the case of the N1 (pyridinic-N) nitrogen type, the nitrogen atom binds two carbon atoms and gives the π-electron, the lone pair, as an aromatic π system, while in the N3 (graphitic-N) nitrogen type, the nitrogen atom has three nitrogen atoms. The binding force of the N3 nitrogen type was higher because the bonding energy of the N3 nitrogen type was higher than that of the N1 nitrogen type because it is bonded to the carbon atom and there is no lone pair around the nitrogen atom.
라만 스펙트럼 분석Raman Spectrum Analysis
질소 도핑된 다층 그래핀의 제조에 있어서, N-MLG-45min, N-MLG-90min, N-MLG-120min에 대하여 라만스펙트럼 분석을 실시하였다. 이는 도 4에 도시되었다.In preparing nitrogen-doped multilayered graphene, Raman spectrum analysis was performed on N-MLG-45 min, N-MLG-90 min, and N-MLG-120 min. This is shown in FIG.
도 4를 참조하면, 열처리 시간이 45분에서 90분으로 증가함에 따라, 피리딘 유사 배열을 가지는 질소 유형(pyridinic-N)은 감소하고, 그라파이트 유사 배열을 가지는 질소 유형(graphitic-N)이 증가되어, 열처리 시간이 증가됨에 따라 피리딘 유사배열 질소(pyridinic-N)에서 그라파이트 유사배열 질소(graphitic-N)로 변환된 것으로 판단할 수 있으며, 이에 따라 IG/ID 의 값이 증가되었다.Referring to FIG. 4, as the heat treatment time increases from 45 minutes to 90 minutes, the nitrogen type (pyridinic-N) having a pyridine-like arrangement decreases and the nitrogen type (graphitic-N) having a graphite-like arrangement increases. As the heat treatment time was increased, it was determined that pyridine pseudo-array nitrogen (pyridinic-N) was converted into graphite pseudo-array nitrogen (graphitic-N), and thus the value of I G / I D was increased.
또한, 열처리 시간이 90분에서 120분으로 더 증가함에 따라, 질소 원자는 탄소 평면에서 제거되어지며 이에 따라, 질소 도핑된 다층 그래핀에서의 질소 함량이 감소하고 탄소 평면에 대한 결함이 증가되어 IG/ID 의 값이 감소되었다.In addition, as the heat treatment time increased further from 90 minutes to 120 minutes, the nitrogen atoms were removed from the carbon plane, thus reducing the nitrogen content in the nitrogen doped multilayer graphene and increasing the defects on the carbon plane. The value of G / I D is reduced.
또한, 도 4에서 붉은 색으로 표시된 G-band 선을 통해, 가열 시간이 증가됨에 따라, 그라파이트 유사배열 질소(graphitic-N)의 함량이 증가됨을 알 수 있었다.In addition, through the G-band line shown in red in Figure 4, it can be seen that as the heating time increases, the content of graphite pseudo-array nitrogen (graphitic-N) increases.
상기 결과는 도 3의 XPS 그래프와 일치하는 결과로서, 열처리 시간이 증가함에 따라, 피리딘 유사배열 질소(pyridinic-N)가 그라파이트 유사배열 질소(graphitic-N)로 변환되어질 수 있는 것을 의미한다.The results are consistent with the XPS graph of FIG. 3, which means that pyridin-like nitrogen (pyridinic-N) can be converted into graphite-like nitrogen (graphitic-N) as the heat treatment time increases.
전기화학적 촉매 활성분석Electrochemical Catalytic Activity Analysis
1) 선형 주사 전압-전류곡선 분석(Linear Sweep Voltammetry)1) Linear Sweep Voltammetry
도 5(a)는 산소가 포화된 1.0 M KOH 용액에서 N-MLG-45min, N-MLG-90min, N-MLG-120min, CNTs, 도핑되지 않은 그래핀(graphene) 및 20wt%의 Pt를 포함하는 Pt/C의 선형 주사 전압-전류곡선(Linear sweep voltammetry)을 나타낸 것으로서, 도 5(a)에서 N-MLG-45min의 개시전위값이 -0.05V로서 CNTs 개시전위값 -0.25V, 도핑되지 않은 그래핀(graphene) 개시전위 -0.24V와 비교하여 높음을 확인할 수 있었다. 이는 질소 도펀트에 인접한 탄소 원자들은 질소 원자들의 강한 전자 친화력을 상쇄시키기 위하여 상당한 양(+)의 전하 밀도를 가진다는 것을 증명하는 것으로, 이런 성질은 O2 반응 중간체가 향상된 흡착성을 가짐에 따라 산화 환원 반응을 향상시킴을 나타낸다. 