WO2020190105A2 - Method for preparing carbon material having sp2 hybrid structure with controlled content of pyridinic nitrogen and pyrrolic nitrogen, and carbon material prepared by same - Google Patents

Method for preparing carbon material having sp2 hybrid structure with controlled content of pyridinic nitrogen and pyrrolic nitrogen, and carbon material prepared by same Download PDF

Info

Publication number
WO2020190105A2
WO2020190105A2 PCT/KR2020/003909 KR2020003909W WO2020190105A2 WO 2020190105 A2 WO2020190105 A2 WO 2020190105A2 KR 2020003909 W KR2020003909 W KR 2020003909W WO 2020190105 A2 WO2020190105 A2 WO 2020190105A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
carbon material
carbon
doped
pyridine
Prior art date
Application number
PCT/KR2020/003909
Other languages
French (fr)
Korean (ko)
Other versions
WO2020190105A3 (en
Inventor
황준연
정현수
구본철
홍승기
유남호
이동명
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2020190105A2 publication Critical patent/WO2020190105A2/en
Publication of WO2020190105A3 publication Critical patent/WO2020190105A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials

Definitions

  • the present invention relates to a method of manufacturing a carbon material having a controlled bond structure of nitrogen doped to an sp2 carbon material in order to improve the electrical conductivity of the carbon material, and to a carbon material manufactured thereby.
  • Nano-carbon materials such as graphene and carbon nanotubes have low density and high mechanical and electrical properties, so they are being studied in various fields such as energy materials, ultra-high strength materials, and semiconductors. Recently, the electrical properties and chemical properties of nano-carbon materials have been studied. In order to control, a chemical doping method of doping nitrogen, boron, phosphorus, alkali metal, etc. is being studied.
  • nitrogen is not only a very common element, but also an element capable of replacing the lattice of sp2 carbon, so it is a dopant having excellent chemical, thermal, and electrical stability. Since this stability is the most suitable property for commercialization, studies have been conducted not only on nanocarbon materials such as graphene, carbon nanotubes, and nanohorns, but also various carbon materials such as carbon fiber and carbon black (KR 10-2014-0054784). .
  • the carbon material may typically be doped with nitrogen by a chemical vapor deposition method, a nitrogen plasma method, or a heat treatment method.
  • nitrogen When nitrogen is doped with a carbon material, it can mainly exist in three forms of bonding, which are substituted in the sp2 hexagonal structure of pyridinic nitrogen and pyrrolic nitrogen and carbon doped at the defect or edge. It may be graphitic nitrogen or quaternary nitrogen doped with.
  • the doping effect of the carbon material may vary depending on the type of nitrogen bonding.
  • pyridine nitrogen and pyrroleic nitrogen have a chemical activity due to having an unshared electron pair and thus have a chemical reaction catalyst effect in energy materials. However, they not only reduce the electron carrier density by localizing electrons, but also break structural symmetry to open the band gap, and thus act as defects from the viewpoint of electrical conduction.
  • graphitic nitrogen exhibits an n-type doping effect as a nitrogen atom having one more electron than carbon acts as an electron donor, thereby exerting an effect on improving electrical conductivity.
  • An object of the present invention is to contact a carbon material having a nitrogen-doped sp2 hybrid structure with a super strong acid, while maintaining the graphitic nitrogen present in the carbon material, pyridinic nitrogen and pyrrole nitrogen It is to provide a method for manufacturing a carbon material in which the content of pyridine nitrogen and pyrrole nitrogen is controlled, comprising the step of reducing and removing (pyrrolic nitrogen).
  • Another object of the present invention is to provide a carbon material having a controlled content of pyridine nitrogen and pyrrole nitrogen.
  • the manufacturing method of the present invention removes pyridine nitrogen and pyrroleic nitrogen that reduce electrical conductivity from the nitrogen-doped sp2 carbon material, and at the same time retains only graphitic nitrogen that increases electrical conductivity, effectively increasing the electrical conductivity of the raw material. Can be improved.
  • sp2 carbon-based nano-carbon materials such as graphene or carbon nanotubes, which have been studied recently, it can be applied as an electrically conductive material that can replace metal, so that high-performance new materials are developed. Makes it possible.
  • the manufacturing method of the present invention is applied to the post-treatment step while maintaining the previously known doping process, the industrialization cost is low and thus it is very economical.
  • the super acid when the super acid is contained in the solution and treated, it is a wet process, so it has the advantage of excellent productivity, uniformity, and reproducibility. Moreover, when the super acid is treated, a liquid crystal solution form can be obtained, and thus, it has an effect that can be effectively applied to manufacturing liquid crystal spinning fibers, films, ink, etc. in an additional process.
  • 1 is a diagram schematically showing a reaction according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a liquid crystal carbon nanotube.
  • FIG. 3 is a diagram showing a carbon nanotube liquid crystal spinning fiber.
  • FIG. 4 is a diagram showing a carbon nanotube film.
  • Nr-CNT nitrogen-doped carbon nanotube
  • N-CNT nitrogen-doped and super acid-treated carbon nanotube
  • N Q -CNT nitrogen-doped and super acid-treated carbon nanotube
  • FIG. 7 is a diagram schematically showing a mechanism by which various types of nitrogen doped with sp2 carbon are reduced by strong acids.
  • Figure 8 is a diagram showing the results of (a,b,d,e,g,h) high-resolution transmission electron microscope and (c,f,i) EDX component analysis results of Pr-CNT, N-CNT, and N Q -CNT to be.
  • FIG. 9 is a diagram showing Raman spectra of Pr-CNT, N-CNT, and N Q -CNT and analysis thereof.
  • 10 is a diagram showing the results of UV-photoelectron spectroscopy of Pr-CNT, N-CNT, and N Q- CNT.
  • 11 is a diagram showing (a) specific resistance in the 1.5K to 300K region, (b) specific resistance based on the specific resistance at 300K, and (c) electrical conductivity of Pr-CNT, N-CNT, and N Q -CNT to be.
  • the present invention maintains graphitic nitrogen or quaternary nitrogen present in the carbon material by contacting a super acid to a carbon material having a nitrogen-doped sp2 hybrid structure. It provides a method of manufacturing a carbon material in which the content of pyridine nitrogen and pyrrolic nitrogen is controlled, including the step of reducing pyridinic nitrogen and pyrrolic nitrogen.
  • the carbon material having an sp2 hybrid structure may refer to a material containing carbon having an sp2 hybrid structure, and may additionally include carbon of another hybrid structure or additionally include other elements other than carbon.
  • the carbon material having the sp2 hybrid structure is selected from the group consisting of carbon nanotubes, graphene, graphene oxide, carbon nanohorns, graphite, polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, carbon black, and activated carbon. There can be more than one.
  • the carbon nanotube may mean a structure in which one or more layers of honeycomb films composed of carbon are sp2 bonds are formed in a cylindrical shape.
  • a carbon material having an sp2 hybrid structure pyridine nitrogen and pyrrole nitrogen are selectively maintained while maintaining the morphology of the original carbon material by nitrogen doping using carbon nanotubes and then super acid treatment. It was confirmed that the graphitic nitrogen can be selectively doped with a carbon material.
  • the manufacturing method of the present invention is not based on a reaction to a macro morphology based on a plate-shaped sp2 lattice as a unit, but based on a chemical reaction to nitrogen in each atomic unit, the sp2 hybrid structure is The carbon material to have may not be limited to carbon nanotubes.
  • the carbon material having the sp2 hybrid structure doped with nitrogen in the present invention may be a structure in which the carbon material having the sp2 hybrid structure of the present invention is doped with nitrogen, and is not limited if it is a carbon material doped with nitrogen having an sp2 carbon lattice. Included.
  • the nitrogen may include all of pyridine nitrogen, pyrroleic nitrogen, and graphitic nitrogen, and may include pyridine nitrogen and graphitic nitrogen, or may include pyrroleic nitrogen and graphitic nitrogen, but is not limited thereto.
  • doping in the present invention may mean that at least one of the carbon atoms constituting the carbon structure is replaced with a hetero atom. 1 shows an example of a carbon material having a nitrogen-doped sp2 hybrid structure of the present invention.
  • pyridine nitrogen refers to a nitrogen atom present in a 6-membered heterocyclic compound containing the nitrogen atom, and may be included in an aromatic heterocyclic compound, such as nitrogen of the following formula (1), but nitrogen of formula (2) It may be included in the non-aromatic heterocyclic compound as shown in FIG.
  • the pyrroleic nitrogen refers to a nitrogen atom present in the 5-membered heterocyclic compound including the nitrogen atom, and may be included in an aromatic heterocyclic compound, such as nitrogen of the following formula (3), but is not limited thereto.
  • graphitic nitrogen may also be referred to as graphitic nitrogen, and means a nitrogen atom covalently bonded to three or more carbon atoms.
  • Graphitic nitrogen may be a constituent element of a multicyclic compound, for example, as shown in Formula 4 below.
  • a carbon material selectively doped with graphitic nitrogen is prepared by selectively reducing and removing pyridine nitrogen and pyrroleic nitrogen negative to electrical conductivity in a carbon material having a nitrogen-doped sp2 hybrid structure. And, it was confirmed that the produced carbon material has significantly improved electrical conductivity compared to a carbon material not doped with nitrogen or a carbon material in which pyridine nitrogen and/or pyrroleic nitrogen is not selectively reduced.
  • the carbon material having the sp2 hybrid structure doped with nitrogen may be prepared by doping the carbon material having the sp2 hybrid structure of the present invention with nitrogen.
  • Nitrogen doping is not limited thereto, but may be performed by one or more methods selected from the group consisting of a plasma treatment method, a chemical vapor deposition method, and a heat treatment method with a nitrogen reactant.
  • the nitrogen reactant includes one or more selected from the group consisting of nitrogen gas, urea, amine, imine, nitrile, pyrrole, diazole, triazole, pyridine, diazine, and triazine.
  • nitrogen doping is performed using an induced coupled plasma (ICP), but the present invention is not limited to a specific doping method as long as nitrogen can be doped.
  • ICP induced coupled plasma
  • superacids for contacting a carbon material having a nitrogen-doped sp2 hybrid structure means an acid having a stronger acidity than pure sulfuric acid having a Hammett acidity function (H 0 ) of -12.
  • the super strong acid of the present invention may be an acid having H 0 less than -12, less than -12.5, less than -13, less than -13.5, or less than -13.8, but is not limited thereto.
  • the super strong acid is chlorosulfonic acid (ClSO 3 H), trifluoromethanesulfonic acid (CF 3 SO 3 H), fluorosulfonic acid (HSO 3 F), carborane acids (Carborane acids), magic acid (FSO 3 H ⁇ SbF 5 ), fluoroantimonic acid (H 2 FSbF 6 ), or a combination thereof, and more specifically, H 0 is -13.8. It may be a known chlorosulfuric acid.
  • chlorosulfuric acid is used as a super strong acid to selectively reduce pyridine nitrogen and pyrrole nitrogen without damaging the original morphology of the carbon material, thereby exhibiting n-doping properties and improving electrical conductivity. Confirmed that there is.
  • the acid of the present invention is not limited to chlorosulfuric acid and may be included as long as it is a super acid.
  • the ability to selectively reduce or remove pyridine nitrogen and pyrrole nitrogen while remaining graphitic nitrogen present in the carbon material by super acid treatment is not limited to a specific theory, but will be explained by the following mechanism.
  • pyridine nitrogen and pyrroleic nitrogen have a non-shared electron pair that can act as a Lewis base, and thus can react with H + in a strong acidic environment. That is, pyridine nitrogen and pyrroleic nitrogen can be reduced in a strong acidic environment and removed from the sp2 carbon lattice.
  • a super acid for contacting a carbon material having a nitrogen-doped sp2 hybrid structure may be present in a solution.
  • the superacid may be present in the solution at a concentration of 10 to 50 mg/mL, 15 to 45 mg/mL, 20 to 40 mg/mL, or 25 to 35 mg/mL, but is not limited thereto.
  • concentration of 10 mg/mL the content of the carbon material per unit volume is small, and thus, when a fiber or film is manufactured with the prepared liquid crystal carbon material, the prepared fiber or film may be broken or the strength may be weak.
  • the carbon material when present in a concentration of more than 50 mg/mL, the carbon material may not be sufficiently liquid crystallized, and as a result, the nozzle is clogged in the fiber manufacturing process using liquid crystal or the orientation in the manufactured fiber is lowered, and the strength of the manufactured fiber Can weaken.
  • the super acid of the present invention may be a true solvent made of a carbon material. Accordingly, the manufacturing method of the present invention can obtain a carbon material liquid crystal at the same time as the super acid treatment process, and since this liquid crystal can be directly radiated or filmed, there is a great advantage that it can be effectively utilized as a macro assembly with only a very simple process.
  • chlorosulfuric acid can be used as a super acid capable of selectively reducing pyridine nitrogen and pyrrole nitrogen, and can be used as a strong solvent for carbon nanotubes.
  • the step of reducing pyridine nitrogen and pyrroleic nitrogen is 6 hours or more, 8 hours or more, 10 hours or more, 12 hours or more, 15 hours or more, 18 hours or more, 21 hours or more, 24 hours or more, 36 hours or more. It may be carried out by contacting a solution containing a super acid for a period of time, but is not limited thereto. However, when contacting for more than 12 hours, the selective reduction effect of pyridine nitrogen and pyrrole nitrogen is excellent in the nitrogen-doped carbon material, and when contacted for more than 36 hours, the carbon material has excellent liquid crystalline properties, resulting in fibers and films. It can be conveniently used in the manufacture of, etc.
  • pyridine nitrogen and pyrroleic nitrogen can be selectively removed by contacting a super acid with a carbon material for 12 hours, and in another experimental example, a super acid was added for 36 hours. It was confirmed that selective reduction can be performed by contacting the carbon material, and at the same time, the carbon material has a liquid crystal phase and can be processed into fibers or films using this.
  • the manufacturing method of the present invention can selectively reduce pyridine nitrogen and pyrrole nitrogen present in a nitrogen-doped sp2 structured carbon material, through which only graphitic nitrogen functioning as an electron donor remains in the carbon material, As the density can be increased, as a result, it is possible to provide a carbon material having improved electrical conductivity.
  • the electrical conductivity of the carbon material with controlled contents of pyridine nitrogen and pyrroleic nitrogen prepared according to the present invention is the carbon material before nitrogen doping and the content of pyridine nitrogen and pyrrole nitrogen by super acid treatment after nitrogen doping. This can be improved compared to the carbon material before it is controlled.
  • the electrical conductivity of the carbon material in which the content of pyridine nitrogen and pyrroleic nitrogen is controlled is 50%, 70%, 90%, 95%, 100%, 105%, 110% compared to the carbon material before nitrogen doping. , Or it may be improved by more than 120%, and the content of pyridine nitrogen and pyrroleic nitrogen is 100%, 120%, 140%, 160%, 180% compared to the carbon material before being controlled by super acid treatment after nitrogen doping , 185%, 190%, 195%, 200%, 205%, 210%, 215%, 220%, 225%, or may be improved by more than 230%, but is not limited thereto.
  • the manufacturing method of the present invention also maintains the existing doping process and is a post-treatment method, thus minimizing process introduction cost.
  • the carbon material in which the content of pyridine nitrogen and pyrroleic nitrogen is controlled was increased to 2.2 times (i.e., 120% improvement) of the carbon material not doped with nitrogen, and was doped with nitrogen. It was confirmed that the pyridine nitrogen and pyrroleic nitrogen were selectively increased by 3.3 times (ie, 230% improvement) of the non-reduced carbon material, and the electrical conductivity was remarkably improved.
  • the present invention provides a carbon material in which the contents of pyridine nitrogen and pyrrole nitrogen are controlled.
  • the carbon material in which the content of pyridine nitrogen and pyrroleic nitrogen is controlled can be prepared according to the manufacturing method of the present invention described above.
  • the thus produced carbon material selectively contains graphitic nitrogen, which increases electrical conductivity by selectively reducing or removing pyridine nitrogen and pyrrole nitrogen, and thus has n-doped properties and can exhibit excellent electrical conductivity.
  • the carbon material of the present invention maintains the unique morphology of the carbon material even in the process of super acid treatment, it can have a desired morphology while having improved physical properties.
  • the carbon material thus produced has a liquid crystal phase and can be directly radiated or filmed.
  • Example 1 Preparation of carbon nanotubes doped with nitrogen and treated with super acid
  • single-walled carbon nanotubes (hereinafter, SWCNT; TUBALL TM , carbon>99%) having a high carbon ratio based on sp2 were used as the carbon material.
  • SWCNT powder (0.5 ⁇ 2 g) was treated with ICP (100 W 20 min) in an N 2 (50 ⁇ 250 sccm) atmosphere and doped with nitrogen.
  • the reaction chamber was continuously rotated (50 rpm) and mixed during all plasma treatments.
  • pyridine nitrogen (N Py ), pyrroleic nitrogen (N Pyrr ), and graphitic nitrogen (N Q ) were mixed to obtain a prepared nitrogen-doped SWCNT.
  • N Py and N Pyrr of nitrogen doped SWCNT After it stirred for then mixed in a ratio of chlorosulfuric acid and 30 mg / mL of nitrogen-doped CNT in Dry room moisture-3, by selectively reduced to the N Py and N Pyrr of nitrogen doped SWCNT, N Py and A carbon nanotube doped with N Q in which N Pyrr was selectively reduced was obtained.
  • Example 3 Preparation of carbon nanotube liquid crystal spinning fiber doped with nitrogen and treated with super acid
  • a liquid crystal spun fiber was prepared using the CNT subjected to the super acid treatment of Example 1. Specifically, CNT in a solution state having a liquid crystal phase mixed with chlorosulfuric acid was sprayed through a nozzle to acetone in the coagulation tank at a pressure of 10 to 30 G and a rate of 0.01 to 1 mL/min using a syringe pump to form fibers. Then, it was wound in water of a second coagulation bath, and then dried at 100° C. for 12 hours.
  • a carbon nanotube film was prepared by dropping the CNT liquid crystal spinning fiber of Example 3 on a glass substrate, and then aligning the CNTs by covering and pushing it with another glass substrate.
  • the obtained film is shown in FIG. 4.
  • Single-walled carbon nanotubes (hereinafter, SWCNT; TUBALL TM , carbon>99%) were purchased and used as received.
  • Nitrogen-doped CNTs were prepared under the same conditions as in Example 1, and then nitrogen-doped and N Py and N Pyrr were not reduced by not performing super acid treatment.
  • Comparative Example 3 Preparation of carbon nanotubes doped with nitrogen and treated with an acid other than a super acid
  • a carbon nanotube was prepared under the same conditions as in Example 2, except that 98% sulfuric acid was used instead of the super acid.
  • a carbon nanotube liquid crystal spinning fiber not doped with nitrogen was prepared. Specifically, SWCNT was mixed with chlorosulfuric acid at a ratio of 30 mg/mL and stirred for 3 days to obtain a solution state SWCNT solution having a liquid crystal phase, which was fiberized under the same conditions as in Example 3, wound up, and dried. .
  • Comparative Example 5 Preparation of carbon nanotube liquid crystal spinning fiber doped with nitrogen and not treated with super acid
  • a carbon nanotube liquid crystal spinning fiber was prepared under the same nitrogen doping conditions as in Example 1 and not treated with a super acid.
  • SWCNT was mixed with chlorosulfuric acid at a ratio of 30 mg/mL and stirred for 3 days to obtain a solution state SWCNT solution having a liquid crystal phase, which was fiberized under the same conditions as in Example 3, wound up, and dried.
  • the prepared carbon nanotube fibers were subjected to ICP treatment under the same conditions as in Example 1 and doped with nitrogen. Through this, a nitrogen-doped carbon nanotube liquid crystal spinning fiber was prepared by mixing N Py , N Pyrr , and N Q.
  • a carbon nanotube film was prepared in the same manner as in Example 4, except that the CNT liquid crystal spinning fiber of Comparative Example 4 was used instead of the CNT liquid crystal spinning fiber of Example 3.
  • Comparative Example 7 Preparation of carbon nanotube film doped with nitrogen and not treated with super acid
  • a carbon nanotube film was prepared in the same manner as in Example 4, except that the CNT liquid crystal spinning fiber of Comparative Example 5 was used instead of the CNT liquid crystal spinning fiber of Example 3.
  • FIG. Done As can be seen in FIG. 2, it can be seen that CNT is dissolved in chlorosulfuric acid to form a liquid crystal phase.
  • the CNT liquid crystal spun fiber obtained in Example 3 is shown in FIG. 3, and the CNT film obtained in Example 4 is shown in FIG.
  • the CNT has a liquid crystal phase, so that processing into a liquid crystal spinning fiber or film has an advantageous advantage.
  • N Py and N Pyrr are selectively reduced while maintaining N Q by nitrogen doping and super acid treatment
  • nitrogen-doped carbon nanotubes Comparative Example 1; Pr-CNT
  • Carbon nanotubes that were not Comparative Example 2; N-CNT
  • nitrogen-doped and super acid-treated carbon nanotubes Example 1; N Q- CNT
  • Example 1 nitrogen-doped and super acid-treated carbon nanotubes
  • N-CNTs have an asymmetrical N1s peak. This means that several types of nitrogen peaks are convolutional.
  • N-CNT showed three dominant peaks: N Py (398.4 eV), N Pyrr (399.8 eV), and a small amount of N Q (401.0 eV).
  • N Q -CNT showed only a single peak of N Q without other convolutional peaks due to the symmetrical complete Gaussian distribution. Through this, it was confirmed that N Py and N Pyrr were selectively removed while leaving N Q by super acid treatment.
  • N Py and N Pyrr by acid can be understood by the same mechanism as in FIG. 6 (FIG. 6 shows only the reduction reaction of nitrogen for convenience, and the process of reducing unsaturated bonds of carbon is not shown in FIG. 6).
  • FIG. 6 shows only the reduction reaction of nitrogen for convenience, and the process of reducing unsaturated bonds of carbon is not shown in FIG. 6).
  • N Py and N Pyrr doped on sp2 carbon lattice have Louis-Base characteristics because they have a lone pair of electrons, and these lone pairs act as protonation sites in a rich Proton environment such as chlorosulfate to form unsaturated bonds. Branches are continuously reduced by Proton along with carbon (Figs. 6(a) and 6(b)).
  • N Q The very high Proton environment becomes a driving force that can irreversibly advance the reactions of N Py and N Pyrr .
  • N Q three of the five electrons are involved in bonding with carbon, and the other electron is involved in bonding by sp2 hybrid orbital, and the last one electron is delocalized in ⁇ * state as a carrier. It forms a coupling with the surrounding carbon and plays two roles of being localized. Accordingly, the electrons of N Q do not form an unshared electron pair, and have a property of being chemically inert to Proton (Fig. 6(c)). Consequently, according to this mechanism, nitrogen It is understood that on the doped CNTs N Py and N Pyrr are removed and only N Q remains.
  • N-CNTs containing N Py and N Pyrr have a high binding energy (284.50 eV) compared to Pr-CNT (284.38 eV) or N Q -CNT (284.28 eV). You can see that it moves. This means that when several forms of nitrogen are doped, the effects of the more dominant bonding forms, N Py and N Pyrr , are greater. On the other hand, since only N Q acting as an electron donor exists in CNT (N Q -CNT) after selective reduction, it can be confirmed that the downshift is due to the increased fermi-level of carbon.
  • N-CNT N1s (400 eV) signal, which was not present in Pr-CNT, appears, and this can be observed in N Q CNT.
  • O1s (533 eV) of N Q -CNT is maintained at a similar level despite the treatment with chlorosulfuric acid, which is unlikely to be known that nitrogen-doped CNTs are oxidized in a strong acidic environment such as sulfuric acid. Shows that the reduction reaction is possible without chemical damage.
  • the carbon-containing material was doped with nitrogen and then treated with super acid to selectively reduce N Py and N Pyrr while maintaining N Q without chemical damage.
  • N Q -CNT retains the point defects due to the voids of the removed N Py and N Pyrr as it is, but unzipping does not proceed further and maintains the cylindrical CNT structure (Fig. 7(g)), It can be seen that it has nitrogen distributed inside the bundle (Fig. 7(i)).
  • FIG. 9(a) is a Raman spectrum that occurs at 1000 ⁇ 3000 cm -1 , the strongest peak observed at 1580 ⁇ 1600 cm -1 , G-band (graphitic mode), D observed at 1300 ⁇ 1350 cm -1 -band (defect-induced mode), and finally, two strong peaks of 2D-Band (double resonance mode) observed at 2550 ⁇ 2700 cm -1 are shown.
  • Fig. 6(b) shows the R value (I G / I D ratio), which is the ratio of the peak intensity of the G-band to the peak intensity of the D-band, from the Raman spectrum, and shows the crystallinity through the R-value. Able to know.
  • a high R value means that the D-band peak intensity is low, which means that it has high crystallinity.
  • the D-band increases due to crystallinity reduction due to symmetry breaking, and accordingly, the R-value decreases.
  • N-CNT can be confirmed by having a lower R value than Pr-CNT.
  • structural point defects remain in N Q -CNT after removal of N Py and N Pyrr by super acid treatment (Fig. 7), it can be seen that the R value is increased compared to N-CNT. This suggests that N Py and N Pyrr , which delocalize electrons, have a greater influence on the increase in the disorder (D-band) of carbon lattice than the effects of nitrogen and substituted hydrogen and structural vacancy .
  • the 2D band visible near 2700 cm -1 exhibits a large shift according to the bonding type of nitrogen.
  • the 2D band is very sensitive to the carrier density of the ⁇ valence band of CNT, and specifically, it is up shifted in p-type doping and down shifted in n-type doping. Considering that the shift of the G-band was within 1 cm -1 , it can be seen that the shift of the 2D band is very distinct from 1 to 9 cm -1 .
  • N-CNT is the high rate of Pyrr while the 2D band showed p-type characteristics to blue shift, the N Q N Q -CNT only doped 2D It was confirmed that the band shifted red to show n-type characteristics.
  • the doping characteristics of CNTs can also be confirmed through a valence-level spectrum of UV-photoelectron spectroscopy (UPS) (FIG. 10). Specifically, it can be seen a work function ( ⁇ ) of the material using a 2 nd cut-off edge may appear on parts of the peak.
  • UPS UV-photoelectron spectroscopy
  • N Py and N Pyrr were removed from N Q -CNT by acid, the Fermi level increased only under the influence of the electron donor N Q and the work function decreased (5.46 eV -> 4.59 eV), and accordingly, N Q- It was confirmed that CNTs showed n-type doping characteristics, and this tendency to decrease the work function by N Q is consistent with the theoretically calculated research results.
  • Figure 11(a) shows the Temperature Dependent Specific Resistance of N-CNT fibers measured at low temperature through the 4-Probe method.
  • the N-CNT fiber blue color
  • the N Py and N Pyrr showed a tendency to increase the electrical resistance rather than the Pr-CNT. This can be considered to be due to the decrease in electron density due to the N Py and N Pyrr acting as electron localization and scattering sites during the electrical conduction process.
  • the N Q -CNT fiber red color
  • the electrical conductivity of the N Q -CNT fiber of Example 3 is 2.2 times that of the Pr-CNT fiber of Comparative Example 4 and 3.3 times that of the N-CNT fiber of Comparative Example 5, which is significantly improved.
  • the carbon material produced according to the present invention maintains the unique morphology of the carbon material, while selectively reducing or removing pyridine nitrogen and pyrroleic nitrogen that negatively affects electrical conductivity, and at the same time improving electrical conductivity. It was confirmed that the electrical conductivity of the carbon material can be improved by maintaining the nitrogen.

