WO2021111851A1 - Production data generation device, production data generation method, and program - Google Patents

Production data generation device, production data generation method, and program Download PDF

Info

Publication number
WO2021111851A1
WO2021111851A1 PCT/JP2020/042631 JP2020042631W WO2021111851A1 WO 2021111851 A1 WO2021111851 A1 WO 2021111851A1 JP 2020042631 W JP2020042631 W JP 2020042631W WO 2021111851 A1 WO2021111851 A1 WO 2021111851A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mounting
data
learning
production data
Prior art date
Application number
PCT/JP2020/042631
Other languages
French (fr)
Japanese (ja)
Inventor
栄滋 志垣
山崎 琢也
敬明 横井
維里 岩田
隕林 譚
太一 清水
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021562548A priority Critical patent/JPWO2021111851A1/ja
Priority to CN202080080081.4A priority patent/CN114747307A/en
Priority to DE112020005919.7T priority patent/DE112020005919T5/en
Publication of WO2021111851A1 publication Critical patent/WO2021111851A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/085Production planning, e.g. of allocation of products to machines, of mounting sequences at machine or facility level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/0882Control systems for mounting machines or assembly lines, e.g. centralized control, remote links, programming of apparatus and processes as such
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow

Definitions

  • This disclosure relates to an apparatus, a method, a program, etc. for generating production data for producing a mounting board.
  • a component mounting line that includes at least one component mounting device produces a mounting board by mounting components on the board. At this time, the component mounting line mounts the component on the board based on the production data.
  • the production data includes identification information of each component mounted on the board and the mounting order of those components.
  • the production data may include component data for each component mounted on the board.
  • the component data includes information indicating the shape of the component to be mounted and operating parameters of the component mounting device that handles the component.
  • the operating parameters include, for example, the suction speed of the mounting head or the mounting load of the component mounting device.
  • control parameters or machine parameters corresponding to the operating parameters are modified based on the results of the component mounting work.
  • the component data can be corrected appropriately and efficiently.
  • Patent Document 1 has a problem that it may be difficult to set appropriate operating parameters.
  • the present disclosure provides a production data generator or the like capable of setting appropriate operating parameters.
  • the production data generation device is at least one from a plurality of different learning models showing the relationship between the operating conditions of the component mounting device for mounting the component on the substrate and the component.
  • a component for mounting the mounting target component on the board based on a model selection unit that selects one learning model, the selected at least one learning model, and component information regarding the mounting target component mounted on the board. It includes a parameter estimation unit that estimates operation parameters that are operating conditions of the mounting apparatus, and a data generation unit that generates production data including the component information and component data having the operation parameters.
  • a recording medium such as a system, method, integrated circuit, computer program or computer-readable CD-ROM, and the system, method, integrated circuit, computer program. And any combination of recording media may be realized. Further, the recording medium may be a non-temporary recording medium.
  • the production data generator of the present disclosure can set appropriate operating parameters.
  • FIG. 1 is a diagram showing an example of the configuration of the production system according to the first embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of the component mounting device according to the first embodiment.
  • FIG. 3 is a diagram partially showing an example of the AA cross section in FIG.
  • FIG. 4 is a block diagram showing each functional configuration of the production data generation device and the component mounting line according to the first embodiment.
  • FIG. 5 is a diagram showing an example of a component library according to the first embodiment.
  • FIG. 6 is a diagram showing an example of production data according to the first embodiment.
  • FIG. 7A is a diagram showing an example of a plurality of learning models held in the learning model holding unit according to the first embodiment and managed in units of time.
  • FIG. 7A is a diagram showing an example of a plurality of learning models held in the learning model holding unit according to the first embodiment and managed in units of time.
  • FIG. 7B is a diagram showing another example of a plurality of learning models held by the learning model holding unit according to the first embodiment and managed in units of time.
  • FIG. 8 is a diagram showing an example of a plurality of learning models held by the learning model holding unit according to the first embodiment and managed in units of production equipment.
  • FIG. 9A is a diagram showing an example of a plurality of learning models held in the learning model holding unit according to the first embodiment and managed in production type units.
  • FIG. 9B is a diagram showing an example of a plurality of learning models held by the learning model holding unit according to the first embodiment and managed in the production type unit and the production equipment unit.
  • FIG. 10A is a diagram for explaining an outline of the operation parameter estimation process according to the first embodiment.
  • FIG. 10A is a diagram for explaining an outline of the operation parameter estimation process according to the first embodiment.
  • FIG. 10B is a diagram for explaining an outline of the learning process of the operation parameter model according to the first embodiment.
  • FIG. 11 is a diagram showing an example of the overall processing according to the first embodiment.
  • FIG. 12 is a diagram showing another example of the overall processing according to the first embodiment.
  • FIG. 13 is a flowchart showing the processing operation of the production data generator according to the first embodiment.
  • FIG. 14 is a diagram showing an example of the configuration of the production system according to the second embodiment.
  • FIG. 15 is a block diagram showing the functional configurations of the production control device, the component mounting line, and the processing device according to the second embodiment.
  • FIG. 16 is a diagram showing an example of the overall processing according to the second embodiment.
  • FIG. 11 is a diagram showing an example of the overall processing according to the first embodiment.
  • FIG. 12 is a diagram showing another example of the overall processing according to the first embodiment.
  • FIG. 13 is a flowchart showing the processing operation of the production data generator according to the first embodiment.
  • FIG. 17A is a diagram showing an example of filtering information generated based on the inspection result of the mounting substrate in the second embodiment.
  • FIG. 17B is a diagram showing an example of filtering information generated based on the mounting results of the component mounting line in the second embodiment.
  • FIG. 18A is a diagram showing an example of filtering information generated by selection of parts in the second embodiment.
  • FIG. 18B is a diagram showing an example of filtering information generated by selecting a substrate in the second embodiment.
  • FIG. 19 is a flowchart showing the processing operation of the production control device according to the second embodiment.
  • the production data generation devices show the relationship between the operating conditions of the component mounting device for mounting the components on the substrate and the components.
  • the mounting target is based on a model selection unit that selects at least one learning model from a plurality of different learning models, the selected at least one learning model, and component information about the mounting target component to be mounted on the board. It includes a parameter estimation unit that estimates operating parameters that are operating conditions of a component mounting device for mounting components on a board, and a data generation unit that generates production data including the component information and component data having the operating parameters. ..
  • the component information may indicate at least one of the dimensions, shape, appearance, type, and supply form for supplying the component corresponding to the component information.
  • the operation parameter may be a parameter relating to at least one of transfer, recognition, suction, and mounting of the component by the component mounting device.
  • At least one learning model is selected from a plurality of learning models that are different from each other and used for estimating the operation parameters, so that the possibility that an appropriate operation parameter is estimated for the mounting target component can be increased. Therefore, appropriate operating parameters can be set. Further, when the component data having such operation parameters and component information is included in the production data and the production data is used for mounting the component on the substrate by the component mounting device, a high quality mounting board is produced. be able to. That is, the quality of the mounting board can be improved.
  • the operation parameter may be a set of a plurality of parameters as well as one parameter.
  • the parameter estimation unit may estimate a plurality of parameters included in the operation parameters from the selected learning models.
  • the production data generator further includes actual production data used by the component mounting device, including component information relating to the mounted component and actual component data having operating parameters used to mount the mounted component.
  • the relationship is updated by the data acquisition unit that acquires the data and the learning model corresponding to the acquired actual production data among the plurality of learning models, by learning using the actual component data as the teacher data. It may be provided with a learning unit to perform.
  • the operating parameters of the actual parts data included in the actual production data are used for mounting the mounted parts, and corrections are made at that time. That is, its operating parameters have been modified to produce better quality mounting boards. Therefore, by using the actual component data having such an operation parameter as the teacher data for learning the learning model, the learning model can be further optimized. As a result, when the learning model is selected by the model selection unit, the estimation accuracy of the operating parameters can be improved.
  • each of the plurality of learning models is associated with different periods, and the learning unit may perform learning on the learning model corresponding to the period in which the actual production data is acquired.
  • one of the learning models is associated with the entire period (eg, the entire period from the past to the present), and each of the remaining at least one learning model is associated with a different age group. ..
  • the different ages are, for example, the 1990s, 2000s, 2010s, and the like.
  • a learning model associated with the entire period or any age is selected from those learning models and used for estimating the operation parameters. Therefore, it is possible to estimate an appropriate operating parameter according to the period for the component to be mounted.
  • each of the plurality of learning models is associated with different production equipment, and the learning unit learns the learning model corresponding to the production equipment including the component mounting device using the actual production data. May be good.
  • the production equipment may be a component mounting device, one component mounting line including the component mounting device, or equipment including a plurality of component mounting lines.
  • one of the plurality of learning models is associated with the production equipment including all the component mounting lines arranged in the factory, and each of the remaining at least one learning model is different from each other. It is associated with the component mounting line.
  • all the component mounting lines or the learning models associated with any of the component mounting lines are selected and used for estimating the operation parameters. Therefore, it is possible to estimate appropriate operating parameters according to the production equipment for the parts to be mounted.
  • each of the plurality of learning models is associated with a different type of mounting board, and the learning unit learns from the learning model corresponding to the type of mounting board produced by using the actual production data. May be done.
  • the type of mounting board is a mass production type or a prototype type.
  • one of the plurality of learning models is associated with the mass production type, and the remaining one learning model is associated with the prototype type.
  • the learning model associated with the mass production type or the prototype type is selected from those learning models and used for estimating the operation parameters. Therefore, it is possible to estimate appropriate operating parameters according to the type of mounting board for the mounting target component.
  • each figure is a schematic view and is not necessarily exactly illustrated. Further, in each figure, the same components are designated by the same reference numerals.
  • FIG. 1 is a diagram showing an example of a configuration of a production system according to the present embodiment.
  • the production system 1 in the present embodiment includes three component mounting lines L1 to L3 and a production data generation device 100.
  • Each of the component mounting lines L1 to L3 is an example of a mounting board production facility, and a mounting board is produced by performing solder printing work, component mounting work, reflow work, etc. on the board carried in from the upstream side. Then, the produced mounting board is carried out to the downstream side.
  • the production data generation device 100 generates and outputs production data for producing a mounting board for each of the component mounting lines L1 to L3.
  • the production data generation device 100 may communicate with those component mounting lines L1 to L3 via wireless or wired.
  • the radio may be Wi-Fi®, Bluetooth®, ZigBee, or a specified low power radio.
  • the component mounting line L1 includes a line management device 200, a board supply device M1, a board delivery device M2, a solder printing device M3, component mounting devices M4 and M5, a reflow device M6, and a board recovery device M7. ..
  • Each device other than the line management device 200 included in the component mounting line L1 includes a board supply device M1, a board delivery device M2, a solder printing device M3, a component mounting devices M4 and M5, a reflow device M6, and a board recovery device M7. They are arranged in order and connected in series.
  • Each device other than these line management devices 200 is hereinafter referred to as a work device.
  • the component mounting line L1 may not include all the above-mentioned working devices as long as it includes the board supply device M1, at least one component mounting device, and the board recovery device M7. Further, the component mounting line L1 may include, in addition to the above-mentioned working device, a solder coating device for applying solder to the substrate, a component insertion machine for mounting radial components or axial components on the substrate, and the like.
  • the line management device 200 acquires the production data generated by the production data generation device 100 from the production data generation device 100, and produces the mounting board based on the production data by each work device included in the component mounting line L1. To execute.
  • the board supply device M1 supplies the board used for the mounting board produced on the component mounting line L1 to the solder printing device M3 via the board delivery device M2.
  • the solder printing apparatus M3 performs the above-mentioned solder printing operation. That is, the solder printing device M3 screen-prints the solder on the board delivered from the board delivery device M2.
  • Each of the component mounting devices M4 and M5 executes the above-mentioned component mounting operation for mounting at least one component on the board.
  • the component mounting line L1 includes two component mounting devices M4 and M5, but the number of the component mounting devices M4 and M5 is not limited to two, and may be one or three or more. Further, it can be said that the mounting board is substantially produced by the component mounting work by these component mounting devices M4 and M5.
  • the reflow device M6 performs the above-mentioned reflow work. That is, the reflow device M6 heats the substrate on which the component is mounted, which is carried in from the component mounting devices M4 and M5, cures the solder on the substrate, and joins the electrode portion of the substrate and the component. Specifically, the reflow device M6 melts and solidifies the solder for joining parts by heating according to a predetermined heating profile. As a result, the components are soldered to the substrate.
  • the substrate recovery device M7 recovers the solder-bonded substrate from the reflow device M6.
  • the component mounting lines L2 and L3 also have the same configuration as the component mounting lines L1.
  • each of the component mounting lines L1 to L3 has the same configuration, but may have different configurations from each other.
  • the component mounting lines L1 to L3 include the line management device 200, but the line management device 200 may be provided independently of each of the component mounting lines L1 to L3. Often, it may be incorporated in each of the component mounting lines L1 to L3.
  • FIG. 2 is a diagram showing an example of the configuration of the component mounting device M4.
  • the component mounting device M5 also has the same configuration as the component mounting device M4.
  • the transport direction of the substrate B is referred to as the X-axis direction
  • the direction perpendicular to the X-axis direction is referred to as the Y-axis direction.
  • the X-axis direction and the Y-axis direction are directions along the horizontal plane.
  • the direction perpendicular to the X-axis direction and the Y-axis direction is referred to as a Z-axis direction.
  • the plus side and minus side in the X-axis direction are the downstream side and the upstream side in the transport direction of the substrate B, respectively, and the plus side and the minus side in the Y-axis direction are the rear side (or the back side) and the front side (or the back side) in the front-rear direction, respectively. Or the front side).
  • the positive side and the negative side in the Z-axis direction are the upper side and the lower side in the vertical direction, respectively.
  • the upper surface of the component mounting device M4 is shown.
  • the component mounting device M4 includes a base 4, a board transfer mechanism 5, two component supply units 6, two X-axis beams 9, a Y-axis beam 8, two mounting heads 10, and two component recognitions.
  • a camera 11 and two substrate recognition cameras 12 are provided.
  • the board transfer mechanism 5 is provided with two rails along the X-axis direction, and is arranged in the center of the base 4.
  • the board transfer mechanism 5 transports the board B carried in from the upstream side, and positions and holds the board B at a position for executing the component mounting operation.
  • the two component supply units 6 are arranged so as to sandwich the substrate transfer mechanism 5 in the Y-axis direction.
  • a plurality of feeders 7 are arranged in parallel along the X-axis direction in each component supply unit 6.
  • the feeder 7 supplies the component to a position where the component is taken out by the mounting head 10 (hereinafter, referred to as a component take-out position) by pitch-feeding the component tape containing the component in the tape feeding direction.
  • a tray feeder, a stick feeder, a bulk feeder, or the like may be arranged in the parts supply unit 6.
  • the tray feeder supplies the parts from the tray containing the parts.
  • the stick feeder supplies the parts from a stick case containing the parts.
  • the bulk feeder supplies the parts from a bulk case containing the parts.
  • the Y-axis beam 8 is arranged along the Y-axis direction at one end (on the right side in FIG. 2) in the X-axis direction on the upper surface of the base 4.
  • the two X-axis beams 9 are coupled to the Y-axis beam 8 so as to be movable in the Y-axis direction along the X-axis direction.
  • the mounting head 10 is mounted on each of the two X-axis beams 9 so as to be movable in the X-axis direction.
  • the mounting head 10 includes a plurality of suction units 10a that can move up and down while sucking and holding parts.
  • a suction nozzle 10b is provided at each tip of the suction unit 10a (see FIG. 3).
  • Each of the two mounting heads 10 moves in the X-axis direction and the Y-axis direction by driving the Y-axis beam 8 and the X-axis beam 9. As a result, each of the two mounting heads 10 sucks and takes out the parts from the parts taking-out position of the feeder 7 arranged in the parts supply unit 6 corresponding to the mounting heads 10 by the suction nozzle 10b, and causes the substrate transfer mechanism 5 to take out the parts. It is mounted at the mounting point (or mounting position) of the positioned board B.
  • Each of the two component recognition cameras 11 is arranged between one of the two component supply units 6 and the board transfer mechanism 5.
  • the component recognition camera 11 takes an image of the component when the mounting head 10 that has taken out the component from the component supply unit 6 moves above the component recognition camera 11. That is, the component recognition camera 11 recognizes the holding posture of the component by taking an image of the component held by the mounting head 10.
  • the board recognition camera 12 is attached to the plate 9a to which the mounting head 10 is attached. Therefore, the board recognition camera 12 moves integrally with the mounting head 10. Such a board recognition camera 12 moves above the board B positioned by the board transfer mechanism 5 as the mounting head 10 moves, and images a board mark (not shown) provided on the board B. Recognizes the position of the substrate B. In the mounting of the component on the board B by the mounting head 10, the mounting position is corrected based on the component recognition result by the component recognition camera 11 and the position recognition result of the board B by the board recognition camera 12.
  • FIG. 3 is a diagram partially showing an example of the AA cross section in FIG.
  • the component mounting device M4 has a function of mounting the component P on the substrate B.
  • the parts supply unit 6 includes a feeder base 13a, a plurality of feeders 7 mounted on the feeder base 13a, and a carriage 13 that supports the feeder base 13a.
  • the dolly 13 is detachably configured with respect to the component mounting devices M4 and M5, and further includes a cassette holder 15.
  • the cassette holder 15 is configured to be able to hold a plurality of component reels C.
  • the component reel C stores the component tape 14 in a wound state.
  • Each of the plurality of component reels C is held at the upper holding position Hu or the lower holding position Hd of the cassette holder 15.
  • the component tape 14 pulled out from the component reel C held by the cassette holder 15 is attached to the feeder 7.
  • the feeder 7 may be arranged on the feeder base 13a provided on the base 4 without using the carriage 13. Further, the dolly 13 may hold the component reel C instead of the cassette holder 15.
  • the component mounting devices M4 and M5 have the same configuration, but they may have different configurations.
  • FIG. 4 is a block diagram showing each functional configuration of the production data generation device 100 and the component mounting lines L1 to L3.
  • the production data generation device 100 includes a control unit 101, a data generation unit 102, a model selection unit 103, a learning unit 104, a parameter estimation unit 105, a display unit 106, an input / output unit 107, a data acquisition unit 108, and a production data holding unit DB1. It includes a learning model holding unit DB2 and a parts library holding unit DB3.
  • the model selection unit 103 selects at least one learning model from a plurality of learning models held in the learning model holding unit DB2.
  • the learning model holding unit DB2 holds the above-mentioned plurality of learning models. Each of these plurality of learning models is a different model from each other, and shows the relationship between the operating conditions of the component mounting device M4 or M5 for mounting the component P on the substrate B and the component P.
  • the parameter estimation unit 105 estimates the operating parameters that are the operating conditions of the component mounting device M4 or M5. That is, the parameter estimation unit 105 sets the mounting target component P on the board B based on at least one learning model selected by the model selection unit 103 and component information regarding the mounting target component P mounted on the board B. Estimate the operating parameters to implement.
  • the data generation unit 102 generates production data including the component data having the above-mentioned component information and operation parameters.
  • the production data indicates, for example, the mounting order of at least one component P mounted on the board B and the position where the component P is mounted on the board B (that is, the above-mentioned mounting position), and the production data thereof.
  • Each component data of at least one component P is included.
  • the component data of each component P is held in the component library holding unit DB3. That is, the parts library holding unit DB3 holds a parts library including the parts data of each of the plurality of types of parts P.
  • the data generation unit 102 selects the component data of the component P from the component library and selects the selected component data. Generate production data that includes. On the other hand, if the component data of the component P mounted on the board B is not included in the component library, the data generation unit 102 obtains the component information of the component P and the operation parameters estimated as described above. Generate production data including parts data to have.