또한, 질소 유도 전하(nitrogen-induced charge) 비편재화는 O2의 화학흡착 모드를 도핑되지 않은 탄소 단원자 말에 흡착된 것으로부터 질소가 도핑된 탄소 상에 이원자 측면으로 변경할 수 있으며, 이 과정은 산화 환원 반응을 촉진하기 위하여 효과적으로 산소-산소 결합을 약하게 할 수 있다.FIG. 5 (a) contains N-MLG-45min, N-MLG-90min, N-MLG-120min, CNTs, undoped graphene and 20wt% Pt in oxygen saturated 1.0 M KOH solution The linear sweep voltammetry of Pt / C is shown. In FIG. 5 (a), the starting potential of N-MLG-45min is -0.05V, and the CNTs starting potential is -0.25V. The graphene (graphene) starting potential was found to be high compared to -0.24V. This proves that the carbon atoms adjacent to the nitrogen dopant have a significant amount of charge density to offset the strong electron affinity of the nitrogen atoms, which is characterized by O 2 and It is shown that the reaction intermediate has improved adsorbability, thereby improving the redox reaction. In addition, nitrogen-induced charge delocalization can change the chemisorption mode of O 2 from being adsorbed at the end of the undoped carbon monoatomic side to the diatomic side on the nitrogen doped carbon. It is possible to effectively weaken the oxygen-oxygen bond in order to promote the redox reaction.
다만, N-MLG-45min의 개시전위(-0.05V)가 Pt/C촉매의 개시전위(0.01V)보다 약간 낮으나, Pt를 기반으로 하지 않는 대부분의 촉매 개시전위 보다는 높으며 더욱이, N-MLG-45min의 전류 밀도는 Pt/C 촉매의 것과 유사하였다.However, the starting potential of N-MLG-45min (-0.05V) is slightly lower than the starting potential of Pt / C catalyst (0.01V), but is higher than most catalyst starting potentials not based on Pt, and moreover, N-MLG- The current density of 45 min was similar to that of the Pt / C catalyst.
또한, 도 5(a)에서 질소가 도핑된 다층 그래핀인 N-MLG-45min, N-MLG-90min을 살펴보면, 각각의 총 질소 함유량은 7.41%, 6.13%로 유사하나, N-MLG-45min은 반파 전위가 -0.18V로 N-MLG-90min의 반파 전위가 -0.23V인 것에 비해 더 높게 나타났다. 이를 통해, N-MLG-45min의 반파 전위 값이 N-MLG-90min 보다 높은 것은 도핑된 질소의 유형의 차이 즉, 피리딘 유사배열 질소(pyridinic-N)의 함유량에 따른 차이로, 피리딘 유사배열 질소(pyridinic-N)가 산화 환원 반응의 전기 촉매 성능을 향상시키는 것으로 판단된다.In addition, looking at N-MLG-45min, N-MLG-90min, which is nitrogen-doped multilayer graphene in Figure 5 (a), the total nitrogen content of each is similar to 7.41%, 6.13%, but N-MLG-45min The half-wave potential of -0.18V was higher than that of N-MLG-90min, compared to -0.23V. Through this, the half-wave potential value of N-MLG-45min is higher than N-MLG-90min is the difference in the type of the doped nitrogen, that is, the content of the pyridine pseudo-array nitrogen (pyridinic-N), pyridine pseudo-array nitrogen (pyridinic-N) is believed to improve the electrocatalytic performance of the redox reaction.
즉, 질소가 도핑된 다층 그래핀의 전기 촉매적 활성은 질소 함량과 총 도핑된 질소에 대한 피리딘 유사배열 질소(pyridinic-N)의 비율과 직접적으로 관계함을 알 수 있었다.In other words, the electrocatalytic activity of nitrogen doped multilayer graphene was found to be directly related to the nitrogen content and the ratio of pyridinic-array nitrogen (pyridinic-N) to the total doped nitrogen.
2) 회전원판전극(RDE) 이용한 선형 주사 전압-전류곡선 분석2) Linear Scanning Voltage-Current Curve Analysis Using Rotating Disc Electrode (RDE)
도 5(b)는 회전원판전극을 이용한 선형 주사 전압-전류곡선을 나타낸 것으로서, O2로 포화된 1.0M KOH 용액에서 회전원판전극을 이용하여 회전 속도를 달리한 N-MLG-45min에 대한 전압-전류 곡선을 나타낸 것이다.Figure 5 (b) shows a linear scan voltage-current curve using a rotating disk electrode, the voltage for N-MLG-45min with different rotational speed using the rotating disk electrode in 1.0M KOH solution saturated with O 2 -Shows the current curve.
RDE(Rotating Disc Electrodes) 데이터는 Koutecky-Levich식을 사용하여 분석되었다.Rotating Disc Electrodes (RDE) data were analyzed using Koutecky-Levich equation.
Figure PCTKR2015003464-appb-I000001
Figure PCTKR2015003464-appb-I000001
Figure PCTKR2015003464-appb-I000002
Figure PCTKR2015003464-appb-I000002
