WO2021111883A1 - 破断面検査装置及び破断面検査方法 - Google Patents

破断面検査装置及び破断面検査方法 Download PDF

Info

Publication number
WO2021111883A1
WO2021111883A1 PCT/JP2020/043110 JP2020043110W WO2021111883A1 WO 2021111883 A1 WO2021111883 A1 WO 2021111883A1 JP 2020043110 W JP2020043110 W JP 2020043110W WO 2021111883 A1 WO2021111883 A1 WO 2021111883A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracture surface
dimensional data
data
contour
fracture
Prior art date
Application number
PCT/JP2020/043110
Other languages
English (en)
French (fr)
Inventor
僚祐 村上
Original Assignee
株式会社 安永
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 安永 filed Critical 株式会社 安永
Priority to MX2022006465A priority Critical patent/MX2022006465A/es
Priority to US17/754,610 priority patent/US11821725B2/en
Priority to CN202080078164.XA priority patent/CN114667433A/zh
Publication of WO2021111883A1 publication Critical patent/WO2021111883A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2527Projection by scanning of the object with phase change by in-plane movement of the patern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear

Definitions

  • the present invention relates to a fracture surface inspection device and a fracture surface inspection method.
  • Connecting rods used in engines of automobiles and the like are widely used as members that connect a piston and a crankshaft and convert the reciprocating motion of the piston into the rotational motion of the crankshaft.
  • FS Frture Splitting
  • the connecting rod is split (half-split) by breaking the large end into the rod and cap, and then assembled to the crankshaft and bolted to each other to form a fractured surface of each other. It can be manufactured at low cost by using the unevenness generated in the above for positioning.
  • the broken rod portion and the cap portion are arranged on the fixing jig, and the projected image of the laser beam irradiated on the fracture surface is imaged from different angles.
  • the fracture surface of the fracture surface can be found online for the production line. This is a method of conducting an inspection.
  • Patent Document 2 a plurality of feature points set on the contour of the fracture surface by acquiring three-dimensional data of unevenness from the focusing control information of the CCD camera that images the fracture surface of the rod portion and the cap portion.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a fracture surface inspection device capable of inspecting a fracture surface of a part at high speed and with high accuracy, and a fracture surface inspection method. To do.
  • the fracture surface inspection device of the present invention is a fracture surface inspection device for inspecting a first fracture surface and a second fracture surface caused by fracture division of a part, and the first fracture surface and the above-mentioned fracture surface inspection apparatus.
  • a data acquisition unit that acquires two-dimensional data and three-dimensional data of each of the second fracture surfaces, and a contour that extracts the first contour of the first fracture surface and the second contour of the second fracture surface from the two-dimensional data.
  • the extraction unit, the conversion amount calculation unit that calculates the conversion amount when the second contour is converted to the first contour by affine conversion, and the three-dimensional data of the second fracture surface are affine-converted by the conversion amount.
  • a strain correction unit for calculating the strain correction data and a comparison unit for comparing the three-dimensional data of the first fracture surface with the strain correction data are provided.
  • FIG. 5 is a side view schematically showing the other of the states in which the first fracture surface and the second fracture surface are imaged at different angles with respect to the imaging device.
  • FIG. 1 is a front view and an exploded view of a part to be inspected for a fracture surface according to the present invention.
  • the component in the present embodiment is a connecting rod (hereinafter referred to as a connecting rod 1) as a metal component constituting a general vehicle engine.
  • the part to which the fracture surface inspection according to the present invention is applied may be any component that requires an engagement inspection of two fracture surfaces caused by fracture division, and is not limited to the connecting rod 1.
  • the connecting rod 1 has a small end portion 3 having a piston pin hole 2, a large end portion 5 having a crank pin hole 4, and these small end portions 3 and a large end portion 5. It has a rod 6 and a rod 6 for connecting the rod. Further, the large end portion 5 is divided into a rod portion P1 and a semicircular cap portion P2 so as to sandwich a crank pin (not shown) (FS method: Fracture Splitting). Then, the connecting rod 1 is a rod in a state where the crank pin is sandwiched between the crank pin holes 4 by inserting the bolts 8 into the pair of bolt holes 7 formed so as to communicate the rod portion P1 and the cap portion P2. The portion P1 and the cap portion P2 are fastened. As a result, the connecting rods 1 can be manufactured at low cost by using the irregularities formed on the fracture surfaces of each other for positioning.
  • a pair of first fracture surface FS1 and a pair of second fracture surface FS2 are generated, and a pair of third fracture surfaces are formed.
  • a fracture surface FS3 and a fourth fracture surface FS4 will occur.
  • the shape of each fracture surface when viewed in a plan view is substantially rectangular, and the vertices of the first fracture surface FS1 and the corresponding second fracture surface FS2 are A to D. This will be described as A'to D'.
  • the first fracture surface FS1 and the second fracture surface FS2 will be mainly described, and detailed description of the third fracture surface FS3 and the fourth fracture surface FS4 having the same relationship as both will be omitted. ..
  • the connecting rod 1 In the connecting rod 1 formed by the FS method, if a part of the fracture surface is lost when the rod portion P1 and the cap portion P2 are fractured, there is a gap in the connecting surface where the fracture surfaces of both are recombined. May occur and the strength may decrease. Therefore, the connecting rod 1 needs to perform a fracture surface inspection regarding the state of the fracture surface such as the presence or absence of defects based on the three-dimensional data of the unevenness of each fracture surface.
  • FIG. 2 is an overall configuration diagram of the fracture surface inspection device 10 according to the first embodiment of the present invention.
  • the fracture surface inspection device 10 acquires three-dimensional data on the fracture surface of the inspection target P including the rod portion P1 and the cap portion P2 and performs the fracture surface inspection.
  • the three-dimensional data of the first fracture surface FS1 and the second fracture surface FS2 will be acquired individually, but both may be acquired at the same time, and further, the first fracture surface may be acquired.
  • the three-dimensional data of the FS1 to the fourth fracture surface FS4 may be acquired at the same time.
  • the fracture surface inspection device 10 includes a data acquisition unit 20, a lighting device 30, a transport device 40, and a control device 50.
  • the data acquisition unit 20 acquires the two-dimensional data and the three-dimensional data of the first fracture surface FS1 and the second fracture surface FS2 of the inspection object P, respectively. More specifically, the data acquisition unit 20 according to the present embodiment includes, for example, an image pickup device 21 including a CCD camera and a projection device 22 as a projector. Then, the data acquisition unit 20 acquires two-dimensional data as an image of each fracture surface and three-dimensional data of each fracture surface.
  • the three-dimensional data according to the present embodiment is generated by a known phase shift method in the control device 50.
  • control device 50 projects an optical pattern having a sinusoidal light intensity distribution on the fracture surface of the inspection object P from the projection device 22 while changing the phase of the sinusoidal wave, and the image pickup device 21.
  • a plurality of three-dimensional data generation images of the fracture surface are acquired through the above.
  • the control device 50 utilizes the fact that the light pattern projected on the inspection object P is distorted due to the unevenness of the fracture surface, and based on a plurality of three-dimensional data generation images, the three-dimensional unevenness in the fracture surface Data can be constructed.
  • the lighting device 30 may be used as a light source when acquiring two-dimensional data of the inspection object P by the imaging device 21, and may be used as an auxiliary light source when acquiring three-dimensional data.
  • the illumination light is projected from both sides of the inspection object P, but the number and arrangement of the illumination devices 30 can be appropriately changed according to the conditions.
  • the transport device 40 is composed of, for example, a belt conveyor, and transports the inspection object P at a position for performing a fracture surface inspection, that is, directly under the image pickup device 21 in the present embodiment. At this time, the inspection object P is fixed to the pedestal portion 40a on the transport device 40 so that the fracture surface faces the image pickup device 21.
  • the control device 50 is composed of, for example, a known microcomputer control circuit or a general-purpose computer capable of executing a program stored in advance, and is connected to a data acquisition unit 20, a lighting device 30, and a transfer device 40 to control each connection destination. And while transmitting and receiving signals, the entire fracture surface inspection device 10 is controlled in an integrated manner, such as executing a procedure related to a fracture surface inspection method described later. Further, the control device 50 includes a contour extraction unit 51, a conversion amount calculation unit 52, a distortion correction unit 53, a plane calculation unit 54, a correction amount calculation unit 55, a comparison unit 56, and undulations as functional modules related to data processing. The determination unit 57 is included. The function of each module will be described together with the fracture surface inspection method described later.
  • FIG. 3 is a side view schematically showing a state in which the first fracture surface FS1 and the second fracture surface FS2 are imaged at different angles with respect to the image pickup apparatus 21. More specifically, FIG. 3A shows a case where the first fracture surface FS1 of the rod portion P1 is imaged in a state of being substantially parallel to the lens surface of the image pickup apparatus 21, and the second fracture surface of the cap portion P2. The case where the FS 2 is imaged in a state of being tilted with respect to the lens surface of the image pickup apparatus 21 is shown in FIG. 3B.
  • FIG. 3B when the cap portion P2 is fixed in a slightly inclined state with respect to the pedestal portion 40a, the state as shown in FIG. 3B can occur.
  • FIG. 3B the inclination angle of the second fracture surface FS2 is greatly emphasized.
  • FIGS. 3 and 4 the concept of the image pickup apparatus 21 sampling the inside of the angle of view at an equiangular angle is shown by a radial broken line.
  • FIG. 4 is a side view schematically showing a state in which the first fracture surface FS1 and the second fracture surface FS2 are imaged at different distances from each other with respect to the image pickup apparatus 21. More specifically, FIG. 4A shows a case where the first fracture surface FS1 of the rod portion P1 is imaged in a state relatively close to the lens surface of the image pickup apparatus 21, and the second fracture surface of the cap portion P2. The case where the FS 2 is imaged in a state relatively far from the lens surface of the image pickup apparatus 21 is shown in FIG. 4B.
  • FIG. 4B a state as shown in FIG. 4B.
  • the distance difference between the image pickup apparatus 21 and the first fracture surface FS1 and the second fracture surface FS2 is greatly emphasized.
  • FIG. 5 is a flowchart showing the procedure of the fracture surface inspection method according to the present invention.
  • the control device 50 inspects the fracture surface of the rod portion P1 and the cap portion P2 by executing the program shown in the flowchart of FIG.