  • the data generation unit 102 generates and outputs such production data for each of the component mounting lines L1 to L3, and stores the production data in the production data holding unit DB1.
  • the data acquisition unit 108 includes actual production data used by the component mounting apparatus M4 or M5, including actual component data having component information regarding the mounted component P and operating parameters used for mounting the mounted component P. To get.
  • the actual production data is, for example, data that has been modified or tuned with respect to the production data generated by the data generation unit 102. That is, the component mounting devices M4 or M5 included in each of the component mounting lines L1 to L3 mount the component P on the board B based on the production data, but the mounting may produce a defective mounting board. .. In such a case, in each of the component mounting lines L1 to L3, the component data included in the production data is corrected or tuned so that the frequency of defective products is reduced. By such modification or tuning, actual production data including actual part data is generated. Each of the component mounting devices M4 or M5 of the component mounting lines L1 to L3 mounts the component P on the substrate B using the actual production data. The data acquisition unit 108 acquires the actual production data thus generated from each of the component mounting lines L1 to L3.
  • the learning unit 104 generates or updates a learning model by machine learning.
  • machine learning is simply referred to as learning below.
  • the learning unit 104 generates a learning model by learning, and stores the generated learning model in the learning model holding unit DB2. Further, the learning unit 104 selects one learning model from a plurality of learning models held in the learning model holding unit DB2, and updates the selected learning model by learning. For such learning by the learning unit 104, the actual production data used in each of the component mounting lines L1 to L3 and acquired by the data acquisition unit 108 is used.
  • the learning unit 104 updates the relationship indicated by the learning model corresponding to the actual production data acquired by the data acquisition unit 108 among the plurality of learning models held in the learning model holding unit DB2. At this time, the learning unit 104 updates the actual component data included in the actual production data by learning using the actual component data as teacher data.
  • the learning model may be, for example, a neural network, a decision tree, or another model.
  • the display unit 106 displays the production data held in the production data holding unit DB1 and the parts library held in the parts library holding unit DB3.
  • Specific examples of the display unit 106 include, but are not limited to, a liquid crystal display, a plasma display, an organic EL (Electro-Luminescence) display, and the like.
  • the input / output unit 107 receives, for example, input data based on an operation by an operator of the production system 1, and outputs the input data to the control unit 101.
  • Such an input / output unit 107 includes, for example, a keyboard, a touch sensor, a touch pad, a mouse, and the like. Further, the input / output unit 107 outputs data to the component mounting lines L1 to L3 and inputs data from the component mounting lines L1 to L3.
  • the production data generated by the data generation unit 102 may be output to the component mounting lines L1 to L3 via the input / output unit 107. Further, the input / output unit 107 may acquire the above-mentioned component information based on the operation by the operator and output it to the parameter estimation unit 105.
  • the control unit 101 controls each component other than the control unit 101 included in the production data generation device 100. For example, the control unit 101 controls each component based on the input data of the operator received by the input / output unit 107.
  • the production data holding unit DB1, the learning model holding unit DB2, and the parts library holding unit DB3 are recording media for holding the production data, the learning model, and the parts library.
  • a recording medium is a hard disk, a ROM (ReadOnlyMemory), a RAM (RandomAccessMemory), a semiconductor memory, or the like.
  • a recording medium may be volatile or non-volatile.
  • the component mounting line L1 includes a work control unit 211, an input / output unit 212, a display unit 213, a work mechanism 214, and a production data holding unit DB4.
  • Each component other than the work mechanism 214 included in the component mounting line L1 may be provided in the line management device 200, or may be provided in any work device different from the line management device 200. ..
  • the input / output unit 212 receives input data based on, for example, an operation by an operator of the production system 1, and outputs the input data to the work control unit 211.
  • Such an input / output unit 212 may include, for example, a keyboard, a touch sensor, a touch pad, a mouse, or the like.
  • the input / output unit 212 outputs data to the production data generation device 100 and inputs data from the production data generation device 100.
  • the input / output unit 212 acquires production data from the production data generation device 100 and stores the production data in the production data holding unit DB4.
  • the display unit 213 displays the production data and the like held in the production data holding unit DB4.
  • Specific examples of the display unit 213 are, but are not limited to, a liquid crystal display, a plasma display, an organic EL display, and the like.
  • the work mechanism 214 includes a mechanism such as a mounting head 10 and a feeder 7 for producing a mounting board.
  • the work control unit 211 controls each component other than the work control unit 211 included in the component mounting line L1. For example, the work control unit 211 controls each component based on the input data of the operator received by the input / output unit 212. For example, the work control unit 211 causes the work mechanism 214 to perform at least one of the above-mentioned solder printing work, component mounting work, and reflow work based on the production data held in the production data holding unit DB4. .. Further, the work control unit 211 corrects or tunes the production data held in the production data holding unit DB 4 according to the input data of the operator received by the input / output unit 212. As a result, the above-mentioned actual production data is generated. By controlling the input / output unit 212, the work control unit 211 causes the input / output unit 212 to output the actual production data to the production data generation device 100.
  • the production data holding unit DB4 is a recording medium for holding production data.
  • a recording medium may be a hard disk, RAM, ROM, semiconductor memory, or the like.
  • such a recording medium may be volatile or non-volatile.
  • FIG. 5 is a diagram showing an example of a parts library.
  • the parts library consists of a plurality of parts data DCs.
  • Each of the plurality of component data Dc is data of one type of component P, and is associated with a component code for identifying the type of the component P.
  • Such component data Dc has component information d relating to component P and an operating parameter m which is an operating condition of the component mounting device M4 or M5 for mounting the component P on the substrate B.
  • An image, a numerical value, a term, or the like is shown in a blank portion of each item in the component data Dc shown in FIG.
  • the part information d includes, for example, the shape diagram d1 of the part P, the size data d2, and the part parameter d3.
  • the shape diagram d1 illustrates the outer shape of the component P corresponding to the component data Dc.
  • the size data d2 numerically indicates information on the size of the component P, that is, external dimensions, number of leads, lead pitch, lead length, lead width, component height, and the like.
  • the component parameter d3 is attribute information about the component P.
  • a component parameter d3 includes a component attribute d31 which is information about the component P itself, and tape information d32 which is information about a component tape 14 for supplying the component P by the feeder 7.
  • the component attribute d31 indicates, for example, the polarity, polarity mark, mark position, component type, and shape type of the component P.
  • the tape information d32 includes, for example, the tape material of the component tape 14, the tape width indicating the width dimension of the component tape 14, the feed interval indicating the tape feed pitch of the component tape 14 by the feeder 7, and the color and material of the component tape 14. Contains information about.
  • the component information d in the present embodiment is the dimension, shape, appearance, type of the component P corresponding to the component information d, and at least one of the supply modes for supplying the component P. Shown.
  • the supply form corresponds to, for example, tape information d32.
  • the operation parameter m is a machine parameter that defines an operation mode when the component mounting device M4 or M5 mounts the component P on the substrate B.
  • the operation parameter m includes model information m1 indicating the type of the component mounting device M4 or M5 and nozzle setting information m2 indicating the type of the suction nozzle 10b used.
  • the operation parameter m includes a speed parameter m3, recognition information m4, gap information m5, suction information m6, mounting information m7, and the like.
  • the speed parameter m3 includes an ascending / descending speed when the component P is sucked by the suction nozzle 10b, a mounting speed when the component P is transferred by the mounting head 10, and a tape feeding speed when the component tape 14 is fed by the feeder 7.
  • the recognition information m4 is a parameter that defines the mode of component recognition. Specifically, the recognition information m4 includes a camera type indicating the type of the component recognition camera 11 to be used, an illumination mode indicating the illumination mode at the time of imaging by the component recognition camera 11, and movement of the mounting head 10 at the time of imaging. Includes recognition speed, which indicates speed.
  • the gap information m5 includes a suction gap when the component P is sucked by the suction nozzle 10b and a mounting gap when the sucked component P is mounted on the substrate B.
  • the suction information m6 includes a suction position offset indicating an offset amount when the component P is sucked by the suction nozzle 10b, and a suction angle.
  • the mounting information m7 indicates a pressing load when the component P sucked by the suction nozzle 10b is mounted on the substrate B as a mounting load.
  • the operation parameter m in the present embodiment is a parameter relating to at least one of transfer, recognition, suction, and mounting of the component P by the component mounting device M4 or M5.
  • the component information d and the operation parameter m included in the component data Dc in FIG. 5 are examples, and may indicate information other than the information shown in FIG. 5, and the information shown in FIG. 5 and others.
  • the information may be shown together with the above information, or only a part of the information shown in FIG. 5 may be shown. Further, the number of information included in each of the component information d and the operation parameter m may be one or a plurality.
  • the data generation unit 102 when the data generation unit 102 generates the production data, the data generation unit 102 selects the component data Dc corresponding to the component P mounted on the board B from the component library held in the component library holding unit DB3. , Generate production data including the part data Dc.
  • the data generation unit 102 uses the component data Dc having the component information d acquired by the input / output unit 107 and the operation parameter m estimated by the parameter estimation unit 105 with respect to the component information d.
  • the component information d acquired by the input / output unit 107 may be, for example, information acquired from CAD (Computer Aided Design) information regarding the component P mounted on the board B, and is input by an operator's operation. It may be information.
  • the default operating parameter m may be set in the component data Dc of the component library. If the default operating parameter m is set in the component data Dc selected from the component library, the data generation unit 102 causes the parameter estimation unit 105 to input the operating parameter m corresponding to the component information d included in the component data Dc to the parameter estimation unit 105. It may be estimated. When the operation parameter m is estimated by the parameter estimation unit 105, the data generation unit 102 replaces the default operation parameter m included in the component data Dc with the operation parameter m estimated by the parameter estimation unit 105. Then, the data generation unit 102 generates production data using the component data Dc in which the operation parameter m has been replaced.
  • all the information (that is, parameters) included in the operation parameter m of the component data Dc may be the default, or only some parameters may be the default. If only some of the parameters are the default, the parameter estimation unit 105 may estimate a parameter that replaces some of the default parameters.
  • the data generation unit 102 replaces some of the parameters of the operation parameters m included in the component data Dc with the parameters estimated by the parameter estimation unit 105. Then, the data generation unit 102 generates production data using the component data Dc in which some of the parameters have been replaced.
  • FIG. 6 is a diagram showing an example of production data Dp.
  • the component names and component codes of the plurality of components P mounted on the board B are arranged in the mounting order of the plurality of components P.
  • the component code of the component P is a code for specifying the component data Dc of the component P from the component library.
  • the production data Dp indicates, for each of the plurality of parts P, the mounting coordinates of the parts P, the mounting angle, the identification information of the feeder 7, and the identification information of the mounting head 10 or the suction nozzle 10b.
  • the mounting coordinates of the component P are positions on the board B on which the component P is mounted or mounted, and are also referred to as a mounting point, a mounting position, or a mounting position.
  • the mounting angle of the component P is an angle at which the suction nozzle 10b that sucks the component P rotates around the central axis of the suction nozzle 10b as a rotation axis in order to mount the component P on the substrate B.
  • the identification information of the feeder 7 corresponding to the component P is information for identifying the feeder 7 that supplies the component P.
  • the identification information of the mounting head 10 corresponding to the component P is information for identifying the mounting head 10 used for mounting the component P on the substrate B.
  • the component name "A component”, the component code “C001”, the mounting coordinates "x1, y1", and the mounting angle " ⁇ 1" of the component P For example, in the production data Dp, for the component P that is first mounted on the substrate B, the component name "A component”, the component code “C001”, the mounting coordinates "x1, y1", and the mounting angle " ⁇ 1" of the component P, The identification information “F2” of the feeder 7 and the identification information “H3” of the mounting head 10 are shown.
  • the production data Dp in the present embodiment includes the component data Dc of each of the plurality of components P mounted on the substrate B.
  • the production data Dp includes the part data Dc associated with the part code “C001” possessed by the part P having the part name “A part”.
  • [Learning model] 7A and 7B are diagrams showing an example of a plurality of learning models held in the learning model holding unit DB2 and managed in units of time.
  • the learning model in this embodiment is also hereinafter referred to as an operation parameter model.
  • each of the plurality of operation parameter models Pm11 to Pm14 which are the plurality of learning models held in the learning model holding unit DB2, is managed in units of time as shown in FIG. 7A.
  • the operation parameter model Pm11 is generated by learning using the actual production data used between 1990 and 1999.
  • the motion parameter model Pm12 is generated by learning using the performance production data used between 2000 and 2009
  • the motion parameter model Pm13 is the performance production used between 2010 and the present. It is generated by learning using data.
  • the operation parameter model Pm14 is generated by learning using the actual production data used from 1990 to the present.
  • each of the plurality of operation parameter models Pm21 to Pm25 which are the plurality of learning models held in the learning model holding unit DB2, is managed in time units as shown in FIG. 7B, and further, in chronological order. It may be managed.
  • the operation parameter model Pm21 is generated by learning using the actual production data used on July 1, 2019.
  • the operation parameter model Pm22 is generated by learning using the operation parameter model Pm21 and the actual production data used on July 2, 2019. That is, the operation parameter model Pm22 is generated by learning using the actual production data used between July 1st and 2nd, 2019.
  • the operation parameter model Pm23 is generated by learning using the operation parameter model Pm22 and the actual production data used on July 3, 2019. That is, the operation parameter model Pm23 is generated by learning using the actual production data used between July 1st and 3rd, 2019.
  • the operation parameter model Pm24 is generated by learning using the operation parameter model Pm22 and the actual production data used on July 4, 2019. That is, the operation parameter model Pm24 is generated by learning using the actual production data used between July 1st and 2nd and 4th of July 2019. Therefore, the operating parameter model Pm24 does not reflect the actual production data used on July 3, 2019.
  • the operation parameter model Pm25 is generated by learning using the operation parameter model Pm24 and the actual production data used on July 5, 2019. That is, the operation parameter model Pm25 is generated by learning using the actual production data used between July 1st and 2nd and 4th to 5th, 2019. Therefore, the operation parameter model Pm25 does not reflect the actual production data used on July 3, 2019, as in the operation parameter model Pm24.
  • each of the plurality of learning models (that is, the operation parameter model) is associated with different periods.
  • multiple operating parameter models are managed on an hourly basis.
  • the learning unit 104 when the learning unit 104 performs learning using the actual component data included in the actual production data as teacher data, the learning unit 104 learns on the learning model corresponding to the period in which the actual production data is acquired.
  • the learning unit 104 when the data acquisition unit 108 of the production data generation device 100 acquires the actual production data in 2011, the learning unit 104 refers to the operation parameter models Pm13 and Pm14 corresponding to the 2011. Do learning. Further, in the example shown in FIG. 7B, when the data acquisition unit 108 acquires the actual production data on July 3, 2019, the learning unit 104 uses the operation parameter model Pm22 or the operation parameter model Pm22 corresponding to the period in which the actual production data is acquired. Learn for Pm23.
  • FIG. 8 is a diagram showing an example of a plurality of learning models held in the learning model holding unit DB2 and managed in units of production equipment.
  • each of the plurality of operation parameter models Pm31 to Pm34 which are the plurality of learning models held in the learning model holding unit DB2, may be managed for each production facility as shown in FIG.
  • the operation parameter model Pm31 is generated by learning using the actual production data used in the component mounting line L1.
  • the operation parameter model Pm32 is generated by learning using the actual production data used in the component mounting line L2
  • the operation parameter model Pm33 is generated by learning using the actual production data used in the component mounting line L3.
  • the operation parameter model Pm34 is generated by learning using the actual production data used in each of all the component mounting lines L1 to L3.
  • each of the plurality of learning models (that is, the operation parameter model) is associated with different production facilities.
  • multiple operating parameter models are managed on a production facility basis.
  • the production equipment may be a component mounting line or a set of a plurality of component mounting lines.
  • the production equipment may be one or more component mounting devices, a floor on which a plurality of component mounting devices or component mounting lines are arranged, or a factory.
  • the learning unit 104 performs learning using the actual component data included in the actual production data as teacher data
  • the learning unit 104 when the data acquisition unit 108 of the production data generation device 100 acquires the actual production data from the component mounting line L2, the learning unit 104 has the operation parameter model Pm32 and the operation parameter model Pm32 corresponding to the component mounting line L2. Learn for Pm34.
  • FIG. 9A is a diagram showing an example of a plurality of learning models held in the learning model holding unit DB2 and managed for each production type.
  • each of the plurality of operation parameter models Pm41 to Pm44 which are the plurality of learning models held in the learning model holding unit DB2, may be managed for each production type as shown in FIG. 9A.
  • Production types include, for example, prototype types and mass production types.
  • the prototype type is a type of mounting board produced as a prototype
  • the mass production type is a type of mounting board produced as a mass-produced product.
  • operating parameters that emphasize quality are set as compared with the mass production type
  • the mass production type operating parameters that emphasize productivity tend to be set as compared with the prototype type. Therefore, since the operation parameters set are different between the prototype type and the mass production type even if they are the same mounting board, the estimation accuracy is improved by learning for each production type.
  • the operation parameter model Pm41 is generated by learning using the actual production data used in the production of the prototype type T1 mounting board.
  • the operation parameter model Pm42 is generated by learning using the actual production data used for producing the mounting board of the prototype type T2 different from the prototype type T1.
  • the operation parameter model Pm43 is generated by learning using the actual production data used in the production of the mass production type mounting board.
  • the operation parameter model Pm44 is generated by learning using the actual production data used for each production of the mounting boards of all production types.
  • FIG. 9B is a diagram showing an example of a plurality of learning models held in the learning model holding unit DB2 and managed in the production type unit and the production equipment unit.
  • each of the plurality of operation parameter models Pm51 to Pm54 which are the plurality of learning models held in the learning model holding unit DB2, is managed for each combination of production type and production equipment. May be good.
  • an item for setting the production type may be provided in the part data Dc.
  • the operation parameter model Pm51 is generated by learning using the actual production data used for the production of the prototype type T1 mounting board by the component mounting line L1.
  • the operation parameter model Pm52 is generated by learning using the actual production data used in the production of the prototype type T2 mounting board by the component mounting line L2.
  • the operation parameter model Pm53 is generated by learning using the actual production data used for the production of the mass production type mounting board by the component mounting line L3.
  • the operation parameter model Pm54 is generated by learning using the actual production data used for the production of the mounting boards of all production types by all the component mounting lines L1 to L3.
  • each of the plurality of learning models (that is, the operation parameter model) is associated with different production types of the mounting board.
  • multiple learning models are managed on a production type basis.
  • the learning unit 104 when the learning unit 104 performs learning using the actual component data included in the actual production data as teacher data, the learning unit 104 refers to the learning model corresponding to the type of the mounting board produced using the actual production data. To learn.
  • the learning unit 104 when the data acquisition unit 108 of the production data generation device 100 acquires the actual production data of the prototype type T1, the learning unit 104 applies the operation parameter models Pm41 and Pm44 corresponding to the prototype type T1. Learn for it. Further, in the example shown in FIG. 9B, when the data acquisition unit 108 acquires the actual production data of the prototype type T2 from the component mounting line L2, the learning unit 104 receives the operation parameter model corresponding to the prototype type T2 and the component mounting line L2. Learning is performed for Pm52 and Pm54.
  • FIG. 10A is a diagram for explaining an outline of the estimation process of the operation parameter m in the present embodiment.
  • the parameter estimation unit 105 acquires the component information d of the component P from, for example, the input / output unit 107. Further, the model selection unit 103 selects, for example, one operation parameter model Pm from a plurality of operation parameter models Pm held in the learning model holding unit DB2. Each of the plurality of operation parameter models Pm may be any of the operation parameter models Pm11 to Pm14, Pm21 to Pm25, Pm31 to Pm34, Pm41 to Pm44, and Pm51 to Pm54 shown in FIGS. 7A to 9B. ..