Figure PCTKR2015003464-appb-I000003
Figure PCTKR2015003464-appb-I000003
단, 상기에서 전류밀도 J가 측정될 때, JK와 JL은 각각 속도론적 전류밀도, 확산 한계 전류 밀도이고,
Figure PCTKR2015003464-appb-I000004
는 회전원판전극 회전 속도, n은 전이되는 전자의 수, F는 Faraday 상수(96485Cmol-1)이고,
Figure PCTKR2015003464-appb-I000005
는 전해질에 용해된 O2의 벌크 농도,
Figure PCTKR2015003464-appb-I000006
는 O2 확산 계수이며,
Figure PCTKR2015003464-appb-I000007
는 전해질의 동점도이다.
However, when the current density J is measured in the above, J K and J L are kinetic current density and diffusion limit current density, respectively.
Figure PCTKR2015003464-appb-I000004
Is the rotational speed of the rotating disc electrode, n is the number of electrons transferred, F is the Faraday constant (96485Cmol -1 ),
Figure PCTKR2015003464-appb-I000005
Is the bulk concentration of O 2 dissolved in the electrolyte,
Figure PCTKR2015003464-appb-I000006
Is the O 2 diffusion coefficient,
Figure PCTKR2015003464-appb-I000007
Is the kinematic viscosity of the electrolyte.
도 5(c)는 N-MLG-45min에 대한 전기화학적 산소 환원 과정의 전류밀도의 역수 J-1에 대한
Figure PCTKR2015003464-appb-I000008
에 대하여 Koutecky-Levich 직선 그래프를 나타낸 것으로서, 상기 직선 그래프의 y절편 및 기울기로부터 JK 및 B 값을 구할 수 있고, 본 실험에서
Figure PCTKR2015003464-appb-I000009
=0.93×10-6molcm-3,
Figure PCTKR2015003464-appb-I000010
=1.30×10-5cm2s-1,
Figure PCTKR2015003464-appb-I000011
=5.45×10-3cm2s-1 였다.
Figure 5 (c) is the inverse of the current density of the electrochemical oxygen reduction process for N-MLG-45min J- 1
Figure PCTKR2015003464-appb-I000008
As a Koutecky-Levich linear graph for, it is possible to obtain the values of J K and B from the y-intercept and the slope of the linear graph.
Figure PCTKR2015003464-appb-I000009
= 0.93 × 10 -6 molcm -3 ,
Figure PCTKR2015003464-appb-I000010
= 1.30 × 10 -5 cm 2 s -1 ,
Figure PCTKR2015003464-appb-I000011
= 5.45 × 10 −3 cm 2 s −1 .
상기 도 5(c)에서 JK 및 B 값을 통한 n 값을 얻기 위하여 상기 도 5(b)에 나타낸 바와 같이, 다양한 RDE rpm(800, 1200, 1600, 2000rpm) 하에서 전압-전류를 측정하였으며, 0.090V 내지 0.20V의 전위 범위에서 전류는 거의 일정하게 유지된다.As shown in FIG. 5 (b), the voltage-current was measured under various RDE rpms (800, 1200, 1600, 2000 rpm) to obtain n values through J K and B values in FIG. 5 (c). The current remains almost constant in the potential range of 0.090V to 0.20V.
이에 따라, 상기 도 5(c)에서는 -0.2V, -0.25V, 0.40V의 각기 다른 전극전위에서 산화 환원 반응을 위한 전자 전위의 일정한 수치를 나타내게 된다.Accordingly, in FIG. 5 (c), a constant value of the electron potential for the redox reaction is shown at different electrode potentials of −0.2 V, −0.25 V, and 0.40 V. FIG.
즉, Koutecky-Levich식 (1) 내지 (3)을 통해 전이되는 전자 수 n은 약 4로 측정되며, 이는 산소의 환원 반응에서 중간물질인 H2O2를 거치지 않고 직접 목적 생성물인 H2O를 얻는 반응으로 진행되며 이때 총 4개의 전자 전달이 일어나는 것을 의미한다. 이는 하기 반응식 (4) 내지 (8)을 통해 확인할 수 있다.In other words, the number n of electrons transferred through Koutecky-Levich equations (1) to (3) is measured to be about 4, which is the target product H 2 O directly without passing through H 2 O 2 as an intermediate in the reduction reaction of oxygen. The reaction proceeds to obtain a total of four electron transfer means. This can be confirmed through the following schemes (4) to (8).
Figure PCTKR2015003464-appb-I000012
Figure PCTKR2015003464-appb-I000012