  • control device 50 controls the transfer device 40 so as to convey the rod portion P1 directly under the image pickup device 21, and then the first fracture surface FS1 via the image pickup device 21.
  • Acquire two-dimensional data step S1. That is, the imaging device 21 images the first fracture surface FS1 of the rod portion P1.
  • the control device 50 acquires a plurality of three-dimensional data generation images by the phase shift method via the data acquisition unit 20 while the transfer device 40 is stopped, and the three-dimensional data of the first fracture surface FS1. (Step S2). Since there is no change in the positional relationship between the imaging device 21 and the first fracture surface FS1 in steps S1 and S2, the imaging regions of the two-dimensional data and the three-dimensional data captured in both steps are exactly the same.
  • control device 50 controls the transport device 40 so as to transport the cap portion P2 directly under the image pickup device 21, and then acquires the two-dimensional data of the second fracture surface FS2 via the image pickup device 21 (step). S3). That is, the imaging device 21 images the second fracture surface FS2 of the cap portion P2.
  • control device 50 acquires a plurality of three-dimensional data generation images by the phase shift method via the data acquisition unit 20 while the transfer device 40 is stopped, and acquires the three-dimensional data of the second fracture surface FS2. Acquire (step S4). Since there is no change in the positional relationship between the imaging device 21 and the second fracture surface FS2 in steps S3 and S4, the imaging regions of the two-dimensional data and the three-dimensional data captured in both steps are exactly the same. ..
  • the acquisition of the two-dimensional data and the three-dimensional data is performed individually for the first fracture surface FS1 and the second fracture surface FS2, but the first fracture surface FS1 and the second fracture surface FS1 and the second fracture surface FS2.
  • the steps S1 to S4 are performed in any order or in parallel at the same time. May be good (data acquisition process).
  • the contour extraction unit 51 of the control device 50 determines the first of the first fracture surface FS1 in the two-dimensional data of the rod portion P1 and the cap portion P2.
  • the contour and the second contour of the second fracture surface FS2 are extracted, respectively (step S5, contour extraction step).
  • the contour extraction can be performed by using a method such as edge detection generally used in the field of image processing.
  • FIG. 6 is a schematic view showing an example of two-dimensional data of the first fracture surface FS1 and the second fracture surface FS2.
  • the contour extraction unit 51 extracts the rectangular first contour ABCD from the two-dimensional data Img (FS1) of the first fracture surface FS1 at the timing of step S5.
  • the second fracture surface FS2 is inclined and relatively far from the lens surface of the image pickup apparatus 21 as shown in FIGS. 3B and 4B, and is further deviated from the center of the angle of view.
  • the contour extraction unit 51 extracts the trapezoidal second contour A'B'C'D'from the two-dimensional data Img (FS2) of the second fracture surface FS2 at the timing of step S5.
  • the contour of each fracture surface may have another shape depending on the inclination angle and the inclination direction with respect to the image pickup apparatus 21.
  • the first contour of the first fracture surface FS1 is superimposed and shown by a broken line.
  • the first fracture surface FS1 and the second fracture surface FS2 are formed on a plane (XY plane) parallel to the lens surface of the image pickup apparatus 21. It is not possible to simply compare the corresponding position coordinates between them. Therefore, the conversion amount calculation unit 52 of the control device 50 performs affine transformation so that the extracted second contour matches the first contour, and calculates the conversion amount X (affine) at that time (step S6, conversion amount). Calculation process).
  • FIG. 7 is a schematic view showing an example of three-dimensional data of the first fracture surface FS1 and the second fracture surface FS2.
  • the three-dimensional data of the first fracture surface FS1 and the second fracture surface FS2 acquired in the data acquisition step are shown as Vol (FS1) and Vol (FS2), respectively.
  • the strain correction unit 53 converts the three-dimensional data Vol (FS2) of the second fracture surface FS2 in the axial direction of the XY plane as indicated by the arrows Tx and Ty in the drawing, and the conversion amount X (affine). ) Is used to calculate the strain correction data ⁇ Vol (FS2) for the second fracture surface FS2.
  • the strain correction unit 53 performs data complementation processing so that the coordinate positions of the data points in the strain correction data ⁇ Vol (FS2) match the coordinate positions of the three-dimensional data Vol (FS1) of the first fracture surface FS1.
  • Complementary processing can be performed by using a method such as linear interpolation that is generally used in the field of image processing.
  • the control device 50 calculates the magnitude of the inclination angle by the plane calculation step described below, and corrects the distortion in the Z direction perpendicular to the XY plane.
  • the data ⁇ Vol (FS2) may be corrected.
  • FIG. 8 is a schematic view showing a plane calculation process.
  • the plane calculation unit 54 of the control device 50 approximates the first fracture surface FS1 with a plane in order to grasp the relative inclination angles of the three-dimensional data of the first fracture surface FS1 and the second fracture surface FS2.
  • a second minimum squared plane Sls2 that approximates the plane Sls1 and the second fracture surface FS2 with a plane is calculated (step S8, plane calculation step).
  • the plane calculation unit 54 calculates the least squares error with the plane whose inclination angle is a variable with respect to the three-dimensional data of the first fracture surface FS1 to square the first fracture surface FS1.
  • the first least squares plane Sls1 of the inclination angle that minimizes the error is specified.
  • the plane calculation unit 54 also specifies the second least squares plane Sls2 of the inclination angle that minimizes the square error with the second fracture surface FS2 with respect to the three-dimensional data of the second fracture surface FS2.
  • the plane calculation unit 54 converts the second minimum squared plane Sls2 into the first minimum squared plane Sls1 in order to align the height information (Z direction) perpendicular to the XY plane in the three-dimensional data. angle) is calculated (step S9, correction amount calculation step). Since the method of calculating the least squares error itself is known, detailed description thereof will be omitted here. Also, at least one of the least squares errors will be used in later steps.
  • FIG. 9 is a schematic view showing a process of correcting the distortion correction data ⁇ Vol (FS2) of the second fracture surface FS2 according to the inclination angle.
  • the distortion correction unit 53 of the control device 50 indicates each data point in the distortion correction data ⁇ Vol (FS2) of the second fracture surface FS2 with an arrow Tz in the drawing based on the correction amount X (angle).
  • the distortion correction data ⁇ Vol (FS2) corrected in the Z direction is calculated (step S10).
  • the unevenness of the second fracture surface FS2 can be compared with the three-dimensional data Vol (FS1) of the first fracture surface FS1 even when the inclination angle relative to the first fracture surface FS1 is relatively large. It will be calculated as distortion correction data ⁇ Vol (FS2).
  • the comparison unit 56 of the control device 50 determines the three-dimensional data Vol (FS1) of the first fracture surface FS1 and the strain correction data ⁇ Vol of the second fracture surface FS2. By comparing (FS2) with each corresponding coordinate position, the correspondence relationship between the first fracture surface FS1 and the second fracture surface FS2 is calculated. More specifically, the comparison unit 56 calculates the difference value (missing amount) between the three-dimensional data Vol (FS1) of the first fracture surface FS1 and the strain correction data ⁇ Vol (FS2), and the difference. It is determined whether or not the value is smaller than a predetermined loss threshold value arbitrarily set in advance (step S11, comparison step). By determining that the difference value is smaller than the loss threshold value in step S11 (Yes in step S11), it can be confirmed that the amount of loss when the rod portion P1 and the cap portion P2 are recombined is sufficiently small.
  • the control device 50 determines whether or not there are sufficient irregularities on each fracture surface.
  • the determination unit 57 can determine that sufficient unevenness exists in each fracture surface (step S12, undulations). Judgment process). Thereby, the control device 50 can evaluate whether or not the undulations of each fracture surface are sufficient in addition to the defect evaluation in each fracture surface.
  • control device 50 is in a good state in which each fracture surface of the inspection object P is suitable for recombination when both the above-mentioned defect evaluation and undulation evaluation of each fracture surface are good (Yes in step S12). If there is, an OK determination is made (step S13), and a series of programs related to the fracture surface inspection method is completed.
  • each fracture surface of the inspection object P is not in a good state.
  • Step S14 a series of programs related to the fracture surface inspection method is completed. When a plurality of inspection objects P are continuously inspected, the program may be continuously executed.
  • the fracture surface inspection device 10 is based on the two-dimensional data Img (FS2) and Img (FS1) of the first fracture surface FS1 and the second fracture surface FS2 to be inspected, respectively.
  • the first contour and the second contour are calculated respectively, and the three-dimensional data Vol (FS2) of the second fracture surface FS2 is affine-transformed using the conversion amount X (affine) that transforms the second contour into the first contour.
  • the strain correction data ⁇ Vol (FS2) for the second fracture surface obtained at this time is the coordinates of the three-dimensional data Vol (FS1) of the first fracture surface FS1 and the data points when viewed in a plan view from the direction in which the three-dimensional data is acquired. Will match each other.
  • the fracture surface inspection device 10 can compare the three-dimensional data Vol (FS1) of the first fracture surface FS1 and the distortion correction data ⁇ Vol (FS2) of the second fracture surface FS2 for each data point. Further, since the calculation of the conversion amount X (affine) related to the affine transformation and the affine transformation to the distortion correction data ⁇ Vol (FS2) are calculated only in the two-dimensional coordinates, the arithmetic processing can be speeded up. .. Therefore, according to the fracture surface inspection device 10 according to the first embodiment of the present invention, it is possible to inspect the fracture surface of a part at high speed and with high accuracy.
  • the fracture surface inspection device 10 since the two-dimensional data and the three-dimensional data of each fracture surface are acquired by the same imaging device 21, the imaging regions of both are sure to be obtained. It will be a perfect match, and the fracture surface of the part can be inspected at higher speed and with higher accuracy.
  • the first minimum squared plane Sls1 of the first fracture surface FS1 and the second minimum squared plane Sls2 of the second fracture surface FS2 are calculated, respectively.
  • the relative inclination angle between the first fracture surface FS1 and the second fracture surface FS2 is relatively large with respect to the acquisition unit 20, the fracture surface of the part can be inspected at higher speed and with higher accuracy. ..
  • the minimum square error between each fracture surface and the least squares plane as an approximate plane is calculated based on the three-dimensional data of each fracture surface. Therefore, it can be determined whether or not the unevenness of each fracture surface has sufficient undulations suitable for the FS method.