  • the parameter estimation unit 105 uses the acquired component information d and the selected operation parameter model Pm to mount the component P indicated by the component information d on the substrate B, or the component mounting device M4 or M5.
  • the operating parameter m which is the operating condition of, is estimated.
  • the parameter estimation unit 105 outputs the component data Dc including the estimated operation parameter m and the component information d.
  • the model selection unit 103 uses one operation parameter model Pm according to the manufacturing time of the component P indicated by the component information d. May be selected. For example, if the manufacturing time is in the 1990s, the model selection unit 103 may select the operation parameter model Pm11 shown in FIG. 7A. If the manufacturing time is unknown, the model selection unit 103 may select the operation parameter model Pm14 shown in FIG. 7A. Thereby, an appropriate operation parameter model Pm for estimating the operation parameter m for the component P can be selected.
  • the model selection unit 103 may select one operation parameter model Pm updated on the latest date. Good. For example, the model selection unit 103 may select the operation parameter model Pm25 shown in FIG. 7B. Further, when many mounting boards using components similar to the component P are produced on July 3, 2019, the model selection unit 103 may select the operation parameter model Pm23 shown in FIG. 7B. Good. Thereby, an appropriate operation parameter model Pm for estimating the operation parameter m for the component P can be selected.
  • the model selection unit 103 is associated with the production equipment that produces the mounting board using the component P.
  • One operating parameter model Pm may be selected.
  • the model selection unit 103 may select the operation parameter model Pm32 shown in FIG.
  • the model selection unit 103 may select the operation parameter model Pm34 shown in FIG. Thereby, an appropriate operation parameter model Pm for estimating the operation parameter m for the component P can be selected.
  • the model selection unit 103 is associated with the production type of the mounting board produced by using the component P.
  • One operating parameter model Pm may be selected.
  • the model selection unit 103 may select the operation parameter model Pm43 shown in FIG. 9A.
  • the model selection unit 103 may select the operation parameter model Pm44 shown in FIG. 9A. Thereby, an appropriate operation parameter model Pm for estimating the operation parameter m for the component P can be selected.
  • the model selection unit 103 selects one operation parameter model Pm, but is not limited to one, and selects a plurality of operation parameter models Pm for estimating different operation conditions. May be good.
  • the operation parameter m includes different parameters such as the speed parameter m3 and the recognition information m4. Therefore, the model selection unit 103 may select, for example, an operation parameter model Pm for estimating the speed parameter m3 and an operation parameter model Pm for estimating the recognition information m4.
  • the parameter estimation unit 105 estimates the speed parameter m3 by using the component information d and the operation parameter model Pm for the speed parameter m3, and uses the component information d and the operation parameter model Pm for the recognition information m4.
  • the recognition information m4 may be estimated.
  • model selection unit 103 may automatically select the operation parameter model Pm as described above, or may perform the selection according to the operation of the operator to the input / output unit 107.
  • FIG. 10B is a diagram for explaining the outline of the learning process of the operation parameter model Pm in the present embodiment.
  • the learning unit 104 acquires actual production data from any of the component mounting lines L1 to L3 via, for example, the data acquisition unit 108.
  • the actual production data includes the actual part data Dcu. That is, the learning unit 104 acquires the actual component data Dcu.
  • the actual component data Dcu is the component data Dc used for mounting the component P on the substrate B by the component mounting device M4 or M5, and is the component data Dc modified by the use thereof.
  • this actual component data Dcu includes an operation parameter mu as a modified operation parameter m, and in the operation parameter mu, the suction speed, which is an operation condition, is modified from V1 to V2.
  • the learning unit 104 selects the operation parameter model Pm corresponding to the actual component data Dcu from the plurality of operation parameter models Pm held in the learning model holding unit DB2. For example, as shown in FIGS. 7A and 7B, the learning unit 104 selects the operation parameter model Pm corresponding to the period in which the actual production data including the actual component data Dcu is acquired. Alternatively, as shown in FIG. 8, the learning unit 104 selects the operation parameter model Pm corresponding to the production equipment including the component mounting device M4 or M5 using the actual production data including the actual component data Dcu. Alternatively, as shown in FIGS. 9A and 9B, the learning unit 104 selects the operation parameter model Pm corresponding to the production type of the mounting board produced using the actual production data including the actual component data Dcu.
  • the learning unit 104 updates the selected operation parameter model Pm by learning using the acquired actual component data Dcu as teacher data. That is, the relationship between the component information d indicated by the operating parameter model Pm and the operating conditions is updated. As a result, the operation parameter model Pmu after learning is generated.
  • the learning unit 104 replaces the operation parameter model Pm selected as described above and held in the learning model holding unit DB2 with the operation parameter model Pmu after learning. As a result, the trained operation parameter model Pmu is stored in the learning model holding unit DB2 as a new operation parameter model Pm.
  • FIG. 11 is a diagram showing an example of the overall processing in the present embodiment.
  • a plurality of operation parameter models Pm held in the learning model holding unit DB2 are managed in time units or production type units.
  • the parameter estimation unit 105 estimates the operation parameter m of the component P using the operation parameter model Pm selected by the model selection unit 103, and the component information d of the component P and its operation parameters.
  • the component data Dc including m is generated.
  • the data generation unit 102 generates the production data Dp including the component data Dc, and outputs the production data Dp to, for example, the component mounting line L1 via the input / output unit 107.
  • the production data Dp is output to the component mounting line L1, but may be output to another component mounting line L2 or L3.
  • the component mounting devices M4 and M5 included in the component mounting line L1 acquire the production data Dp from the input / output unit 107 of the production data generation device 100, at least one component P is mounted on the substrate B based on the production data Dp. By doing so, the mounting board is produced.
  • the component data Dc included in the production data Dp is modified so that, for example, the defect occurrence rate of the mounting board is reduced.
  • the adsorption rate V1 included in the operation parameter m of the component data Dc is corrected to V2.
  • the actual production data including the actual component data Dcu having the operation parameter mu is generated.
  • the actual component data Dcu is stored in the component library holding unit DB3 as new component data Dc.
  • the data acquisition unit 108 of the production data generation device 100 acquires the actual production data from the component mounting line L1, and the actual component data Dcu included in the actual production data is used as a new component data Dc in the component library. It is stored in the holding unit DB3.
  • the component data Dc in the component mounting line L1 is not always modified, and if there is no modification, the component mounting line L1 includes the component data Dc acquired from the production data generator 100 as the actual component data Dcu. Generate actual production data.
  • the learning unit 104 holds the operation parameter model Pm corresponding to the actual component data Dcu included in the actual production data, as in the example shown in FIG. 10B. Select from the unit DB2. Then, the learning unit 104 performs learning on the selected operation parameter model Pm using the actual component data Dcu, and stores the learned operation parameter model Pmu in the learning model holding unit DB2.
  • FIG. 12 is a diagram showing another example of the overall processing in the present embodiment.
  • a plurality of operation parameter models Pm held in the learning model holding unit DB2 are managed in units of production equipment.
  • the parameter estimation unit 105 estimates the operation parameter m of the component P using the operation parameter model Pm selected by the model selection unit 103 for each production facility, and the component of the component P.
  • the component data Dc including the information d and its operation parameter m is generated.
  • the parameter estimation unit 105 estimates the operation parameter m based on the operation parameter model Pm for the component mounting line L1, that is, the operation parameter model Pm31 shown in FIG. 8, and generates the component data Dc. Then, the data generation unit 102 generates the production data Dp including the component data Dc, and outputs the production data Dp to, for example, the component mounting line L1 via the input / output unit 107. Further, the parameter estimation unit 105 estimates the operation parameter m based on the operation parameter model Pm for the component mounting line L2, that is, the operation parameter model Pm32 shown in FIG. 8, and generates the component data Dc.
  • the data generation unit 102 generates the production data Dp including the component data Dc, and outputs the production data Dp to, for example, the component mounting line L2 via the input / output unit 107.
  • the parameter estimation unit 105 estimates the operation parameter m based on the operation parameter model Pm for the component mounting line L3, that is, the operation parameter model Pm33 shown in FIG. 8, and generates the component data Dc.
  • the data generation unit 102 generates the production data Dp including the component data Dc, and outputs the production data Dp to, for example, the component mounting line L3 via the input / output unit 107.
  • the parameter estimation unit 105 estimates the operation parameter m based on the operation parameter model Pm for the component mounting lines L1 to L3, that is, the operation parameter model Pm34 shown in FIG. 8, and generates the component data Dc. Then, the data generation unit 102 generates the production data Dp including the component data Dc, and outputs the production data Dp to, for example, the component mounting lines L1 to L3 via the input / output unit 107.
  • each of the component mounting lines L1 to L3 when the component mounting devices M4 and M5 acquire the production data Dp from the input / output unit 107 of the production data generation device 100, at least one component P is mounted on the substrate based on the production data Dp. Implement in B. As a result, the mounting board is produced. At this time, in each of the component mounting lines L1 to L3, the component data Dc included in the production data Dp is modified so that, for example, the defect occurrence rate of the mounting board is reduced. As a result, actual production data including actual component data Dcu is generated. The actual component data Dcu is stored in the component library holding unit DB3 as new component data Dc.
  • the data acquisition unit 108 of the production data generation device 100 acquires the actual production data from each of the component mounting lines L1 to L3, and the actual component data Dcu included in the actual production data is used as a new component. It is stored as data Dc in the parts library holding unit DB3. It should be noted that the component data Dc in each of the component mounting lines L1 to L3 is not always modified. If there is no modification, each of the component mounting lines L1 to L3 generates actual production data including the component data Dc acquired from the production data generation device 100 as the actual component data Dcu.
  • the learning unit 104 When the data acquisition unit 108 acquires the actual production data of the component mounting line L1, the learning unit 104 has an operation parameter model corresponding to the actual component data Dcu included in the actual production data, as in the example shown in FIG. 10B. Pm is selected from the learning model holding unit DB2. Specifically, the learning unit 104 selects the operation parameter model Pm for the component mounting line L1, that is, the operation parameter model Pm31 shown in FIG. Then, the learning unit 104 learns the selected operation parameter model Pm by using the actual component data Dcu of the component mounting line L1. The actual component data Dcu is the component data Dc acquired from the component mounting line L1 by the data acquisition unit 108 and stored in the component library holding unit DB3 as described above. As a result, the learning unit 104 updates the operation parameter model Pm for the selected component mounting line L1 stored in the learning model holding unit DB2 to the learned operation parameter model Pmu for the component mounting line L1.
  • the learning unit 104 updates the operation parameter model Pm for each of the component mounting lines L2 and L3 in the same manner as the component mounting line L1 described above. That is, the learning unit 104 updates the operation parameter model Pm for the component mounting line L2 stored in the learning model holding unit DB2 to the operation parameter model Pmu after learning for the component mounting line L2. Further, the learning unit 104 updates the operation parameter model Pm for the component mounting line L3 stored in the learning model holding unit DB2 to the operation parameter model Pmu after learning for the component mounting line L3.
  • the learning unit 104 has an operation parameter model Pm for all the component mounting lines L1 to L3, that is, FIG.
  • the operation parameter model Pm34 shown in the above may be selected.
  • the learning unit 104 learns the selected operation parameter model Pm by using the actual component data Dcu according to any of the component mounting lines L1 to L3.
  • the actual component data Dcu is component data Dc acquired from any of the component mounting lines L1 to L3 by the data acquisition unit 108 and stored in the component library holding unit DB3 as described above.
  • the learning unit 104 uses the operation parameter model Pm for the selected component mounting lines L1 to L3 stored in the learning model holding unit DB2, and the learned operation parameter model Pmu for the component mounting lines L1 to L3. Update to.
  • the data generation unit 102 in the present embodiment may import the production data Dp from the production equipment of a factory other than the factory having the production system 1, and the production data Dp may be imported into the production equipment of the other factory. May be exported.
  • FIG. 13 is a flowchart showing the processing operation of the production data generation device 100 according to the present embodiment.
  • the input / output unit 107 of the production data generation device 100 receives the component information d (step S11).
  • This component information d may be generated and accepted by an operation by the input / output unit 107 by the operator, or may be accepted by being selected from a plurality of component information d. Further, the input / output unit 107 selects the component data Dc having the default operation parameter m from the plurality of component data Dc included in the component library, and extracts the component information d from the component data Dc to extract the component information d.
  • Information d may be accepted. As shown in FIG. 5, the component information d includes, for example, size data d2 and component attribute d31.
  • the model selection unit 103 selects at least one operation parameter model Pm from the plurality of operation parameter model Pm held in the learning model holding unit DB2 (step S12).
  • the parameter estimation unit 105 estimates the operation parameter m based on at least one operation parameter model Pm selected in step S12 and the component information d received in step S11 (step S13).
  • This operating parameter m is an operating condition of the component mounting device M4 or M5 for mounting the component P specified by the component information d on the substrate B.
  • the parameter estimation unit 105 generates the component data Dc having the component information d and the operation parameter m (step S14).
  • the data generation unit 102 generates the production data Dp including the component data Dc generated in step S14 (step S15). Then, the data generation unit 102 outputs the production data Dp to each of the component mounting lines L1 to L3. That is, each of the component mounting lines L1 to L3 downloads the production data Dp from the data generation unit 102, and starts the production of the mounting board using the production data Dp (step S16).
  • the learning unit 104 relearns the operation parameter model Pm using the component data Dc (that is, the actual component data Dcu) included in the production data Dp used in each of the component mounting lines L1 to L3 as the teacher data.
  • the operation parameter model Pm to be relearned is, for example, an operation parameter model Pm corresponding to a period in which the used production data Dp (that is, actual production data) is acquired.
  • At least one operation parameter model Pm is selected from the plurality of operation parameter models Pm. Then, based on the selected at least one operation parameter model Pm and the component information d of the mounting target component P, the operating parameter m for mounting the mounting target component P on the substrate B is estimated.
  • At least one operation parameter model Pm is selected from the plurality of operation parameter models Pm and used for estimating the operation parameter m, so that there is a possibility that an appropriate operation parameter m can be estimated for the mounting target component P. Can be enhanced. Therefore, an appropriate operation parameter m can be set. Further, when the component data Dc having such an operation parameter m and the component information d is included in the production data Dp and the production data Dp is used for mounting the component P on the substrate B by the component mounting device M4 or M5. Can produce high quality mounting boards. That is, the quality of the mounting board can be improved.
  • the actual production data including the actual component data Dcu used by the component mounting apparatus M4 or M5 is acquired. Then, among the plurality of operation parameter models Pm, the operation parameter model Pm corresponding to the acquired actual production data is updated by learning using the actual component data Dcu as the teacher data.
  • the operation parameter mu of the actual component data Dcu included in the actual production data is used for mounting the mounted component P, and at that time, corrections and the like are performed. That is, the operating parameter mu has been modified so that a better quality mounting board is produced. Therefore, by using the actual component data Dcu having such an operation parameter mu as teacher data for learning the operation parameter model Pm, it is possible to further optimize the operation parameter model Pm. As a result, when the operation parameter model Pm is selected by the model selection unit 103, the estimation accuracy of the operation parameter m can be improved.
  • each of the plurality of operation parameter models Pm is associated with different periods, and the learning is performed on the operation parameter model Pm corresponding to the period in which the actual production data is acquired. It is done against.
  • one of the operation parameter models Pm11 to Pm14, the operation parameter model Pm14 is associated with the entire period (for example, the entire period from 1990 to the present).
  • the remaining operation parameter models Pm11 to Pm13 are associated with different age groups.
  • the different ages are, for example, the 1990s, 2000s, 2010s, and the like.
  • the operation parameter model Pm associated with the entire period or any age is selected from the operation parameter models Pm11 to Pm14 and used for estimating the operation parameter m. Therefore, it is possible to estimate an appropriate operation parameter m according to the period for the mounting target component P.
  • each of the operation parameter models Pm31 to Pm34 is associated with different production facilities. Then, the learning is performed on the operation parameter model Pm corresponding to the production equipment including the component mounting device M4 or M5 using the actual production data.
  • the operation parameter model Pm associated with all the component mounting lines or any of the component mounting lines is selected from the operation parameter models Pm31 to Pm34 and used for estimating the operation parameter m. Therefore, it is possible to estimate an appropriate operation parameter m according to the production equipment for the mounting target component P.
  • the operation parameter models Pm41 to Pm44 are associated with different mounting board types. Then, the learning is performed on the operation parameter model Pm corresponding to the type of the mounting board produced using the actual production data.
  • the operation parameter model Pm associated with the mass production type or the prototype type is selected from the operation parameter models Pm41 to Pm44 and used for estimating the operation parameter m. Therefore, it is possible to estimate an appropriate operation parameter m according to the type of the mounting board for the mounting target component P.
  • the operating parameter model Pm specialized for the period, the type of production equipment or mounting board, etc. can be used, and as a result, for that period, the type of production equipment or mounting board, etc.
  • An appropriate operating parameter m can be estimated.
  • a plurality of operation parameter models Pm are managed in units of time, production equipment, or production type.
  • the mode of management is not limited to these, and a plurality of operation parameter models Pm may be managed in other units.
  • a plurality of operation parameter models Pm are managed in units of combinations of production equipment and production type, but the combinations are not limited to this, and any combination can be used. There may be.
  • the model selection unit 103 selects one operation parameter model Pm updated on the latest date.
  • the model selection unit 103 performs the operation selected earlier.
  • the parameter model Pm may be reselected to the operating parameter model Pm updated before the latest date.
  • the model selection unit 103 may reselect the operation parameter model Pm according to, for example, the defect occurrence rate. The reselection may be performed randomly or according to a predetermined procedure.
  • the input / output unit 107 of the production data generation device 100 in the above embodiment transfers at least one operation parameter model Pm held in the learning model holding unit DB2 to a facility other than the facility having the production system 1. You may export it.
  • the facility may be a factory or a floor.
  • the input / output unit 107 may import at least one operation parameter model Pm from another facility and store it in the learning model holding unit DB2.
  • the operation parameter model Pm can be further optimized.
  • the input / output unit 107 may import and export the production data Dp held in the production data holding unit DB1 and import and export the parts data Dc held in the parts library holding unit DB3. You may.
  • the learning unit 104 of the production data generation device 100 in the above embodiment corresponds to the actual production data acquired by the data acquisition unit 108 among the plurality of operation parameter model Pm held in the learning model holding unit DB2. Learning for the motion parameter model Pm to be performed.
  • the learning unit 104 may switch the operation parameter model Pm to be learned by the operation of the operator received by the input / output unit 107. As a result, the operation parameter model Pm specified by the operator is learned.
  • the operation parameter m estimated by the parameter estimation unit 105 included in the component data Dc of the component library includes the identification information of the operation parameter model Pm used for estimating the operation parameter m and its estimation. It may be associated with the date and time. Thereby, the operation parameter m can be appropriately managed.
  • the parameter estimation unit 105 may estimate the operation parameter m using only a part of the information without using all the information included in the component information d shown in FIG.
  • the input / output unit 107 may accept a part of the component information d that is used for estimating the operation parameter m according to the operation by the operator. When such a part of the information is received, the parameter estimation unit 105 estimates the operation parameter m using only the received part of the information. Further, the parameter estimation unit 105 may estimate only a part of the parameters without estimating all the parameters included in the operation parameter m shown in FIG.
  • the input / output unit 107 may accept the designation of some parameters to be estimated among the operation parameters m shown in FIG. 5 according to the operation by the operator.
  • the parameter estimation unit 105 estimates only the specified part of the operation parameters m. Further, the parameter estimation unit 105 may perform principal component analysis on all the information included in the component information d and estimate the operation parameter m according to the analysis result.
  • FIG. 14 is a diagram showing an example of the configuration of the production system according to the present embodiment.
  • the production system 2 in the present embodiment includes three component mounting lines L1 to L3, a production control device 100a, a data management device 300, and three inspection devices 401 to 403. That is, the production system 2 in the present embodiment is the component mounting devices M4 and M5 that produce the mounting board by mounting the component P on the board B, and the data management device 300 or the data management device 300 that performs processing related to the production of the mounting board. It has a processing device such as inspection devices 401 to 403.