상기 반응식 (4) 내지 (8)을 통해, N-MLG-45min에 대한 산소 환원에서 4개의 전자가 전달되어 산소 환원이 진행됨을 설명하면, 산소 분자가 식 (4)와 같이 수성 용매에서 그래핀 시트 상에 흡착된 후, 식 (5) 내지 식 (8)과 같이 전자 4개가 전달됨으로써, 질소가 도핑된 다층 그래핀(N-MLG)과 H2O를 형성하게 된다.In the above reaction schemes (4) to (8), it is described that the oxygen reduction proceeds by transferring four electrons in the oxygen reduction for N-MLG-45min, the oxygen molecules are graphene in an aqueous solvent as shown in Equation (4) After being adsorbed on the sheet, four electrons are transferred as shown in Equations (5) to (8), thereby forming nitrogen-doped multilayer graphene (N-MLG) and H 2 O.
즉, 상기 반응 메카니즘에서 4개의 전자가 전달되어 질소가 도핑된 다층 그래핀(N-MLG)과 H2O를 형성하되, 과산화수소를 수반하지 않으며 패러데이 효율이 높아 산화환원 반응의 효율이 높다.That is, four electrons are transferred from the reaction mechanism to form nitrogen-doped multilayered graphene (N-MLG) and H 2 O, but do not include hydrogen peroxide and have high Faraday efficiency, thereby increasing redox reaction efficiency.
3) 촉매(Fe) 활성 분석3) Catalyst (Fe) activity analysis
Fe 함량에 따른 산화반응 정도로 촉매(Fe)활성을 분석하였다.Catalyst (Fe) activity was analyzed to the extent of oxidation according to the Fe content.
도 5d 및 도 6은 실시예 1 내지 3(열처리 시간 45분, HCl 처리시간 0, 3, 6h)에 대해 각각 Fe 함량에 따른 선형 주사 전압-전류 그래프 및 TGA 곡선을 나타낸 것이다.5d and 6 show linear scan voltage-current graphs and TGA curves according to Fe content for Examples 1 to 3 (heat treatment time 45 minutes, HCl treatment time 0, 3, 6h), respectively.
도 5d의 선형 주사 전압-전류 그래프를 참고하면, Fe가 제거되지 않은 실시예 1(0h)와 Fe 함량이 감소된 실시예 2(3h), Fe가 제거된 실시예 3(6h)은 비슷한 반파전위를 가짐에 따라, 산화환원 반응에서 비슷한 작용성을 가지나 Fe 함량이 많은 실시예 1(0h)는 산화환원 반응 활성 감소를 야기하였다.Referring to the linear scan voltage-current graph of FIG. 5D, Example 1 (0h) without Fe removal, Example 2 (3h) with reduced Fe content, and Example 3 (6h) with Fe removed are similar half-waves. With the potential, Example 1 (0h), which has similar functionality in the redox reaction but is high in Fe content, caused a reduction in redox activity.
즉, Fe는 그래핀을 성장시키는 성장 시키는 촉매로서의 기능과 도핑되는 질소의 안정화에 기여하나, 산화환원 반응에서는 작용성을 가지지 않는 것으로 판단된다.That is, Fe contributes to the function of the growth catalyst for growing graphene and the stabilization of the doped nitrogen, but it does not seem to have a functional in the redox reaction.
도 6은 TGA곡선으로 정확한 실험을 위해 실시예 1 내지 실시예 3을 공기 중에서 실온으로부터 900℃까지 10℃/min으로 가열하여 측정하였다. 도 6의 TGA 곡선에서 중량 감소 개시온도는 637℃이고, 산화 온도는 중량 손실율에서의 최대온도로 약 650℃로, 약 750℃에서 탄소 물질들은 제거되어지고 Fe 물질만이 남음을 알 수 있었다. 6 was measured by heating Examples 1 to 3 at 10 ° C./min from room temperature to 900 ° C. in air for accurate experiments with a TGA curve. In the TGA curve of FIG. 6, the weight loss initiation temperature was 637 ° C., and the oxidation temperature was about 650 ° C. at the maximum temperature at the weight loss rate. At about 750 ° C., carbon materials were removed and only Fe material remained.
상기 도 6에서 실시예 1(0h)은 질소가 도핑된 그래핀에서 약 26.45 at%로 Fe가 포함되어 있는 것으로, Fe가 제거되지 않은 상태이며, 이는 도 6의 TGA 분석 그래프 실시예 1(0h)의 61.7wt%에 대응된다. 즉, 상기 실시예 1에 있어서 Fe의 원래 함량은 67.5wt%이기 때문이다.In FIG. 6, Example 1 (0h) includes Fe at about 26.45 at% in nitrogen-doped graphene, and the Fe is not removed, which is the TGA analysis graph Example 1 (0h) of FIG. 6. 61.7wt%). That is, because the original content of Fe in Example 1 is 67.5wt%.
또한, 실시예 2(3h)은 Fe가 일부 제거되어, Fe 함량은 약 33.1 wt%였으며, 실시예 3(6h)은 Fe가 거의 다 제거되어져서 Fe함량이 약 5wt%였다. 즉, HCl로서 6시간 처리하면 Fe는 다 제거된 것으로 볼 수 있다.In Example 2 (3h), Fe was partially removed, and the Fe content was about 33.1 wt%, and in Example 3 (6h), almost all Fe was removed, so that the Fe content was about 5 wt%. In other words, after 6 hours of treatment with HCl, Fe can be seen to be removed.
4) XPS 분석4) XPS Analysis