  • the fracture surface inspection device 60 according to the second embodiment of the present invention is different from the first embodiment in the configuration of the data acquisition unit 20 in the fracture surface inspection device 10 of the above-described embodiment and the data acquisition method of the inspection object P.
  • the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
  • FIG. 10 is an overall configuration diagram of the fracture surface inspection device 60 according to the second embodiment of the present invention.
  • the data acquisition unit 20 of the fracture surface inspection device 60 is an imaging device 21 similar to the first embodiment arranged so as to acquire two-dimensional data of the fracture surface from diagonally above the inspection object P, and the inspection object P. It is composed of a 3D measuring device 23 for acquiring three-dimensional data of the fracture surface from directly above.
  • the 3D measuring device 23 for example, a known non-contact surface measuring machine using a laser can be adopted.
  • the two-dimensional data and the three-dimensional data of each fracture surface are independently acquired by the imaging device 21 and the 3D measuring device 23, respectively.
  • the image pickup device 21 and the 3D measurement device 23 are set so that the relative arrangement and the relative angle of the angle of view are fixed and known so that the measurement area can be aligned by the coordinate conversion.
  • the fracture surface inspection device 60 does not have to acquire the two-dimensional data and the three-dimensional data of each fracture surface from the same position at the same angle, but the procedure of the fracture surface inspection method shown in FIG. Can be applied as it is. Therefore, the fracture surface inspection device 60 converts the strain correction data ⁇ Vol (FS2) by converting the three-dimensional data Vol (FS2) of the second fracture surface FS2 with the conversion amount X (affine), as in the first embodiment. It can be calculated, and the fracture surface of a part can be inspected at high speed and with high accuracy.
  • the present invention is not limited to the above embodiment.
  • the contour shape when each fracture surface of the connecting rod 1 is viewed in a plan view is illustrated as a rectangle, but the actual contour shape is not limited to this and can take various shapes.
  • a method of acquiring three-dimensional data by the phase shift method is illustrated, but if the three-dimensional data can be acquired by the imaging device 21 for acquiring two-dimensional data, another method can be used. There may be.
  • the embodiment in which the second fracture surface FS2 of the rod portion P2 is converted to match the first fracture surface FS1 of the cap portion P1 is illustrated, but the first fracture surface FS1 of the cap portion P1 is illustrated. May be converted to match the second fracture surface FS2 of the rod portion P2. Then, in the first embodiment described above, in the fracture surface inspection method shown in FIG.
  • the strain correction data ⁇ Vol (FS2) may be calculated from the three-dimensional data Vol (FS2) of the second fracture surface FS2 by the new correction amount obtained by synthesizing the angle).
  • the first aspect of the present invention is a fracture surface inspection device for inspecting a first fracture surface and a second fracture surface caused by fracture division of a part, and two of the first fracture surface and the second fracture surface, respectively.
  • a data acquisition unit that acquires dimensional data and three-dimensional data
  • a contour extraction unit that extracts the first contour of the first fracture surface and the second contour of the second fracture surface from the two-dimensional data, and the second contour.
  • the conversion amount calculation unit that calculates the conversion amount when converting to the first contour by affine conversion, and the three-dimensional data of the second fracture surface are affine-converted by the conversion amount to calculate the distortion correction data.
  • It is a fracture surface inspection apparatus including a strain correction unit and a comparison unit for comparing the three-dimensional data of the first fracture surface and the strain correction data.
  • the fracture surface inspection device calculates the first contour and the second contour of the first fracture surface and the second fracture surface to be inspected, respectively, based on the two-dimensional data, and converts the second contour into the first contour by affine transformation.
  • the three-dimensional data of the second fracture surface is affine-transformed using the amount of conversion to be performed.
  • the strain correction data for the second fracture surface obtained at this time has the same coordinates as the three-dimensional data of the first fracture surface and the data points when viewed in a plan view from the direction in which the three-dimensional data is acquired. Therefore, the fracture surface inspection device can compare the three-dimensional data of the first fracture surface and the distortion correction data of the second fracture surface for each data point.
  • the fracture surface inspection device since the calculation of the conversion amount related to the affine transformation and the affine transformation to the distortion correction data are calculated only in the two-dimensional coordinates, the arithmetic processing can be speeded up. Therefore, according to the fracture surface inspection device according to the first aspect of the present invention, the fracture surface of a part can be inspected at high speed and with high accuracy.
  • a second aspect of the present invention is, in the first aspect of the present invention described above, the data acquisition unit acquires the two-dimensional data and the three-dimensional data from the same position at the same angle. It is a device.
  • the two-dimensional data and the three-dimensional data of each fracture surface are acquired by, for example, the same imaging apparatus, so that the imaging regions of both are always completely matched. Therefore, it is possible to inspect the fracture surface of the part at higher speed and with higher accuracy.
  • a third aspect of the present invention is the first minimum squared plane of the first fracture surface and the second minimum squared plane of the second fracture surface from the three-dimensional data in the first or second aspect of the present invention described above.
  • a plane calculation unit for calculating the first minimum squared plane and a correction amount calculation unit for calculating the correction amount when converting the first minimum squared plane to the second minimum squared plane, and the comparison unit is the first fracture surface.
  • This is a fracture surface inspection device that compares the three-dimensional data of the above with the strain correction data corrected by the correction amount.
  • the minimum squared plane of each fracture surface is calculated, and the strain correction data is based on the correction amount corresponding to the relative inclination angle of both. Since each data point is corrected in the direction perpendicular to the affine transformation, it is faster and more accurate even when the relative inclination angle between the first fracture surface and the second fracture surface is relatively large. You can inspect the fracture surface of the part with.
  • a fourth aspect of the present invention defines, in any one of the first to third aspects of the present invention described above, a least squares error with respect to at least one of the first fracture surface and the second fracture surface. It is a fracture surface inspection device provided with an undulation determination unit for comparison with an error threshold.
  • each fracture surface is calculated by calculating the minimum square error between each fracture surface and the least squares plane as an approximate plane based on the three-dimensional data of each fracture surface. It can be determined whether or not the unevenness of the fracture surface has sufficient undulations suitable for the FS method.
  • a fifth aspect of the present invention is a fracture surface inspection method for inspecting a first fracture surface and a second fracture surface caused by fracture division of a part, the first fracture surface and the second fracture surface, respectively.
  • the conversion amount calculation step of calculating the conversion amount when converting to the first contour by affine conversion, and the distortion correction data are calculated by performing the affine conversion of the three-dimensional data of the second fracture surface with the conversion amount.
  • This is a fracture surface inspection method including a strain correction step and a comparison step of comparing the three-dimensional data of the first fracture surface with the strain correction data.
  • the first contour and the second contour are calculated based on the two-dimensional data, respectively, and the second contour is set as the first contour.
  • the three-dimensional data of the second fracture surface is affine-transformed using the conversion amount to be affine-transformed.
  • the strain correction data for the second fracture surface obtained at this time has the same coordinates as the three-dimensional data of the first fracture surface and the data points when viewed in a plan view from the direction in which the three-dimensional data is acquired. Therefore, according to the fracture surface inspection method, the three-dimensional data of the first fracture surface and the distortion correction data of the second fracture surface can be compared for each data point.
  • the fracture surface inspection method according to the fifth aspect of the present invention, the fracture surface of a part can be inspected at high speed and with high accuracy.
  • a sixth aspect of the present invention is that in the fifth aspect of the present invention described above, in the data acquisition step, the two-dimensional data and the three-dimensional data are acquired from the same position at the same angle. This is a cross-section inspection method.
  • the two-dimensional data and the three-dimensional data of each fracture surface are acquired by, for example, the same imaging apparatus, so that the imaging regions of both are always completely matched. Therefore, it is possible to inspect the fracture surface of the part at higher speed and with higher accuracy.
  • a seventh aspect of the present invention is the first minimum squared plane of the first fracture surface and the second minimum squared plane of the second fracture surface from the three-dimensional data in the fifth or sixth aspect of the present invention described above. Including the plane calculation step of calculating the first minimum square plane and the correction amount calculation step of calculating the correction amount when converting the first minimum squared plane to the second minimum squared plane, in the comparison step, the first failure.
  • This is a fracture surface inspection method for comparing the three-dimensional data of a cross section with the strain correction data corrected by the correction amount.
  • the minimum square plane of each fracture surface is calculated, and the strain correction data is based on the correction amount corresponding to the relative inclination angle of both. Since each data point is corrected in the direction perpendicular to the affine transformation, even when the relative inclination angle between the first fracture surface and the second fracture surface is relatively large with respect to the data acquisition unit. , It is possible to inspect the fracture surface of a part at higher speed and with higher accuracy.
  • the least squares error with respect to at least one of the first fracture surface and the second fracture surface is defined as a predetermined error threshold. It is a fracture surface inspection method including a step of determining undulations to be compared.
  • each fracture surface is calculated by calculating the minimum square error between each fracture surface and the least squares plane as an approximate plane based on the three-dimensional data of each fracture surface. It can be determined whether or not the unevenness of the fracture surface has sufficient undulations suitable for the FS method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