Abstract

The present invention relates to: a method for preparing a carbon material with controlled content of pyridinic nitrogen and pyrrolic nitrogen, comprising the step of bringing a super strong acid into contact with a carbon material having a nitrogen-doped sp2 hybrid structure so as to reduce pyridinic nitrogen and pyrrolic nitrogen while maintaining graphitic nitrogen or quaternary nitrogen present in the carbon material; and a carbon material prepared by same.

Description

피리딘성 질소 및 피롤성 질소의 함량이 제어된 SP2 혼성 구조를 갖는 탄소 소재의 제조방법 및 이에 의해 제조된 탄소 소재Method for producing a carbon material having an SP2 hybrid structure in which the content of pyridine nitrogen and pyrroleic nitrogen is controlled, and a carbon material manufactured thereby
본 발명은 탄소 재료의 전기전도도 향상을 위해 sp2 탄소재료에 도핑된 질소의 결합 구조가 제어된 탄소 소재를 제조하는 방법과 이에 의해 제조된 탄소 소재에 관한 것이다.The present invention relates to a method of manufacturing a carbon material having a controlled bond structure of nitrogen doped to an sp2 carbon material in order to improve the electrical conductivity of the carbon material, and to a carbon material manufactured thereby.
그래핀 및 탄소나노튜브와 같은 나노탄소재료들은 낮은 밀도와 높은 기계적 및 전기적 특성을 가져 에너지 소재, 초고강도 재료, 반도체 등 다양한 분야에서 연구되고 있으며, 최근에는 나노탄소재료의 전기적 특성과 화학성 특성을 제어하기 위하여 질소, 붕소, 인, 알칼리 금속 등을 도핑하는 화학적 도핑 방법이 연구되고 있다.Nano-carbon materials such as graphene and carbon nanotubes have low density and high mechanical and electrical properties, so they are being studied in various fields such as energy materials, ultra-high strength materials, and semiconductors. Recently, the electrical properties and chemical properties of nano-carbon materials have been studied. In order to control, a chemical doping method of doping nitrogen, boron, phosphorus, alkali metal, etc. is being studied.
도핑을 위한 다양한 도펀트 중에서, 질소는 매우 흔한 원소일 뿐만 아니라 sp2 탄소의 격자를 치환할 수 있는 원소이기 때문에 화학적, 열적, 및 전기적 안정성이 매우 뛰어난 도펀트이다. 이러한 안정성은 상용화에 가장 적합한 특성이므로, 그래핀, 탄소나노튜브, 및 나노혼과 같은 나노탄소재료뿐만 아니라, 탄소섬유나 카본블랙과 같은 다양한 탄소재료에서도 연구되고 있다(KR 10-2014-0054784).Among various dopants for doping, nitrogen is not only a very common element, but also an element capable of replacing the lattice of sp2 carbon, so it is a dopant having excellent chemical, thermal, and electrical stability. Since this stability is the most suitable property for commercialization, studies have been conducted not only on nanocarbon materials such as graphene, carbon nanotubes, and nanohorns, but also various carbon materials such as carbon fiber and carbon black (KR 10-2014-0054784). .
탄소재료는 대표적으로 화학적 기상 증착 방법(chemical vapor depositon), 질소 플라즈마 이용법, 열처리 방법 등에 의해 질소로 도핑될 수 있다. 질소는 탄소재료로 도핑되었을 때 주로 세 가지 결합 형태로 존재할 수 있는데, 이는 결함 혹은 edge 부분에 도핑되는 피리딘성 질소(pyridinic nitrogen) 및 피롤성 질소(pyrrolic nitrogen)와 탄소의 sp2 육각형 구조에 치환형태로 도핑되는 그래파이트성 질소(graphitic nitrogen or quaternary nitrogen)일 수 있다.The carbon material may typically be doped with nitrogen by a chemical vapor deposition method, a nitrogen plasma method, or a heat treatment method. When nitrogen is doped with a carbon material, it can mainly exist in three forms of bonding, which are substituted in the sp2 hexagonal structure of pyridinic nitrogen and pyrrolic nitrogen and carbon doped at the defect or edge. It may be graphitic nitrogen or quaternary nitrogen doped with.
이러한 질소의 결합 형태에 따라 탄소재료의 도핑 효과가 달라질 수 있다. 먼저, 피리딘성 질소 및 피롤성 질소는 비공유 전자쌍을 가져 화학적 활성을 가지므로 에너지 소재에서 화학반응 촉매 효과가 있다고 알려져 있다. 그러나, 이들은 전자를 편재화시켜 전자 캐리어 밀도를 감소시킬 뿐만 아니라, 구조적 대칭을 파괴하여 밴드 갭을 open시키기 때문에 전기 전도적 관점에서는 결함으로 작용한다. 반면, 그래파이트성 질소는 탄소보다 전자가 한 개 많은 질소 원자가 전자 도너로 작용하여 n-type 도핑 효과를 나타내어, 전기전도성 향상에 효과를 나타냄이 알려져 있다.The doping effect of the carbon material may vary depending on the type of nitrogen bonding. First, it is known that pyridine nitrogen and pyrroleic nitrogen have a chemical activity due to having an unshared electron pair and thus have a chemical reaction catalyst effect in energy materials. However, they not only reduce the electron carrier density by localizing electrons, but also break structural symmetry to open the band gap, and thus act as defects from the viewpoint of electrical conduction. On the other hand, it is known that graphitic nitrogen exhibits an n-type doping effect as a nitrogen atom having one more electron than carbon acts as an electron donor, thereby exerting an effect on improving electrical conductivity.
따라서, 도핑된 탄소 재료의 적용 분야에 따라 적절한 결합 형태를 가지도록 제어하려는 많은 연구가 진행되었으며, 전기전도도 향상을 위해 질소를 도핑하는 연구들도 진행되었다. 그러나, 기존의 연구들에서는 그래파이트성 질소 외에도 전기전도도에 부정적인 피리딘성 질소 및 피롤성 질소가 함께 형성됨으로 인해 질소 도핑을 통해 큰 전기전도도 향상 효과를 거두지 못했다(KR 10-2006-0001394).Accordingly, a number of studies have been conducted to control the doped carbon material to have an appropriate bonding form according to the application field, and studies have been conducted to doping nitrogen to improve the electrical conductivity. However, in the existing studies, in addition to graphitic nitrogen, pyridine nitrogen and pyrroleic nitrogen, which are negative in electrical conductivity, are formed together, and thus, a significant effect of improving the electrical conductivity through nitrogen doping has not been achieved (KR 10-2006-0001394).
이는, 피리딘성 질소 및 피롤성 질소에 의해 그래파이트성 질소의 n-type 도핑 효과가 상쇄된 결과로 해석할 수 있다. 따라서, 탄소재료에 그래파이트성 질소로 선택적으로 도핑하는 기술이 요구된다. This can be interpreted as a result of canceling the n-type doping effect of graphitic nitrogen by pyridine nitrogen and pyrrole nitrogen. Therefore, a technique of selectively doping a carbon material with graphitic nitrogen is required.
그러나, 나노탄소재료에 피리딘성 질소 및 피롤성 질소를 도핑시키는 것에 비하여 그래파이트성 질소만을 도핑시키는 것은 매우 어렵다. 그 이유는 피리딘성 질소 및 피롤성 질소가 그래파이트성 질소에 비해 더 낮은 에너지에서 이루어지는 반응이기 때문이다. 구체적으로, 그래파이트성 질소가 형성되지 못하는 낮은 에너지에서 반응시켜 피리딘성 질소 및 피롤성 질소만을 도핑할 수 있는 것과는 달리, 그래파이트성 질소가 형성되는 에너지에서는 더 낮은 에너지에서 생성되는 반응이 수반되어 세 가지 형태의 질소들이 모두 형성되기 때문이다.However, it is very difficult to dope only graphitic nitrogen compared to doping pyridine nitrogen and pyrrole nitrogen in the nanocarbon material. The reason is that pyridine nitrogen and pyrroleic nitrogen are reactions performed at lower energy than graphitic nitrogen. Specifically, unlike graphitic nitrogen that can be doped only with pyridine nitrogen and pyrroleic nitrogen by reacting at low energy in which graphitic nitrogen is not formed, the energy at which graphitic nitrogen is formed involves reactions generated at lower energy. This is because all forms of nitrogen are formed.
한편, 그래파이트성 질소를 선택적으로 도핑할 수 있는 방법으로 탄소재료의 합성 과정에서 방향족 탄소 고리에 질소를 포함한 분자를 함께 성장시키는 방법이 알려져 있다. 그러나, 이 방법은 합성된 물질의 고유한 모포로지(morphology)에 영향을 주기 때문에, 본래의 탄소재료와 전혀 다른 모포로지를 갖는 새로운 물질을 합성하게 되므로 원하는 탄소재료의 물성을 개선하기 위해 사용될 수 없다.Meanwhile, as a method of selectively doping graphitic nitrogen, a method of growing molecules including nitrogen in an aromatic carbon ring in the process of synthesizing a carbon material is known. However, since this method affects the intrinsic morphology of the synthesized material, it can be used to improve the properties of the desired carbon material because it synthesizes a new material with a completely different morphology from the original carbon material. none.
기존의 방법에 따라 제조된 탄소재료에 후처리 공정을 통해 질소를 도핑함으로써, 탄소재료의 모포로지를 유지하면서도 피리딘성 질소 및 피롤성 질소를 선택적으로 환원 또는 제거하여 질소의 결합 형태를 제어함을 통해 탄소재료의 전기전도도를 향상시키는 방법이 요구된다.By doping nitrogen through a post-treatment process on the carbon material manufactured according to the existing method, while maintaining the morphology of the carbon material, it is possible to selectively reduce or remove pyridine nitrogen and pyrrole nitrogen to control the bond form of nitrogen. There is a need for a method of improving the electrical conductivity of carbon materials.
본 발명의 목적은 질소가 도핑된 sp2 혼성 구조를 갖는 탄소 소재에 초강산을 접촉시켜, 상기 탄소 소재에 존재하는 그래파이트성 질소(quaternary nitrogen)를 유지시키면서 피리딘성 질소(pyridinic nitrogen) 및 피롤성 질소(pyrrolic nitrogen)를 환원하여 제거시키는 단계를 포함하는, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 제조방법을 제공하는 것이다.An object of the present invention is to contact a carbon material having a nitrogen-doped sp2 hybrid structure with a super strong acid, while maintaining the graphitic nitrogen present in the carbon material, pyridinic nitrogen and pyrrole nitrogen It is to provide a method for manufacturing a carbon material in which the content of pyridine nitrogen and pyrrole nitrogen is controlled, comprising the step of reducing and removing (pyrrolic nitrogen).
본 발명의 다른 목적은 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재를 제공하는 것이다.Another object of the present invention is to provide a carbon material having a controlled content of pyridine nitrogen and pyrrole nitrogen.
본 발명의 제조방법은 질소가 도핑된 sp2 탄소 소재에서 전기전도도를 감소시키는 피리딘성 질소 및 피롤성 질소를 제거시킴과 동시에 전기전도도를 증가시키는 그래파이트성 질소만을 잔류시켜, 원 재료의 전기전도도를 효과적으로 향상시킬 수 있다. 이는, 최근 많은 연구가 진행되고 있는 그래핀 또는 탄소나노튜브와 같은 sp2 탄소 기반의 나노탄소재료로 구성된 섬유 또는 필름에 적용될 경우, 금속을 대체할 수 있는 전기전도재료로 응용할 수 있으므로, 고성능 신소재 개발을 가능케 한다. 또한, 본 발명의 제조방법은 기존에 알려진 도핑공정을 유지하면서 후처리 단계에 적용되므로, 산업화 비용이 낮아 매우 경제적이다.The manufacturing method of the present invention removes pyridine nitrogen and pyrroleic nitrogen that reduce electrical conductivity from the nitrogen-doped sp2 carbon material, and at the same time retains only graphitic nitrogen that increases electrical conductivity, effectively increasing the electrical conductivity of the raw material. Can be improved. When applied to fibers or films composed of sp2 carbon-based nano-carbon materials such as graphene or carbon nanotubes, which have been studied recently, it can be applied as an electrically conductive material that can replace metal, so that high-performance new materials are developed. Makes it possible. In addition, since the manufacturing method of the present invention is applied to the post-treatment step while maintaining the previously known doping process, the industrialization cost is low and thus it is very economical.
또한, 본 발명에서 초강산이 용액 중에 포함되어 처리될 경우 습식 공정이므로 생산성, 균일성, 및 재현성이 뛰어나다는 장점을 가진다. 더욱이, 초강산을 처리할 경우 액정상의 용액 형태를 얻을 수 있어, 추가 공정에서 액정방사섬유, 필름, 잉크 등을 제조하는 데에 효과적으로 적용 가능한 효과를 가진다.In addition, in the present invention, when the super acid is contained in the solution and treated, it is a wet process, so it has the advantage of excellent productivity, uniformity, and reproducibility. Moreover, when the super acid is treated, a liquid crystal solution form can be obtained, and thus, it has an effect that can be effectively applied to manufacturing liquid crystal spinning fibers, films, ink, etc. in an additional process.
도 1은 본 발명의 한 실시양태에 따른 반응을 개략적으로 나타낸 도이다.1 is a diagram schematically showing a reaction according to an embodiment of the present invention.
도 2는 액정상의 탄소나노튜브를 나타낸 도이다.2 is a diagram showing a liquid crystal carbon nanotube.
도 3은 탄소나노튜브 액정방사섬유를 나타낸 도이다.3 is a diagram showing a carbon nanotube liquid crystal spinning fiber.
도 4는 탄소나노튜브 필름을 나타낸 도이다.4 is a diagram showing a carbon nanotube film.
도 5는 질소 도핑하지 않은 탄소나노튜브(Pr-CNT), 질소 도핑하고 초강산 처리되지 않은 탄소나노튜브(N-CNT), 및 질소 도핑하고 초강산 처리된 탄소나노튜브(NQ-CNT)의 X-선 광전자 분광법에 따른 (a) N1s, (b) C1s, 및 (c) Survey 스펙트럼을 나타내는 도이다.5 is a nitrogen-doped carbon nanotube (Pr-CNT), a nitrogen-doped and super acid-treated carbon nanotube (N-CNT), and a nitrogen-doped and super acid-treated carbon nanotube (N Q -CNT) It is a diagram showing (a) N1s, (b) C1s, and (c) Survey spectra according to the X-ray photoelectron spectroscopy of.
도 6은 질소 도핑하고 클로로황산(ClSO3H) 처리된 탄소나노튜브 및 질소 도핑하고 98% 황산(H2SO4(98%)) 처리된 탄소나노튜브의 X-선 광전자 분광법에 따른 N1s 스펙트럼을 나타내는 도이다.6 is a N1s spectrum according to X-ray photoelectron spectroscopy of carbon nanotubes doped with nitrogen and treated with chlorosulfuric acid (ClSO 3 H) and carbon nanotubes doped with nitrogen and treated with 98% sulfuric acid (H 2 SO 4 (98%)) It is a diagram showing.
도 7은 sp2 탄소에 도핑된 여러 형태의 질소가 강산에 의해 환원되는 메커니즘을 간략히 나타낸 도이다. 7 is a diagram schematically showing a mechanism by which various types of nitrogen doped with sp2 carbon are reduced by strong acids.
도 8은 Pr-CNT, N-CNT, 및 NQ-CNT의 (a,b,d,e,g,h) 고분해능투과전자현미경 결과와 (c,f,i) EDX 성분분석 결과를 나타낸 도이다.Figure 8 is a diagram showing the results of (a,b,d,e,g,h) high-resolution transmission electron microscope and (c,f,i) EDX component analysis results of Pr-CNT, N-CNT, and N Q -CNT to be.
도 9는 Pr-CNT, N-CNT, 및 NQ-CNT의 라만 스펙트럼과 이의 분석을 나타낸 도이다.9 is a diagram showing Raman spectra of Pr-CNT, N-CNT, and N Q -CNT and analysis thereof.
도 10은 Pr-CNT, N-CNT, 및 NQ-CNT의 UV-광전자 분광법 결과를 나타낸 도이다.10 is a diagram showing the results of UV-photoelectron spectroscopy of Pr-CNT, N-CNT, and N Q- CNT.
도 11은 Pr-CNT, N-CNT, 및 NQ-CNT의 (a) 1.5K 내지 300K 영역의 비저항, (b) 300K에서의 비저항을 기준으로 나타낸 비저항, 및 (c) 전기전도도를 나타낸 도이다.11 is a diagram showing (a) specific resistance in the 1.5K to 300K region, (b) specific resistance based on the specific resistance at 300K, and (c) electrical conductivity of Pr-CNT, N-CNT, and N Q -CNT to be.
본 발명을 실시하기 위한 구체적인 내용을 설명하면 다음과 같다. 한편, 본원에서 개시되는 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본원에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술되는 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 할 수 없다.Detailed contents for carrying out the present invention will be described as follows. On the other hand, each description and embodiment disclosed herein can be applied to each other description and embodiment. That is, all combinations of various elements disclosed herein fall within the scope of the present invention. In addition, it cannot be said that the scope of the present invention is limited by the specific description described below.