또한 열처리를 60℃ 또는 90℃에서 시행하고 Fe를 제거하지 않거나 제거한 실시예 4 내지 실시예 7에 대한 각각의 질소 도핑된 그래핀에서의 Fe 함량%을 실시예 1, 실시예 3과 함께 하기 표 4에 정리하여 나타내었다.In addition, the Fe content in each nitrogen doped graphene for Example 4 to Example 7 with or without the removal of Fe and the heat treatment was carried out at 60 ° C or 90 ° C Table 1 with Example 1, Example 3 4 is shown collectively.
표 4
시료 XPS 분석(at.%)
C N Fe O
실시예 1 62.30 4.97 26.45 6.28
실시예 3 79.88 7.41 - 12.71
실시예 4 63.80 3.54 26.42 6.24
실시예 5 83.25 6.13 - 10.62
실시예 6 67.63 2.48 26.75 3.14
실시예 7 87.82 3.45 - 8.73
Table 4
sample XPS Analysis (at.%)
C N Fe O
Example 1 62.30 4.97 26.45 6.28
Example 3 79.88 7.41 - 12.71
Example 4 63.80 3.54 26.42 6.24
Example 5 83.25 6.13 - 10.62
Example 6 67.63 2.48 26.75 3.14
Example 7 87.82 3.45 - 8.73
상기 표 4로부터, 질소 도핑 그래핀 제조시 N2 가스 환경에서 45~120분 동안 1000℃에서 열처리함으로써, 밀크 파우더가 다층 구조의 질소 도핑된 그래핀(N-MLG)합성의 전구체로서 사용될 수 있으며, 상기 열처리 시간에 따라, 질소 도핑된 다층 그래핀(N-MLG) 상의 질소 함량 및 도핑되는 질소의 유형에 있어서 뚜렷한 효과를 나타냄을 확인할 수 있었다. From Table 4, by preparing a heat-treated at 1000 ℃ for 45-120 minutes in an N 2 gas environment in the production of nitrogen-doped graphene, milk powder can be used as a precursor of a nitrogen-doped graphene (N-MLG) synthesis of a multi-layer structure According to the heat treatment time, it was confirmed that the nitrogen content on the nitrogen-doped multilayer graphene (N-MLG) has a distinct effect on the type of nitrogen and the doped nitrogen.
또한, 제조된 질소 도핑된 다층 그래핀(N-MLG)은 시중에 판매되는 Pt/C촉매, 도핑되지 않은 그래핀, 탄소나노튜브(CNTs)의 산화 환원 반응의 전기 촉매적 활성보다 더 높은 활성을 나타내었으며, 이는 도핑된 N함량과 N유형에 따른 차이로, 특히, 전체 N 원자들에 대한 피리딘 유사배열 질소(pyridinic-N)의 비율과 직접적으로 관계됨을 알 수 있었다.In addition, the prepared nitrogen-doped multilayered graphene (N-MLG) has higher activity than the electrocatalytic activity of the redox reaction of commercially available Pt / C catalysts, undoped graphene, and carbon nanotubes (CNTs). The difference between doped N content and N type was found to be directly related to the ratio of pyridinic-N in particular to the total N atoms.
또한, 질소 도핑된 다층 그래핀의 Fe 원자들은 산화 환원 반응을 위한 시너지 촉매로서 작용하지 않으나, 질소 도핑된 다층 그래핀 형성을 위한 촉매적 성장 물질로서 작용하여 N 원자들을 촉진, 안정화시킴을 확인할 수 있었다.In addition, the Fe atoms of the nitrogen-doped multilayer graphene do not act as a synergy catalyst for the redox reaction, but it acts as a catalytic growth material for the formation of nitrogen-doped multilayer graphene to promote and stabilize the N atoms. there was.
따라서, 본 발명의 질소가 도핑된 그래핀의 제조 방법에 따라 제조하면, 도핑된 질소의 함량이 향상되고 더욱이 피리딘 유사 배열의 함량을 제어할 수 있어, 산화환원 반응에 대한 우수한 전기 화학적 활성을 나타낼 것으로 판단된다. 또한, Fe는 그래핀의 성장 촉매제로서 기능 및 도핑되는 질소 원자들을 안정화시키면서 질소가 도핑된 다층 그래핀을 형성하고 그래핀의 크기를 키울 수 있으나 산화환원 반응에서는 작용성을 나타내지 않는 것으로 판단된다.Therefore, when prepared according to the nitrogen-doped graphene manufacturing method of the present invention, the content of the doped nitrogen can be improved and further control the content of the pyridine-like arrangement, showing excellent electrochemical activity for the redox reaction It seems to be. In addition, Fe can form a graphene-doped multilayer graphene and increase the graphene size while stabilizing the nitrogen atoms functioning and doping as a growth catalyst of graphene, but it is not considered to be functional in the redox reaction.
전술한 본 발명의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The above description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (11)