破断分割により生じる第1破断面FS1及び第2破断面FS2を検査する破断面検査装置10は、各破断面のそれぞれの二次元データ及び三次元データを取得するデータ取得部20と、二次元データから第1破断面FS1の第1輪郭及び第2破断面FS2の第2輪郭を抽出する輪郭抽出部51と、第2輪郭をアフィン変換して第1輪郭に変換するときの変換量X(affine)を算出する変換量算出部52と、第2破断面FS2の三次元データを変換量X(affine)でアフィン変換して歪み補正データを算出する歪み補正部53と、第1破断面FS1の三次元データと歪み補正データとを比較する比較部56と、を備える。

Description

破断面検査装置及び破断面検査方法
 本発明は、破断面検査装置及び破断面検査方法に関する。
 自動車等のエンジンに使用されるコネクティングロッド(コンロッド)は、ピストンとクランクシャフトとを連結し、当該ピストンの往復運動を当該クランクシャフトの回転運動に変換する部材として広く使用されている。コンロッドは、いわゆるFS(Fracture Splitting)工法により、大端部をロッド部とキャップ部とに破断して分割(半割)し、クランクシャフトに組み付けて互いをボルト締結することにより、互いの破断面に生じた凹凸を位置決めに用いて安価に製造することができる。
 ここで、FS工法により形成されるコンロッドは、ロッド部とキャップ部とに破断するときに破断面の一部が欠損した場合には、両者の破断面を再結合させた結合面において空隙が生じて強度が低下することになる。このような問題に対し、例えば特許文献1及び2に開示された従来技術では、コンロッドの破断面の凹凸形状を測定し、破断時の欠損を評価する破断面検査方法が用いられている。
 より具体的には、特許文献1の従来技術は、破断分割したロッド部及びキャップ部を固定用治具に配置すると共に、破断面に照射したレーザ光の投射像を異なる角度から撮像することにより凹凸の三次元データを取得し、一方の破断面の撮像データを上下左右に反転して他方の撮像データとの凹凸高さの差分を算出することにより、生産ラインに対してオンラインで破断面の検査を行う方法である。
 また、特許文献2の従来技術は、ロッド部及びキャップ部の破断面を撮像するCCDカメラの合焦制御情報により凹凸の三次元データを取得し、破断面の輪郭上に設定した複数の特徴点から双方に共通する基準面を設定すると共に、当該基準面と破断面との距離を測定点ごとにロッド部とキャップ部とで比較することにより、複雑なプログラムを用いることなく破断面の検査を行う方法である。
特開2017-211195号公報 特開2012-73142号公報
 しかしながら、上記の各従来技術では、撮像装置に対する破断面の傾斜角及び距離がロッド部とキャップ部とで互いに異なる場合、当該撮像装置の画角に対する撮像破断面の比率も異なることから、対応する2つの破断面でデータ点の座標が一致しないことにより測定精度が低下する虞が生じる。特に、特許文献1の従来技術では、同時に測定したロッド部及びキャップ部の破断面の三次元データにおいて、撮像データの平面上の位置座標により破断面の領域を特定しているため、データ取得の時点で既に破断面の座標が一致しない場合には、ロッド部とキャップ部との対応するデータ点が全てずれてしまい、適切な破断面検査を行うことができない。
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、高速かつ高精度で部品の破断面を検査することができる破断面検査装置、及び破断面検査方法を提供することにある。
 上記した目的を達成するため、本発明の破断面検査装置は、部品の破断分割により生じる第1破断面及び第2破断面を検査する破断面検査装置であって、前記第1破断面及び前記第2破断面のそれぞれの二次元データ及び三次元データを取得するデータ取得部と、前記二次元データから前記第1破断面の第1輪郭及び前記第2破断面の第2輪郭を抽出する輪郭抽出部と、前記第2輪郭をアフィン変換して前記第1輪郭に変換するときの変換量を算出する変換量算出部と、前記第2破断面の前記三次元データを前記変換量でアフィン変換して歪み補正データを算出する歪み補正部と、前記第1破断面の前記三次元データと前記歪み補正データとを比較する比較部と、を備える。
 本発明によれば、高速かつ高精度で部品の破断面を検査することができる。
本発明に係る破断面検査の対象となる部品の正面図である。 本発明に係る破断面検査の対象となる部品の分解図である。 本発明の第1実施形態に係る破断面検査装置の全体構成図である。 第1破断面及び第2破断面が撮像装置に対して互いに異なる角度で撮像される状態の一方を模式的に示す側面図である。 第1破断面及び第2破断面が撮像装置に対して互いに異なる角度で撮像される状態の他方を模式的に示す側面図である。 第1破断面及び第2破断面が撮像装置に対して互いに異なる距離で撮像される状態の一方を模式的に示す側面図である。 第1破断面及び第2破断面が撮像装置に対して互いに異なる距離で撮像される状態の一方を模式的に示す側面図である。 本発明に係る破断面検査方法の手順を示すフローチャートである。 第1破断面及び第2破断面の二次元データの一例を表す模式図である。 第1破断面及び第2破断面の三次元データの一例を表す模式図である。 平面算出工程を示す模式図である。 第2破断面の歪み補正データを傾斜角に応じて補正する工程を示す模式図である。 本発明の第2実施形態に係る破断面検査装置の全体構成図である。
 以下、図面を参照し、本発明の実施の形態について詳細に説明する。尚、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。
<第1実施形態>
 図1は、本発明に係る破断面検査の対象となる部品の正面図及び分解図である。より具体的には、本実施形態における部品は、一般の車両用エンジンを構成する金属製部品としてのコネクティングロッド(以下、コンロッド1という)である。尚、本発明に係る破断面検査が適用される部品は、破断分割により生じる2つの破断面の噛み合わせ検査を要する部品であればよく、コンロッド1に限定されるものではない。
 本実施形態に係るコンロッド1は、図1Aに示すように、ピストンピン孔2を有する小端部3と、クランクピン孔4を有する大端部5と、これら小端部3と大端部5とを連結するロッド6とを有している。また、大端部5は、図示しないクランクピンを挟み込めるよう、ロッド部P1と半円弧形のキャップ部P2とに分割される(FS工法:Fracture Splitting)。そして、コンロッド1は、ロッド部P1とキャップ部P2とを連通するように形成された一対のボルト孔7にボルト8をそれぞれ挿入することにより、クランクピンをクランクピン孔4に挟み込んだ状態でロッド部P1とキャップ部P2とが締結される。これにより、コンロッド1は、互いの破断面に生じた凹凸を位置決めに用いて安価に製造することができる。
 ここで、コンロッド1は、ロッド部P1とキャップ部P2とを破断分割することにより、図1Bに示すように、一対の第1破断面FS1及び第2破断面FS2が生じると共に、一対の第3破断面FS3及び第4破断面FS4が生じることになる。また、本実施形態においては、平面視した場合の各破断面の形状が略長方形であるものとし、第1破断面FS1及びこれに対応する第2破断面FS2のそれぞれの頂点をA~D、A´~D´として説明する。尚、以下では、主に第1破断面FS1及び第2破断面FS2について説明することとし、両者と同様の関係にある第3破断面FS3及び第4破断面FS4については詳細な説明を省略する。
 ところで、FS工法により形成されるコンロッド1は、ロッド部P1とキャップ部P2とに破断するときに破断面の一部が欠損した場合には、両者の破断面を再結合させた結合面において空隙が生じて強度が低下する虞が生じる。そのため、コンロッド1は、各破断面の凹凸の三次元データに基づいて、欠損の有無等の破断面の状態に関する破断面検査を行う必要が生じる。
 図2は、本発明の第1実施形態に係る破断面検査装置10の全体構成図である。破断面検査装置10は、ロッド部P1及びキャップ部P2からなる検査対象物Pの破断面における三次元データを取得して破断面検査を行う。ここで、本実施形態においては、第1破断面FS1及び第2破断面FS2の三次元データを個別に取得するものとして説明するが、両者を同時に取得してもよく、更には第1破断面FS1~第4破断面FS4の三次元データを同時に取得してもよい。破断面検査装置10は、データ取得部20、照明装置30、搬送装置40、及び制御装置50を備える。
 データ取得部20は、検査対象物Pの第1破断面FS1及び第2破断面FS2のそれぞれの二次元データ及び三次元データを取得する。より具体的には、本実施形態に係るデータ取得部20は、例えばCCDカメラからなる撮像装置21、及びプロジェクタとしての投射装置22を含む。そして、データ取得部20は、各破断面の画像としての二次元データを取得すると共に、各破断面の三次元データを取得する。本実施形態に係る当該三次元データは、制御装置50において、公知の位相シフト法により生成される。