  • the three component mounting lines L1 to L3 are the same as the three component mounting lines L1 to L3 of the production system 1 in the first embodiment.
  • the production control device 100a manages the production of the mounting board in the production system 2. Specifically, the production control device 100a has the same function as the production data generation device 100 in the first embodiment, and further has a function of filtering the operation parameter mu included in the actual production data.
  • the data management device 300 is connected to each of the production control device 100a and the component mounting lines L1 to L3, and manages the production data Dp of each of the component mounting lines L1 to L3.
  • This production data Dp may be actual production data used in each of the component mounting lines L1 to L3.
  • the data management device 300 in the present embodiment generates filtering information used for filtering by the production control device 100a, and outputs the filtering information to the production control device 100a.
  • the inspection devices 401 to 403 inspect the mounting boards produced by the component mounting lines L1 to L3, respectively. That is, the inspection device 401 inspects the mounting board of the component mounting line L1, the inspection device 402 inspects the mounting board of the component mounting line L2, and the inspection device 403 inspects the mounting board of the component mounting line L3. Further, each of the inspection devices 401 to 403 in the present embodiment is connected to the production control device 100a, generates the above-mentioned filtering information based on the inspection result of the mounting board thereof, and transfers the filtering information to the production control device 100a. Output.
  • each of the data management device 300 and the inspection devices 401 to 403 in the present embodiment is a processing device that performs processing related to the production of the mounting board.
  • FIG. 15 is a block diagram showing the functional configurations of the production control device 100a, the component mounting lines L1 to L3, and the processing device.
  • the processing device 500 is composed of the data management device 300 and the inspection devices 401 to 403.
  • the production management device 100a is the same as the production data generation device 100 of the first embodiment, that is, the control unit 101, the data generation unit 102, the model selection unit 103, the learning unit 104, the parameter estimation unit 105, the display unit 106, and the input / output unit. It includes 107, a data acquisition unit 108, a production data holding unit DB1, a learning model holding unit DB2, and a parts library holding unit DB3. Further, the production control device 100a includes a filtering unit 109 that filters the operation parameter mu included in the actual production data.
  • the data acquisition unit 108 of the production control device 100a in the present embodiment inputs the production data Dp used for the production of the mounting board by the component mounting device M4 or M5, that is, the actual production data, to the component mounting line L1. Obtained from each of ⁇ L3.
  • This actual production data includes, for each of at least one type of component P, an operating parameter mu which is an operating condition of the component mounting device M4 or M5 for mounting the component P on the substrate B.
  • the data acquisition unit 108 acquires filtering information from the processing device 500.
  • the filtering unit 109 selects one or more operation parameter mu by filtering the at least one operation parameter mu included in the acquired actual production data using the filtering information obtained from the processing device 500.
  • the learning unit 104 generates or updates the operation parameter model Pm, which is a learning model held in the learning model holding unit DB2, by learning using one or more selected operation parameter mu as teacher data.
  • This operation parameter model Pm shows the relationship between the operating conditions of the component mounting device M4 or M5 for mounting the component P on the substrate B and the component P.
  • the actual component data Dcu including the operation parameter mu is used as the teacher data.
  • the parameter estimation unit 105 in the present embodiment has an operating parameter m which is an operating condition of the component mounting device M4 or M5 for mounting the mounting target component P which has not been mounted yet on the substrate. To estimate. The estimation of the operation parameter m is performed based on the operation parameter model Pm held in the learning model holding unit DB2 and the component information d regarding the mounting target component P mounted on the substrate B.
  • the processing device 500 includes inspection devices 401 to 403 and a data management device 300.
  • the inspection device 401 includes an inspection control unit 411, an input / output unit 412, a display unit 413, an inspection mechanism 414, and an inspection data holding unit DB5.
  • the input / output unit 412 receives, for example, input data based on an operation by an operator of the production system 2, and outputs the input data to the inspection control unit 411.
  • Such an input / output unit 412 may have, for example, a keyboard, a touch sensor, a touch pad, a mouse, or the like. Further, the input / output unit 412 outputs data to the production control device 100a and inputs data from the production control device 100a.
  • the inspection mechanism 414 includes a mechanism including, for example, a camera for inspecting the mounting board, and stores inspection data indicating the inspection result in the inspection data holding unit DB5.
  • the inspection data holding unit DB5 is a recording medium for holding the inspection data.
  • a recording medium may be a hard disk, RAM, ROM, semiconductor memory, or the like.
  • such a recording medium may be volatile or non-volatile.
  • the display unit 413 displays the inspection data and the like held in the inspection data holding unit DB5.
  • Specific examples of the display unit 413 are, but are not limited to, a liquid crystal display, a plasma display, an organic EL display, and the like.
  • the inspection control unit 411 controls each of the input / output unit 412, the display unit 413, the inspection mechanism 414, and the inspection data holding unit DB5. For example, the inspection control unit 411 causes the inspection mechanism 414 to start the inspection of the mounting board in response to the operation by the operator received by the input / output unit 412. Further, the inspection control unit 411 according to the present embodiment generates filtering information and outputs the filtering information to the data acquisition unit 108 of the production control device 100a via the input / output unit 412.
  • the inspection devices 402 and 403 also have the same configuration as the above-mentioned inspection device 401.
  • the data management device 300 includes a data control unit 311, an input / output unit 312, a display unit 313, and a data holding unit DB6.
  • the input / output unit 312 receives input data based on, for example, an operation by an operator of the production system 2, and outputs the input data to the data control unit 311.
  • Such an input / output unit 312 may have, for example, a keyboard, a touch sensor, a touch pad, a mouse, or the like. Further, the input / output unit 312 outputs data to the production control device 100a and the component mounting lines L1 to L3, and inputs data from the production control device 100a and the component mounting lines L1 to L3.
  • the data holding unit DB6 is a recording medium for holding data.
  • the data is filtering information.
  • a recording medium may be a hard disk, RAM, ROM, a semiconductor memory, or the like, and may be volatile or non-volatile.
  • the display unit 313 displays the data and the like held in the data holding unit DB6.
  • Specific examples of the display unit 313 include, but are not limited to, a liquid crystal display, a plasma display, an organic EL display, and the like.
  • the data control unit 311 controls each of the input / output unit 312, the display unit 313, and the data holding unit DB6. Further, the data control unit 311 in the present embodiment may generate filtering information and output it to the data acquisition unit 108 of the production control device 100a via the input / output unit 312, similarly to the inspection control unit 411 described above. Good.
  • the data control unit 311 in the present embodiment may generate substrate identification information for identifying the substrate B as filtering information.
  • a plurality of actual production data Dpu corresponding to a plurality of different types of mounting boards are filtered by the filtering information. Therefore, it can be said that the data management device 300 is a device that manages a plurality of actual production data Dpu corresponding to a plurality of different types of mounting boards.
  • the data control unit 311 may generate one or more component identification information for identifying the type of the component P as filtering information.
  • FIG. 16 is a diagram showing an example of the overall processing in the present embodiment.
  • At least one production data Dp is generated, and based on the at least one production data Dp, the actual production data Dpu is output from each of the component mounting lines L1 to L3. Will be done.
  • the filtering unit 109 of the production control device 100a filters at least one operation parameter mu included in the actual production data Dpu.
  • the filtering unit 109 acquires the filtering information Df from the processing device 500 and performs filtering based on the filtering information Df to select one or more operation parameters mu.
  • the filtering unit 109 stores the actual component data Dcu including the operation parameter mu for each of the selected one or more operation parameters mu in the component library holding unit DB3 as new component data Dc.
  • FIG. 17A is a diagram showing an example of filtering information Df generated based on the inspection result of the mounting substrate.
  • each inspection control unit 411 of the inspection devices 401 to 403 included in the processing device 500 generates the filtering information Df shown in FIG. 17A and outputs it to the filtering unit 109.
  • the inspection control unit 411 generates information indicating the quality index of each of at least one type of component P mounted on the mounting board as the filtering information Df by the inspection of the mounting board by the inspection mechanism 414.
  • the quality index indicated by the filtering information Df is also referred to as a mounting quality index, and for example, the better the mounting state of the component P corresponding to the quality index, the larger the numerical value.
  • the inspection control unit 411 indicates the mounting quality indicating the misalignment of the mounted component P based on the image of the mounting board obtained by imaging with the camera. Calculate the index.
  • the misalignment of the component P is the difference between the mounting position of the component P on the substrate B indicated by the image and the mounting coordinates (or mounting position) of the component P indicated by the production data Dp.
  • the inspection control unit 411 calculates a numerical value closer to 1 as the displacement of the component P is smaller, and conversely, calculates a numerical value closer to 0 as the displacement of the component P is larger as the mounting quality index. .. That is, the mounting quality index may be normalized as a numerical value in the range of 0 to 1.
  • the mounting quality index may be referred to as a score or an evaluation value.
  • the inspection control unit 411 By calculating the mounting quality index in this way, the inspection control unit 411 generates filtering information Df indicating the mounting quality index of each of the plurality of types of components P, as shown in FIG. 17A.
  • This filtering information Df indicates a mounting quality index for each part name and part code of the part P. For example, the filtering information Df indicates "0.95" as the mounting quality index of the type of component P specified by the component name "A component” and the component code "C001".
  • the filtering unit 109 of the production control device 100a acquires the filtering information Df shown in FIG. 17A, the filtering unit 109 performs filtering using the filtering information Df. That is, the filtering unit 109 selects one or more operation parameters mu corresponding to the type of the component P whose mounting quality index is equal to or higher than the threshold value by the filtering. For example, the filtering unit 109 selects one or more operation parameters mu corresponding to the type of component P having a mounting quality index of the threshold value “0.85” or more. In the example shown in FIG.
  • the filtering unit 109 has an operation parameter mu corresponding to the component P having the component name “A component” and the component code “C001”, and the component P having the component name “G component” and the component code “C034”. Select the operation parameter mu corresponding to. That is, the filtering unit 109 selects the actual part data Dcu of the part code "C001” and the actual part data Dcu of the part code "C034" from each of the plurality of actual production data Dpu.
  • the operation parameter mu corresponding to the type of the component P having a large mounting quality index is selected by filtering.
  • one or more operation parameter mu corresponding to the type of component P having a good mounting state is selected by filtering and used for learning, and the operation parameter mu corresponding to the type of component P having a bad mounting state is used for learning. Not used. Therefore, it is possible to generate an operation parameter model Pm for estimating an appropriate operation parameter m for realizing a good mounting state.
  • FIG. 17B is a diagram showing an example of filtering information Df generated based on the mounting results of the component mounting lines L1 to L3.
  • the data control unit 311 of the data management device 300 included in the processing device 500 may generate the filtering information Df shown in FIG. 17B and output it to the filtering unit 109.
  • the data control unit 311 acquires information indicating the operating status of the component mounting devices M4 and M5 included in the component mounting line from each of the component mounting lines L1 to L3 via the input / output unit 312.
  • the data control unit 311 generates information indicating the mounting performance index of each of at least one type of component as filtering information based on the information indicating the operating status.
  • the mounting performance index is an index relating to an error that occurs in the component mounting devices M4 and M5 with respect to the component P due to the operation based on the actual production data Dpu by the component mounting devices M4 and M5. Shown.
  • the implementation performance index may be referred to as a score or an evaluation value.
  • the mounting performance index is an index related to errors such as a suction error of the component P caused by the component mounting devices M4 and M5, a drop of the component P, or a supply error from the feeder 7 to the mounting head 10.
  • the data control unit 311 indicates the implementation performance index as a percentage. That is, the data control unit 311 calculates a numerical value closer to 0% as the mounting performance index as the number of errors decreases, and conversely, calculates a numerical value closer to 100% as the mounting performance index as the number of errors increases.
  • the data control unit 311 By calculating the mounting performance index in this way, the data control unit 311 generates filtering information Df indicating the mounting performance index of each of the plurality of types of components P, as shown in FIG. 17B.
  • This filtering information Df indicates the mounting performance index for each part name and part code of the part P.
  • the filtering information Df indicates "0.5%" as the mounting quality index of the type of component P specified by the component name "A component” and the component code "C001".
  • the filtering unit 109 of the production control device 100a acquires the filtering information Df shown in FIG. 17B, the filtering unit 109 performs filtering using the filtering information Df. That is, the filtering unit 109 selects one or more operation parameters mu corresponding to the type of the component P whose mounting performance index is equal to or less than the threshold value by the filtering. For example, the filtering unit 109 selects one or more operation parameters mu corresponding to the type of the component P whose mounting performance index is the threshold value “1%” or less. In the example shown in FIG.
  • the filtering unit 109 has an operation parameter mu corresponding to the component P having the component name “A component” and the component code “C001”, and the component P having the component name “B component” and the component code “C102”. Select the operation parameter mu corresponding to. That is, the filtering unit 109 selects the actual part data Dcu of the part code "C001” and the actual part data Dcu of the part code "C102" from the plurality of actual production data Dpu.
  • the operation parameter mu corresponding to the type of the component P having a small mounting performance index is selected by filtering.
  • one or more operation parameters mu corresponding to the type of component P having few errors in the component mounting device M4 or M5 are selected by filtering and used for learning, and correspond to the type of component P having many errors.
  • the operation parameter mu is not used for learning. Therefore, it is possible to generate an operation parameter model Pm for estimating an appropriate operation parameter m for reducing the occurrence of an error.
  • FIG. 18A is a diagram showing an example of the filtering information Df generated by the selection of the component P.
  • the data control unit 311 of the data management device 300 included in the processing device 500 generates the filtering information Df shown in (b) according to the operation result by the operator shown in (a) of FIG. 18A and outputs it to the filtering unit 109. You may.
  • the data control unit 311 displays the component selection screen shown in FIG. 18A (a) on the display unit 313.
  • a component name, a component code, and at least a part (for example, external dimensions and number of leads) of the component information d of each component P handled in the production system 2 are shown.
  • the operator inputs the learning flag to the desired component P by operating the input / output unit 312 while looking at the component selection screen. For example, in the mounting board produced by mounting the component P, when the mounting state of the component P is good, the operator inputs a learning flag to the component P. Alternatively, if the part P used in the past is an exceptional special part, the operator does not input the learning flag for the part P.
  • the operator does not input the learning flag for the component P.
  • the operator inputs a learning flag for each component P of the component names “A component”, “B component”, “D component”, and “F component”.
  • the operator further operates the input / output unit 312 to select the decision button displayed on the component selection screen.
  • the data control unit 311 generates the filtering information Df shown in FIG. 18A (b) according to the learning flag input to the component selection screen.
  • the filtering information Df indicates, for each learning flag input by the operator, the part name and the part code of the part P corresponding to the learning flag as the part identification information of the part P.
  • the filtering information Df contains the part name "A part” and the part code "C001", the part name "B part” and the part code “C002”, and the part name “C002" as the part identification information of each of the four parts P. "D part” and part code "C003”, and part name “F part” and part code "C005" are shown.
  • the data management device 300 outputs the filtering information Df including one or more component identification information for identifying the type of the component P, respectively.
  • the filtering unit 109 of the production control device 100a acquires the filtering information Df shown in FIG. 18A (b), the filtering unit 109 performs filtering using the filtering information Df. That is, in the filtering, the filtering unit 109 selects the operation parameter mu corresponding to the type of the component P identified by the component identification information for each of the one or more component identification information indicated by the filtering information Df.
  • the filtering unit 109 uses the actual production data Dpu of the plurality of actual production data Dpu to obtain the actual component data Dcu of the component code “C001”, the actual component data Dcu of the component code “C002”, and the component code.
  • the actual part data Dcu of "C003" and the actual part data Dcu of the part code "C005" are selected.
  • the operation parameter mu corresponding to the type of the component P specified by the operation by the operator is selected by the filtering.
  • one or more operation parameters mu corresponding to the type of the part P identified by the part identification information specified by the operator are selected by filtering and used for learning, and the operation parameters corresponding to the other types of the part P are used. mu is not used for learning. Therefore, it is possible to generate an operation parameter model Pm for estimating an appropriate operation parameter mu for a specific component P.
  • FIG. 18B is a diagram showing an example of filtering information Df generated by selection of the substrate B.
  • the data control unit 311 of the data management device 300 included in the processing device 500 generates the filtering information Df shown in (b) according to the operation result by the operator shown in (a) of FIG. 18B and outputs it to the filtering unit 109. You may.
  • the data control unit 311 displays the board selection screen shown in FIG. 18B (a) on the display unit 313.
  • a board name, a board code, auxiliary information, and the like of each board B handled by the production system 2 are shown.
  • the operator inputs the learning flag to the desired board B by operating the input / output unit 312 while looking at the board selection screen.
  • the operator inputs a learning flag for each board B of the board names "A board", "B board”, "D board", and "F board”.
  • the operator further operates the input / output unit 312 to select the decision button displayed on the board selection screen.
  • the data control unit 311 generates the filtering information Df shown in FIG. 18B (b) according to the learning flag input to the board selection screen.
  • the filtering information Df indicates, for each learning flag input by the operator, the board name and board code of the board B corresponding to the learning flag as board identification information of the board B.
  • the filtering information Df contains the substrate name "A substrate” and the substrate code "B001", the substrate name "B substrate” and the substrate code "B002", and the substrate name "B002" as the substrate identification information of each of the four substrates B.
  • the "D board” and the board code "B004", and the board name "F board” and the board code "B006" are shown.
  • the data management device 300 outputs the filtering information Df including one or more board identification information for identifying the type of the board B, respectively.
  • the filtering unit 109 of the production control device 100a acquires the filtering information Df shown in FIG. 18B (b), the filtering unit 109 performs filtering using the filtering information Df. That is, when the actual production data group composed of a plurality of actual production data Dpu is acquired by the data acquisition unit 108, the filtering unit 109 starts from at least one operation parameter mu included in the actual production data group in the filtering. Select one or more operating parameters mu. Each of the one or more selected operation parameters mu corresponds to the type of component P mounted on the type of substrate B identified by the substrate identification information included in the filtering information Df.
  • the filtering unit 109 is a component P mounted on each board B of the board codes “B001”, “B002”, “B004” and “B006” from the actual production data group.
  • the production data Dp and the actual production data Dpu may indicate the substrate code of the substrate B used in the production of the mounting substrate.
  • the filtering unit 109 selects the actual production data Dpu indicating each of the board codes "B001", “B002", “B004", and "B006” from the actual production data group, and those selected actual production.
  • the actual component data Dcu is extracted from the data Dpu.
  • the operation parameter mu corresponding to the type of the component P mounted on the board B specified by the operator is selected by the filtering. That is, one or more operation parameters mu corresponding to the type of the component P mounted on the board B specified by the operator are selected by filtering and used for learning, and the type of the component P mounted on the other board B is selected.
  • the corresponding motion parameter mu is not used for learning. Therefore, it is possible to generate an operation parameter model Pm for estimating an appropriate operation parameter mu for a specific substrate B.
  • FIG. 19 is a flowchart showing a processing operation of the production control device 100a according to the present embodiment.
  • the data acquisition unit 108 of the production control device 100a acquires the actual production data Dpu from the component mounting lines L1 to L3 (step S21). Further, the data acquisition unit 108 acquires the filtering information Df from the processing device 500 (step S22).
  • the filtering unit 109 uses the filtering information Df acquired in step S22 to filter each operation parameter mu included in the actual production data Dpu acquired in step S21 (step S23). As a result, the operation parameter mu used for learning is selected from the actual production data Dpu.
  • the learning unit 104 generates or updates the operation parameter model Pm by learning using the operation parameter mu selected by the filtering in step S23 (step S24).
  • the selected operation parameter mu and the component information d included in the actual component data Dcu together with the operation parameter mu are used as teacher data.