또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 출원에 기재된 본 발명의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 발명에 포함되는 것으로 의도된다.In addition, those of ordinary skill in the art can recognize or ascertain using only routine experimentation a number of equivalents to the specific aspects of the invention described in this application. Also, such equivalents are intended to be included in the present invention.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 질소가 도핑 된 sp2 혼성 구조를 갖는 탄소 소재에 초강산을 접촉시켜, 상기 탄소 소재에 존재하는 그래파이트성 질소(graphitic nitrogen or quaternary nitrogen)를 유지시키면서 피리딘성 질소(pyridinic nitrogen) 및 피롤성 질소(pyrrolic nitrogen)를 환원시키는 단계를 포함하는, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 제조방법을 제공한다.As an aspect for achieving the above object, the present invention maintains graphitic nitrogen or quaternary nitrogen present in the carbon material by contacting a super acid to a carbon material having a nitrogen-doped sp2 hybrid structure. It provides a method of manufacturing a carbon material in which the content of pyridine nitrogen and pyrrolic nitrogen is controlled, including the step of reducing pyridinic nitrogen and pyrrolic nitrogen.
구체적으로, 본 발명에서 sp2 혼성 구조를 갖는 탄소 소재는 sp2 혼성 구조를 갖는 탄소를 포함하는 소재를 의미할 수 있으며, 그 외에 다른 혼성 구조의 탄소를 추가적으로 포함하거나 탄소 외의 다른 원소를 추가적으로 포함할 수 있다. 상기 sp2 혼성 구조를 갖는 탄소 소재는 탄소나노튜브, 그래핀, 그래핀 옥사이드, 탄소나노혼, 흑연, 폴리아크릴로니트릴계 탄소섬유, 피치계 탄소섬유, 카본블랙, 및 활성탄으로 이루어진 군에서 선택되는 하나 이상일 수 있다. 본 발명에서 탄소나노튜브는 탄소가 sp2 결합으로 구성되는 한 층 이상의 벌집격자(honeycomb) 막이 원기둥 모양으로 형성되는 구조체를 의미할 수 있다.Specifically, in the present invention, the carbon material having an sp2 hybrid structure may refer to a material containing carbon having an sp2 hybrid structure, and may additionally include carbon of another hybrid structure or additionally include other elements other than carbon. have. The carbon material having the sp2 hybrid structure is selected from the group consisting of carbon nanotubes, graphene, graphene oxide, carbon nanohorns, graphite, polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, carbon black, and activated carbon. There can be more than one. In the present invention, the carbon nanotube may mean a structure in which one or more layers of honeycomb films composed of   carbon are sp2  bonds are formed in a cylindrical shape.
본 발명의 일 실험예에서는 sp2 혼성 구조를 갖는 탄소 소재로서 탄소나노튜브를 사용하여 질소 도핑 한 후 초강산 처리함을 통해 본래의 탄소 소재의 모포로지를 유지하면서도 피리딘성 질소 및 피롤성 질소를 선택적으로 환원하여 그래파이트성 질소가 선택적으로 도핑된 탄소 소재를 제조할 수 있음을 확인하였다. 그러나, 본 발명의 제조방법은 판상의 sp2 격자를 단위로 하는 매크로 모폴로지(macro morphology)에 대한 반응을 기반으로 한 것이 아니라 각 원자 단위의 질소에 대한 화학적 반응을 기반으로 한 것이기 때문에 sp2 혼성 구조를 갖는 탄소 소재는 탄소나노튜브에 제한되지 않을 수 있다.In one experimental example of the present invention, as a carbon material having an sp2 hybrid structure, pyridine nitrogen and pyrrole nitrogen are selectively maintained while maintaining the morphology of the original carbon material by nitrogen doping using carbon nanotubes and then super acid treatment. It was confirmed that the graphitic nitrogen can be selectively doped with a carbon material. However, since the manufacturing method of the present invention is not based on a reaction to a macro morphology based on a plate-shaped sp2 lattice as a unit, but based on a chemical reaction to nitrogen in each atomic unit, the sp2 hybrid structure is The carbon material to have may not be limited to carbon nanotubes.
본 발명에서 질소가 도핑된 sp2 혼성 구조를 갖는 탄소 소재는 본 발명의 sp2 혼성 구조를 갖는 탄소 소재가 질소로 도핑된 구조일 수 있으며, sp2 탄소 격자를 가지고 질소가 도핑된 탄소재료라면 제한되지 않고 포함된다. 상기 질소는 피리딘성 질소, 피롤성 질소, 및 그래파이트성 질소 모두를 포함할 수 있으며, 피리딘성 질소 및 그래파이트성 질소를 포함하거나, 피롤성 질소 및 그래파이트성 질소를 포함할 수 있으나, 이에 제한되지 않는다. 또한, 본 발명에서 도핑은 탄소 구조를 구성하는 탄소 원자 중 하나 이상이 헤테로 원자로 대체된 것을 의미할 수 있다. 도 1에는 본 발명의 질소가 도핑된 sp2 혼성 구조를 갖는 탄소 소재의 예시가 나타나있다.The carbon material having the sp2 hybrid structure doped with nitrogen in the present invention may be a structure in which the carbon material having the sp2 hybrid structure of the present invention is doped with nitrogen, and is not limited if it is a carbon material doped with nitrogen having an sp2 carbon lattice. Included. The nitrogen may include all of pyridine nitrogen, pyrroleic nitrogen, and graphitic nitrogen, and may include pyridine nitrogen and graphitic nitrogen, or may include pyrroleic nitrogen and graphitic nitrogen, but is not limited thereto. . In addition, doping in the present invention may mean that at least one of the carbon atoms constituting the carbon structure is replaced with a hetero atom. 1 shows an example of a carbon material having a nitrogen-doped sp2 hybrid structure of the present invention.
본 발명에서 피리딘성 질소는 당해 질소 원자를 포함하는 6원 헤테로사이클릭 화합물에 존재하는 질소 원자를 의미하며, 예컨대 하기 화학식 1의 질소와 같이 방향족 헤테로사이클릭 화합물에 포함될 수 있으나, 화학식 2의 질소와 같이 비방향족 헤테로사이클릭 화합물에 포함될 수도 있다.In the present invention, pyridine nitrogen refers to a nitrogen atom present in a 6-membered heterocyclic compound containing the nitrogen atom, and may be included in an aromatic heterocyclic compound, such as nitrogen of the following formula (1), but nitrogen of formula (2) It may be included in the non-aromatic heterocyclic compound as shown in FIG.
[화학식 1][Formula 1]
Figure PCTKR2020003909-appb-I000001
Figure PCTKR2020003909-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2020003909-appb-I000002
Figure PCTKR2020003909-appb-I000002
본 발명에서 피롤성 질소는 당해 질소 원자를 포함하는 5원 헤테로사이클릭 화합물에 존재하는 질소 원자를 의미하며, 예컨대 하기 화학식 3의 질소와 같이 방향족 헤테로사이클릭 화합물에 포함될 수 있으나 이에 제한되지 않는다.In the present invention, the pyrroleic nitrogen refers to a nitrogen atom present in the 5-membered heterocyclic compound including the nitrogen atom, and may be included in an aromatic heterocyclic compound, such as nitrogen of the following formula (3), but is not limited thereto.
[화학식 3][Formula 3]
Figure PCTKR2020003909-appb-I000003
Figure PCTKR2020003909-appb-I000003
본 발명에서 그래파이트성 질소는 그래파이트성 질소로도 지칭될 수 있으며, 3개 이상의 탄소 원자에 공유 결합된 질소 원자를 의미한다. 그래파이트성 질소는 예컨대 하기 화학식 4와 같이 멀티사이클릭 화합물의 구성 요소일 수 있다.In the present invention, graphitic nitrogen may also be referred to as graphitic nitrogen, and means a nitrogen atom covalently bonded to three or more carbon atoms. Graphitic nitrogen may be a constituent element of a multicyclic compound, for example, as shown in Formula 4 below.
[화학식 4][Formula 4]
Figure PCTKR2020003909-appb-I000004
Figure PCTKR2020003909-appb-I000004
본원의 비제한적인 일 실시예에서는 질소 도핑된 sp2 혼성 구조를 갖는 탄소 소재에서 전기 전도도에 부정적인 피리딘성 질소 및 피롤성 질소를 선택적으로 환원하여 제거함으로써 그래파이트성 질소가 선택적으로 도핑된 탄소 소재를 제조하였으며, 제조된 탄소 소재가 질소가 도핑되지 않은 탄소 소재나 피리딘성 질소 및/또는 피롤성 질소가 선택적으로 환원되지 않은 탄소 소재에 비해 현저히 향상된 전기 전도도를 가짐을 확인하였다.In one non-limiting embodiment of the present application, a carbon material selectively doped with graphitic nitrogen is prepared by selectively reducing and removing pyridine nitrogen and pyrroleic nitrogen negative to electrical conductivity in a carbon material having a nitrogen-doped sp2 hybrid structure. And, it was confirmed that the produced carbon material has significantly improved electrical conductivity compared to a carbon material not doped with nitrogen or a carbon material in which pyridine nitrogen and/or pyrroleic nitrogen is not selectively reduced.
질소가 도핑된 sp2 혼성 구조를 갖는 탄소 소재는 본 발명의 sp2 혼성 구조를 갖는 탄소 소재를 질소로 도핑하여 준비될 수 있다. 질소 도핑은 이에 제한되지는 않으나, 플라즈마 처리방법, 화학적 기상 증착 방법, 및 질소 반응물과 함께 열처리하는 방법으로 이루어진 군에서 선택되는 하나 이상의 방법을 통해 수행될 수 있다. 여기서 질소 반응물은 질소 기체, 우레아류, 아민류, 이민류, 나이트릴류, 피롤류, 다이아졸류, 트라이아졸류, 피리딘류, 다이아진류, 및 트라이아진류로 이루어진 군에서 선택되는 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않는다. 본 발명의 일 실시예에서는 유도결합플라즈마(induced coupled plasma; ICP)를 사용하여 질소 도핑하였으나, 본 발명은 질소를 도핑할 수 있는 한 특정 도핑 방법에 제한되지 않는다.The carbon material having the sp2 hybrid structure doped with nitrogen may be prepared by doping the carbon material having the sp2 hybrid structure of the present invention with nitrogen. Nitrogen doping is not limited thereto, but may be performed by one or more methods selected from the group consisting of a plasma treatment method, a chemical vapor deposition method, and a heat treatment method with a nitrogen reactant. Here, the nitrogen reactant includes one or more selected from the group consisting of nitrogen gas, urea, amine, imine, nitrile, pyrrole, diazole, triazole, pyridine, diazine, and triazine. However, it is not limited thereto. In one embodiment of the present invention, nitrogen doping is performed using an induced coupled plasma (ICP), but the present invention is not limited to a specific doping method as long as nitrogen can be doped.
본 발명에서 질소가 도핑된 sp2 혼성 구조를 갖는 탄소 소재에 접촉시키기 위한 초강산(superacids)은 Hammett 산도 함수(H0)가 -12인 순수 황산보다 산성이 강한 산을 의미한다. 구체적으로, 본 발명의 초강산은 H0가 -12 미만, -12.5 미만, -13 미만, -13.5 미만, 또는 -13.8 미만인 산일 수 있으나, 이에 제한되지 않는다.In the present invention, superacids for contacting a carbon material having a nitrogen-doped sp2 hybrid structure means an acid having a stronger acidity than pure sulfuric acid having a Hammett acidity function (H 0 ) of -12. Specifically, the super strong acid of the present invention may be an acid having H 0 less than -12, less than -12.5, less than -13, less than -13.5, or less than -13.8, but is not limited thereto.
더욱 구체적으로, 상기 초강산은 클로로황산(chlorosulfonic acid; ClSO3H), 트리플릭산(trifluoromethanesulfonic acid; CF3SO3H), 플루오로황산(fluorosulfonic acid; HSO3F), 카보레인산류(Carborane acids), 마법산(magic acid; FSO3H·SbF5), 플루오로안티몬산(Fluoroantimonic acid; H2FSbF6), 또는 이들의 조합일 수 있으며, 보다 더 구체적으로는 H0가 -13.8로 알려진 클로로황산일 수 있다. More specifically, the super strong acid is chlorosulfonic acid (ClSO 3 H), trifluoromethanesulfonic acid (CF 3 SO 3 H), fluorosulfonic acid (HSO 3 F), carborane acids (Carborane acids), magic acid (FSO 3 H·SbF 5 ), fluoroantimonic acid (H 2 FSbF 6 ), or a combination thereof, and more specifically, H 0 is -13.8. It may be a known chlorosulfuric acid.
본 발명의 일 실험예에서는 초강산으로서 클로로황산을 사용하여 탄소 소재의 본래 모포로지를 손상시키지 않으면서 피리딘성 질소 및 피롤성 질소를 선택적으로 환원하여 n-도핑 특성을 나타내며 전기전도도가 향상될 수 있음을 확인하였다. 그러나, 본 발명의 산은 클로로황산에 제한되지 않고, 초강산인 한 이에 포함될 수 있다.In one experimental example of the present invention, chlorosulfuric acid is used as a super strong acid to selectively reduce pyridine nitrogen and pyrrole nitrogen without damaging the original morphology of the carbon material, thereby exhibiting n-doping properties and improving electrical conductivity. Confirmed that there is. However, the acid of the present invention is not limited to chlorosulfuric acid and may be included as long as it is a super acid.
본 발명에서 초강산 처리에 의해 탄소 소재에 존재하는 그래파이트성 질소를 잔류시키면서도 피리딘성 질소 및 피롤성 질소를 선택적으로 환원 또는 제거할 수 있는 것은 특정 이론에 구속되지는 않으나 다음과 같은 메커니즘으로 설명할 수 있다(도 6). 먼저, 피리딘성 질소 및 피롤성 질소는 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가지므로, 강한 산성 환경에서 H+와 반응할 수 있다. 즉, 피리딘성 질소 및 피롤성 질소는 강한 산성 환경에서 환원되어 sp2 탄소 격자로부터 제거될 수 있다. 반면, 그래파이트성 질소가 가지는 5개의 최외곽 전자 중 3개는 이웃하는 탄소와 시그마 결합을 이루고, 다른 한 개는 이웃 탄소와 파이 결합을 이루며, 마지막 한 개는 전자 도너로서 비편재화되거나 질소에 편재화되므로, 다른 질소와 달리 H+와 반응할 수 있는 비공유 전자쌍을 가지지 않는다. 따라서 초강산 처리를 할 경우 그래파이트성 질소를 제외한 피리딘성 질소 및 피롤성 질소는 H+와 반응하여 제거될 수 있다.In the present invention, the ability to selectively reduce or remove pyridine nitrogen and pyrrole nitrogen while remaining graphitic nitrogen present in the carbon material by super acid treatment is not limited to a specific theory, but will be explained by the following mechanism. Can be (Fig. 6). First, pyridine nitrogen and pyrroleic nitrogen have a non-shared electron pair that can act as a Lewis base, and thus can react with H + in a strong acidic environment. That is, pyridine nitrogen and pyrroleic nitrogen can be reduced in a strong acidic environment and removed from the sp2 carbon lattice. On the other hand, of the five outermost electrons of graphitic nitrogen, three form sigma bonds with neighboring carbons, the other forms pi bonds with neighboring carbons, and the last one is delocalized as an electron donor or oriented to nitrogen. Because it is regenerated, unlike other nitrogen, it does not have an unshared electron pair that can react with H + . Therefore, in the case of super acid treatment, pyridine nitrogen and pyrrole nitrogen other than graphitic nitrogen can be removed by reacting with H + .
본 발명에서 질소가 도핑된 sp2 혼성 구조를 갖는 탄소 소재에 접촉시키기 위한 초강산은 용액 중에 존재할 수 있다. 이 경우, 초강산은 상기 용액 중에 10 내지 50 mg/mL, 15 내지 45 mg/mL, 20 내지 40 mg/mL, 또는 25 내지 35 mg/mL의 농도로 존재할 수 있으나, 이에 제한되지 않는다. 다만, 10 mg/mL 미만의 농도로 존재할 경우, 단위 부피당 탄소 소재의 함량이 적으므로 제조된 액정상의 탄소 소재로 섬유 또는 필름을 제조할 경우 제조된 섬유 또는 필름이 부스러지거나 강도가 약할 수 있다. 반대로, 50 mg/mL 초과의 농도로 존재할 경우, 탄소 소재가 충분히 액정화되지 못할 수 있으며, 이로 인해 액정을 이용한 섬유 제조 과정에서 노즐이 막히거나 제조된 섬유 내의 배향성이 낮아져, 제조된 섬유의 강도가 약해질 수 있다.In the present invention, a super acid for contacting a carbon material having a nitrogen-doped sp2 hybrid structure may be present in a solution. In this case, the superacid may be present in the solution at a concentration of 10 to 50 mg/mL, 15 to 45 mg/mL, 20 to 40 mg/mL, or 25 to 35 mg/mL, but is not limited thereto. However, when it is present in a concentration of less than 10 mg/mL, the content of the carbon material per unit volume is small, and thus, when a fiber or film is manufactured with the prepared liquid crystal carbon material, the prepared fiber or film may be broken or the strength may be weak. Conversely, when present in a concentration of more than 50 mg/mL, the carbon material may not be sufficiently liquid crystallized, and as a result, the nozzle is clogged in the fiber manufacturing process using liquid crystal or the orientation in the manufactured fiber is lowered, and the strength of the manufactured fiber Can weaken.