 より具体的には、制御装置50は、投射装置22から検査対象物Pの破断面に対し正弦波状の光強度分布を有する光パターンを当該正弦波の位相を変化させながら投射し、撮像装置21を介して当該破断面の複数の三次元データ生成用画像を取得する。そして、制御装置50は、検査対象物Pに投射された光パターンが破断面の凹凸に伴い歪むことを利用して、複数の三次元データ生成用画像に基づいて、破断面における凹凸の三次元データを構成することができる。
 照明装置30は、撮像装置21によって検査対象物Pの二次元データを取得する場合の光源として用いられると共に、三次元データを取得する場合の補助光源として用いてもよい。尚、本実施形態においては、検査対象物Pの両側から照明光を投射しているが、照明装置30の数及び配置は、条件に応じて適宜変更することができる。
 搬送装置40は、例えばベルトコンベアからなり、破断面検査を行うための位置、すなわち本実施形態においては撮像装置21の直下に検査対象物Pを搬送する。このとき、検査対象物Pは、破断面が撮像装置21を向くように搬送装置40上の台座部40aに固定されている。
 制御装置50は、例えば予め記憶されたプログラムを実行可能な公知のマイコン制御回路又は汎用計算機からなり、データ取得部20、照明装置30、及び搬送装置40に接続されることにより各接続先の制御及び信号送受を行いつつ、後述する破断面検査方法に係る手順を実行するなど、破断面検査装置10の全体を統括制御する。また、制御装置50は、データ処理に係る機能的なモジュールとして、輪郭抽出部51、変換量算出部52、歪み補正部53、平面算出部54、補正量算出部55、比較部56、及び起伏判定部57を含む。各モジュールの働きについては後述する破断面検査方法と共に説明する。
 次に、破断面検査における課題について図3及び図4を用いて説明する。図3は、第1破断面FS1及び第2破断面FS2が撮像装置21に対して互いに異なる角度で撮像される状態を模式的に示す側面図である。より具体的には、ロッド部P1の第1破断面FS1が撮像装置21のレンズ面に対して略平行となる状態で撮像される場合が図3Aで表され、キャップ部P2の第2破断面FS2が撮像装置21のレンズ面に対して傾斜した状態で撮像される場合が図3Bで表されている。例えば、キャップ部P2が台座部40aに対して僅かに傾斜した状態で固定されている場合等に図3Bのような状態となり得る。尚、図3Bでは、第2破断面FS2の傾斜角を大幅に強調して示している。また、図3及び図4においては、撮像装置21が画角内を等角でサンプリングする概念を放射状の破線で示している。
 第1破断面FS1及び第2破断面FS2のそれぞれが図3に示される状態で撮像された場合、各破断面の撮像画像におけるデータ数が異なるほか、仮に対応する点A及び点A´の位置座標を揃えるように平行移動させたとしても、対応する2つの破断面でデータ点の座標がずれて一致しなくなってしまい、対応する位置どうしの比較ができなくなってしまう。更に、ロッド部P1及びキャップ部P2は、破断分割の際に大端部5に対して破断面自体が傾斜して形成されることもあるため、台座部40aに固定される際の傾斜と相まって、両者の比較が一層困難になる。
 図4は、第1破断面FS1及び第2破断面FS2が撮像装置21に対して互いに異なる距離で撮像される状態を模式的に示す側面図である。より具体的には、ロッド部P1の第1破断面FS1が撮像装置21のレンズ面に対して相対的に近い状態で撮像される場合が図4Aで表され、キャップ部P2の第2破断面FS2が撮像装置21のレンズ面に対して相対的に遠い状態で撮像される場合が図4Bで表されている。例えば、ロッド部P1とキャップ部P2との形状の違いに伴って台座部40aへの固定形態が異なる場合や、大端部5における破断位置が僅かにずれた場合等に図4Bのような状態となり得る。尚、図4では、撮像装置21から第1破断面FS1及び第2破断面FS2までのそれぞれの距離差を大幅に強調して示している。
 第1破断面FS1及び第2破断面FS2のそれぞれが図4に示される状態で撮像された場合、各破断面の撮像画像におけるデータ数が異なるほか、仮に対応する点A及び点A´の位置座標を揃えるように平行移動させたとしても、対応する2つの破断面でデータ点の座標がずれて一致しなくなってしまい、やはり対応する位置どうしの比較ができなくなってしまう。
 続いて、破断面検査における上記課題を解決するための本発明の破断面検査方法について説明する。図5は、本発明に係る破断面検査方法の手順を示すフローチャートである。制御装置50は、図5のフローチャートに示すプログラムを実行することにより、ロッド部P1及びキャップ部P2の破断面を検査する。
 破断面検査方法に係るプログラムがスタートすると、制御装置50は、撮像装置21の直下にロッド部P1を搬送するよう搬送装置40を制御した上で、撮像装置21を介して第1破断面FS1の二次元データを取得する(ステップS1)。すなわち、撮像装置21は、ロッド部P1の第1破断面FS1を撮像する。
 続いて、制御装置50は、搬送装置40を停止させたまま、データ取得部20を介して位相シフト法により複数の三次元データ生成用画像を取得すると共に、第1破断面FS1の三次元データを取得する(ステップS2)。尚、ステップS1及びステップS2における撮像装置21及び第1破断面FS1の位置関係に変動はないため、両ステップで撮像された二次元データと三次元データとの撮像領域は全く同じものとなる。
 次に、制御装置50は、撮像装置21の直下にキャップ部P2を搬送するよう搬送装置40を制御した上で、撮像装置21を介して第2破断面FS2の二次元データを取得する(ステップS3)。すなわち、撮像装置21は、キャップ部P2の第2破断面FS2を撮像する。
 また、制御装置50は、搬送装置40を停止させたまま、データ取得部20を介して位相シフト法により複数の三次元データ生成用画像を取得すると共に、第2破断面FS2の三次元データを取得する(ステップS4)。尚、ステップS3及びステップS4における撮像装置21及び第2破断面FS2の位置関係についても変動はないため、両ステップで撮像された二次元データと三次元データとの撮像領域は全く同じものとなる。
 ここで、本実施形態においては、二次元データ及び三次元データの取得を第1破断面FS1及び第2破断面FS2に対して個別に行なっているが、第1破断面FS1及び第2破断面FS2のそれぞれに対して、データ取得部20が二次元データ及び三次元データを同一の位置から同一の角度で取得する限り、ステップS1乃至ステップS4の順序は問わず、又は並行して同時に行なってもよい(データ取得工程)。
 各破断面の二次元データ及び三次元データが取得されると、制御装置50の輪郭抽出部51は、ロッド部P1及びキャップ部P2のそれぞれの二次元データにおいて、第1破断面FS1の第1輪郭及び第2破断面FS2の第2輪郭をそれぞれ抽出する(ステップS5、輪郭抽出工程)。輪郭抽出は、画像処理分野で一般的に使用されるエッジ検出等の手法を用いて行うことができる。
 図6は、第1破断面FS1及び第2破断面FS2の二次元データの一例を表す模式図である。ここで、本実施形態においては、第1破断面FS1は、例えば図4Aに示されるように撮像装置21のレンズ面に対して略平行に配置されている場合には、図6においてImg(FS1)で示されるような第1破断面FS1の二次元データが取得される。この場合、輪郭抽出部51は、ステップS5のタイミングにおいて、第1破断面FS1の二次元データImg(FS1)から長方形の第1輪郭ABCDを抽出することになる。
 これに対し、第2破断面FS2は、例えば図3B及び図4Bに示されるように撮像装置21のレンズ面に対して傾斜し且つ相対的に遠くに配置され、更に画角中心からずれた状態で撮像される場合には、図6において第2破断面FS2の二次元データImg(FS2)で示されるような二次元データが取得される。この場合、輪郭抽出部51は、ステップS5のタイミングにおいて、第2破断面FS2の二次元データImg(FS2)から台形の第2輪郭A´B´C´D´を抽出することになる。尚、各破断面の輪郭は、撮像装置21に対する傾斜角及び傾斜方向により他の形状にもなり得る。
 ここで、図6における第2破断面FS2の二次元データImg(FS2)には、破線によって第1破断面FS1の第1輪郭を重ねて示している。このように、第1輪郭と第2輪郭とが互いに異なる場合には、撮像装置21のレンズ面に対して平行な平面(XY平面)上において、第1破断面FS1と第2破断面FS2との間で対応する位置座標どうしを単純に比較できないことになる。そのため、制御装置50の変換量算出部52は、抽出された第2輪郭を第1輪郭に一致させるようにアフィン変換し、そのときの変換量X(affine)を算出する(ステップS6、変換量算出工程)。
 次に、制御装置50の歪み補正部53は、二次元データに基づいて算出された変換量X(affine)を使用して、第2破断面FS2の三次元データをアフィン変換する(ステップS7、歪み補正工程)。図7は、第1破断面FS1及び第2破断面FS2の三次元データの一例を表す模式図である。ここで、図7においては、データ取得工程において取得された第1破断面FS1及び第2破断面FS2の三次元データをそれぞれVol(FS1)、Vol(FS2)として示している。