  • the operation parameter model Pm corresponding to the actual production data Dpu held in the learning model holding unit DB2 is updated.
  • the parameter estimation unit 105 when the component P whose operation parameter m is undecided is selected by the input / output unit 107, the parameter estimation unit 105 generates or updates the operation parameter m of the selected component P in step S24. Estimate using the parameter model Pm (step S25).
  • the actual production data Dpu is acquired, and at least one operation parameter mu included in the acquired actual production data Dpu is filtered. That is, one or more operation parameters mu are selected from the actual production data Dpu by using the filtering information Df obtained from the processing device 500. Then, the operation parameter model Pm is generated or updated by learning using one or more selected operation parameters mu as teacher data.
  • one or more operation parameter mu selected by filtering is used for learning, and the operation parameter mu not selected is not used for learning, so that the operation parameter model Pm can be optimized.
  • this operation parameter model Pm an appropriate operation parameter mu can be estimated and then set in the production data Dp used in the component mounting apparatus M4 or M5. Therefore, it is possible to produce a high quality mounting board. That is, the quality of the mounting board can be improved.
  • the operation parameter m for mounting the mounting target component P on the substrate B is estimated based on the generated or updated operation parameter model Pm and the component information d. To. Thereby, an appropriate operation parameter m can be estimated and set for the mounting target component P.
  • filtering is performed based on the specified type of component P or the type of substrate B, but filtering based on the product series of the mounting substrate may be performed. .. Further, filtering may be performed based on the date when the actual production data Dpu is acquired. For example, only the operation parameter mu included in the actual production data Dpu acquired on the latest date may be selected by filtering. In addition, filtering based on the specified component mounting line may be performed. For example, when the component mounting line L1 is specified, only the operation parameter mu included in the actual production data Dpu acquired from the component mounting line L1 may be selected by filtering.
  • the filtering information Df indicates a mounting quality index or a mounting performance index, but these are examples and may indicate other indexes.
  • these indices may be expressed in PPM (parts per million).
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the software that realizes the devices of each of the above-described embodiments and modifications thereof is a program that causes a computer to execute each step included in the flowchart shown in FIG. 13 or FIG.
  • Each of the above devices is specifically a computer system composed of a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • the microprocessor operates according to the computer program, each device achieves its function.
  • a computer program is configured by combining a plurality of instruction codes indicating instructions to a computer in order to achieve a predetermined function.
  • a part or all of the components constituting each of the above devices may be composed of one system LSI (Large Scale Integration: large-scale integrated circuit).
  • a system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, is a computer system including a microprocessor, a ROM, a RAM, and the like. ..
  • a computer program is stored in the RAM. When the microprocessor operates according to the computer program, the system LSI achieves its function.
  • each of the above devices may be composed of an IC card or a single module that can be attached to and detached from each device.
  • the IC card or the module is a computer system composed of a microprocessor, a ROM, a RAM, and the like.
  • the IC card or the module may include the above-mentioned super multifunctional LSI.
  • the microprocessor operates according to a computer program, the IC card or the module achieves its function. This IC card or this module may have tamper resistance.
  • the present disclosure may be the method shown above. Further, it may be a computer program that realizes these methods by a computer, or it may be a digital signal composed of the computer program.
  • the present disclosure discloses a recording medium in which the computer program or the digital signal can be read by a computer, for example, a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu-ray It may be recorded on a registered trademark) Disc), a semiconductor memory, or the like. Further, it may be the digital signal recorded on these recording media.
  • the computer program or the digital signal may be transmitted via a telecommunication line, a wireless or wired communication line, a network typified by the Internet, data broadcasting, or the like.
  • the present disclosure is a computer system including a microprocessor and a memory, and the memory may store the computer program, and the microprocessor may operate according to the computer program.
  • This disclosure can be used in a system for producing a mounting board by mounting a component on a board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Operations Research (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

Provided is a production data generation device capable of setting appropriate operating parameters. The production data generation device (100) comprises: a model selection unit (103) which selects at least one operation parameter model (Pm) from among a plurality of operation parameter models (Pm) that are different from each other; a parameter estimation unit (105) which, on the basis of at least one selected operation parameter model (Pm), and component information (d) regarding a mounting target component (P) mounted on a board (B), estimates operation parameters (m) that are the operation conditions of a component mounting device (M4) or (M5) for mounting the mounting target component (P) on the board (B); and a data generation unit (102) which generates production data (Dp) including component data (Dc) having the component information (d) and operation parameters (m).

Description

生産データ生成装置、生産データ生成方法、およびプログラムProduction data generator, production data generation method, and program
 本開示は、実装基板を生産するための生産データを生成する装置、方法およびプログラムなどに関する。 This disclosure relates to an apparatus, a method, a program, etc. for generating production data for producing a mounting board.
 少なくとも1つの部品実装装置を含む部品実装ラインは、基板に部品を実装することによって実装基板を生産する。このとき、部品実装ラインは、生産データに基づいて部品を基板に実装する。生産データは、基板に実装される各部品の識別情報と、それらの部品の実装順序とを含む。また、生産データは、基板に実装される部品ごとの部品データを含む場合がある。部品データは、実装される部品の形状などを示す情報と、その部品を扱う部品実装装置の動作パラメータとを含む。動作パラメータは、例えば部品実装装置が有する実装ヘッドの吸着速度または実装荷重などを含む。 A component mounting line that includes at least one component mounting device produces a mounting board by mounting components on the board. At this time, the component mounting line mounts the component on the board based on the production data. The production data includes identification information of each component mounted on the board and the mounting order of those components. In addition, the production data may include component data for each component mounted on the board. The component data includes information indicating the shape of the component to be mounted and operating parameters of the component mounting device that handles the component. The operating parameters include, for example, the suction speed of the mounting head or the mounting load of the component mounting device.
 例えば、特許文献1の実装基板製造システムでは、その動作パラメータに相当する制御パラメータ(またはマシンパラメータ)を、部品搭載作業の成績に基づいて修正する。これにより、部品データの修正を適切かつ効率的に行うことができる。 For example, in the mounting board manufacturing system of Patent Document 1, the control parameters (or machine parameters) corresponding to the operating parameters are modified based on the results of the component mounting work. As a result, the component data can be corrected appropriately and efficiently.
特開2019-4129号公報Japanese Unexamined Patent Publication No. 2019-4129
 しかしながら、上記特許文献1の実装基板製造システムでは、適切な動作パラメータを設定することが難しい場合があるという課題がある。 However, the mounting board manufacturing system of Patent Document 1 has a problem that it may be difficult to set appropriate operating parameters.
 そこで、本開示は、適切な動作パラメータを設定することができる生産データ生成装置などを提供する。 Therefore, the present disclosure provides a production data generator or the like capable of setting appropriate operating parameters.
 本開示の一態様に係る生産データ生成装置は、それぞれ部品を基板に実装するための部品実装装置の動作条件と前記部品との間の関係性を示す互に異なる複数の学習モデルから、少なくとも1つの学習モデルを選択するモデル選択部と、選択された前記少なくとも1つの学習モデルと、基板に実装される実装対象部品に関する部品情報とに基づいて、前記実装対象部品を基板に実装するための部品実装装置の動作条件である動作パラメータを推定するパラメータ推定部と、前記部品情報および前記動作パラメータを有する部品データを含む生産データを生成するデータ生成部とを備える。 The production data generation device according to one aspect of the present disclosure is at least one from a plurality of different learning models showing the relationship between the operating conditions of the component mounting device for mounting the component on the substrate and the component. A component for mounting the mounting target component on the board based on a model selection unit that selects one learning model, the selected at least one learning model, and component information regarding the mounting target component mounted on the board. It includes a parameter estimation unit that estimates operation parameters that are operating conditions of the mounting apparatus, and a data generation unit that generates production data including the component information and component data having the operation parameters.
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。また、記録媒体は、非一時的な記録媒体であってもよい。 It should be noted that these comprehensive or specific embodiments may be realized in a recording medium such as a system, method, integrated circuit, computer program or computer-readable CD-ROM, and the system, method, integrated circuit, computer program. And any combination of recording media may be realized. Further, the recording medium may be a non-temporary recording medium.
 本開示の生産データ生成装置は、適切な動作パラメータを設定することができる。 The production data generator of the present disclosure can set appropriate operating parameters.
 なお、本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施の形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。 Further advantages and effects in one aspect of the present disclosure will be clarified from the specification and drawings. Such advantages and / or effects are provided by some embodiments and features described herein and drawings, respectively, but not all are provided to obtain one or more identical features. No need.
図1は、実施の形態1における生産システムの構成の一例を示す図である。FIG. 1 is a diagram showing an example of the configuration of the production system according to the first embodiment. 図2は、実施の形態1における部品実装装置の構成の一例を示す図である。FIG. 2 is a diagram showing an example of the configuration of the component mounting device according to the first embodiment. 図3は、図2におけるA-A断面の一例を部分的に示す図である。FIG. 3 is a diagram partially showing an example of the AA cross section in FIG. 図4は、実施の形態1における生産データ生成装置と部品実装ラインとのそれぞれの機能構成を示すブロック図である。FIG. 4 is a block diagram showing each functional configuration of the production data generation device and the component mounting line according to the first embodiment. 図5は、実施の形態1における部品ライブラリの一例を示す図である。FIG. 5 is a diagram showing an example of a component library according to the first embodiment. 図6は、実施の形態1における生産データの一例を示す図である。FIG. 6 is a diagram showing an example of production data according to the first embodiment. 図7Aは、実施の形態1における学習モデル保持部に保持され、時間単位で管理されている複数の学習モデルの一例を示す図である。FIG. 7A is a diagram showing an example of a plurality of learning models held in the learning model holding unit according to the first embodiment and managed in units of time. 図7Bは、実施の形態1における学習モデル保持部に保持され、時間単位で管理されている複数の学習モデルの他の例を示す図である。FIG. 7B is a diagram showing another example of a plurality of learning models held by the learning model holding unit according to the first embodiment and managed in units of time. 図8は、実施の形態1における学習モデル保持部に保持され、生産設備単位で管理されている複数の学習モデルの一例を示す図である。FIG. 8 is a diagram showing an example of a plurality of learning models held by the learning model holding unit according to the first embodiment and managed in units of production equipment. 図9Aは、実施の形態1における学習モデル保持部に保持され、生産タイプ単位で管理されている複数の学習モデルの一例を示す図である。FIG. 9A is a diagram showing an example of a plurality of learning models held in the learning model holding unit according to the first embodiment and managed in production type units. 図9Bは、実施の形態1における学習モデル保持部に保持され、生産タイプ単位および生産設備単位で管理されている複数の学習モデルの一例を示す図である。FIG. 9B is a diagram showing an example of a plurality of learning models held by the learning model holding unit according to the first embodiment and managed in the production type unit and the production equipment unit. 図10Aは、実施の形態1における動作パラメータの推定処理の概要を説明するための図である。FIG. 10A is a diagram for explaining an outline of the operation parameter estimation process according to the first embodiment. 図10Bは、実施の形態1における動作パラメータモデルの学習処理の概要を説明するための図である。FIG. 10B is a diagram for explaining an outline of the learning process of the operation parameter model according to the first embodiment. 図11は、実施の形態1における全体的な処理の一例を示す図である。FIG. 11 is a diagram showing an example of the overall processing according to the first embodiment. 図12は、実施の形態1における全体的な処理の他の例を示す図である。FIG. 12 is a diagram showing another example of the overall processing according to the first embodiment. 図13は、実施の形態1における生産データ生成装置の処理動作を示すフローチャートである。FIG. 13 is a flowchart showing the processing operation of the production data generator according to the first embodiment. 図14は、実施の形態2における生産システムの構成の一例を示す図である。FIG. 14 is a diagram showing an example of the configuration of the production system according to the second embodiment. 図15は、実施の形態2における生産管理装置と部品実装ラインと処理装置とのそれぞれの機能構成を示すブロック図である。FIG. 15 is a block diagram showing the functional configurations of the production control device, the component mounting line, and the processing device according to the second embodiment. 図16は、実施の形態2における全体的な処理の一例を示す図である。FIG. 16 is a diagram showing an example of the overall processing according to the second embodiment. 図17Aは、実施の形態2における、実装基板の検査結果に基づいて生成されるフィルタリング情報の一例を示す図である。FIG. 17A is a diagram showing an example of filtering information generated based on the inspection result of the mounting substrate in the second embodiment. 図17Bは、実施の形態2における、部品実装ラインの実装実績に基づいて生成されるフィルタリング情報の一例を示す図である。FIG. 17B is a diagram showing an example of filtering information generated based on the mounting results of the component mounting line in the second embodiment. 図18Aは、実施の形態2における、部品の選択によって生成されるフィルタリング情報の一例を示す図である。FIG. 18A is a diagram showing an example of filtering information generated by selection of parts in the second embodiment. 図18Bは、実施の形態2における、基板の選択によって生成されるフィルタリング情報の一例を示す図である。FIG. 18B is a diagram showing an example of filtering information generated by selecting a substrate in the second embodiment. 図19は、実施の形態2における生産管理装置の処理動作を示すフローチャートである。FIG. 19 is a flowchart showing the processing operation of the production control device according to the second embodiment.
 上述の課題を解決するために、本開示の一態様に係る生産データ生成装置は、それぞれ部品を基板に実装するための部品実装装置の動作条件と前記部品との間の関係性を示す互に異なる複数の学習モデルから、少なくとも1つの学習モデルを選択するモデル選択部と、選択された前記少なくとも1つの学習モデルと、基板に実装される実装対象部品に関する部品情報とに基づいて、前記実装対象部品を基板に実装するための部品実装装置の動作条件である動作パラメータを推定するパラメータ推定部と、前記部品情報および前記動作パラメータを有する部品データを含む生産データを生成するデータ生成部とを備える。例えば、前記部品情報は、当該部品情報に対応する部品の寸法、形状、外観、種別、および前記部品を供給するための供給形態のうちの少なくとも1つを示してもよい。また、前記動作パラメータは、前記部品実装装置による部品の移送、認識、吸着、および装着のうちの少なくとも1つに関するパラメータであってもよい。 In order to solve the above-mentioned problems, the production data generation devices according to one aspect of the present disclosure show the relationship between the operating conditions of the component mounting device for mounting the components on the substrate and the components. The mounting target is based on a model selection unit that selects at least one learning model from a plurality of different learning models, the selected at least one learning model, and component information about the mounting target component to be mounted on the board. It includes a parameter estimation unit that estimates operating parameters that are operating conditions of a component mounting device for mounting components on a board, and a data generation unit that generates production data including the component information and component data having the operating parameters. .. For example, the component information may indicate at least one of the dimensions, shape, appearance, type, and supply form for supplying the component corresponding to the component information. Further, the operation parameter may be a parameter relating to at least one of transfer, recognition, suction, and mounting of the component by the component mounting device.
 これにより、互いに異なる複数の学習モデルから少なくとも1つの学習モデルが選択されて動作パラメータの推定に用いられるため、実装対象部品に対して適切な動作パラメータが推定される可能性を高めることができる。したがって、適切な動作パラメータを設定することができる。また、このような動作パラメータおよび部品情報を有する部品データが生産データに含められ、その生産データが部品実装装置による部品の基板への実装に用いられる場合には、品質の良い実装基板を生産することができる。つまり、実装基板の品質向上を図ることができる。 As a result, at least one learning model is selected from a plurality of learning models that are different from each other and used for estimating the operation parameters, so that the possibility that an appropriate operation parameter is estimated for the mounting target component can be increased. Therefore, appropriate operating parameters can be set. Further, when the component data having such operation parameters and component information is included in the production data and the production data is used for mounting the component on the substrate by the component mounting device, a high quality mounting board is produced. be able to. That is, the quality of the mounting board can be improved.
 なお、動作パラメータは、1つのパラメータだけでなく、複数のパラメータの集合であってもよい。この場合、モデル選択部によって複数の学習モデルが選択されたときには、パラメータ推定部は、選択された複数の学習モデルから、動作パラメータに含まれる複数のパラメータをそれぞれ推定してもよい。 The operation parameter may be a set of a plurality of parameters as well as one parameter. In this case, when a plurality of learning models are selected by the model selection unit, the parameter estimation unit may estimate a plurality of parameters included in the operation parameters from the selected learning models.
 また、前記生産データ生成装置は、さらに、実装済み部品に関する部品情報と、前記実装済み部品の実装に用いられた動作パラメータとを有する実績部品データを含む、部品実装装置によって使用された実績生産データを取得するデータ取得部と、前記複数の学習モデルのうち、取得された前記実績生産データに対応する学習モデルによって示される前記関係性の更新を、前記実績部品データを教師データとして用いた学習によって行う学習部とを備えてもよい。 In addition, the production data generator further includes actual production data used by the component mounting device, including component information relating to the mounted component and actual component data having operating parameters used to mount the mounted component. The relationship is updated by the data acquisition unit that acquires the data and the learning model corresponding to the acquired actual production data among the plurality of learning models, by learning using the actual component data as the teacher data. It may be provided with a learning unit to perform.
 実績生産データに含まれる実績部品データの動作パラメータは、実装済み部品の実装に用いられ、その際に、修正などが行われている。つまり、より良い品質の実装基板が生産されるようにその動作パラメータは修正されている。したがって、このような動作パラメータを有する実績部品データが学習モデルの学習に教師データとして用いられることによって、学習モデルのさらなる適正化を図ることができる。その結果、その学習モデルがモデル選択部によって選択される場合には、動作パラメータの推定精度を向上することができる。 The operating parameters of the actual parts data included in the actual production data are used for mounting the mounted parts, and corrections are made at that time. That is, its operating parameters have been modified to produce better quality mounting boards. Therefore, by using the actual component data having such an operation parameter as the teacher data for learning the learning model, the learning model can be further optimized. As a result, when the learning model is selected by the model selection unit, the estimation accuracy of the operating parameters can be improved.
 また、前記複数の学習モデルのそれぞれは互いに異なる期間に対応付けられ、前記学習部は、前記実績生産データが取得された期間に対応する学習モデルに対して学習を行ってもよい。 Further, each of the plurality of learning models is associated with different periods, and the learning unit may perform learning on the learning model corresponding to the period in which the actual production data is acquired.
 例えば、複数の学習モデルのうちの1つの学習モデルは全期間(例えば過去から現在までの全期間)に対応付けられ、残りの少なくとも1つの学習モデルのそれぞれは互いに異なる年代に対応付けられている。その互いに異なる年代は、例えば、1990年代、2000年代、2010年代などの各年代である。これにより、それらの学習モデルから、全期間または何れかの年代に対応付けられている学習モデルが選択されて動作パラメータの推定に用いられる。したがって、実装対象部品に対して期間に応じた適切な動作パラメータを推定することができる。 For example, one of the learning models is associated with the entire period (eg, the entire period from the past to the present), and each of the remaining at least one learning model is associated with a different age group. .. The different ages are, for example, the 1990s, 2000s, 2010s, and the like. As a result, a learning model associated with the entire period or any age is selected from those learning models and used for estimating the operation parameters. Therefore, it is possible to estimate an appropriate operating parameter according to the period for the component to be mounted.
 また、前記複数の学習モデルのそれぞれは互いに異なる生産設備に対応付けられ、前記学習部は、前記実績生産データを使用した部品実装装置を含む生産設備に対応する学習モデルに対して学習を行ってもよい。 Further, each of the plurality of learning models is associated with different production equipment, and the learning unit learns the learning model corresponding to the production equipment including the component mounting device using the actual production data. May be good.