본 발명의 초강산은 탄소 소재의 진용제(true solvent)일 수 있다. 이에 따라, 본 발명의 제조방법은 초강산 처리 과정과 동시에 탄소 소재 액정을 얻을 수 있으며, 이 액정은 곧바로 방사 또는 필름화가 가능하므로, 매우 간단한 과정만으로도 매크로 어셈블리로 효과적으로 활용할 수 있다는 큰 장점이 있다. 본 발명의 일 실험예에서는 클로로황산은 피리딘성 질소 및 피롤성 질소를 선택적으로 환원시킬 수 있는 초강산으로 사용됨과 동시에 탄소나노튜브의 진용제로 사용될 수 있음을 확인하였다.The super acid of the present invention may be a true solvent made of a carbon material. Accordingly, the manufacturing method of the present invention can obtain a carbon material liquid crystal at the same time as the super acid treatment process, and since this liquid crystal can be directly radiated or filmed, there is a great advantage that it can be effectively utilized as a macro assembly with only a very simple process. In one experimental example of the present invention, it was confirmed that chlorosulfuric acid can be used as a super acid capable of selectively reducing pyridine nitrogen and pyrrole nitrogen, and can be used as a strong solvent for carbon nanotubes.
본 발명에서 피리딘성 질소 및 피롤성 질소를 환원시키는 단계는 6시간 이상, 8시간 이상, 10시간 이상, 12시간 이상, 15시간 이상, 18시간 이상, 21시간 이상, 24시간 이상, 36시간 이상의 시간 동안 초강산을 포함하는 용액과 접촉시켜 수행될 수 있으나, 이에 제한되지 않는다. 다만, 12시간 이상으로 접촉시킬 경우 질소가 도핑된 탄소 소재에서 피리딘성 질소 및 피롤성 질소의 선택적 환원 효과가 우수하며, 36시간 이상으로 접촉시킬 경우 탄소 소재가 우수한 액정성을 가지게 되어 섬유, 필름 등의 제조에 편리하게 사용될 수 있다. In the present invention, the step of reducing pyridine nitrogen and pyrroleic nitrogen is 6 hours or more, 8 hours or more, 10 hours or more, 12 hours or more, 15 hours or more, 18 hours or more, 21 hours or more, 24 hours or more, 36 hours or more. It may be carried out by contacting a solution containing a super acid for a period of time, but is not limited thereto. However, when contacting for more than 12 hours, the selective reduction effect of pyridine nitrogen and pyrrole nitrogen is excellent in the nitrogen-doped carbon material, and when contacted for more than 36 hours, the carbon material has excellent liquid crystalline properties, resulting in fibers and films. It can be conveniently used in the manufacture of, etc.
본 발명의 비제한적인 일 실험예에서는 초강산을 12시간 동안 탄소 소재와 접촉시켜 피리딘성 질소 및 피롤성 질소를 선택적으로 제거할 수 있음을 확인하였으며, 다른 일 실험예에서는 초강산을 36시간 동안 탄소 소재와 접촉시켜 선택적 환원을 수행할 수 있는 동시에 탄소 소재가 액정상을 가져 이를 이용해 섬유 또는 필름으로 가공될 수 있음을 확인하였다.In one non-limiting experimental example of the present invention, it was confirmed that pyridine nitrogen and pyrroleic nitrogen can be selectively removed by contacting a super acid with a carbon material for 12 hours, and in another experimental example, a super acid was added for 36 hours. It was confirmed that selective reduction can be performed by contacting the carbon material, and at the same time, the carbon material has a liquid crystal phase and can be processed into fibers or films using this.
본 발명의 제조방법은 질소가 도핑된 sp2 구조의 탄소 소재에 존재하는 피리딘성 질소 및 피롤성 질소를 선택적으로 환원시킬 수 있으며, 이를 통해 탄소 소재에 전자 도너로서 기능하는 그래파이트성 질소만을 잔류시켜 캐리어 밀도를 증가시킬 수 있으므로 결과적으로 전기전도도가 향상된 탄소 소재를 제공할 수 있게 한다. 본 발명에 따라 제조된 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 전기전도도는 질소가 도핑되기 전의 탄소 소재 및 질소가 도핑된 후 초강산 처리되어 피리딘성 질소 및 피롤성 질소의 함량이 제어되기 전의 탄소 소재에 비하여 향상될 수 있다. 구체적으로, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 전기전도도는 질소가 도핑되기 전의 탄소 소재에 비하여 50%, 70%, 90%, 95%, 100%, 105%, 110%, 또는 120% 이상 향상된 것일 수 있으며, 질소가 도핑된 후 초강산 처리되어 피리딘성 질소 및 피롤성 질소의 함량이 제어되기 전의 탄소 소재에 비하여 100%, 120%, 140%, 160%, 180%, 185%, 190%, 195%, 200%, 205%, 210%, 215%, 220%, 225%, 또는 230% 이상 향상된 것일 수 있으나, 이에 제한되지 않는다. 더욱이, 본 발명의 제조방법은 또한 기존의 도핑 공정을 유지하며 후처리하는 방법이므로 공정도입 비용을 최소화하는 장점을 가진다. 본 발명의 제한되지 않는 일 실험예에서는 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재는 전기전도도가 질소 도핑되지 않은 탄소 소재의 2.2배로 증가(즉, 120% 향상)하였으며, 질소 도핑되고 피리딘성 질소 및 피롤성 질소가 선택적으로 환원되지 않은 탄소 소재의 3.3배로 증가(즉, 230% 향상)하여, 전기전도도가 현저히 향상됨을 확인하였다.The manufacturing method of the present invention can selectively reduce pyridine nitrogen and pyrrole nitrogen present in a nitrogen-doped sp2 structured carbon material, through which only graphitic nitrogen functioning as an electron donor remains in the carbon material, As the density can be increased, as a result, it is possible to provide a carbon material having improved electrical conductivity. The electrical conductivity of the carbon material with controlled contents of pyridine nitrogen and pyrroleic nitrogen prepared according to the present invention is the carbon material before nitrogen doping and the content of pyridine nitrogen and pyrrole nitrogen by super acid treatment after nitrogen doping. This can be improved compared to the carbon material before it is controlled. Specifically, the electrical conductivity of the carbon material in which the content of pyridine nitrogen and pyrroleic nitrogen is controlled is 50%, 70%, 90%, 95%, 100%, 105%, 110% compared to the carbon material before nitrogen doping. , Or it may be improved by more than 120%, and the content of pyridine nitrogen and pyrroleic nitrogen is 100%, 120%, 140%, 160%, 180% compared to the carbon material before being controlled by super acid treatment after nitrogen doping , 185%, 190%, 195%, 200%, 205%, 210%, 215%, 220%, 225%, or may be improved by more than 230%, but is not limited thereto. Moreover, the manufacturing method of the present invention also maintains the existing doping process and is a post-treatment method, thus minimizing process introduction cost. In one non-limiting experimental example of the present invention, the carbon material in which the content of pyridine nitrogen and pyrroleic nitrogen is controlled was increased to 2.2 times (i.e., 120% improvement) of the carbon material not doped with nitrogen, and was doped with nitrogen. It was confirmed that the pyridine nitrogen and pyrroleic nitrogen were selectively increased by 3.3 times (ie, 230% improvement) of the non-reduced carbon material, and the electrical conductivity was remarkably improved.
다른 하나의 양태로서, 본 발명은 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재를 제공한다. 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재는 상술한 본 발명의 제조방법에 따라 제조될 수 있다. 이에 따라 제조된 탄소 소재는 피리딘성 질소 및 피롤성 질소가 선택적으로 환원 또는 제거되어 전기전도도를 증가시키는 그래파이트성 질소를 선택적으로 함유하므로, n-도핑 특성을 가지며 우수한 전기전도도를 나타낼 수 있다. 더욱이, 본 발명의 탄소 소재는 초강산 처리 과정에서도 탄소 소재 고유의 모폴로지를 유지하므로, 개선된 물성을 가지면서도 원하는 모폴로지를 가질 수 있다.In another aspect, the present invention provides a carbon material in which the contents of pyridine nitrogen and pyrrole nitrogen are controlled. The carbon material in which the content of pyridine nitrogen and pyrroleic nitrogen is controlled can be prepared according to the manufacturing method of the present invention described above. The thus produced carbon material selectively contains graphitic nitrogen, which increases electrical conductivity by selectively reducing or removing pyridine nitrogen and pyrrole nitrogen, and thus has n-doped properties and can exhibit excellent electrical conductivity. Moreover, since the carbon material of the present invention maintains the unique morphology of the carbon material even in the process of super acid treatment, it can have a desired morphology while having improved physical properties.
또한, 초강산이 탄소 소재의 진용제이면서 용액 중에 존재하여 탄소 소재에 처리되는 경우, 이에 따라 제조된 탄소 소재는 액정상을 가져 곧바로 방사 또는 필름화가 가능하다는 장점을 가진다.In addition, when the super acid is present in the solution as a strong solvent for the carbon material and is treated on the carbon material, the carbon material thus produced has a liquid crystal phase and can be directly radiated or filmed.
이하 실시예 및 실험예를 바탕으로 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 오롯이 sp2 탄소로의 효과를 확인하기 위하여, 탄소재료 중 sp2 탄소 비율이 가장 높은 재료 중 하나인 단일벽 탄소나노튜브를 통해 본 발명의 효과를 확인하였다. 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계의 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail based on Examples and Experimental Examples. These examples are for illustrative purposes only, and in order to confirm the effect of sp2 carbon, the effect of the present invention is confirmed through single-walled carbon nanotubes, one of the materials with the highest sp2 carbon ratio among carbon materials. I did. It will be apparent to those of ordinary skill in the art that the scope of the present invention is not construed as being limited by these examples.
실시예 1: 질소 도핑되고 초강산 처리된 탄소나노튜브 제조Example 1: Preparation of carbon nanotubes doped with nitrogen and treated with super acid
탄소 재료 중 sp2 기반의 탄소 비율이 높은 단일벽 탄소나노튜브(이하 SWCNT; TUBALLTM, carbon>99%)를 탄소 재료로 이용하였다. Among the carbon materials, single-walled carbon nanotubes (hereinafter, SWCNT; TUBALL TM , carbon>99%) having a high carbon ratio based on sp2 were used as the carbon material.
이후 같은 반응로에서 SWCNT 분말(0.5 ~ 2 g)을 N2(50 ~ 250 sccm) 분위기에서 ICP(100 W 20 min) 처리하여 질소 도핑하였다. SWCNT의 균일한 도핑을 위해 모든 플라즈마 처리 중에는 반응 챔버를 연속적으로 회전(50 rpm)하면서 혼합하였다. 이와 같이 피리딘성 질소(NPy), 피롤성 질소(NPyrr), 및 그래파이트성 질소(NQ)가 혼재되어 존재하는 제조된 질소 도핑된 SWCNT를 수득하였다.Then, in the same reactor, SWCNT powder (0.5 ~ 2 g) was treated with ICP (100 W 20 min) in an N 2 (50 ~ 250 sccm) atmosphere and doped with nitrogen. For uniform doping of SWCNT, the reaction chamber was continuously rotated (50 rpm) and mixed during all plasma treatments. As described above, pyridine nitrogen (N Py ), pyrroleic nitrogen (N Pyrr ), and graphitic nitrogen (N Q ) were mixed to obtain a prepared nitrogen-doped SWCNT.
이후 질소 도핑된 CNT를 수분이 없는 Dry room에서 클로로황산과 30 mg/mL의 비율로 혼합한 뒤 3일 동안 교반하여, 질소 도핑된 SWCNT의 NPy 및 NPyrr을 선택적으로 환원함으로써, NPy 및 NPyrr이 선택적으로 환원된 NQ으로 도핑된 탄소나노튜브를 수득하였다.After it stirred for then mixed in a ratio of chlorosulfuric acid and 30 mg / mL of nitrogen-doped CNT in Dry room moisture-3, by selectively reduced to the N Py and N Pyrr of nitrogen doped SWCNT, N Py and A carbon nanotube doped with N Q in which N Pyrr was selectively reduced was obtained.
실시예 2: 질소 도핑되고 초강산 처리된 탄소나노튜브 제조Example 2: Preparation of carbon nanotubes doped with nitrogen and treated with super acid
실시예 1과 동일한 조건으로 질소 도핑된 CNT를 제조한 뒤, 클로로황산과 혼합한 후 3일이 아닌 12시간 동안 교반한 것 이외에는 실시예 1과 동일한 조건으로 클로로황산을 처리하여, NPy 및 NPyrr이 선택적으로 환원된 CNT를 제조하였다.After preparing nitrogen-doped CNTs under the same conditions as in Example 1, after mixing with chlorosulfuric acid and stirring for 12 hours instead of 3 days, chlorosulfuric acid was treated under the same conditions as in Example 1, and N Py and N CNTs in which Pyrr was selectively reduced were prepared.
실시예 3: 질소 도핑되고 초강산 처리된 탄소나노튜브 액정방사섬유 제조Example 3: Preparation of carbon nanotube liquid crystal spinning fiber doped with nitrogen and treated with super acid
실시예 1의 초강산 처리를 거친 CNT를 사용하여 액정방사섬유를 제조하였다. 구체적으로, 클로로황산과 혼합되어 액정상을 가지는 용액 상태의 CNT를 실린지 펌프를 이용하여 10 내지 30 G의 압력과 0.01 내지 1 mL/min의 속도로 응고조의 아세톤에 노즐을 통해 분사하여 섬유화한 후, 제2 응고조의 물에서 권취하였으며, 이후 100℃에서 12시간 건조시켰다.A liquid crystal spun fiber was prepared using the CNT subjected to the super acid treatment of Example 1. Specifically, CNT in a solution state having a liquid crystal phase mixed with chlorosulfuric acid was sprayed through a nozzle to acetone in the coagulation tank at a pressure of 10 to 30 G and a rate of 0.01 to 1 mL/min using a syringe pump to form fibers. Then, it was wound in water of a second coagulation bath, and then dried at 100° C. for 12 hours.
실시예 4: 질소 도핑되고 초강산 처리된 탄소나노튜브 필름 제조Example 4: Preparation of carbon nanotube film doped with nitrogen and treated with super acid
Blade coating 방법에 따라, 실시예 3의 CNT 액정방사섬유를 유리 기판 위에 적하한 후 다른 한 장의 유리 기판으로 이를 덮고 밀어 주는 방식으로 CNT를 align하여 탄소나노튜브 필름을 제조하였다. 수득한 필름을 도 4에 나타내었다.According to the blade coating method, a carbon nanotube film was prepared by dropping the CNT liquid crystal spinning fiber of Example 3 on a glass substrate, and then aligning the CNTs by covering and pushing it with another glass substrate. The obtained film is shown in FIG. 4.
비교예 1: 질소 도핑되지 않은 탄소나노튜브Comparative Example 1: Carbon nanotubes not doped with nitrogen
단일벽 탄소나노튜브(이하 SWCNT; TUBALLTM, carbon>99%)를 구매하여 받은 그대로 사용하였다.Single-walled carbon nanotubes (hereinafter, SWCNT; TUBALL TM , carbon>99%) were purchased and used as received.
비교예 2: 질소 도핑되고 초강산 처리되지 않은 탄소나노튜브 제조Comparative Example 2: Preparation of carbon nanotubes doped with nitrogen and not treated with super acid
실시예 1과 동일한 조건으로 질소 도핑된 CNT를 제조한 후 초강산 처리를 하지 않음으로써 질소 도핑되고 NPy 및 NPyrr가 환원되지 않은 CNT를 제조하였다.Nitrogen-doped CNTs were prepared under the same conditions as in Example 1, and then nitrogen-doped and N Py and N Pyrr were not reduced by not performing super acid treatment.
비교예 3: 질소 도핑되고 초강산이 아닌 산이 처리된 탄소나노튜브 제조Comparative Example 3: Preparation of carbon nanotubes doped with nitrogen and treated with an acid other than a super acid
초강산 대신에 98% 황산을 사용한 것 이외에는 실시예 2와 동일한 조건으로 탄소나노튜브를 제조하였다.A carbon nanotube was prepared under the same conditions as in Example 2, except that 98% sulfuric acid was used instead of the super acid.