 歪み補正工程においては、歪み補正部53は、第2破断面FS2の三次元データVol(FS2)に対し、図中の矢印Tx、Tyで示すようにXY平面の軸方向に変換量X(affine)でアフィン変換することで、第2破断面FS2についての歪み補正データαVol(FS2)を算出する。このとき、歪み補正部53は、歪み補正データαVol(FS2)におけるデータ点の座標位置が第1破断面FS1の三次元データVol(FS1)の座標位置のそれぞれと一致するように補完処理によりデータ数を増加させている。補完処理については、画像処理分野で一般的に使用される線形補完等の手法を用いて行うことができる。
 ここで、撮像装置21のレンズ面に対する第1破断面FS1と第2破断面FS2との相対的な傾斜角が無視できる程度に小さい場合には、第1破断面FS1の三次元データVol(FS1)と第2破断面FS2の歪み補正データαVol(FS2)とを比較することにより破断面検査を行うことができる。一方、当該傾斜角が無視できない程度に大きい場合には、制御装置50は、次に説明する平面算出工程により当該傾斜角の大きさを算出し、XY平面に垂直なZ方向に対して歪み補正データαVol(FS2)を補正してもよい。
 図8は、平面算出工程を示す模式図である。制御装置50の平面算出部54は、第1破断面FS1及び第2破断面FS2の三次元データの相対的な傾斜角を把握するため、第1破断面FS1を平面で近似する第1最小二乗平面Sls1と第2破断面FS2を平面で近似する第2最小二乗平面Sls2とを算出する(ステップS8、平面算出工程)。
 より具体的には、平面算出部54は、第1破断面FS1の三次元データに対し、傾斜角を変数とする平面との最小二乗誤差を算出することにより、第1破断面FS1との二乗誤差が最小となる傾斜角の第1最小二乗平面Sls1を特定する。また、平面算出部54は、第2破断面FS2の三次元データに対しても同様に、第2破断面FS2との二乗誤差が最小となる傾斜角の第2最小二乗平面Sls2を特定する。これにより平面算出部54は、三次元データにおいてXY平面に垂直な高さ情報(Z方向)を揃えるため、第2最小二乗平面Sls2を第1最小二乗平面Sls1に変換するときの補正量X(angle)を算出する(ステップS9、補正量算出工程)。尚、最小二乗誤差の算出方法自体については公知であるため、ここでは詳細な説明を省略する。また、それぞれの最小二乗誤差のうち少なくとも一方は、後の工程においても使用する。
 図9は、第2破断面FS2の歪み補正データαVol(FS2)を傾斜角に応じて補正する工程を示す模式図である。ここでは、制御装置50の歪み補正部53は、第2破断面FS2の歪み補正データαVol(FS2)におけるそれぞれのデータ点を、補正量X(angle)に基づいて図中の矢印Tzで示すようにZ方向に補正することで、Z方向に補正された歪み補正データβVol(FS2)を算出する(ステップS10)。これにより、第2破断面FS2の凹凸は、第1破断面FS1に対する相対的な傾斜角が比較的大きい場合であっても、第1破断面FS1の三次元データVol(FS1)と比較可能な歪み補正データβVol(FS2)として算出されることになる。
 そして、ステップS10において歪み補正データβVol(FS2)が得られると、制御装置50の比較部56は、第1破断面FS1の三次元データVol(FS1)と第2破断面FS2の歪み補正データβVol(FS2)とを対応する座標位置ごとに比較することにより、第1破断面FS1と第2破断面FS2との凹凸形状の対応関係を算出する。より具体的には、比較部56は、第1破断面FS1の三次元データVol(FS1)と歪み補正データβVol(FS2)との破断面どうしの差分値(欠損量)を算出し、当該差分値が予め任意に設定される所定の欠損閾値よりも小さいか否かを判定する(ステップS11、比較工程)。ステップS11において差分値が欠損閾値よりも小さいと判定されることにより(ステップS11でYes)、ロッド部P1とキャップ部P2とを再結合させる場合の欠損量が十分に少ないことが確認できる。
 ところで、第1破断面FS1及び第2破断面FS2の欠損量が十分に少ない状態であっても、各破断面の凹凸が極めて小さく平坦度が高い場合には、各破断面の互いの凹凸を位置決めに用いるFS工法の効果を十分に発揮できない可能性が生じる。そのため、制御装置50は、上記の欠損評価に加え、各破断面に十分な凹凸が存在するか否かの起伏判定を行う。
 より具体的には、平面算出工程において算出された第1破断面FS1及び第2破断面FS2の少なくとも一方の最小二乗誤差を破断面の凹凸の指標とすることができることから、制御装置50の起伏判定部57は、当該最小二乗誤差が予め任意に設定される所定の誤差閾値よりも大きい場合に、各破断面に十分な凹凸が存在しているものと判定することができる(ステップS12、起伏判定工程)。これにより、制御装置50は、各破断面における欠損評価に加え、各破断面の起伏が十分か否かを評価することができる。
 そして、制御装置50は、各破断面の上記した欠損評価及び起伏評価が共に良好である場合に(ステップS12でYes)、検査対象物Pの各破断面が再結合に適した良好な状態であるとしてOK判定を行い(ステップS13)、破断面検査方法に係る一連のプログラムを終了する。
 一方、制御装置50は、各破断面の上記した欠損評価及び起伏評価のいずれかが良好でない場合には(ステップS11又はステップS12でNo)、検査対象物Pの各破断面が良好な状態でないとしてNG判定を行い(ステップS14)、破断面検査方法に係る一連のプログラムを終了する。尚、複数の検査対象物Pを連続的に検査する場合には、当該プログラムを連続的に実行してもよい。
 以上のように、本発明に係る破断面検査装置10は、検査対象となる第1破断面FS1及び第2破断面FS2について、それぞれの二次元データImg(FS2)、Img(FS1)に基づいて第1輪郭及び第2輪郭をそれぞれ算出すると共に、第2輪郭を第1輪郭にアフィン変換する変換量X(affine)を用いて第2破断面FS2の三次元データVol(FS2)をアフィン変換する。このとき得られる第2破断面についての歪み補正データαVol(FS2)は、三次元データを取得する方向から平面視した場合に第1破断面FS1の三次元データVol(FS1)とデータ点の座標がそれぞれ一致することになる。そのため、破断面検査装置10は、第1破断面FS1の三次元データVol(FS1)と第2破断面FS2の歪み補正データαVol(FS2)とをそれぞれのデータ点ごとに比較することができる。また、アフィン変換に係る変換量X(affine)の算出、及び歪み補正データαVol(FS2)へのアフィン変換は、二次元座標においてのみ演算されるため、演算処理を高速化することが可能となる。従って、本発明の第1実施形態に係る破断面検査装置10によれば、高速かつ高精度で部品の破断面を検査することができる。
 また、本発明の第1実施形態に係る破断面検査装置10によれば、各破断面の二次元データ及び三次元データが同一の撮像装置21により取得されることで、両者の撮像領域が必ず完全に一致することになり、より高速かつ高精度で部品の破断面を検査することができる。
 更に、本発明の第1実施形態に係る破断面検査装置10によれば、第1破断面FS1の第1最小二乗平面Sls1と第2破断面FS2の第2最小二乗平面Sls2とをそれぞれ算出し、両者の相対的な傾斜角に対応する補正量X(angle)に基づいて、歪み補正データαVol(FS2)のそれぞれのデータ点をアフィン変換に対して垂直な方向Tzに補正することにより、データ取得部20に対して第1破断面FS1と第2破断面FS2との相対的な傾斜角が比較的大きい場合であっても、より高速かつ高精度で部品の破断面を検査することができる。
 そして、本発明の第1実施形態に係る破断面検査装置10によれば、各破断面の三次元データに基づいて各破断面と近似平面としての最小二乗平面との最小二乗誤差を算出することにより、各破断面の凹凸がFS工法に適した十分な起伏を有しているか否かを判定することができる。
<第2実施形態>
 続いて、本発明の第2実施形態に係る破断面検査装置60について説明する。第2実施形態に係る破断面検査装置60は、上記した実施形態の破断面検査装置10におけるデータ取得部20の構成、及び検査対象物Pのデータ取得方法が第1実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
 図10は、本発明の第2実施形態に係る破断面検査装置60の全体構成図である。破断面検査装置60のデータ取得部20は、検査対象物Pの斜め上方から破断面の2次元データを取得するよう配置される第1実施形態と同様の撮像装置21、及び検査対象物Pの直上から破断面の三次元データを取得するための3D測定装置23から構成されている。ここで、3D測定装置23としては、例えばレーザを利用した公知の非接触表面測定機を採用することができる。
 すなわち、第2実施形態においては、各破断面の二次元データ及び三次元データが、撮像装置21と3D測定装置23とのそれぞれによって独立して取得される。このとき、撮像装置21と3D測定装置23とは、座標変換により測定領域の位置合わせができるよう、相対配置及び画角の相対角度が固定且つ既知に設定されている。