  1. 탄소화합물과 아민화합물을 산성용액에 투입하여 가열 및 교반하여 열분해함으로써 탄소원자 및 질소원자를 포함하는 혼합물 용액을 제조하는 제 1 단계;A first step of preparing a mixture solution containing carbon atoms and nitrogen atoms by adding a carbon compound and an amine compound to an acidic solution, followed by heating and stirring to pyrolyze;
    상기 탄소원자 및 질소원자를 포함하는 혼합물 용액에 Fe2+이온을 포함하는 용액을 첨가하여 교반시킴으로써 탄소원자, 질소원자 및 Fe2+이온을 포함하는 화합물을 형성한 후, 이를 수득하는 제 2 단계;A second step of forming a compound including carbon atoms, nitrogen atoms, and Fe 2+ ions by adding and stirring a solution containing Fe 2+ ions to the mixture solution containing carbon atoms and nitrogen atoms, and then obtaining them ;
    상기 제 2 단계에서 수득한 화합물을 질소 분위기 하에서 열처리하여 Fe 기판을 형성하는 제 3 단계; 및 A third step of forming a Fe substrate by heat-treating the compound obtained in the second step in a nitrogen atmosphere; And
    상기 제 3 단계를 거친 후, 냉각시킴으로써 상기 화합물에 포함된 탄소원자 및 질소원자를 상기 Fe 기판 상에 확산하여 질소가 도핑된 그래핀을 형성하는 제4 단계를 포함하는, 질소 도핑된 그래핀의 제조방법.After the third step, by cooling the carbon atoms and nitrogen atoms contained in the compound comprising a fourth step of forming a nitrogen-doped graphene by diffusing on the Fe substrate, of the nitrogen-doped graphene Manufacturing method.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제4 단계를 거친 후, 산을 첨가하여 반응시킴으로써 Fe 기판을 제거하는 제5 단계를 더 포함하는 것을 특징으로 하는, 질소 도핑된 그래핀의 제조방법.After passing through the fourth step, further comprising a fifth step of removing the Fe substrate by the reaction by adding an acid, nitrogen-doped graphene manufacturing method.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 질소가 도핑된 그래핀은 질소 도핑된 다층 그래핀인 것을 특징으로 하는, 질조 도핑된 그래핀의 제조방법.The nitrogen-doped graphene is a nitrogen-doped multilayer graphene, characterized in that the manufacturing method of nitro doped graphene.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 탄소화합물은 단백질, 단당류, 이당류, 올리고당, 다당류 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는, 질소 도핑된 그래핀의 제조방법.The carbon compound is any one or more selected from the group consisting of proteins, monosaccharides, disaccharides, oligosaccharides, polysaccharides and combinations thereof, nitrogen-doped graphene manufacturing method.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 단백질은 우유단백질인 것을 특징으로 하는, 질소 도핑된 그래핀의 제조방법.The protein is characterized in that the milk protein, nitrogen-doped graphene manufacturing method.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 Fe2+이온을 포함하는 용액은 암모늄 기를 더 포함하는 용액인 것을 특징으로 하는, 질소 도핑된 그래핀의 제조방법.The solution containing the Fe 2+ ions is characterized in that the solution further comprises an ammonium group, nitrogen-doped method for producing graphene.