비교예 4: 질소 도핑되지 않은 탄소나노튜브 액정방사섬유 제조Comparative Example 4: Preparation of carbon nanotube liquid crystal spinning fiber not doped with nitrogen
질소 도핑의 전기전도도 개선 효과를 확인하기 위해, 질소가 도핑되지 않은 탄소나노튜브 액정방사섬유를 제조하였다. 구체적으로, SWCNT를 클로로황산과 30 mg/mL의 비율로 혼합하고 3일 동안 교반하여 액정상을 가지는 용액 상태의 SWCNT 용액을 수득하였으며, 이를 실시예 3와 동일한 조건에서 섬유화하고 권취한 후 건조시켰다.In order to confirm the effect of improving the electrical conductivity of nitrogen doping, a carbon nanotube liquid crystal spinning fiber not doped with nitrogen was prepared. Specifically, SWCNT was mixed with chlorosulfuric acid at a ratio of 30 mg/mL and stirred for 3 days to obtain a solution state SWCNT solution having a liquid crystal phase, which was fiberized under the same conditions as in Example 3, wound up, and dried. .
비교예 5: 질소 도핑되고 초강산 처리되지 않은 탄소나노튜브 액정방사섬유 제조Comparative Example 5: Preparation of carbon nanotube liquid crystal spinning fiber doped with nitrogen and not treated with super acid
질소의 선택적 환원 효과가 전기전도도에 미치는 영향을 확인하기 위해, 실시예 1과 동일한 질소 도핑 조건에서 질소 도핑되고 초강산 처리되지 않은 탄소나노튜브 액정방사섬유를 제조하였다. In order to confirm the effect of the selective reduction effect of nitrogen on the electrical conductivity, a carbon nanotube liquid crystal spinning fiber was prepared under the same nitrogen doping conditions as in Example 1 and not treated with a super acid.
구체적으로, SWCNT를 클로로황산과 30 mg/mL의 비율로 혼합하고 3일 동안 교반하여 액정상을 가지는 용액 상태의 SWCNT 용액을 수득하였으며, 이를 실시예 3와 동일한 조건에서 섬유화하고 권취한 후 건조시켰다. 제조된 탄소나노튜브 섬유를 실시예 1과 동일한 조건에서 ICP 처리하여 질소 도핑하였다. 이를 통해 NPy, NPyrr, 및 NQ가 혼재하여 존재하는 질소 도핑된 탄소나노튜브 액정방사섬유를 제조하였다.Specifically, SWCNT was mixed with chlorosulfuric acid at a ratio of 30 mg/mL and stirred for 3 days to obtain a solution state SWCNT solution having a liquid crystal phase, which was fiberized under the same conditions as in Example 3, wound up, and dried. . The prepared carbon nanotube fibers were subjected to ICP treatment under the same conditions as in Example 1 and doped with nitrogen. Through this, a nitrogen-doped carbon nanotube liquid crystal spinning fiber was prepared by mixing N Py , N Pyrr , and N Q.
비교예 6: 질소 도핑되지 않은 탄소나노튜브 필름 제조Comparative Example 6: Preparation of a carbon nanotube film not doped with nitrogen
실시예 3의 CNT 액정방사섬유 대신 비교예 4의 CNT 액정방사섬유를 사용한 것 외에는 실시예 4과 동일한 방식으로 탄소나노튜브 필름을 제조하였다.A carbon nanotube film was prepared in the same manner as in Example 4, except that the CNT liquid crystal spinning fiber of Comparative Example 4 was used instead of the CNT liquid crystal spinning fiber of Example 3.
비교예 7: 질소 도핑되고 초강산 처리되지 않은 탄소나노튜브 필름 제조Comparative Example 7: Preparation of carbon nanotube film doped with nitrogen and not treated with super acid
실시예 3의 CNT 액정방사섬유 대신 비교예 5의 CNT 액정방사섬유를 사용한 것 외에는 실시예 4과 동일한 방식으로 탄소나노튜브 필름을 제조하였다.A carbon nanotube film was prepared in the same manner as in Example 4, except that the CNT liquid crystal spinning fiber of Comparative Example 5 was used instead of the CNT liquid crystal spinning fiber of Example 3.
실험예 1: 탄소나노튜브 액정상, 액정방사섬유, 및 필름의 제조 확인Experimental Example 1: Confirmation of production of carbon nanotube liquid crystal phase, liquid crystal spinning fiber, and film
비교예 1의 CNT를 클로로황산과 혼합한 CNT(LC-Pr-CNT) 및 실시예 1에서 질소 도핑된 CNT를 클로로황산과 혼합한 상태의 CNT(LC-NQ-CNT)를 도 2에 나타내었다. 도 2에서 볼 수 있듯이 CNT가 클로로황산에 용해되어 액정상을 나타냄을 확인할 수 있다. 또한, 실시예 3에서 수득된 CNT 액정방사섬유를 도 3에 나타내었으며, 실시예 4에서 수득된 CNT 필름을 도 4에 나타내었다.CNT (LC-Pr-CNT) in which CNT of Comparative Example 1 was mixed with chlorosulfate and CNT (LC-N Q -CNT) in a state in which the nitrogen-doped CNT in Example 1 was mixed with chlorosulfate are shown in FIG. Done. As can be seen in FIG. 2, it can be seen that CNT is dissolved in chlorosulfuric acid to form a liquid crystal phase. In addition, the CNT liquid crystal spun fiber obtained in Example 3 is shown in FIG. 3, and the CNT film obtained in Example 4 is shown in FIG.
이를 통해, 클로로황산을 이용할 경우 CNT가 액정상을 가지게 되어 액정방사섬유, 필름 등으로의 가공이 유리한 장점을 가짐을 확인할 수 있었다.Through this, it was confirmed that when using chlorosulfuric acid, the CNT has a liquid crystal phase, so that processing into a liquid crystal spinning fiber or film has an advantageous advantage.
실험예 2: 질소 도핑 및 초강산 처리에 따른 피리딘성 질소 및 피롤성 질소의 선택적 환원 효과 확인Experimental Example 2: Confirmation of selective reduction effect of pyridine nitrogen and pyrrole nitrogen according to nitrogen doping and super acid treatment
질소 도핑 및 초강산 처리에 의해 NQ가 유지되면서 NPy 및 NPyrr이 선택적으로 환원되었는지 확인하기 위해, 질소 도핑되지 않은 탄소나노튜브(비교예 1; Pr-CNT), 질소 도핑되고 초강산 처리되지 않은 탄소나노튜브(비교예 2; N-CNT), 및 질소 도핑되고 초강산 처리된 탄소나노튜브(실시예 1; NQ-CNT)를 X-선 광전자 분광법을 통해 비교하여 도 5에 나타내었다. 구체적으로, Cu 기판 위에 비교예 1, 비교예 2, 및 실시예 1의 CNT를 분말 상태로 고르게 도포한 뒤 [Thermo Scientific, ESCALAB 250Xi]를 이용하여 측정하여 XPS 분석을 수행하였다.In order to check whether N Py and N Pyrr are selectively reduced while maintaining N Q by nitrogen doping and super acid treatment, nitrogen-doped carbon nanotubes (Comparative Example 1; Pr-CNT), nitrogen doped and super acid treatment Carbon nanotubes that were not (Comparative Example 2; N-CNT), and nitrogen-doped and super acid-treated carbon nanotubes (Example 1; N Q- CNT) were compared through X-ray photoelectron spectroscopy and shown in FIG. Done. Specifically, the CNTs of Comparative Example 1, Comparative Example 2, and Example 1 were evenly coated on a Cu substrate in a powder state, and then measured using [Thermo Scientific, ESCALAB 250Xi] to perform XPS analysis.
도 5(a)에서는, N-CNT가 비대칭 형태의 N1s 피크를 가짐을 볼 수 있다. 이는 여러 형태의 질소 피크가 convolution된 것임을 의미한다. 이에, N1s 피크의 노이즈를 최소화한 raw 데이터를 수득한 뒤, N-CNT 및 NQ-CNT 스펙트럼을 Gaussian 분포를 가지는 세 가지 형태의 세부 스펙트럼으로 deconvolution한 결과를 함께 나타내었다. N-CNT는 NPy(398.4 eV), NPyrr(399.8 eV), 및 소량의 NQ(401.0 eV)의 우세한 세 가지의 피크를 나타내었다. 반면에, NQ-CNT는 대칭의 완전한 Gaussian 분포를 가져 convolution된 다른 피크 없이 NQ의 단일 피크만을 나타내었다. 이를 통해, 초강산 처리에 의해 NQ를 잔류시키면서 NPy 및 NPyrr이 선택적으로 제거되었음을 확인하였다.In Fig. 5(a), it can be seen that N-CNTs have an asymmetrical N1s peak. This means that several types of nitrogen peaks are convolutional. Thus, after obtaining raw data minimizing the noise of the N1s peak, the results of deconvolution of the N-CNT and NQ-CNT spectra into three types of detailed spectra having a Gaussian distribution are shown together. N-CNT showed three dominant peaks: N Py (398.4 eV), N Pyrr (399.8 eV), and a small amount of N Q (401.0 eV). On the other hand, N Q -CNT showed only a single peak of N Q without other convolutional peaks due to the symmetrical complete Gaussian distribution. Through this, it was confirmed that N Py and N Pyrr were selectively removed while leaving N Q by super acid treatment.
산에 의한 NPy 및 NPyrr의 제거 반응은, 도 6과 같은 메커니즘으로 이해할 수 있다(도 6에서는 편의상 질소의 환원 반응만 나타내었으며, 탄소의 불포화 결합의 환원 과정은 나타내지 않았다). 구체적으로 메커니즘을 살펴보면, sp2 Carbon lattice에 도핑된 NPy 및 NPyrr은 비공유 전자쌍을 갖기 때문에 Louis-Base 특성을 가지며, 이러한 비공유 전자쌍은 클로로황산과 같은 풍부한 Proton 환경에서 Protonation site로 작용하여 불포화 결합을 가지는 탄소와 더불어 Proton에 의해 계속해서 환원된다(도 6(a) 및 도 6(b)). 매우 높은 Proton 환경은 NPy 및 NPyrr의 반응을 비가역적으로 진행시킬 수 있는 driving force가 된다. 반면에, NQ는 다섯 개의 전자 중 세 개의 전자가 탄소와의 결합에 관여하고, 다른 하나의 전자는 sp2 혼성 오비탈로 결합에 관여하며, 마지막 하나의 전자가 캐리어로서 π* state에 비편재화되거나 주변의 탄소와 커플링을 이루며 편재화되는 두 가지 역할을 한다. 따라서, NQ의 전자는 비공유 전자쌍을 이루지 못하고, Proton에 대해 화학적으로 비활성의 성질을 가진다(도 6(c)). 결과적으로, 이러한 메커니즘에 따라 초강산 처리 이후에는 질소 도핑된 CNT에 NPy 및 NPyrr은 제거되고 오직 NQ만이 남게 되는 것으로 이해된다.The removal reaction of N Py and N Pyrr by acid can be understood by the same mechanism as in FIG. 6 (FIG. 6 shows only the reduction reaction of nitrogen for convenience, and the process of reducing unsaturated bonds of carbon is not shown in FIG. 6). Specifically, looking at the mechanism, N Py and N Pyrr doped on sp2 carbon lattice have Louis-Base characteristics because they have a lone pair of electrons, and these lone pairs act as protonation sites in a rich Proton environment such as chlorosulfate to form unsaturated bonds. Branches are continuously reduced by Proton along with carbon (Figs. 6(a) and 6(b)). The very high Proton environment becomes a driving force that can irreversibly advance the reactions of N Py and N Pyrr . On the other hand, in N Q , three of the five electrons are involved in bonding with carbon, and the other electron is involved in bonding by sp2 hybrid orbital, and the last one electron is delocalized in π * state as a carrier. It forms a coupling with the surrounding carbon and plays two roles of being localized. Accordingly, the electrons of N Q do not form an unshared electron pair, and have a property of being chemically inert to Proton (Fig. 6(c)). Consequently, according to this mechanism, nitrogen It is understood that on the doped CNTs N Py and N Pyrr are removed and only N Q remains.
한편, 도 5(b)에서는 이러한 NPy 및 NPyrr의 환원에 의해 주변 탄소의 Fermi level 변화함에 의해 C1s가 화학적 이동함을 확인할 수 있다. 탄소의 sp2 격자에 전자를 비편재화시키는 NPy 및 NPyrr가 도입될 경우, 질소 스스로는 negative charge(n-type 도핑을 의미하지 않음)를 띄지만, 주변의 탄소들은 positive charge를 띄게 된다. 탄소의 낮아진 전자 농도는, 원자핵과 Core level electron의 결합력을 증가시켜 C1s가 높은 결합에너지 쪽으로 화학적 이동하게 한다. 실제로, 도 5(b)에서는, NPy 및 NPyrr을 포함하고 있는 N-CNT가 Pr-CNT(284.38 eV) 또는 NQ-CNT(284.28 eV)와 비교하여 높은 결합 에너지(284.50 eV)로 화학적 이동함을 확인할 수 있다. 이는 여러 형태의 질소가 도핑되었을 때, 더 지배적인 결합 형태인 NPy 및 NPyrr의 효과가 더 크게 나타남을 의미한다. 반면에, 선택적 환원 이후 CNT(NQ-CNT)에는 전자 도너 역할을 하는 NQ만이 존재하기 때문에, 탄소의 높아진 fermi-level에 의해 down shift함을 확인할 수 있다.Meanwhile, in FIG. 5(b), it can be seen that C1s is chemically shifted by the change in Fermi level of the surrounding carbon by the reduction of N Py and N Pyrr . When N Py and N Pyrr , which delocalize electrons, are introduced into the sp2 lattice of carbon, nitrogen itself has a negative charge (which does not mean n-type doping), but the surrounding carbons have a positive charge. The lowered electron concentration in carbon increases the bonding force between the nucleus and core level electrons, causing C1s to chemically move toward higher binding energy. In fact, in Fig. 5(b), N-CNTs containing N Py and N Pyrr have a high binding energy (284.50 eV) compared to Pr-CNT (284.38 eV) or N Q -CNT (284.28 eV). You can see that it moves. This means that when several forms of nitrogen are doped, the effects of the more dominant bonding forms, N Py and N Pyrr , are greater. On the other hand, since only N Q acting as an electron donor exists in CNT (N Q -CNT) after selective reduction, it can be confirmed that the downshift is due to the increased fermi-level of carbon.
또한, 도 5(c)의 Survey Spectrum에서는 구성 원소의 상대적 비율을 확인 하였다. N-CNT에서 Pr-CNT에는 존재하지 않던 N1s(400 eV) 신호가 나타나는 것을 볼 수 있으며, 이를 NQ CNT에서도 관찰할 수 있다. 여기서, 클로로황산 처리에도 불구하고 NQ-CNT의 O1s(533 eV)가 비슷한 수준으로 유지됨을 확인할 수 있으며, 이는 흔히 질소 도핑된 CNT가 황산과 같은 강한 산성환경에서 산화된다고 알려진 것과는 달리, 클로로황산에서 화학적 손상 없이 환원 반응이 가능함을 보여준다.In addition, in the Survey Spectrum of FIG. 5(c), the relative ratio of constituent elements was confirmed. In N-CNT, it can be seen that the N1s (400 eV) signal, which was not present in Pr-CNT, appears, and this can be observed in N Q CNT. Here, it can be seen that the O1s (533 eV) of N Q -CNT is maintained at a similar level despite the treatment with chlorosulfuric acid, which is unlikely to be known that nitrogen-doped CNTs are oxidized in a strong acidic environment such as sulfuric acid. Shows that the reduction reaction is possible without chemical damage.
이를 통해, 탄소 함유 재료를 질소 도핑한 후 초강산 처리하여 화학적 damage 없이 NQ을 유지하면서 NPy 및 NPyrr을 선택적으로 환원시킬 수 있음을 확인할 수 있었다.Through this, it was confirmed that the carbon-containing material was doped with nitrogen and then treated with super acid to selectively reduce N Py and N Pyrr while maintaining N Q without chemical damage.
실험예 3: 질소 도핑 및 초강산이 아닌 산 처리에 의한 피리딘성 질소 및 피롤성 질소의 선택적 환원 여부 확인Experimental Example 3: Confirmation of selective reduction of pyridine nitrogen and pyrrole nitrogen by nitrogen doping and acid treatment other than super acid
초강산이 아닌 산 처리가 질소 도핑된 탄소나노튜브의 피리딘성 질소 및 피롤성 질소에 미치는 영향을 확인하기 위해, 질소 도핑되고 초강산처리된 탄소나노튜브(실시예 2) 및 질소 도핑되고 초강산이 아닌 산이 처리된 탄소나노튜브(비교예 3)를 X-선 광전자 분광법을 통해 비교하였다. 구체적으로, Cu 기판 위에 실시예 2 및 비교예 3의 CNT를 분말 상태로 고르게 도포한 뒤 [Thermo Scientific, ESCALAB 250Xi]를 이용하여 측정하여 XPS 분석을 수행하였으며, 그 결과 XPS N1s 스펙트럼을 도 6에 나타내었다.To confirm the effect of acid treatment other than super acid on pyridine nitrogen and pyrrole nitrogen of nitrogen-doped carbon nanotubes, nitrogen-doped and super acid-treated carbon nanotubes (Example 2) and nitrogen-doped super acid The carbon nanotubes (Comparative Example 3) treated with an acid other than this were compared through X-ray photoelectron spectroscopy. Specifically, after evenly coating the CNTs of Example 2 and Comparative Example 3 in a powder state on a Cu substrate, XPS analysis was performed by measuring using [Thermo Scientific, ESCALAB 250Xi], and as a result, the XPS N1s spectrum is shown in FIG. Indicated.
분석 결과, 질소 도핑하고 클로로황산(ClSO3H) 처리된 탄소나노튜브에서는 클로로황산 처리에 의해 NPy 및 NPyrr가 선택적으로 환원되어 NQ만이 잔류함을 확인하였다. 반면에, 질소 도핑하고 98% 황산(H2SO4(98%)) 처리된 탄소나노튜브에서는 황산 처리에 의해 NQ 외에 NPy가 잔류하고 있어, NPy 및 NPyrr가 선택적으로 환원되어 제거되지 않았음을 확인하였다.As a result of the analysis, it was confirmed that in the carbon nanotubes doped with nitrogen and treated with chlorosulfuric acid (ClSO 3 H), N Py and N Pyrr were selectively reduced by chlorosulfuric acid treatment, and only N Q remained. On the other hand, in carbon nanotubes doped with nitrogen and treated with 98% sulfuric acid (H 2 SO 4 (98%)), N Py remains in addition to N Q by sulfuric acid treatment, so N Py and N Pyrr are selectively reduced and removed. It was confirmed that it was not.