 そのため、第2実施形態に係る破断面検査装置60は、各破断面の二次元データ及び三次元データを同一の位置から同一の角度で取得せずとも、図5に示す破断面検査方法の手順をそのまま適用することができる。従って、破断面検査装置60は、第1実施形態と同様に、第2破断面FS2の三次元データVol(FS2)を変換量X(affine)で変換することにより歪み補正データαVol(FS2)を算出することができ、高速かつ高精度で部品の破断面を検査することができる。
 以上で、本発明に係る実施形態についての説明を終えるが、本発明は上記の実施形態に限定されるものではない。例えば上記の第1実施形態では、コンロッド1の各破断面を平面視した場合の輪郭形状を長方形として例示したが、実際の当該輪郭形状はこれに限られず様々な形状を取り得る。また、上記の第1実施形態では、位相シフト法により三次元データを取得する方法を例示したが、二次元データ取得用の撮像装置21により三次元データを取得することができれば、他の方法であってもよい。更に、上記の第1実施形態では、ロッド部P2の第2破断面FS2をキャップ部P1の第1破断面FS1に合わせるように変換する形態を例示したが、キャップ部P1の第1破断面FS1をロッド部P2の第2破断面FS2に合わせるように変換してもよい。そして、上記の第1実施形態では、図5に示す破断面検査方法において、ステップS7におけるアフィン変換の後にステップS10における補正を行う形態を例示したが、変換量X(affine)と補正量X(angle)とを合成した新たな補正量により、第2破断面FS2の三次元データVol(FS2)から歪み補正データβVol(FS2)を算出してもよい。
<本発明の実施態様>
 本発明の第1の態様は、部品の破断分割により生じる第1破断面及び第2破断面を検査する破断面検査装置であって、前記第1破断面及び前記第2破断面のそれぞれの二次元データ及び三次元データを取得するデータ取得部と、前記二次元データから前記第1破断面の第1輪郭及び前記第2破断面の第2輪郭を抽出する輪郭抽出部と、前記第2輪郭をアフィン変換して前記第1輪郭に変換するときの変換量を算出する変換量算出部と、前記第2破断面の前記三次元データを前記変換量でアフィン変換して歪み補正データを算出する歪み補正部と、前記第1破断面の前記三次元データと前記歪み補正データとを比較する比較部と、を備える破断面検査装置である。
 破断面検査装置は、検査対象となる第1破断面及び第2破断面について、二次元データに基づいて第1輪郭及び第2輪郭をそれぞれ算出すると共に、第2輪郭を第1輪郭にアフィン変換する変換量を用いて第2破断面の三次元データをアフィン変換する。このとき得られる第2破断面についての歪み補正データは、三次元データを取得する方向から平面視した場合に第1破断面の三次元データとデータ点の座標がそれぞれ一致することになる。そのため、破断面検査装置は、第1破断面の三次元データと第2破断面の歪み補正データとをそれぞれのデータ点ごとに比較することができる。また、アフィン変換に係る変換量の算出、及び歪み補正データへのアフィン変換は、二次元座標においてのみ演算されるため、演算処理を高速化することが可能となる。従って、本発明の第1の態様に係る破断面検査装置によれば、高速かつ高精度で部品の破断面を検査することができる。
 本発明の第2の態様は、上記した本発明の第1の態様において、前記データ取得部は、前記二次元データ及び前記三次元データを同一の位置から同一の角度で取得する、破断面検査装置である。
 本発明の第2の態様に係る破断面検査装置によれば、各破断面の二次元データ及び三次元データが例えば同一の撮像装置により取得されることで、両者の撮像領域が必ず完全に一致することになり、より高速かつ高精度で部品の破断面を検査することができる。
 本発明の第3の態様は、上記した本発明の第1又は2の態様において、前記三次元データから前記第1破断面の第1最小二乗平面及び前記第2破断面の第2最小二乗平面を算出する平面算出部と、前記第1最小二乗平面を前記第2最小二乗平面に変換するときの補正量を算出する補正量算出部と、を備え、前記比較部は、前記第1破断面の前記三次元データと前記補正量により補正された前記歪み補正データとを比較する、破断面検査装置である。
 本発明の第3の態様に係る破断面検査装置によれば、各破断面のそれぞれの最小二乗平面を算出し、両者の相対的な傾斜角に対応する補正量に基づいて、歪み補正データのそれぞれのデータ点がアフィン変換に対して垂直な方向に補正されるため、第1破断面と第2破断面との相対的な傾斜角が比較的大きい場合であっても、より高速かつ高精度で部品の破断面を検査することができる。
 本発明の第4の態様は、上記した本発明の第1乃至3のいずれかの態様において、前記第1破断面及び前記第2破断面の少なくとも一方の最小二乗平面に対する最小二乗誤差を所定の誤差閾値と比較する起伏判定部を備える、破断面検査装置である。
 本発明の第4の態様に係る破断面検査装置によれば、各破断面の三次元データに基づいて各破断面と近似平面としての最小二乗平面との最小二乗誤差を算出することにより、各破断面の凹凸がFS工法に適した十分な起伏を有しているか否かを判定することができる。
 本発明の第5の態様は、部品の破断分割により生じる第1破断面及び第2破断面を検査する破断面検査方法であって、前記第1破断面及び前記第2破断面のそれぞれの二次元データ及び三次元データを取得するデータ取得工程と、前記二次元データから前記第1破断面の第1輪郭及び前記第2破断面の第2輪郭を抽出する輪郭抽出工程と、前記第2輪郭をアフィン変換して前記第1輪郭に変換するときの変換量を算出する変換量算出工程と、前記第2破断面の前記三次元データを前記変換量でアフィン変換して歪み補正データを算出する歪み補正工程と、前記第1破断面の前記三次元データと前記歪み補正データとを比較する比較工程と、を含む破断面検査方法である。
 破断面検査方法においては、検査対象となる第1破断面及び第2破断面について、二次元データに基づいて第1輪郭及び第2輪郭がそれぞれ算出されると共に、第2輪郭を第1輪郭にアフィン変換する変換量を用いて第2破断面の三次元データがアフィン変換される。このとき得られる第2破断面についての歪み補正データは、三次元データを取得する方向から平面視した場合に第1破断面の三次元データとデータ点の座標がそれぞれ一致することになる。そのため、破断面検査方法によれば、第1破断面の三次元データと第2破断面の歪み補正データとをそれぞれのデータ点ごとに比較することができる。また、アフィン変換に係る変換量の算出、及び歪み補正データへのアフィン変換は、二次元座標においてのみ演算されるため、演算処理を高速化することが可能となる。従って、本発明の第5の態様に係る破断面検査方法によれば、高速かつ高精度で部品の破断面を検査することができる。
 本発明の第6の態様は、上記した本発明の第5の態様において、前記データ取得工程においては、前記二次元データ及び前記三次元データが同一の位置から同一の角度で取得される、破断面検査方法である。
 本発明の第6の態様に係る破断面検査方法によれば、各破断面の二次元データ及び三次元データが例えば同一の撮像装置により取得されることで、両者の撮像領域が必ず完全に一致することになり、より高速かつ高精度で部品の破断面を検査することができる。
 本発明の第7の態様は、上記した本発明の第5又は6の態様において、前記三次元データから前記第1破断面の第1最小二乗平面及び前記第2破断面の第2最小二乗平面を算出する平面算出工程と、前記第1最小二乗平面を前記第2最小二乗平面に変換するときの補正量を算出する補正量算出工程と、を含み、前記比較工程においては、前記第1破断面の前記三次元データと前記補正量により補正された前記歪み補正データとを比較する、破断面検査方法である。
 本発明の第7の態様に係る破断面検査方法によれば、各破断面のそれぞれの最小二乗平面が算出され、両者の相対的な傾斜角に対応する補正量に基づいて、歪み補正データのそれぞれのデータ点がアフィン変換に対して垂直な方向に補正されるため、データ取得部に対して第1破断面と第2破断面との相対的な傾斜角が比較的大きい場合であっても、より高速かつ高精度で部品の破断面を検査することができる。
 本発明の第8の態様は、上記した本発明の第5乃至7の態様において、前記第1破断面及び前記第2破断面の少なくとも一方の最小二乗平面に対する最小二乗誤差を所定の誤差閾値と比較する起伏判定工程を含む、破断面検査方法である。
 本発明の第8の態様に係る破断面検査方法によれば、各破断面の三次元データに基づいて各破断面と近似平面としての最小二乗平面との最小二乗誤差を算出することにより、各破断面の凹凸がFS工法に適した十分な起伏を有しているか否かを判定することができる。
  1 コンロッド
 10、60 破断面検査装置
 20 データ取得部
 50 制御装置
 51 輪郭抽出部
 52 変換量算出部
 53 歪み補正部
 54 平面算出部
 55 補正量算出部
 56 比較部
 57 起伏判定部
 P1 キャップ部
 P2 ロッド部
 FS1 第1破断面
 FS2 第2破断面