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 아민 화합물은 멜라민(C3H6N6), 암모니아(NH3), 히드라진(NH2NH2), 피리딘(C5H5N), 피롤(C4H5N), 아세토니트릴(CH3CN), 트리에탄올아민(C6H15NO3), 아닐린(C6H7N), 3-아미노벤조산(C7H7NO2), 4-아미노벤조산, 3-(4-아미노페닐)벤조산(C13H11NO2), 4-(4-아미노페닐)벤조산, 4-(3-아미노페닐)벤조산(C13H11NO2), 5-아미노이소프탈산(C8H7NO4), 3-(4-아미노페녹시)벤조산(C13H11NO3), 4-(4-아미노페녹시)벤조산, 3,4-디아미노벤조산(C7H8N2O2), 3,5-디아미노벤조산, 3-아미노벤조아마이드(C7H8N2O), 4-아미노벤조아마이드 및 이들의 조합으로 이루어진 군 중에서 선택되는 어느 하나의 화합물인 것을 특징으로 하는, 질소 도핑된 그래핀의 제조방법.The amine compound is melamine (C 3 H 6 N 6 ), ammonia (NH 3 ), hydrazine (NH 2 NH 2 ), pyridine (C 5 H 5 N), pyrrole (C 4 H 5 N), acetonitrile (CH 3 CN), triethanolamine (C 6 H 15 NO 3 ), aniline (C 6 H 7 N), 3-aminobenzoic acid (C 7 H 7 NO 2 ), 4-aminobenzoic acid, 3- (4-aminophenyl) Benzoic acid (C 13 H 11 NO 2 ), 4- (4-aminophenyl) benzoic acid, 4- (3-aminophenyl) benzoic acid (C 13 H 11 NO 2 ), 5-aminoisophthalic acid (C 8 H 7 NO 4 ), 3- (4-aminophenoxy) benzoic acid (C 13 H 11 NO 3 ), 4- (4-aminophenoxy) benzoic acid, 3,4-diaminobenzoic acid (C 7 H 8 N 2 O 2 ), Nitrogen doping, characterized in that the compound of any one selected from the group consisting of 3,5-diaminobenzoic acid, 3-aminobenzoamide (C 7 H 8 N 2 O), 4-aminobenzoamide and combinations thereof Method for producing graphene.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 도핑된 질소는 피리딘 유사 배열, 피롤 유사 배열 및 그라파이트 유사배열로 이루어지고, 상기 피리딘 유사 배열이 30~35%로 포함되는 것을 특징으로 하는, 질소 도핑된 그래핀의 제조방법.The doped nitrogen is composed of pyridine-like arrangement, pyrrole-like arrangement and graphite-like arrangement, characterized in that the pyridine-like arrangement is 30 to 35%, nitrogen-doped method of producing a graphene.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 제 3 단계의 열처리는 45~90분 동안 질소 분위기 하에서 850~1200℃ 범위에서 수행하는 것을 특징으로 하는, 질소 도핑된 그래핀의 제조방법.The heat treatment of the third step is characterized in that carried out in a range of 850 ~ 1200 ℃ under nitrogen atmosphere for 45 ~ 90 minutes, nitrogen-doped graphene manufacturing method.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 따른 방법에 의하여 제조된 질소 도핑된 그래핀.Nitrogen doped graphene produced by the process according to any one of claims 1 to 9.
  11. 제 11 항에 따른 질소 도핑된 그래핀을 함유하는 전기화학적 에너지 장치.An electrochemical energy device containing nitrogen doped graphene according to claim 11.
PCT/KR2015/003464 2014-09-17 2015-04-07 Method for preparing nitrogen-doped graphene and nitrogen-doped graphene prepared thereby WO2016043396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0123501 2014-09-17
KR1020140123501A KR101691196B1 (en) 2014-09-17 2014-09-17 Method for preparation of N-doped graphene and N-doped graphene prepared thereby