이를 통해, 황산과 달리 클로로황산과 같은 초강산은 질소 도핑된 탄소 소재에서 NPy 및 NPyrr를 모두 선택적으로 환원하여 제거할 수 있음을 확인하였다.Through this, it was confirmed that, unlike sulfuric acid, superacids such as chlorosulfuric acid can be removed by selectively reducing both N Py and N Pyrr in a nitrogen-doped carbon material.
실험예 4: 질소 도핑 및 초강산 처리에 따른 탄소나노튜브의 구조 변화 여부 확인Experimental Example 4: Checking whether the structure of carbon nanotubes is changed according to nitrogen doping and super acid treatment
질소 도핑 및 초강산 처리에 의해 탄소나노튜브의 구조가 변화하는지 여부를 확인하기 위하여, 실험예 2에서와 동일한 CNT 분말을 고분해능 투과전자현미경(High Resolution Transmission electron microscopy; HR-TEM)을 통해 [FEI-Titan G3, Cs-Corrector + Monochromator equipped, 80kV]에서 분석하고, 동일 장비의 HAADF-STEM 모드에서 EDX 성분분석(Super-X, 4-SDD system)하여 도 7에 나타내었다. 시편은 에탄올에서 bath type sonicator를 이용하여 분산한 뒤, Lacey Carbon Grid에 적하하여 준비하였다. In order to check whether the structure of the carbon nanotubes is changed by nitrogen doping and super acid treatment, the same CNT powder as in Experimental Example 2 was subjected to [FEI] through High Resolution Transmission Electron Microscopy (HR-TEM). -Titan G3, Cs-Corrector + Monochromator equipped, 80kV], and EDX component analysis (Super-X, 4-SDD system) in the HAADF-STEM mode of the same equipment is shown in FIG. The specimen was prepared by dispersing in ethanol using a bath type sonicator, and dropping it onto a lacey carbon grid.
분석 결과, Pr-CNT는 결함이 보이지 않는 높은 결정성을 갖고 있으며(도 7(a)), 이들이 반데르발스힘에 의해 번들 형태로 존재하고 있음을 볼 수 있다(도 7(b)). 또한, N-CNT는 질소 도입에도 불구하고 Bamboo-like CNT와 같이 형태가 변하거나 왜곡되지 않음을 확인할 수 있었다(도 7(d)). 다만, 몇몇 점 결함들(노란 화살표)이 탄소나노튜브의 측벽에서 관찰되었는데, 이는 NPy 및 NPyrr가 존재하는 위치일 것으로 보인다. EDX 분석 결과, N-CNT(도 7(f))에서는 Pr-CNT(도 7(c))에서는 볼 수 없었던 질소(붉은색)이 CNT 번들(탄소; 푸른색)에 균일하게 분포됨을 볼 수 있었다. As a result of the analysis, it can be seen that Pr-CNTs have high crystallinity without visible defects (FIG. 7(a)), and they exist in bundles by van der Waals force (FIG. 7(b)). In addition, it was confirmed that the N-CNT did not change or distort the shape of the Bamboo-like CNT despite the introduction of nitrogen (FIG. 7(d)). However, some point defects (yellow arrows) were observed on the sidewall of the carbon nanotube, which is likely to be the location where N Py and N Pyrr exist. As a result of EDX analysis, it can be seen that nitrogen (red), which was not seen in Pr-CNT (Fig. 7(c)), is uniformly distributed in the CNT bundle (carbon; blue) in N-CNT (Fig. 7(f)). there was.
한편, NQ-CNT는 제거된 NPy 및 NPyrr의 빈 자리에 의한 점 결함을 그대로 보유하지만, unzipping이 더 진행되지 않고 원기둥 형태의 CNT 구조를 유지하며(도 7(g)), CNT의 번들 내부에 분포된 질소를 가짐을 볼 수 있다(도 7(i)).On the other hand, N Q -CNT retains the point defects due to the voids of the removed N Py and N Pyrr as it is, but unzipping does not proceed further and maintains the cylindrical CNT structure (Fig. 7(g)), It can be seen that it has nitrogen distributed inside the bundle (Fig. 7(i)).
이를 통해, 질소 도핑 및 초강산 처리가 NPy 및 NPyrr를 선택적으로 환원하면서도 CNT의 고유한 구조적 특성을 유지시킴을 확인할 수 있었다.Through this, it was confirmed that nitrogen doping and super acid treatment selectively reduced N Py and N Pyrr while maintaining the unique structural characteristics of CNTs.
실험예 5: 질소 도핑 및 초강산 처리에 따른 탄소나노튜브의 도핑 특성 변화 확인Experimental Example 5: Confirmation of change in doping characteristics of carbon nanotubes according to nitrogen doping and super acid treatment
질소 도핑 및 초강산 처리가 탄소나노튜브의 도핑 특성에 미치는 영향을 확인하기 위해, 실시예 4, 비교예 6, 및 비교예 7의 CNT 필름에 대하여 Raman 및 UV-광전자 분광(Photoelectron spectroscopy; UPS)을 측정하였다. 그 결과를 도 9 및 도 10에 나타내었다.In order to confirm the effect of nitrogen doping and super acid treatment on the doping properties of carbon nanotubes, Raman and UV-photoelectron spectroscopy (UPS) for the CNT films of Examples 4, 6, and 7 Was measured. The results are shown in FIGS. 9 and 10.
도 9(a)는 1000 ~ 3000 cm-1에서 발생하는 라만 스펙트럼으로서, 1580 ~ 1600 cm-1에서 관찰되는 가장 강한 peak인 G-band (graphitic mode), 1300 ~ 1350 cm-1에서 관찰되는 D-band(defect-induced mode), 마지막으로 2550 ~ 2700 cm-1에서 관찰되는 2D-Band(Double resonance mode)의 세 가지 강한 피크를 나타낸다. 도 6(b)는 라만 스펙트럼으로부터 D-band의 피크 세기에 대한 G-band의 피크 세기의 비율인 R value(IG/ID ratio)를 도출하여 나타낸 것으로서, R-value를 통해 결정성을 알 수 있다. 높은 R value는 D-band 피크 세기가 낮음을 의미하므로, 높은 결정성을 가짐을 의미한다. 예컨대 CNT의 sp2 lattice에 결합의 길이가 더 짧은 질소가 도핑될 경우 대칭 파괴(symmetry breaking)에 의한 결정성 감소로 D-band가 증가하며, 이에 따라 R-value가 감소한다. N-CNT는 Pr-CNT보다 더 낮은 R value를 가짐을 통해 이를 확인할 수 있다. 한편, NQ-CNT에는 초강산 처리에 의해 NPy 및 NPyrr의 제거된 후에 구조적인 점 결함이 남아 있음에도 불구하고(도 7), N-CNT에 비해 R value가 증가하였음을 볼 수 있다. 이는 질소와 치환된 수소 및 구조적인 빈 자리에 의한 영향보다, 전자를 비편재화시키는 NPy 및 NPyrr이 carbon lattice의 Disorder(D-band) 증가에 더 큰 영향을 미침을 시사한다.9(a) is a Raman spectrum that occurs at 1000 ~ 3000 cm -1 , the strongest peak observed at 1580 ~ 1600 cm -1 , G-band (graphitic mode), D observed at 1300 ~ 1350 cm -1 -band (defect-induced mode), and finally, two strong peaks of 2D-Band (double resonance mode) observed at 2550 ~ 2700 cm -1 are shown. Fig. 6(b) shows the R value (I G / I D ratio), which is the ratio of the peak intensity of the G-band to the peak intensity of the D-band, from the Raman spectrum, and shows the crystallinity through the R-value. Able to know. A high R value means that the D-band peak intensity is low, which means that it has high crystallinity. For example, when nitrogen having a shorter bond length is doped in the sp2 lattice of CNTs, the D-band increases due to crystallinity reduction due to symmetry breaking, and accordingly, the R-value decreases. N-CNT can be confirmed by having a lower R value than Pr-CNT. On the other hand, although structural point defects remain in N Q -CNT after removal of N Py and N Pyrr by super acid treatment (Fig. 7), it can be seen that the R value is increased compared to N-CNT. This suggests that N Py and N Pyrr , which delocalize electrons, have a greater influence on the increase in the disorder (D-band) of carbon lattice than the effects of nitrogen and substituted hydrogen and structural vacancy .
도 9(c)에서는 질소의 결합 형태에 따라 2700 cm-1 근처에 보이는 2D 밴드가 커다란 shift를 나타냄을 볼 수 있다. 2D 밴드는 CNT의 π valence band가 가지는 캐리어 밀도에 매우 민감하게 변화하는데, 구체적으로 p-type 도핑에서 up shift, n-type 도핑에서 down shift된다. G-band의 shift가 1 cm-1 이내였던 점을 감안하면, 2D 밴드의 shift는 1 내지 9 cm-1 정도로 매우 뚜렷하게 나타남을 알 수 있다. 488, 514, 및 785 nm의 모든 파장에서, NPy 및 NPyrr의 비율이 높은 N-CNT에서는 2D 밴드가 blue shift하여 p-type 특성을 보인 반면, NQ만이 도핑된 NQ-CNT에서는 2D band가 red shift하여 n-type 특성을 나타냄을 확인하였다.In Fig. 9(c), it can be seen that the 2D band visible near 2700 cm -1 exhibits a large shift according to the bonding type of nitrogen. The 2D band is very sensitive to the carrier density of the π valence band of CNT, and specifically, it is up shifted in p-type doping and down shifted in n-type doping. Considering that the shift of the G-band was within 1 cm -1 , it can be seen that the shift of the 2D band is very distinct from 1 to 9 cm -1 . At all wavelengths of 488, 514, and 785 nm, and Py N N In N-CNT is the high rate of Pyrr while the 2D band showed p-type characteristics to blue shift, the N Q N Q -CNT only doped 2D It was confirmed that the band shifted red to show n-type characteristics.
CNT의 도핑 특성을 UV-광전자 분광법(Photoelectron Spectroscopy; UPS)의 valence-level spectrum을 통해서도 확인할 수 있다(도 10). 구체적으로, 피크의 edge 부분에 나타나는 2nd cut-off를 이용하여 재료의 일함수(Φ)를 알 수 있다. Pr-CNT와 비교하면, N-CNT에서는 더 높은 비율을 가지는 NPy 및 NPyrr의 p-type 특성이 더 낮은 비율을 가지는 NQ의 n-type 특성보다 크게 나타남에 따라 Fermi level이 낮아져 Vacuum-level까지의 에너지 갭이 커진 결과로, Pr-CNT에 비해 높은 일함수를 가지게 된 것으로 볼 수 있다. 그러나, NQ-CNT에는 산에 의해 NPy 및 NPyrr가 제거되어 전자 도너인 NQ의 영향만을 받아 Fermi level이 높아져 일함수가 감소하였고(5.46 eV -> 4.59 eV), 이에 따라 NQ-CNT는 n-type 도핑 특성을 보임을 확인할 수 있었으며, 이러한 NQ에 의한 일함수 감소 경향은 이론적으로 계산된 연구 결과와 일치한다.The doping characteristics of CNTs can also be confirmed through a valence-level spectrum of UV-photoelectron spectroscopy (UPS) (FIG. 10). Specifically, it can be seen a work function (Φ) of the material using a 2 nd cut-off edge may appear on parts of the peak. Compared with Pr-CNT, as the p-type characteristics of N Py and N Pyrr , which have higher ratios in N-CNT, are larger than the n-type characteristics of N Q , which have a lower ratio, the Fermi level is lowered and thus Vacuum- As a result of the increase in the energy gap to the level, it can be seen that it has a higher work function than that of Pr-CNT. However, since N Py and N Pyrr were removed from N Q -CNT by acid, the Fermi level increased only under the influence of the electron donor N Q and the work function decreased (5.46 eV -> 4.59 eV), and accordingly, N Q- It was confirmed that CNTs showed n-type doping characteristics, and this tendency to decrease the work function by N Q is consistent with the theoretically calculated research results.
이를 통해, NPy 및 NPyrr가 환원되지 않은 탄소나노튜브는 p-type 특성을 나타내는 반면, 본 발명에 따라 NPy 및 NPyrr를 선택적으로 환원한 탄소나노튜브는 n-type 특성을 나타냄을 확인할 수 있었다.Through this, it was confirmed that carbon nanotubes in which N Py and N Pyrr were not reduced exhibit p-type characteristics, while carbon nanotubes selectively reduced N Py and N Pyrr according to the present invention exhibit n-type characteristics. Could
실험예 6: 초강산 처리에 의한 탄소나노튜브의 전기전도도 향상 효과 확인Experimental Example 6: Confirmation of the effect of improving the electrical conductivity of carbon nanotubes by super acid treatment
도 11(a)는 4-Probe 방법을 통해 저온에서 측정된 N-CNT 섬유의 Temperature Dependent Specific Resistance를 나타낸다. 흥미롭게도, 헤테로 원자의 도핑 효과에도 불구하고 NPy 및 NPyrr가 혼재된 N-CNT 섬유(푸른색)는 Pr-CNT에 비해 오히려 전기저항이 증가하는 경향을 보였다. 이는, 전기전도 과정 중 NPy 및 NPyrr가 전자 편재 및 산란 자리로 작용하여 전자 밀도가 감소함에 의한 것으로 볼 수 있다. 반면, NQ-CNT 섬유(붉은색)는 Pr-CNT에 비해 전기 저항이 감소하는 경향을 볼 수 있었는데, 이는 NQ가 전자 도너 역할을 함에 따라 캐리어 밀도가 증가함에 의한 것으로 볼 수 있다.Figure 11(a) shows the Temperature Dependent Specific Resistance of N-CNT fibers measured at low temperature through the 4-Probe method. Interestingly, in spite of the hetero atom doping effect, the N-CNT fiber (blue color) mixed with N Py and N Pyrr showed a tendency to increase the electrical resistance rather than the Pr-CNT. This can be considered to be due to the decrease in electron density due to the N Py and N Pyrr acting as electron localization and scattering sites during the electrical conduction process. On the other hand, the N Q -CNT fiber (red color) showed a tendency to decrease in electrical resistance compared to Pr-CNT, which can be seen as a result of an increase in the carrier density as N Q acts as an electron donor.
도 11(b)에서는 R/R300K의 플롯을 통해, 온도에 따른 전기저항 변화의 경향성을 확인할 수 있다. 1.5K 내지 100K의 저온 영역에서는 전반적으로 온도 증가에 따라 전기저항이 감소하는데, 이는 온도에 기인하는 전자 캐리어 증가에 의한 영향으로 볼 수 있다. N-CNT의 경우 전자의 농도가 부족하기 때문에, 이러한 전자 캐리어의 의존성이 Pr-CNT보다 감소함을 볼 수 있는데, 이는 도핑에 의해 초기 전자 캐리어의 농도가 높아져 상대적으로 Metallic한 특성이 증가했기 때문이다. 150K 이후 Electron-Electron 간 또는 Electron-Phonon 간 산란에 의해 전기저항이 더 빠르게 증가되는 점도, 도핑 이후 Metallic한 특성이 증가했음을 뒷받침한다. In FIG. 11(b), through a plot of R/R 300K , it is possible to confirm the tendency of electric resistance change according to temperature. In the low-temperature region of 1.5K to 100K, the electrical resistance generally decreases with the increase in temperature, which can be seen as an effect of the increase in electron carriers due to temperature. In the case of N-CNT, since the concentration of electrons is insufficient, it can be seen that the dependence of these electron carriers decreases than that of Pr-CNT. This is because the concentration of the initial electron carriers increased due to doping and the relatively metallic properties increased. to be. The viscosity at which electrical resistance increases more rapidly due to scattering between Electron-Electron or Electron-Phonon after 150K, supports the increase in metallic properties after doping.
도 11(c)에서는 질소 도핑되지 않은 Pr-CNT 액정방사섬유(비교예 4), 질소 도핑되고 초강산 처리되지 않은 N-CNT 액정방사섬유(비교예 5), 및 질소 도핑되고 초강산 처리된 NQ-CNT 액정방사섬유(실시예 3)의 전기 전도도를 나타낸 것이다.In Figure 11 (c), nitrogen-doped Pr-CNT liquid crystal spinning fiber (Comparative Example 4), nitrogen-doped and super acid-treated N-CNT liquid crystal spinning fiber (Comparative Example 5), and nitrogen-doped and super acid-treated It shows the electrical conductivity of the N Q -CNT liquid crystal spinning fiber (Example 3).
실시예 3의 NQ-CNT 섬유는 전기전도도가 비교예 4의 Pr-CNT 섬유의 2.2배, 비교예 5의 N-CNT 섬유의 3.3배가 되어 현저히 향상됨을 확인할 수 있다. It can be seen that the electrical conductivity of the N Q -CNT fiber of Example 3 is 2.2 times that of the Pr-CNT fiber of Comparative Example 4 and 3.3 times that of the N-CNT fiber of Comparative Example 5, which is significantly improved.
이를 통해, 본 발명에 따라 제조되는 탄소 소재는 탄소 소재 고유의 모폴로지를 유지하면서도, 전기전도도에 부정적인 영향을 미치는 피리딘성 질소 및 피롤성 질소를 선택적으로 환원 또는 제거함과 동시에, 전기전도도를 향상시키는 그래파이트성 질소를 유지시켜 탄소 소재의 전기전도도를 향상시킬 수 있음을 확인하였다.Through this, the carbon material produced according to the present invention maintains the unique morphology of the carbon material, while selectively reducing or removing pyridine nitrogen and pyrroleic nitrogen that negatively affects electrical conductivity, and at the same time improving electrical conductivity. It was confirmed that the electrical conductivity of the carbon material can be improved by maintaining the nitrogen.