 

Claims (8)

  1.  部品の破断分割により生じる第1破断面及び第2破断面を検査する破断面検査装置であって、
     前記第1破断面及び前記第2破断面のそれぞれの二次元データ及び三次元データを取得するデータ取得部と、
     前記二次元データから前記第1破断面の第1輪郭及び前記第2破断面の第2輪郭を抽出する輪郭抽出部と、
     前記第2輪郭をアフィン変換して前記第1輪郭に変換するときの変換量を算出する変換量算出部と、
     前記第2破断面の前記三次元データを前記変換量でアフィン変換して歪み補正データを算出する歪み補正部と、
     前記第1破断面の前記三次元データと前記歪み補正データとを比較する比較部と、を備える破断面検査装置。
  2.  前記データ取得部は、前記二次元データ及び前記三次元データを同一の位置から同一の角度で取得する、請求項1に記載の破断面検査装置。
  3.  前記三次元データから前記第1破断面の第1最小二乗平面及び前記第2破断面の第2最小二乗平面を算出する平面算出部と、
     前記第1最小二乗平面を前記第2最小二乗平面に変換するときの補正量を算出する補正量算出部と、を備え、
     前記比較部は、前記第1破断面の前記三次元データと前記補正量により補正された前記歪み補正データとを比較する、請求項1又は2に記載の破断面検査装置。
  4.  前記第1破断面及び前記第2破断面の少なくとも一方の最小二乗平面に対する最小二乗誤差を所定の誤差閾値と比較する起伏判定部を備える、請求項1乃至3のいずれかに記載の破断面検査装置。
  5.  部品の破断分割により生じる第1破断面及び第2破断面を検査する破断面検査方法であって、
     前記第1破断面及び前記第2破断面のそれぞれの二次元データ及び三次元データを取得するデータ取得工程と、
     前記二次元データから前記第1破断面の第1輪郭及び前記第2破断面の第2輪郭を抽出する輪郭抽出工程と、
     前記第2輪郭をアフィン変換して前記第1輪郭に変換するときの変換量を算出する変換量算出工程と、
     前記第2破断面の前記三次元データを前記変換量でアフィン変換して歪み補正データを算出する歪み補正工程と、
     前記第1破断面の前記三次元データと前記歪み補正データとを比較する比較工程と、を含む破断面検査方法。
  6.  前記データ取得工程においては、前記二次元データ及び前記三次元データが同一の位置から同一の角度で取得される、請求項5に記載の破断面検査方法。
  7.  前記三次元データから前記第1破断面の第1最小二乗平面及び前記第2破断面の第2最小二乗平面を算出する平面算出工程と、
     前記第1最小二乗平面を前記第2最小二乗平面に変換するときの補正量を算出する補正量算出工程と、を含み、
     前記比較工程においては、前記第1破断面の前記三次元データと前記補正量により補正された前記歪み補正データとを比較する、請求項5又は6に記載の破断面検査方法。
  8.  前記第1破断面及び前記第2破断面の少なくとも一方の最小二乗平面に対する最小二乗誤差を所定の誤差閾値と比較する起伏判定工程を含む、請求項5乃至7のいずれかに記載の破断面検査方法。

     
PCT/JP2020/043110 2019-12-02 2020-11-19 破断面検査装置及び破断面検査方法 WO2021111883A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2022006465A MX2022006465A (es) 2019-12-02 2020-11-19 Dispositivo de inspeccion de superficie de fractura y metodo de inspeccion de superficie de fractura.
US17/754,610 US11821725B2 (en) 2019-12-02 2020-11-19 Fracture surface inspection device and fracture surface inspection method for loss evaluation
CN202080078164.XA CN114667433A (zh) 2019-12-02 2020-11-19 断裂面检查装置和断裂面检查方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019217865A JP7381312B2 (ja) 2019-12-02 2019-12-02 破断面検査装置及び破断面検査方法
JP2019-217865 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021111883A1 true WO2021111883A1 (ja) 2021-06-10

Family

ID=76220008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043110 WO2021111883A1 (ja) 2019-12-02 2020-11-19 破断面検査装置及び破断面検査方法

Country Status (5)

Country Link
US (1) US11821725B2 (ja)
JP (1) JP7381312B2 (ja)
CN (1) CN114667433A (ja)
MX (1) MX2022006465A (ja)
WO (1) WO2021111883A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408759B1 (ja) 2022-11-28 2024-01-05 本田技研工業株式会社 誤組み付け検知装置及び誤組み付け検知方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073142A (ja) * 2010-09-29 2012-04-12 Fuji Heavy Ind Ltd 破断面判定方法および破断面判定装置
JP2016170624A (ja) * 2015-03-12 2016-09-23 富士通株式会社 補正装置、補正方法および補正プログラム
JP2017211195A (ja) * 2016-05-23 2017-11-30 ジック株式会社 破断面検査方法及び検査装置
JP6591131B1 (ja) * 2019-02-07 2019-10-16 三菱電機株式会社 構造物計測装置および構造物計測方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018776A1 (de) * 2012-09-24 2014-04-17 Alfing Kessler Sondermaschinen Gmbh Prüfvorrichtung und Verfahren zur Prüfung einer Außenoberfläche eines bruchgetrennten Werkstücks
CN108779981B (zh) * 2016-03-15 2020-09-22 日本制铁株式会社 曲轴形状检查装置、系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073142A (ja) * 2010-09-29 2012-04-12 Fuji Heavy Ind Ltd 破断面判定方法および破断面判定装置
JP2016170624A (ja) * 2015-03-12 2016-09-23 富士通株式会社 補正装置、補正方法および補正プログラム
JP2017211195A (ja) * 2016-05-23 2017-11-30 ジック株式会社 破断面検査方法及び検査装置
JP6591131B1 (ja) * 2019-02-07 2019-10-16 三菱電機株式会社 構造物計測装置および構造物計測方法

Also Published As

Publication number Publication date
US11821725B2 (en) 2023-11-21
MX2022006465A (es) 2022-06-23
JP2021089150A (ja) 2021-06-10
US20220373324A1 (en) 2022-11-24
CN114667433A (zh) 2022-06-24
JP7381312B2 (ja) 2023-11-15

Similar Documents

Publication Publication Date Title
JP6026252B2 (ja) 物体測定装置、及び物体測定方法
US9677879B2 (en) Tire appearance inspection apparatus and method
JP4166585B2 (ja) 外観検査装置および外観検査方法
RU2478489C1 (ru) Устройство измерения высоты пантографа
JP5438475B2 (ja) 隙間段差計測装置、隙間段差計測方法、及びそのプログラム
KR102248197B1 (ko) 구조광 패턴 반사기술을 이용한 대형 반사판 3차원 표면형상 측정 방법
US11982522B2 (en) Three-dimensional measuring device
CN111412868A (zh) 表面粗糙度测量
US9157874B2 (en) System and method for automated x-ray inspection
WO2021111883A1 (ja) 破断面検査装置及び破断面検査方法
JP6777604B2 (ja) 検査システムおよび検査方法
JP2015045571A (ja) 隙間段差計測装置及び方法
KR101913705B1 (ko) 라인 레이저를 이용한 원통 부착물의 심도 측정 방법 및 장치
CN110044266A (zh) 基于散斑投影的摄影测量系统
JPH1054709A (ja) 顕微鏡を用いた3次元画像認識装置
Im et al. A solution for camera occlusion using a repaired pattern from a projector
JP2009139285A (ja) 半田ボール検査装置、及びその検査方法、並びに形状検査装置
WO2022080170A1 (ja) コネクティングロッドの検査方法及び検査装置
KR101750883B1 (ko) 비전 검사 시스템의 3차원 형상 측정 방법
JP2561193B2 (ja) 印刷パターン検査装置
CN107941147B (zh) 大型系统三维坐标非接触在线测量方法
JP2010025803A (ja) 位置決め機能を有する検査装置、位置決め機能を有する検査装置用プログラム、位置決め機能を有する検査装置の検査方法
Benjumea et al. Toward a target-free calibration of a multimodal structured light and thermal imaging system
WO2022039049A1 (ja) 破断面検査方法及び破断面検査装置
Munaro et al. Fast 2.5 D model reconstruction of assembled parts with high occlusion for completeness inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896557

Country of ref document: EP

Kind code of ref document: A1