 例えば、生産設備は、部品実装装置であってもよく、部品実装装置を含む1つの部品実装ラインであってもよく、複数の部品実装ラインを含む設備であってもよい。この場合、例えば、複数の学習モデルのうちの1つの学習モデルは、工場に配置されている全ての部品実装ラインを含む生産設備に対応付けられ、残りの少なくとも1つの学習モデルのそれぞれは互いに異なる部品実装ラインに対応付けられている。これにより、それらの学習モデルから、全ての部品実装ラインまたは何れか部品実装ラインに対応付けられている学習モデルが選択されて動作パラメータの推定に用いられる。したがって、実装対象部品に対して生産設備に応じた適切な動作パラメータを推定することができる。 For example, the production equipment may be a component mounting device, one component mounting line including the component mounting device, or equipment including a plurality of component mounting lines. In this case, for example, one of the plurality of learning models is associated with the production equipment including all the component mounting lines arranged in the factory, and each of the remaining at least one learning model is different from each other. It is associated with the component mounting line. As a result, from those learning models, all the component mounting lines or the learning models associated with any of the component mounting lines are selected and used for estimating the operation parameters. Therefore, it is possible to estimate appropriate operating parameters according to the production equipment for the parts to be mounted.
 また、前記複数の学習モデルのそれぞれは互いに異なる実装基板のタイプに対応付けられ、前記学習部は、前記実績生産データを使用して生産された実装基板のタイプに対応する学習モデルに対して学習を行ってもよい。 Further, each of the plurality of learning models is associated with a different type of mounting board, and the learning unit learns from the learning model corresponding to the type of mounting board produced by using the actual production data. May be done.
 例えば、実装基板のタイプは、量産タイプまたは試作タイプである。この場合、例えば、複数の学習モデルのうちの1つの学習モデルは、量産タイプに対応付けられ、残りの1つの学習モデルは試作タイプに対応付けられている。これにより、それらの学習モデルから、量産タイプまたは試作タイプに対応付けられている学習モデルが選択されて動作パラメータの推定に用いられる。したがって、実装対象部品に対して実装基板のタイプに応じた適切な動作パラメータを推定することができる。 For example, the type of mounting board is a mass production type or a prototype type. In this case, for example, one of the plurality of learning models is associated with the mass production type, and the remaining one learning model is associated with the prototype type. As a result, the learning model associated with the mass production type or the prototype type is selected from those learning models and used for estimating the operation parameters. Therefore, it is possible to estimate appropriate operating parameters according to the type of mounting board for the mounting target component.
 以下、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, the embodiment will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that all of the embodiments described below show comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, etc. shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 In addition, each figure is a schematic view and is not necessarily exactly illustrated. Further, in each figure, the same components are designated by the same reference numerals.
 (実施の形態1)
 [生産システム]
 図1は、本実施の形態における生産システムの構成の一例を示す図である。
(Embodiment 1)
[Production system]
FIG. 1 is a diagram showing an example of a configuration of a production system according to the present embodiment.
 本実施の形態における生産システム1は、3つの部品実装ラインL1~L3と、生産データ生成装置100とを備える。 The production system 1 in the present embodiment includes three component mounting lines L1 to L3 and a production data generation device 100.
 部品実装ラインL1~L3のそれぞれは、実装基板の生産設備の一例であって、上流側から搬入された基板に対してはんだ印刷作業、部品実装作業およびリフロー作業などを行うことによって実装基板を生産し、その生産された実装基板を下流側に搬出する。 Each of the component mounting lines L1 to L3 is an example of a mounting board production facility, and a mounting board is produced by performing solder printing work, component mounting work, reflow work, etc. on the board carried in from the upstream side. Then, the produced mounting board is carried out to the downstream side.
 生産データ生成装置100は、部品実装ラインL1~L3のそれぞれに対して、実装基板を生産するための生産データを生成して出力する。なお、生産データ生成装置100は、無線または有線を介してそれらの部品実装ラインL1~L3と通信してもよい。無線は、Wi-Fi(登録商標)、Bluetooth(登録商標)、ZigBee、または特定小電力無線であってもよい。 The production data generation device 100 generates and outputs production data for producing a mounting board for each of the component mounting lines L1 to L3. The production data generation device 100 may communicate with those component mounting lines L1 to L3 via wireless or wired. The radio may be Wi-Fi®, Bluetooth®, ZigBee, or a specified low power radio.
 部品実装ラインL1は、ライン管理装置200と、基板供給装置M1と、基板受渡装置M2と、はんだ印刷装置M3と、部品実装装置M4およびM5と、リフロー装置M6と、基板回収装置M7とを備える。なお、部品実装ラインL1に含まれるライン管理装置200以外の各装置は、基板供給装置M1、基板受渡装置M2、はんだ印刷装置M3、部品実装装置M4およびM5、リフロー装置M6、基板回収装置M7の順に配列され、直列に連結されている。なお、これらのライン管理装置200以外の各装置を、以下、作業装置という。なお、部品実装ラインL1は、基板供給装置M1、少なくとも1つの部品実装装置および基板回収装置M7を含んでいれば、上記全ての作業装置を含んでいなくてもよい。また、部品実装ラインL1は、上記作業装置の他、基板に半田を塗布する半田塗布装置、ラジアル部品またはアキシャル部品を基板に実装する部品挿入機などを含んでもよい。 The component mounting line L1 includes a line management device 200, a board supply device M1, a board delivery device M2, a solder printing device M3, component mounting devices M4 and M5, a reflow device M6, and a board recovery device M7. .. Each device other than the line management device 200 included in the component mounting line L1 includes a board supply device M1, a board delivery device M2, a solder printing device M3, a component mounting devices M4 and M5, a reflow device M6, and a board recovery device M7. They are arranged in order and connected in series. Each device other than these line management devices 200 is hereinafter referred to as a work device. The component mounting line L1 may not include all the above-mentioned working devices as long as it includes the board supply device M1, at least one component mounting device, and the board recovery device M7. Further, the component mounting line L1 may include, in addition to the above-mentioned working device, a solder coating device for applying solder to the substrate, a component insertion machine for mounting radial components or axial components on the substrate, and the like.
 ライン管理装置200は、生産データ生成装置100によって生成された生産データを、その生産データ生成装置100から取得し、その生産データに基づく実装基板の生産を、部品実装ラインL1に含まれる各作業装置に実行させる。 The line management device 200 acquires the production data generated by the production data generation device 100 from the production data generation device 100, and produces the mounting board based on the production data by each work device included in the component mounting line L1. To execute.
 基板供給装置M1は、部品実装ラインL1で生産される実装基板に用いられる基板を、基板受渡装置M2を介してはんだ印刷装置M3に供給する。はんだ印刷装置M3は、上述のはんだ印刷作業を行う。つまり、はんだ印刷装置M3は、その基板受渡装置M2から受け渡された基板にはんだをスクリーン印刷する。 The board supply device M1 supplies the board used for the mounting board produced on the component mounting line L1 to the solder printing device M3 via the board delivery device M2. The solder printing apparatus M3 performs the above-mentioned solder printing operation. That is, the solder printing device M3 screen-prints the solder on the board delivered from the board delivery device M2.
 部品実装装置M4およびM5のそれぞれは、基板に少なくとも1つの部品を実装する上述の部品実装作業を実行する。なお、部品実装ラインL1は、2台の部品実装装置M4およびM5を備えるが、その台数は2台に限定されることなく、1台であってもよく、3台以上であってもよい。また、これらの部品実装装置M4およびM5による部品実装作業によって実装基板が実質的に生産されるともいえる。 Each of the component mounting devices M4 and M5 executes the above-mentioned component mounting operation for mounting at least one component on the board. The component mounting line L1 includes two component mounting devices M4 and M5, but the number of the component mounting devices M4 and M5 is not limited to two, and may be one or three or more. Further, it can be said that the mounting board is substantially produced by the component mounting work by these component mounting devices M4 and M5.
 リフロー装置M6は、上述のリフロー作業を行う。つまり、リフロー装置M6は、部品実装装置M4およびM5から搬入された、部品が実装された基板を加熱して、基板上のはんだを硬化させ、基板の電極部と部品とを接合する。具体的には、リフロー装置M6は、所定の加熱プロファイルにしたがった加熱を行うことによって、部品接合用のはんだを溶融固化する。これにより部品が基板にはんだ接合される。基板回収装置M7は、そのはんだ接合が行われた基板をリフロー装置M6から回収する。 The reflow device M6 performs the above-mentioned reflow work. That is, the reflow device M6 heats the substrate on which the component is mounted, which is carried in from the component mounting devices M4 and M5, cures the solder on the substrate, and joins the electrode portion of the substrate and the component. Specifically, the reflow device M6 melts and solidifies the solder for joining parts by heating according to a predetermined heating profile. As a result, the components are soldered to the substrate. The substrate recovery device M7 recovers the solder-bonded substrate from the reflow device M6.
 部品実装ラインL2およびL3も、部品実装ラインL1と同様の構成を有する。なお、本実施の形態では、部品実装ラインL1~L3のそれぞれは同一の構成を有するが、互に異なる構成を有していてもよい。また、本実施の形態では、部品実装ラインL1~L3は、ライン管理装置200を備えているが、そのライン管理装置200は、部品実装ラインL1~L3のそれぞれから独立して備えられていてもよく、部品実装ラインL1~L3のそれぞれに組み込まれていてもよい。 The component mounting lines L2 and L3 also have the same configuration as the component mounting lines L1. In the present embodiment, each of the component mounting lines L1 to L3 has the same configuration, but may have different configurations from each other. Further, in the present embodiment, the component mounting lines L1 to L3 include the line management device 200, but the line management device 200 may be provided independently of each of the component mounting lines L1 to L3. Often, it may be incorporated in each of the component mounting lines L1 to L3.
 [部品実装装置]
 図2は、部品実装装置M4の構成の一例を示す図である。本実施の形態では、部品実装装置M5も、部品実装装置M4と同様の構成を有する。なお、本実施の形態では、基板Bの搬送方向をX軸方向と称し、そのX軸方向と垂直な方向をY軸方向と称する。X軸方向およびY軸方向は水平面に沿う方向である。さらに、X軸方向およびY軸方向に垂直な方向を、Z軸方向と称する。X軸方向プラス側およびマイナス側は、それぞれ基板Bの搬送方向における下流側および上流側であって、Y軸方向プラス側およびマイナス側は、それぞれ前後方向における後側(または奥側)および前側(または手前側)である。Z軸方向プラス側およびマイナス側は、それぞれ上下方向における上側および下側である。図2では、部品実装装置M4の上面が示されている。
[Parts mounting device]
FIG. 2 is a diagram showing an example of the configuration of the component mounting device M4. In the present embodiment, the component mounting device M5 also has the same configuration as the component mounting device M4. In the present embodiment, the transport direction of the substrate B is referred to as the X-axis direction, and the direction perpendicular to the X-axis direction is referred to as the Y-axis direction. The X-axis direction and the Y-axis direction are directions along the horizontal plane. Further, the direction perpendicular to the X-axis direction and the Y-axis direction is referred to as a Z-axis direction. The plus side and minus side in the X-axis direction are the downstream side and the upstream side in the transport direction of the substrate B, respectively, and the plus side and the minus side in the Y-axis direction are the rear side (or the back side) and the front side (or the back side) in the front-rear direction, respectively. Or the front side). The positive side and the negative side in the Z-axis direction are the upper side and the lower side in the vertical direction, respectively. In FIG. 2, the upper surface of the component mounting device M4 is shown.
 部品実装装置M4は、基台4と、基板搬送機構5と、2つの部品供給部6と、2つのX軸ビーム9と、Y軸ビーム8と、2つの実装ヘッド10と、2つの部品認識カメラ11と、2つの基板認識カメラ12とを備える。 The component mounting device M4 includes a base 4, a board transfer mechanism 5, two component supply units 6, two X-axis beams 9, a Y-axis beam 8, two mounting heads 10, and two component recognitions. A camera 11 and two substrate recognition cameras 12 are provided.
 基板搬送機構5は、X軸方向に沿う2つのレールを備え、基台4の中央には配設されている。基板搬送機構5は、上流側から搬入された基板Bを搬送し、部品実装作業を実行するための位置にその基板Bを位置決めして保持する。 The board transfer mechanism 5 is provided with two rails along the X-axis direction, and is arranged in the center of the base 4. The board transfer mechanism 5 transports the board B carried in from the upstream side, and positions and holds the board B at a position for executing the component mounting operation.
 2つの部品供給部6は、基板搬送機構5をY軸方向に挟むように配置されている。それぞれの部品供給部6には、複数のフィーダ7がX軸方向に沿って並列に配置されている。フィーダ7は、部品を収納した部品テープをテープ送り方向にピッチ送りすることにより、実装ヘッド10によって部品の取り出しが行われる位置(以下、部品取り出し位置という)に、その部品を供給する。 The two component supply units 6 are arranged so as to sandwich the substrate transfer mechanism 5 in the Y-axis direction. A plurality of feeders 7 are arranged in parallel along the X-axis direction in each component supply unit 6. The feeder 7 supplies the component to a position where the component is taken out by the mounting head 10 (hereinafter, referred to as a component take-out position) by pitch-feeding the component tape containing the component in the tape feeding direction.
 なお、部品供給部6には、トレイフィーダ、スティックフィーダ、またはバルクフィーダなどが配置されてもよい。トレイフィーダは、部品を収納したトレイからその部品を供給する。スティックフィーダは、部品を収納したスティックケースからその部品を供給する。バルクフィーダは、部品を収納したバルクケースからその部品を供給する。 A tray feeder, a stick feeder, a bulk feeder, or the like may be arranged in the parts supply unit 6. The tray feeder supplies the parts from the tray containing the parts. The stick feeder supplies the parts from a stick case containing the parts. The bulk feeder supplies the parts from a bulk case containing the parts.
 Y軸ビーム8は、基台4上面におけるX軸方向の一方側(図2では右側)の端に、Y軸方向に沿うように配設されている。2つのX軸ビーム9は、X軸方向に沿った状態で、Y軸方向に移動自在にY軸ビーム8に結合されている。 The Y-axis beam 8 is arranged along the Y-axis direction at one end (on the right side in FIG. 2) in the X-axis direction on the upper surface of the base 4. The two X-axis beams 9 are coupled to the Y-axis beam 8 so as to be movable in the Y-axis direction along the X-axis direction.
 実装ヘッド10は、2つのX軸ビーム9のそれぞれに、X軸方向に移動自在に装着されている。実装ヘッド10は、部品を吸着して保持しながら昇降可能な複数の吸着ユニット10aを備える。吸着ユニット10aのそれぞれの先端には、吸着ノズル10bが設けられている(図3参照)。 The mounting head 10 is mounted on each of the two X-axis beams 9 so as to be movable in the X-axis direction. The mounting head 10 includes a plurality of suction units 10a that can move up and down while sucking and holding parts. A suction nozzle 10b is provided at each tip of the suction unit 10a (see FIG. 3).
 2つの実装ヘッド10のそれぞれは、Y軸ビーム8およびX軸ビーム9の駆動によって、X軸方向およびY軸方向に移動する。これにより、2つの実装ヘッド10のそれぞれは、その実装ヘッド10に対応する部品供給部6に配置されたフィーダ7の部品取り出し位置から部品を吸着ノズル10bによって吸着して取り出し、基板搬送機構5に位置決めされた基板Bの実装点(または実装位置)に実装する。 Each of the two mounting heads 10 moves in the X-axis direction and the Y-axis direction by driving the Y-axis beam 8 and the X-axis beam 9. As a result, each of the two mounting heads 10 sucks and takes out the parts from the parts taking-out position of the feeder 7 arranged in the parts supply unit 6 corresponding to the mounting heads 10 by the suction nozzle 10b, and causes the substrate transfer mechanism 5 to take out the parts. It is mounted at the mounting point (or mounting position) of the positioned board B.
 2つの部品認識カメラ11のそれぞれは、2つの部品供給部6のうちの一方と基板搬送機構5との間に配設されている。部品認識カメラ11は、部品供給部6から部品を取り出した実装ヘッド10が部品認識カメラ11の上方を移動する際に、その部品を撮像する。つまり、部品認識カメラ11は、実装ヘッド10に保持された状態の部品を撮像することによって、その部品の保持姿勢を認識する。 Each of the two component recognition cameras 11 is arranged between one of the two component supply units 6 and the board transfer mechanism 5. The component recognition camera 11 takes an image of the component when the mounting head 10 that has taken out the component from the component supply unit 6 moves above the component recognition camera 11. That is, the component recognition camera 11 recognizes the holding posture of the component by taking an image of the component held by the mounting head 10.
 基板認識カメラ12は、実装ヘッド10が取着されているプレート9aに取り付けられている。したがって、基板認識カメラ12は、実装ヘッド10と一体的に移動する。このような基板認識カメラ12は、実装ヘッド10の移動に伴って、基板搬送機構5に位置決めされた基板Bの上方に移動し、基板Bに設けられた基板マーク(図示せず)を撮像して基板Bの位置を認識する。実装ヘッド10による基板Bへの部品の実装では、部品認識カメラ11による部品の認識結果と、基板認識カメラ12による基板Bの位置の認識結果とに基づいて、実装位置の補正が行われる。 The board recognition camera 12 is attached to the plate 9a to which the mounting head 10 is attached. Therefore, the board recognition camera 12 moves integrally with the mounting head 10. Such a board recognition camera 12 moves above the board B positioned by the board transfer mechanism 5 as the mounting head 10 moves, and images a board mark (not shown) provided on the board B. Recognizes the position of the substrate B. In the mounting of the component on the board B by the mounting head 10, the mounting position is corrected based on the component recognition result by the component recognition camera 11 and the position recognition result of the board B by the board recognition camera 12.
 図3は、図2におけるA-A断面の一例を部分的に示す図である。部品実装装置M4は、部品Pを基板Bに実装する機能を有している。 FIG. 3 is a diagram partially showing an example of the AA cross section in FIG. The component mounting device M4 has a function of mounting the component P on the substrate B.
 部品供給部6は、図3に示すように、フィーダベース13aと、そのフィーダベース13aに装着された複数のフィーダ7と、フィーダベース13aを支持する台車13とを備える。 As shown in FIG. 3, the parts supply unit 6 includes a feeder base 13a, a plurality of feeders 7 mounted on the feeder base 13a, and a carriage 13 that supports the feeder base 13a.
 台車13は、部品実装装置M4、M5に対して着脱自在に構成され、さらに、カセットホルダ15を備えている。カセットホルダ15は、部品リールCを複数個保持可能に構成されている。部品リールCは、部品テープ14を巻回状態で収納する。複数の部品リールCのそれぞれは、カセットホルダ15の上方保持位置Huまたは下方保持位置Hdに保持される。カセットホルダ15が保持する部品リールCから引き出された部品テープ14は、フィーダ7に装着される。なお、フィーダ7は、台車13を用いることなく、基台4上に設けられたフィーダベース13aに配置されていてもよい。また、カセットホルダ15ではなく、台車13が部品リールCを保持してもよい。 The dolly 13 is detachably configured with respect to the component mounting devices M4 and M5, and further includes a cassette holder 15. The cassette holder 15 is configured to be able to hold a plurality of component reels C. The component reel C stores the component tape 14 in a wound state. Each of the plurality of component reels C is held at the upper holding position Hu or the lower holding position Hd of the cassette holder 15. The component tape 14 pulled out from the component reel C held by the cassette holder 15 is attached to the feeder 7. The feeder 7 may be arranged on the feeder base 13a provided on the base 4 without using the carriage 13. Further, the dolly 13 may hold the component reel C instead of the cassette holder 15.
 なお、本実施の形態では、上述のように、部品実装装置M4およびM5はそれぞれ同一の構成を有するが、互に異なる構成を有していてもよい。 In the present embodiment, as described above, the component mounting devices M4 and M5 have the same configuration, but they may have different configurations.
 [生産データ生成装置と部品実装ラインの機能構成]
 図4は、生産データ生成装置100と部品実装ラインL1~L3とのそれぞれの機能構成を示すブロック図である。
[Functional configuration of production data generator and component mounting line]
FIG. 4 is a block diagram showing each functional configuration of the production data generation device 100 and the component mounting lines L1 to L3.