Claims (11)

  1. 질소가 도핑된 sp2 혼성 구조를 갖는 탄소 소재에 초강산을 접촉시켜, 상기 탄소 소재에 존재하는 그래파이트성 질소(quaternary nitrogen)를 유지시키면서 피리딘성 질소(pyridinic nitrogen) 및 피롤성 질소(pyrrolic nitrogen)를 환원시키는 단계를 포함하는,By contacting a super acid to a carbon material having a nitrogen-doped sp2 hybrid structure, while maintaining the graphitic nitrogen present in the carbon material, pyridinic nitrogen and pyrrolic nitrogen are obtained. Comprising the step of reducing,
    피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 제조방법.A method for producing a carbon material in which the content of pyridine nitrogen and pyrrole nitrogen is controlled.
  2. 제1항에 있어서, sp2 혼성 구조를 갖는 탄소 소재를 질소로 도핑하여 질소가 도핑된 sp2 혼성 구조를 갖는 탄소 소재를 준비하는 준비 단계를 추가로 포함하는, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 제조방법.The content of pyridine nitrogen and pyrroleic nitrogen according to claim 1, further comprising a preparation step of preparing a carbon material having an sp2 hybrid structure doped with nitrogen by doping a carbon material having an sp2 hybrid structure with nitrogen. Controlled carbon material manufacturing method.
  3. 제2항에 있어서, 상기 sp2 혼성 구조를 갖는 탄소 소재는 탄소나노튜브, 그래핀, 그래핀 옥사이드, 탄소나노혼, 흑연, 폴리아크릴로니트릴계 탄소섬유, 피치계 탄소섬유, 카본블랙, 및 활성탄으로 이루어진 군에서 선택되는 하나 이상을 포함하는 것인, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 제조방법.The method of claim 2, wherein the carbon material having the sp2 hybrid structure is carbon nanotube, graphene, graphene oxide, carbon nanohorn, graphite, polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, carbon black, and activated carbon. The method for producing a carbon material in which the content of pyridine nitrogen and pyrroleic nitrogen is controlled, including at least one selected from the group consisting of.
  4. 제2항에 있어서, 상기 준비 단계는 플라즈마 처리방법, 화학적 기상 증착 방법, 및 질소 반응물과 함께 열처리하는 방법으로 이루어진 군에서 선택되는 하나 이상의 방법을 통해 수행되는 것인, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 제조방법.The method of claim 2, wherein the preparation step is performed through one or more methods selected from the group consisting of a plasma treatment method, a chemical vapor deposition method, and a method of heat treatment with a nitrogen reactant, pyridine nitrogen and pyrrole nitrogen. Method for producing a carbon material with a controlled content of.
  5. 제4항에 있어서, 상기 질소 반응물은 질소 기체, 우레아류, 아민류, 이민류, 나이트릴류, 피롤류, 다이아졸류, 트라이아졸류, 피리딘류, 다이아진류, 및 트라이아진류로 이루어진 군에서 선택되는 하나 이상을 포함하는 것인, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 제조방법.The method of claim 4, wherein the nitrogen reactant is selected from the group consisting of nitrogen gas, ureas, amines, imines, nitriles, pyrroles, diazoles, triazoles, pyridines, diazines, and triazines. The method for producing a carbon material containing at least one, wherein the content of pyridine nitrogen and pyrroleic nitrogen is controlled.
  6. 제1항에 있어서, 상기 초강산은 용액 중에 존재하는 것인, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 제조방법.The method of claim 1, wherein the superacid is present in a solution, wherein the contents of pyridine nitrogen and pyrrole nitrogen are controlled.
  7. 제6항에 있어서, 상기 용액 중의 초강산의 농도는 10 내지 50 mg/mL인 것인, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 제조방법.The method of claim 6, wherein the concentration of the super acid in the solution is 10 to 50 mg/mL, wherein the content of pyridine nitrogen and pyrrole nitrogen is controlled.
  8. 제6항에 있어서, 상기 환원 단계는 12시간 이상의 시간 동안 상기 용액과 접촉시켜 수행되는 것인, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재의 제조방법.The method of claim 6, wherein the reducing step is carried out by contacting the solution for a period of 12 hours or more, wherein the content of pyridine nitrogen and pyrroleic nitrogen is controlled.
  9. 제1항 내지 제8항 중 어느 한 항의 방법으로 제조되는, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재.A carbon material in which the content of pyridine nitrogen and pyrrole nitrogen is controlled, prepared by the method of any one of claims 1 to 8.
  10. 제7항의 방법으로 제조되어 액정상을 가지는, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재.A carbon material prepared by the method of claim 7 and having a liquid crystal phase, in which the content of pyridine nitrogen and pyrrole nitrogen is controlled.
  11. 제9항에 있어서, 질소가 도핑되지 않은 탄소 소재; 또는 질소가 도핑되고 피리딘성 질소 및 피롤성 질소가 환원되지 않은 탄소 소재에 비해 전기 전도도가 증가된, 피리딘성 질소 및 피롤성 질소의 함량이 제어된 탄소 소재.The method of claim 9, wherein the carbon material is not doped with nitrogen; Or a carbon material in which the content of pyridine nitrogen and pyrroleic nitrogen is controlled in which the electrical conductivity is increased compared to the carbon material in which nitrogen is doped and pyridine nitrogen and pyrroleic nitrogen are not reduced.
PCT/KR2020/003909 2019-03-20 2020-03-20 Method for preparing carbon material having sp2 hybrid structure with controlled content of pyridinic nitrogen and pyrrolic nitrogen, and carbon material prepared by same WO2020190105A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0031849 2019-03-20
KR1020190031849A KR102237464B1 (en) 2019-03-20 2019-03-20 A preparation method of a carbon material having sp2-hybridization in which the contents of pyridinic nitrogen and pyrrolic nitrogen are controlled and a carbon material prepared thereby