Publications (1)

Publication Number Publication Date
WO2016043396A1 true WO2016043396A1 (en) 2016-03-24

Family

ID=55533417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003464 WO2016043396A1 (en) 2014-09-17 2015-04-07 Method for preparing nitrogen-doped graphene and nitrogen-doped graphene prepared thereby

Country Status (2)

Country Link
KR (1) KR101691196B1 (en)
WO (1) WO2016043396A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112351951A (en) * 2018-12-12 2021-02-09 约克塞尔可再生能源有限责任公司 Production method of nitrogen-doped graphene

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170136971A (en) 2016-06-02 2017-12-12 주식회사 엘지화학 Carbon-based fiber sheet and lithium-sulfur battery comprising the same
KR102216959B1 (en) * 2019-05-13 2021-02-18 한국전력공사 Composition for manufacturing graphene, method of manufacturing graphene using the composition and graphene
KR102509798B1 (en) * 2021-04-20 2023-03-14 고려대학교 산학협력단 Method for doping of transition metal dichalcogenide
KR102603475B1 (en) * 2021-07-29 2023-11-16 인하대학교 산학협력단 Manufacturing method of n-doped highly graphitic nanoshell and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140083671A (en) * 2012-12-26 2014-07-04 삼성테크윈 주식회사 Graphene, composition for preparing graphene and method for preparing graphene using the same
US20140234200A1 (en) * 2010-03-08 2014-08-21 William Marsh Rice University Growth of graphene films from non-gaseous carbon sources

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839571B2 (en) * 2012-02-27 2016-01-06 積水ナノコートテクノロジー株式会社 Method for producing graphene film doped with nitrogen atoms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140234200A1 (en) * 2010-03-08 2014-08-21 William Marsh Rice University Growth of graphene films from non-gaseous carbon sources
KR20140083671A (en) * 2012-12-26 2014-07-04 삼성테크윈 주식회사 Graphene, composition for preparing graphene and method for preparing graphene using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHENG, Z. ET AL.: "Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis.", ACS NANO., vol. 5, 2011, pages 4350 - 4358, XP055180951, DOI: doi:10.1021/nn103584t *
ZHAO, H. ET AL.: "Graphene Sheets Fabricated from Disposable Paper Cups as a Catalyst Support Material for Fuel Cell .", JOURNAL OF MATERIALS CHEMISTRY A., vol. 1, 5 October 2012 (2012-10-05), pages 183 - 187 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112351951A (en) * 2018-12-12 2021-02-09 约克塞尔可再生能源有限责任公司 Production method of nitrogen-doped graphene

Also Published As

Publication number Publication date
KR101691196B1 (en) 2016-12-30
KR20160032862A (en) 2016-03-25

Similar Documents

Publication Publication Date Title
WO2016043396A1 (en) Method for preparing nitrogen-doped graphene and nitrogen-doped graphene prepared thereby
WO2020096338A1 (en) Method for preparing single-atom catalyst supported on carbon support
WO2015016412A1 (en) Mos2 thin film and method for manufacturing same
WO2016006943A1 (en) Metal nanowire having core-shell structure coated with graphene, and manufacturing method therefor
KR100912807B1 (en) Method of fabrication for carbon nanotubes uniformly coated with Titanium dioxide
WO2013100456A1 (en) Silicon carbide powder, method for manufacturing the same and method for growing single crystal
WO2018194263A1 (en) Method for preparing fuel cell catalyst iron phosphide nanoparticles, and iron phosphide nanoparticles prepared thereby
WO2016024658A1 (en) Phase-change composite containing carbon nanomaterial and preparing method therefor
WO2012115340A1 (en) Negative electrode material for a secondary battery and method for manufacturing same
WO2023013938A1 (en) Conductive thin film production method using expandable graphite
WO2017018667A1 (en) Carbon nanotubes having improved thermal stability
WO2019059570A1 (en) Method for producing fuel cell catalyst, and fuel cell catalyst produced thereby
WO2019093660A2 (en) Method for manufacture of maghemite
WO2022075565A1 (en) Lithium-sulfur battery cathode using fabric material, lithium-sulfur battery comprising same, and manufacturing method therefor
WO2024096397A1 (en) Silicon-graphene composite negative electrode material and method for manufacturing same
WO2018164472A1 (en) Conductive ceramic composition having excellent electrical conductivity
WO2017052222A1 (en) Carrier-nanoparticle complex, preparation method therefor, and membrane electrode assembly including same
WO2020009421A1 (en) Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction
WO2014126296A1 (en) Method for forming metal-containing particles by using porous carbon material
WO2016080801A1 (en) Method for producing silicon nitride nanofibers
WO2016129774A1 (en) Method for preparing vertically aligned carbon nanotube aggregates
Liu et al. High Field Emission Performance of Needle‐on‐Fiber Hierarchical‐Structure ZnO
WO2021182926A1 (en) Negative active material, manufacturing method thereof, and lithium secondary battery having negative active material
WO2020190105A2 (en) Method for preparing carbon material having sp2 hybrid structure with controlled content of pyridinic nitrogen and pyrrolic nitrogen, and carbon material prepared by same
WO2021125915A1 (en) Electrochemical catalyst and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842169

Country of ref document: EP

Kind code of ref document: A1