 生産データ生成装置100は、制御部101、データ生成部102、モデル選択部103、学習部104、パラメータ推定部105、表示部106、入出力部107、データ取得部108、生産データ保持部DB1、学習モデル保持部DB2、および部品ライブラリ保持部DB3を備える。 The production data generation device 100 includes a control unit 101, a data generation unit 102, a model selection unit 103, a learning unit 104, a parameter estimation unit 105, a display unit 106, an input / output unit 107, a data acquisition unit 108, and a production data holding unit DB1. It includes a learning model holding unit DB2 and a parts library holding unit DB3.
 モデル選択部103は、学習モデル保持部DB2に保持されている複数の学習モデルから、少なくとも1つの学習モデルを選択する。 The model selection unit 103 selects at least one learning model from a plurality of learning models held in the learning model holding unit DB2.
 学習モデル保持部DB2は、上述の複数の学習モデルを保持している。これらの複数の学習モデルのそれぞれは、互いに異なるモデルであって、部品Pを基板Bに実装するための部品実装装置M4またはM5の動作条件とその部品Pとの間の関係性を示す。 The learning model holding unit DB2 holds the above-mentioned plurality of learning models. Each of these plurality of learning models is a different model from each other, and shows the relationship between the operating conditions of the component mounting device M4 or M5 for mounting the component P on the substrate B and the component P.
 パラメータ推定部105は、部品実装装置M4またはM5の動作条件である動作パラメータを推定する。つまり、パラメータ推定部105は、モデル選択部103によって選択された少なくとも1つの学習モデルと、基板Bに実装される実装対象部品Pに関する部品情報とに基づいて、その実装対象部品Pを基板Bに実装するための動作パラメータを推定する。 The parameter estimation unit 105 estimates the operating parameters that are the operating conditions of the component mounting device M4 or M5. That is, the parameter estimation unit 105 sets the mounting target component P on the board B based on at least one learning model selected by the model selection unit 103 and component information regarding the mounting target component P mounted on the board B. Estimate the operating parameters to implement.
 データ生成部102は、上述の部品情報および動作パラメータを有する部品データを含む生産データを生成する。ここで、生産データは、例えば、基板Bに実装される少なくとも1つの部品Pの実装順と、それらの部品Pが基板Bに実装される位置(すなわち上述の実装位置)とを示すとともに、その少なくとも1つの部品Pのそれぞれの部品データを含む。また、各部品Pの部品データは、部品ライブラリ保持部DB3に保持されている。つまり、部品ライブラリ保持部DB3は、複数種の部品Pのそれぞれの部品データを含む部品ライブラリを保持している。したがって、データ生成部102は、基板Bに実装される部品Pの部品データがその部品ライブラリに含まれていれば、その部品Pの部品データを部品ライブラリから選択し、その選択された部品データを含む生産データを生成する。一方、データ生成部102は、基板Bに実装される部品Pの部品データがその部品ライブラリに含まれていれなければ、その部品Pの部品情報と、上述のように推定された動作パラメータとを有する部品データを含む生産データを生成する。 The data generation unit 102 generates production data including the component data having the above-mentioned component information and operation parameters. Here, the production data indicates, for example, the mounting order of at least one component P mounted on the board B and the position where the component P is mounted on the board B (that is, the above-mentioned mounting position), and the production data thereof. Each component data of at least one component P is included. Further, the component data of each component P is held in the component library holding unit DB3. That is, the parts library holding unit DB3 holds a parts library including the parts data of each of the plurality of types of parts P. Therefore, if the component data of the component P mounted on the board B is included in the component library, the data generation unit 102 selects the component data of the component P from the component library and selects the selected component data. Generate production data that includes. On the other hand, if the component data of the component P mounted on the board B is not included in the component library, the data generation unit 102 obtains the component information of the component P and the operation parameters estimated as described above. Generate production data including parts data to have.
 データ生成部102は、このような生産データを部品実装ラインL1~L3のそれぞれに対して生成して出力するとともに、その生産データを生産データ保持部DB1に格納する。 The data generation unit 102 generates and outputs such production data for each of the component mounting lines L1 to L3, and stores the production data in the production data holding unit DB1.
 データ取得部108は、実装済み部品Pに関する部品情報と、その実装済み部品Pの実装に用いられた動作パラメータとを有する実績部品データを含む、部品実装装置M4またはM5によって使用された実績生産データを取得する。 The data acquisition unit 108 includes actual production data used by the component mounting apparatus M4 or M5, including actual component data having component information regarding the mounted component P and operating parameters used for mounting the mounted component P. To get.
 実績生産データは、例えば、データ生成部102によって生成された生産データに対して修正またはチューニングなどが行われたデータである。つまり、部品実装ラインL1~L3のそれぞれに含まれる部品実装装置M4またはM5は、生産データに基づいて部品Pを基板Bに実装するが、その実装によって不良の実装基板が生産される場合がある。このような場合には、部品実装ラインL1~L3のそれぞれでは、不良品の発生頻度が低下するように、生産データに含まれる部品データの修正またはチューニングが行われる。このような修正またはチューニングによって、実績部品データを含む実績生産データが生成される。部品実装ラインL1~L3のそれぞれの部品実装装置M4またはM5は、その実績生産データを用いて部品Pの基板Bへの実装を行う。データ取得部108は、このように生成された実績生産データを部品実装ラインL1~L3のそれぞれから取得する。 The actual production data is, for example, data that has been modified or tuned with respect to the production data generated by the data generation unit 102. That is, the component mounting devices M4 or M5 included in each of the component mounting lines L1 to L3 mount the component P on the board B based on the production data, but the mounting may produce a defective mounting board. .. In such a case, in each of the component mounting lines L1 to L3, the component data included in the production data is corrected or tuned so that the frequency of defective products is reduced. By such modification or tuning, actual production data including actual part data is generated. Each of the component mounting devices M4 or M5 of the component mounting lines L1 to L3 mounts the component P on the substrate B using the actual production data. The data acquisition unit 108 acquires the actual production data thus generated from each of the component mounting lines L1 to L3.
 学習部104は、学習モデルの生成または更新を機械学習によって行う。なお、機械学習を、以下単に、学習という。例えば、学習部104は、学習によって学習モデルを生成し、その生成された学習モデルを学習モデル保持部DB2に格納する。また、学習部104は、学習モデル保持部DB2に保持されている複数の学習モデルから1つの学習モデルを選択し、その選択された学習モデルを学習によって更新する。このような学習部104による学習には、部品実装ラインL1~L3のそれぞれで使用されてデータ取得部108に取得された実績生産データが用いられる。 The learning unit 104 generates or updates a learning model by machine learning. Note that machine learning is simply referred to as learning below. For example, the learning unit 104 generates a learning model by learning, and stores the generated learning model in the learning model holding unit DB2. Further, the learning unit 104 selects one learning model from a plurality of learning models held in the learning model holding unit DB2, and updates the selected learning model by learning. For such learning by the learning unit 104, the actual production data used in each of the component mounting lines L1 to L3 and acquired by the data acquisition unit 108 is used.
 つまり、学習部104は、学習モデル保持部DB2に保持されている複数の学習モデルのうち、データ取得部108によって取得された実績生産データに対応する学習モデルによって示される関係性の更新を行う。このとき、学習部104は、その実績生産データに含まれる実績部品データを教師データとして用いた学習によってその更新を行う。なお、学習モデルは、例えばニューラルネットワークであってもよく、決定木であってもよく、その他のモデルであってもよい。 That is, the learning unit 104 updates the relationship indicated by the learning model corresponding to the actual production data acquired by the data acquisition unit 108 among the plurality of learning models held in the learning model holding unit DB2. At this time, the learning unit 104 updates the actual component data included in the actual production data by learning using the actual component data as teacher data. The learning model may be, for example, a neural network, a decision tree, or another model.
 表示部106は、生産データ保持部DB1に保持されている生産データ、および部品ライブラリ保持部DB3に保持されている部品ライブラリなどを表示する。表示部106の具体例は、液晶ディスプレイ、プラズマディスプレイ、または有機EL(Electro-Luminescence)ディスプレイなどであるが、これらに限定されない。 The display unit 106 displays the production data held in the production data holding unit DB1 and the parts library held in the parts library holding unit DB3. Specific examples of the display unit 106 include, but are not limited to, a liquid crystal display, a plasma display, an organic EL (Electro-Luminescence) display, and the like.
 入出力部107は、例えば生産システム1のオペレータによる操作に基づく入力データを受け付け、その入力データを制御部101に出力する。このような、入出力部107は、例えばキーボード、タッチセンサ、タッチパッドまたはマウスなどを有する。また、入出力部107は、部品実装ラインL1~L3へのデータの出力と、部品実装ラインL1~L3からのデータの入力とを行う。データ生成部102によって生成された生産データは、この入出力部107を介して各部品実装ラインL1~L3に出力されてもよい。また、入出力部107は、上述の部品情報をオペレータによる操作に基づいて取得し、パラメータ推定部105に出力してもよい。 The input / output unit 107 receives, for example, input data based on an operation by an operator of the production system 1, and outputs the input data to the control unit 101. Such an input / output unit 107 includes, for example, a keyboard, a touch sensor, a touch pad, a mouse, and the like. Further, the input / output unit 107 outputs data to the component mounting lines L1 to L3 and inputs data from the component mounting lines L1 to L3. The production data generated by the data generation unit 102 may be output to the component mounting lines L1 to L3 via the input / output unit 107. Further, the input / output unit 107 may acquire the above-mentioned component information based on the operation by the operator and output it to the parameter estimation unit 105.
 制御部101は、生産データ生成装置100に含まれる制御部101以外の各構成要素を制御する。例えば、制御部101は、入出力部107によって受け付けられたオペレータの入力データなどに基づいて各構成要素を制御する。 The control unit 101 controls each component other than the control unit 101 included in the production data generation device 100. For example, the control unit 101 controls each component based on the input data of the operator received by the input / output unit 107.
 生産データ保持部DB1、学習モデル保持部DB2および部品ライブラリ保持部DB3は、生産データ、学習モデルおよび部品ライブラリを保持するための記録媒体である。例えば、このような記録媒体は、ハードディスク、ROM(Read Only Memory)、RAM(Random Access Memory)、または半導体メモリなどである。なお、このような記録媒体は、揮発性であっても不揮発性であってもよい。 The production data holding unit DB1, the learning model holding unit DB2, and the parts library holding unit DB3 are recording media for holding the production data, the learning model, and the parts library. For example, such a recording medium is a hard disk, a ROM (ReadOnlyMemory), a RAM (RandomAccessMemory), a semiconductor memory, or the like. In addition, such a recording medium may be volatile or non-volatile.
 部品実装ラインL1は、作業制御部211、入出力部212、表示部213、作業機構214、および生産データ保持部DB4を備える。なお、部品実装ラインL1に含まれる作業機構214以外の各構成要素は、ライン管理装置200に備えられていてもよく、ライン管理装置200とは異なる何れかの作業装置に備えられていてもよい。 The component mounting line L1 includes a work control unit 211, an input / output unit 212, a display unit 213, a work mechanism 214, and a production data holding unit DB4. Each component other than the work mechanism 214 included in the component mounting line L1 may be provided in the line management device 200, or may be provided in any work device different from the line management device 200. ..
 入出力部212は、生産データ生成装置100の入出力部107と同様、例えば生産システム1のオペレータによる操作に基づく入力データを受け付け、その入力データを作業制御部211に出力する。このような、入出力部212は、例えばキーボード、タッチセンサ、タッチパッドまたはマウスなどを有してもよい。また、入出力部212は、生産データ生成装置100へのデータの出力と、生産データ生成装置100からのデータの入力とを行う。例えば、入出力部212は、生産データ生成装置100から生産データを取得して、その生産データを生産データ保持部DB4に格納する。 Like the input / output unit 107 of the production data generation device 100, the input / output unit 212 receives input data based on, for example, an operation by an operator of the production system 1, and outputs the input data to the work control unit 211. Such an input / output unit 212 may include, for example, a keyboard, a touch sensor, a touch pad, a mouse, or the like. Further, the input / output unit 212 outputs data to the production data generation device 100 and inputs data from the production data generation device 100. For example, the input / output unit 212 acquires production data from the production data generation device 100 and stores the production data in the production data holding unit DB4.
 表示部213は、生産データ保持部DB4に保持されている生産データなどを表示する。表示部213の具体例は、液晶ディスプレイ、プラズマディスプレイ、または有機ELディスプレイなどであるが、これらに限定されない。 The display unit 213 displays the production data and the like held in the production data holding unit DB4. Specific examples of the display unit 213 are, but are not limited to, a liquid crystal display, a plasma display, an organic EL display, and the like.
 作業機構214は、実装基板を生産するための実装ヘッド10およびフィーダ7などの機構からなる。 The work mechanism 214 includes a mechanism such as a mounting head 10 and a feeder 7 for producing a mounting board.
 作業制御部211は、部品実装ラインL1に含まれる作業制御部211以外の各構成要素を制御する。例えば、作業制御部211は、入出力部212によって受け付けられたオペレータの入力データなどに基づいて各構成要素を制御する。例えば、作業制御部211は、生産データ保持部DB4に保持されている生産データに基づいて、上述のはんだ印刷作業、部品実装作業およびリフロー作業のうちの少なくとも1つの作業を作業機構214に実行させる。また、作業制御部211は、入出力部212によって受け付けられたオペレータの入力データにしたがって、生産データ保持部DB4に保持されている生産データの修正またはチューニングなどを行う。これによって、上述の実績生産データが生成される。作業制御部211は、入出力部212を制御することによって、その実績生産データを入出力部212から生産データ生成装置100に出力させる。 The work control unit 211 controls each component other than the work control unit 211 included in the component mounting line L1. For example, the work control unit 211 controls each component based on the input data of the operator received by the input / output unit 212. For example, the work control unit 211 causes the work mechanism 214 to perform at least one of the above-mentioned solder printing work, component mounting work, and reflow work based on the production data held in the production data holding unit DB4. .. Further, the work control unit 211 corrects or tunes the production data held in the production data holding unit DB 4 according to the input data of the operator received by the input / output unit 212. As a result, the above-mentioned actual production data is generated. By controlling the input / output unit 212, the work control unit 211 causes the input / output unit 212 to output the actual production data to the production data generation device 100.
 生産データ保持部DB4は、生産データを保持するための記録媒体である。例えば、このような記録媒体は、ハードディスク、RAM、ROM、または半導体メモリなどである。なお、このような記録媒体は、揮発性であっても不揮発性であってもよい。 The production data holding unit DB4 is a recording medium for holding production data. For example, such a recording medium may be a hard disk, RAM, ROM, semiconductor memory, or the like. In addition, such a recording medium may be volatile or non-volatile.
 [部品ライブラリ]
 図5は、部品ライブラリの一例を示す図である。
[Parts library]
FIG. 5 is a diagram showing an example of a parts library.
 部品ライブラリは、複数の部品データDcからなる。複数の部品データDcのそれぞれは、1種類の部品Pのデータであって、その部品Pの種類を識別するための部品コードに関連付けられている。このような部品データDcは、部品Pに関する部品情報dと、その部品Pを基板Bに実装するための部品実装装置M4またはM5の動作条件である動作パラメータmとを有する。なお、図5に示す部品データDc中の各項目の空欄部分などには、画像、数値または用語等が示されている。 The parts library consists of a plurality of parts data DCs. Each of the plurality of component data Dc is data of one type of component P, and is associated with a component code for identifying the type of the component P. Such component data Dc has component information d relating to component P and an operating parameter m which is an operating condition of the component mounting device M4 or M5 for mounting the component P on the substrate B. An image, a numerical value, a term, or the like is shown in a blank portion of each item in the component data Dc shown in FIG.
 部品情報dは、例えば、部品Pの形状図d1、サイズデータd2および部品パラメータd3を含む。 The part information d includes, for example, the shape diagram d1 of the part P, the size data d2, and the part parameter d3.
 形状図d1は、その部品データDcに対応する部品Pの外形を図示する。サイズデータd2は、その部品Pのサイズに関する情報、すなわち、外形寸法、リード数、リードピッチ、リード長さ、リード幅、および部品高さなどを数値で示す。 The shape diagram d1 illustrates the outer shape of the component P corresponding to the component data Dc. The size data d2 numerically indicates information on the size of the component P, that is, external dimensions, number of leads, lead pitch, lead length, lead width, component height, and the like.
 部品パラメータd3は、その部品Pについての属性情報である。このような部品パラメータd3は、部品P自体に関する情報である部品属性d31と、その部品Pをフィーダ7により供給するための部品テープ14に関する情報であるテープ情報d32とを含む。部品属性d31は、例えば、部品Pの極性、極性マーク、マーク位置、部品種別、および形状種別を示す。テープ情報d32は、例えば、部品テープ14のテープ素材と、部品テープ14の幅寸法を示すテープ幅と、フィーダ7による部品テープ14のテープ送りピッチを示す送り間隔と、部品テープ14の色および材質に関する情報とを含む。 The component parameter d3 is attribute information about the component P. Such a component parameter d3 includes a component attribute d31 which is information about the component P itself, and tape information d32 which is information about a component tape 14 for supplying the component P by the feeder 7. The component attribute d31 indicates, for example, the polarity, polarity mark, mark position, component type, and shape type of the component P. The tape information d32 includes, for example, the tape material of the component tape 14, the tape width indicating the width dimension of the component tape 14, the feed interval indicating the tape feed pitch of the component tape 14 by the feeder 7, and the color and material of the component tape 14. Contains information about.
 このように、本実施の形態における部品情報dは、その部品情報dに対応する部品Pの寸法、形状、外観、種別、およびその部品Pを供給するための供給形態のうちの少なくとも1つを示す。なお、供給形態は、例えばテープ情報d32などに相当する。 As described above, the component information d in the present embodiment is the dimension, shape, appearance, type of the component P corresponding to the component information d, and at least one of the supply modes for supplying the component P. Shown. The supply form corresponds to, for example, tape information d32.
 動作パラメータmは、部品実装装置M4またはM5が部品Pを基板Bに実装する際の動作態様を規定するマシンパラメータである。ここに示す例では、動作パラメータmは、その部品実装装置M4またはM5の種類を示す機種情報m1と、使用される吸着ノズル10bの種類を示すノズル設定情報m2とを含む。さらに、動作パラメータmは、スピードパラメータm3、認識情報m4、ギャップ情報m5、吸着情報m6、および装着情報m7などを含む。 The operation parameter m is a machine parameter that defines an operation mode when the component mounting device M4 or M5 mounts the component P on the substrate B. In the example shown here, the operation parameter m includes model information m1 indicating the type of the component mounting device M4 or M5 and nozzle setting information m2 indicating the type of the suction nozzle 10b used. Further, the operation parameter m includes a speed parameter m3, recognition information m4, gap information m5, suction information m6, mounting information m7, and the like.
 スピードパラメータm3は、吸着ノズル10bによって部品Pを吸着動作する際の昇降速度と、実装ヘッド10によって部品Pを移送する際の実装速度と、フィーダ7によって部品テープ14を送る際のテープ送り速度とを含む。認識情報m4は、部品認識の態様を規定するパラメータである。具体的には、認識情報m4は、使用される部品認識カメラ11の種類を示すカメラ種別と、部品認識カメラ11による撮像時の照明形態を示す照明モードと、撮像時における実装ヘッド10の移動の速度を示す認識速度とを含む。ギャップ情報m5は、吸着ノズル10bによって部品Pを吸着する際の吸着ギャップと、吸着された部品Pを基板Bに搭載する際の実装ギャップとを含む。 The speed parameter m3 includes an ascending / descending speed when the component P is sucked by the suction nozzle 10b, a mounting speed when the component P is transferred by the mounting head 10, and a tape feeding speed when the component tape 14 is fed by the feeder 7. including. The recognition information m4 is a parameter that defines the mode of component recognition. Specifically, the recognition information m4 includes a camera type indicating the type of the component recognition camera 11 to be used, an illumination mode indicating the illumination mode at the time of imaging by the component recognition camera 11, and movement of the mounting head 10 at the time of imaging. Includes recognition speed, which indicates speed. The gap information m5 includes a suction gap when the component P is sucked by the suction nozzle 10b and a mounting gap when the sucked component P is mounted on the substrate B.