Publications (2)

Publication Number Publication Date
WO2020190105A2 true WO2020190105A2 (en) 2020-09-24
WO2020190105A3 WO2020190105A3 (en) 2021-02-04

Family

ID=72521137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003909 WO2020190105A2 (en) 2019-03-20 2020-03-20 Method for preparing carbon material having sp2 hybrid structure with controlled content of pyridinic nitrogen and pyrrolic nitrogen, and carbon material prepared by same

Country Status (2)

Country Link
KR (1) KR102237464B1 (en)
WO (1) WO2020190105A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102543419B1 (en) * 2021-01-27 2023-06-15 한국과학기술연구원 Method of manufacturing high conductivity CNTF by doping different element and CNTF therefrom

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6804760B2 (en) 2016-01-20 2020-12-23 国立大学法人 筑波大学 Oxygen reduction catalyst, its activation method, and fuel cell catalyst

Also Published As

Publication number Publication date
KR102237464B1 (en) 2021-04-07
WO2020190105A3 (en) 2021-02-04
KR20200112026A (en) 2020-10-05

Similar Documents

Publication Publication Date Title
TWI608060B (en) Large area deposition of graphene on substrates, and products including the same
WO2015016412A1 (en) Mos2 thin film and method for manufacturing same
WO2015147501A1 (en) Catecholamine-flaky graphite based polymer complex for preparation of composite
JP5753584B2 (en) Method for increasing the conductivity of graphene films
WO2012008789A2 (en) Method for producing graphene at a low temperature, method for direct transfer of graphene using same, and graphene sheet
CN103588195A (en) Preparation method of graphene
US9644275B2 (en) Method for preparation of graphene using spontaneous process
KR101438027B1 (en) Method of preparing high quality graphene using acr discharge and high quality graphene using the same
WO2018226063A1 (en) Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using same, and lithium secondary battery
WO2020190105A2 (en) Method for preparing carbon material having sp2 hybrid structure with controlled content of pyridinic nitrogen and pyrrolic nitrogen, and carbon material prepared by same
WO2018131896A1 (en) Liquid crystal composite carbon fiber and method for preparing same
WO2023013938A1 (en) Conductive thin film production method using expandable graphite
CN109650379A (en) A kind of single-walled carbon nanotube graded oxidation purification process
CN113772732A (en) Method for preparing two-dimensional material nanosheet by DEET stripping
KR101571404B1 (en) Carbon structure using polycyclic compounds and preparing method thereof
WO2016129774A1 (en) Method for preparing vertically aligned carbon nanotube aggregates
WO2019164066A1 (en) Electrode structure, manufacturing method therefor, and electrochemical element comprising same
WO2022164042A1 (en) Method for manufacturing highly conductive nano-carbon material through heteroelement doping and carbon nanotube fiber manufactured thereby
Agrawal et al. Directed Growth and Electrical‐Transport Properties of Carbon Nanotube Architectures on Indium Tin Oxide Films on Silicon‐Based Substrates
KR101488410B1 (en) Method for manufacturing reduced graphite oxide and reduced graphite oxide using thereof
Liu et al. Induced growth of quasi-free-standing graphene on SiC substrates
Tang et al. CoPt/CeO 2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes
KR102415100B1 (en) Wet-dry hybrid method of preparing graphene flake composition and graphene flake composition prepared by the same
WO2022065839A1 (en) Method for fabricating dry/wet graphene flakes and graphene flakes fabricated thereby
WO2022154208A1 (en) Carbon nanotube fiber having improved physical properties and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773882

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773882

Country of ref document: EP

Kind code of ref document: A2