 吸着情報m6は、吸着ノズル10bによる部品Pの吸着時のオフセット量を示す吸着位置オフセットと、吸着角度とを含む。装着情報m7は、吸着ノズル10bに吸着された部品Pを基板Bに搭載する際の押圧荷重を実装荷重として示す。 The suction information m6 includes a suction position offset indicating an offset amount when the component P is sucked by the suction nozzle 10b, and a suction angle. The mounting information m7 indicates a pressing load when the component P sucked by the suction nozzle 10b is mounted on the substrate B as a mounting load.
 このように、本実施の形態における動作パラメータmは、部品実装装置M4またはM5による部品Pの移送、認識、吸着、および装着のうちの少なくとも1つに関するパラメータである。 As described above, the operation parameter m in the present embodiment is a parameter relating to at least one of transfer, recognition, suction, and mounting of the component P by the component mounting device M4 or M5.
 なお、図5の部品データDcに含まれる部品情報dおよび動作パラメータmは、それぞれ一例であって、図5に示す情報以外の他の情報を示していてもよく、図5に示す情報と他の情報とを共に示していてもよく、図5に示す情報の一部のみを示していてもよい。また、部品情報dおよび動作パラメータmのそれぞれに含まれる情報の数は、1つであってもよく複数であってもよい。 The component information d and the operation parameter m included in the component data Dc in FIG. 5 are examples, and may indicate information other than the information shown in FIG. 5, and the information shown in FIG. 5 and others. The information may be shown together with the above information, or only a part of the information shown in FIG. 5 may be shown. Further, the number of information included in each of the component information d and the operation parameter m may be one or a plurality.
 本実施の形態では、データ生成部102は、生産データを生成するときには、部品ライブラリ保持部DB3に保持されている部品ライブラリから、基板Bに実装される部品Pに対応する部品データDcを選択し、その部品データDcを含む生産データを生成する。 In the present embodiment, when the data generation unit 102 generates the production data, the data generation unit 102 selects the component data Dc corresponding to the component P mounted on the board B from the component library held in the component library holding unit DB3. , Generate production data including the part data Dc.
 また、データ生成部102は、基板Bに実装される部品Pに対応する部品データDcが部品ライブラリになければ、部品ライブラリに含まれていない部品データDcを用いて生産データを生成する。例えば、データ生成部102は、入出力部107によって取得された部品情報dと、その部品情報dに対してパラメータ推定部105によって推定された動作パラメータmとを有する部品データDcを用いて生産データを生成する。入出力部107によって取得された部品情報dは、例えば、基板Bに実装される部品Pに関するCAD(Computer Aided Design)の情報から取得された情報であってもよく、オペレータの操作によって入力された情報であってもよい。 Further, if the component data Dc corresponding to the component P mounted on the board B is not in the component library, the data generation unit 102 generates production data using the component data Dc not included in the component library. For example, the data generation unit 102 uses the component data Dc having the component information d acquired by the input / output unit 107 and the operation parameter m estimated by the parameter estimation unit 105 with respect to the component information d. To generate. The component information d acquired by the input / output unit 107 may be, for example, information acquired from CAD (Computer Aided Design) information regarding the component P mounted on the board B, and is input by an operator's operation. It may be information.
 また、部品ライブラリの部品データDcには、デフォルトの動作パラメータmが設定されている場合がある。データ生成部102は、部品ライブラリから選択された部品データDcにデフォルトの動作パラメータmが設定されていれば、その部品データDcに含まれる部品情報dに対応する動作パラメータmをパラメータ推定部105に推定させてもよい。パラメータ推定部105によって動作パラメータmが推定されると、データ生成部102は、その部品データDcに含まれるデフォルトの動作パラメータmを、パラメータ推定部105によって推定された動作パラメータmに置き換える。そして、データ生成部102は、その動作パラメータmの置き換えが行われた部品データDcを用いて生産データを生成する。 In addition, the default operating parameter m may be set in the component data Dc of the component library. If the default operating parameter m is set in the component data Dc selected from the component library, the data generation unit 102 causes the parameter estimation unit 105 to input the operating parameter m corresponding to the component information d included in the component data Dc to the parameter estimation unit 105. It may be estimated. When the operation parameter m is estimated by the parameter estimation unit 105, the data generation unit 102 replaces the default operation parameter m included in the component data Dc with the operation parameter m estimated by the parameter estimation unit 105. Then, the data generation unit 102 generates production data using the component data Dc in which the operation parameter m has been replaced.
 なお、部品データDcの動作パラメータmに含まれる全ての情報(すなわちパラメータ)がデフォルトであってもよく、一部のパラメータのみがデフォルトであってもよい。一部のパラメータのみがデフォルトの場合、パラメータ推定部105は、そのデフォルトの一部のパラメータの代わりとなるパラメータを推定してもよい。データ生成部102は、部品データDcに含まれる動作パラメータmのうち、その一部のパラメータを、パラメータ推定部105によって推定されたパラメータに置き換える。そして、データ生成部102は、その一部のパラメータの置き換えが行われた部品データDcを用いて生産データを生成する。 Note that all the information (that is, parameters) included in the operation parameter m of the component data Dc may be the default, or only some parameters may be the default. If only some of the parameters are the default, the parameter estimation unit 105 may estimate a parameter that replaces some of the default parameters. The data generation unit 102 replaces some of the parameters of the operation parameters m included in the component data Dc with the parameters estimated by the parameter estimation unit 105. Then, the data generation unit 102 generates production data using the component data Dc in which some of the parameters have been replaced.
 [生産データ]
 図6は、生産データDpの一例を示す図である。
[Production data]
FIG. 6 is a diagram showing an example of production data Dp.
 生産データDpには、例えば、基板Bに実装される複数の部品Pのそれぞれの部品名および部品コードが、それらの複数の部品Pの実装順に配列されている。なお、部品Pの部品コードは、部品ライブラリからその部品Pの部品データDcを特定するためのコードである。また、生産データDpは、その複数の部品Pのそれぞれについて、その部品Pの装着座標、装着角度、フィーダ7の識別情報、および実装ヘッド10または吸着ノズル10bの識別情報を示す。部品Pの装着座標は、その部品Pが装着または実装される基板Bにおける位置であって、実装点、装着位置または実装位置ともいう。部品Pの装着角度は、その部品Pを吸着する吸着ノズル10bが、その部品Pを基板Bに実装するために、吸着ノズル10bの中心軸を回転軸にして回転する角度である。部品Pに対応するフィーダ7の識別情報は、その部品Pを供給するフィーダ7を識別するための情報である。部品Pに対応する実装ヘッド10の識別情報は、その部品Pを基板Bに実装するために用いられる実装ヘッド10を識別するための情報である。 In the production data Dp, for example, the component names and component codes of the plurality of components P mounted on the board B are arranged in the mounting order of the plurality of components P. The component code of the component P is a code for specifying the component data Dc of the component P from the component library. Further, the production data Dp indicates, for each of the plurality of parts P, the mounting coordinates of the parts P, the mounting angle, the identification information of the feeder 7, and the identification information of the mounting head 10 or the suction nozzle 10b. The mounting coordinates of the component P are positions on the board B on which the component P is mounted or mounted, and are also referred to as a mounting point, a mounting position, or a mounting position. The mounting angle of the component P is an angle at which the suction nozzle 10b that sucks the component P rotates around the central axis of the suction nozzle 10b as a rotation axis in order to mount the component P on the substrate B. The identification information of the feeder 7 corresponding to the component P is information for identifying the feeder 7 that supplies the component P. The identification information of the mounting head 10 corresponding to the component P is information for identifying the mounting head 10 used for mounting the component P on the substrate B.
 例えば、生産データDpは、基板Bに最初に実装される部品Pについて、その部品Pの部品名「A部品」、部品コード「C001」、装着座標「x1,y1」、装着角度「θ1」、フィーダ7の識別情報「F2」、および実装ヘッド10の識別情報「H3」を示す。 For example, in the production data Dp, for the component P that is first mounted on the substrate B, the component name "A component", the component code "C001", the mounting coordinates "x1, y1", and the mounting angle "θ1" of the component P, The identification information “F2” of the feeder 7 and the identification information “H3” of the mounting head 10 are shown.
 また、本実施の形態における生産データDpは、基板Bに実装される複数の部品Pのそれぞれの部品データDcを含む。例えば、生産データDpは、部品名「A部品」の部品Pが有する部品コード「C001」に対応付けられている部品データDcを含む。 Further, the production data Dp in the present embodiment includes the component data Dc of each of the plurality of components P mounted on the substrate B. For example, the production data Dp includes the part data Dc associated with the part code “C001” possessed by the part P having the part name “A part”.
 [学習モデル]
 図7Aおよび図7Bは、学習モデル保持部DB2に保持され、時間単位で管理されている複数の学習モデルの一例を示す図である。なお、本実施の形態における学習モデルを、以下、動作パラメータモデルともいう。
[Learning model]
7A and 7B are diagrams showing an example of a plurality of learning models held in the learning model holding unit DB2 and managed in units of time. The learning model in this embodiment is also hereinafter referred to as an operation parameter model.
 例えば、学習モデル保持部DB2に保持されている複数の学習モデルである複数の動作パラメータモデルPm11~Pm14のそれぞれは、図7Aに示すように、時間単位に管理されている。具体的には、動作パラメータモデルPm11は、1990年から1999年の間に使用された実績生産データを用いた学習によって生成されている。同様に、動作パラメータモデルPm12は、2000年から2009年の間に使用された実績生産データを用いた学習によって生成され、動作パラメータモデルPm13は、2010年から現在までの間に使用された実績生産データを用いた学習によって生成されている。また、動作パラメータモデルPm14は、1990年から現在までの間に使用された実績生産データを用いた学習によって生成されている。 For example, each of the plurality of operation parameter models Pm11 to Pm14, which are the plurality of learning models held in the learning model holding unit DB2, is managed in units of time as shown in FIG. 7A. Specifically, the operation parameter model Pm11 is generated by learning using the actual production data used between 1990 and 1999. Similarly, the motion parameter model Pm12 is generated by learning using the performance production data used between 2000 and 2009, and the motion parameter model Pm13 is the performance production used between 2010 and the present. It is generated by learning using data. Further, the operation parameter model Pm14 is generated by learning using the actual production data used from 1990 to the present.
 また、学習モデル保持部DB2に保持されている複数の学習モデルである複数の動作パラメータモデルPm21~Pm25のそれぞれは、図7Bに示すように、時間単位に管理され、さらに、時系列に沿って管理されていてもよい。 Further, each of the plurality of operation parameter models Pm21 to Pm25, which are the plurality of learning models held in the learning model holding unit DB2, is managed in time units as shown in FIG. 7B, and further, in chronological order. It may be managed.
 例えば、動作パラメータモデルPm21は、2019年7月1日に使用された実績生産データを用いた学習によって生成されている。動作パラメータモデルPm22は、その動作パラメータモデルPm21と、2019年7月2日に使用された実績生産データとを用いた学習によって生成されている。つまり、動作パラメータモデルPm22は、2019年の7月1日~2日の間に使用された実績生産データを用いた学習によって生成されている。 For example, the operation parameter model Pm21 is generated by learning using the actual production data used on July 1, 2019. The operation parameter model Pm22 is generated by learning using the operation parameter model Pm21 and the actual production data used on July 2, 2019. That is, the operation parameter model Pm22 is generated by learning using the actual production data used between July 1st and 2nd, 2019.
 同様に、動作パラメータモデルPm23は、その動作パラメータモデルPm22と、2019年7月3日に使用された実績生産データとを用いた学習によって生成されている。つまり、動作パラメータモデルPm23は、2019年の7月1日~3日の間に使用された実績生産データを用いた学習によって生成されている。動作パラメータモデルPm24は、その動作パラメータモデルPm22と、2019年7月4日に使用された実績生産データとを用いた学習によって生成されている。つまり、動作パラメータモデルPm24は、2019年の7月1日~2日の間および4日に使用された実績生産データを用いた学習によって生成されている。したがって、動作パラメータモデルPm24には、2019年7月3日に使用された実績生産データは反映されていない。 Similarly, the operation parameter model Pm23 is generated by learning using the operation parameter model Pm22 and the actual production data used on July 3, 2019. That is, the operation parameter model Pm23 is generated by learning using the actual production data used between July 1st and 3rd, 2019. The operation parameter model Pm24 is generated by learning using the operation parameter model Pm22 and the actual production data used on July 4, 2019. That is, the operation parameter model Pm24 is generated by learning using the actual production data used between July 1st and 2nd and 4th of July 2019. Therefore, the operating parameter model Pm24 does not reflect the actual production data used on July 3, 2019.
 動作パラメータモデルPm25は、その動作パラメータモデルPm24と、2019年7月5日に使用された実績生産データとを用いた学習によって生成されている。つまり、動作パラメータモデルPm25は、2019年の7月1日~2日の間および4日~5日の間に使用された実績生産データを用いた学習によって生成されている。したがって、動作パラメータモデルPm25には、動作パラメータモデルPm24と同様に、2019年7月3日に使用された実績生産データは反映されていない。 The operation parameter model Pm25 is generated by learning using the operation parameter model Pm24 and the actual production data used on July 5, 2019. That is, the operation parameter model Pm25 is generated by learning using the actual production data used between July 1st and 2nd and 4th to 5th, 2019. Therefore, the operation parameter model Pm25 does not reflect the actual production data used on July 3, 2019, as in the operation parameter model Pm24.
 このように本実施の形態では、複数の学習モデル(すなわち動作パラメータモデル)のそれぞれは互いに異なる期間に対応付けられている。言い換えれば、複数の動作パラメータモデルは時間単位で管理されている。この場合、学習部104は、実績生産データに含まれる実績部品データを教師データとして用いた学習を行うときには、その実績生産データが取得された期間に対応する学習モデルに対して学習を行う。 As described above, in the present embodiment, each of the plurality of learning models (that is, the operation parameter model) is associated with different periods. In other words, multiple operating parameter models are managed on an hourly basis. In this case, when the learning unit 104 performs learning using the actual component data included in the actual production data as teacher data, the learning unit 104 learns on the learning model corresponding to the period in which the actual production data is acquired.
 例えば、図7Aに示す例では、生産データ生成装置100のデータ取得部108が実績生産データを2011年に取得すると、学習部104は、その2011年に対応する動作パラメータモデルPm13およびPm14に対して学習を行う。また、図7Bに示す例では、データ取得部108が実績生産データを2019年7月3日に取得すると、学習部104は、その実績生産データが取得された期間に対応する動作パラメータモデルPm22またはPm23に対して学習を行う。 For example, in the example shown in FIG. 7A, when the data acquisition unit 108 of the production data generation device 100 acquires the actual production data in 2011, the learning unit 104 refers to the operation parameter models Pm13 and Pm14 corresponding to the 2011. Do learning. Further, in the example shown in FIG. 7B, when the data acquisition unit 108 acquires the actual production data on July 3, 2019, the learning unit 104 uses the operation parameter model Pm22 or the operation parameter model Pm22 corresponding to the period in which the actual production data is acquired. Learn for Pm23.
 図8は、学習モデル保持部DB2に保持され、生産設備単位で管理されている複数の学習モデルの一例を示す図である。 FIG. 8 is a diagram showing an example of a plurality of learning models held in the learning model holding unit DB2 and managed in units of production equipment.
 例えば、学習モデル保持部DB2に保持されている複数の学習モデルである複数の動作パラメータモデルPm31~Pm34のそれぞれは、図8に示すように、生産設備ごとに管理されていてもよい。具体的には、動作パラメータモデルPm31は、部品実装ラインL1で使用された実績生産データを用いた学習によって生成されている。同様に、動作パラメータモデルPm32は、部品実装ラインL2で使用された実績生産データを用いた学習によって生成され、動作パラメータモデルPm33は、部品実装ラインL3で使用された実績生産データを用いた学習によって生成されている。また、動作パラメータモデルPm34は、全ての部品実装ラインL1~L3のそれぞれで使用された実績生産データを用いた学習によって生成されている。 For example, each of the plurality of operation parameter models Pm31 to Pm34, which are the plurality of learning models held in the learning model holding unit DB2, may be managed for each production facility as shown in FIG. Specifically, the operation parameter model Pm31 is generated by learning using the actual production data used in the component mounting line L1. Similarly, the operation parameter model Pm32 is generated by learning using the actual production data used in the component mounting line L2, and the operation parameter model Pm33 is generated by learning using the actual production data used in the component mounting line L3. Has been generated. Further, the operation parameter model Pm34 is generated by learning using the actual production data used in each of all the component mounting lines L1 to L3.
 このように本実施の形態では、複数の学習モデル(すなわち動作パラメータモデル)のそれぞれは互いに異なる生産設備に対応付けられている。言い換えれば、複数の動作パラメータモデルは生産設備単位で管理されている。生産設備は、上述のように、部品実装ラインであってもよく、複数の部品実装ラインの集合であってもよい。また、生産設備は、1つまたは複数の部品実装装置であってもよく、複数の部品実装装置または部品実装ラインが配設されているフロアであってもよく、工場であってもよい。この場合、学習部104は、実績生産データに含まれる実績部品データを教師データとして用いた学習を行うときには、その実績生産データを使用した部品実装装置M4またはM5を含む生産設備に対応する学習モデルに対して学習を行う。 As described above, in the present embodiment, each of the plurality of learning models (that is, the operation parameter model) is associated with different production facilities. In other words, multiple operating parameter models are managed on a production facility basis. As described above, the production equipment may be a component mounting line or a set of a plurality of component mounting lines. Further, the production equipment may be one or more component mounting devices, a floor on which a plurality of component mounting devices or component mounting lines are arranged, or a factory. In this case, when the learning unit 104 performs learning using the actual component data included in the actual production data as teacher data, the learning model corresponding to the production equipment including the component mounting device M4 or M5 using the actual production data. Learn for.
 例えば、図8に示す例では、生産データ生成装置100のデータ取得部108が実績生産データを部品実装ラインL2から取得すると、学習部104は、その部品実装ラインL2に対応する動作パラメータモデルPm32およびPm34に対して学習を行う。 For example, in the example shown in FIG. 8, when the data acquisition unit 108 of the production data generation device 100 acquires the actual production data from the component mounting line L2, the learning unit 104 has the operation parameter model Pm32 and the operation parameter model Pm32 corresponding to the component mounting line L2. Learn for Pm34.
 図9Aは、学習モデル保持部DB2に保持され、生産タイプ単位で管理されている複数の学習モデルの一例を示す図である。 FIG. 9A is a diagram showing an example of a plurality of learning models held in the learning model holding unit DB2 and managed for each production type.
 例えば、学習モデル保持部DB2に保持されている複数の学習モデルである複数の動作パラメータモデルPm41~Pm44のそれぞれは、図9Aに示すように、生産タイプごとに管理されていてもよい。生産タイプには、例えば、試作タイプおよび量産タイプがある。試作タイプは、試作品として生産された実装基板のタイプであり、量産タイプは、量産品として生産された実装基板のタイプである。試作タイプでは、量産タイプに比べて品質性を重視した動作パラメータが設定され、量産タイプでは、試作タイプに比べて生産性を重視した動作パラメータが設定される傾向がある。従って、試作タイプおよび量産タイプでは、同じ実装基板であっても設定される動作パラメータが異なるため、生産タイプ別に学習する方が、推定精度が向上する。具体的には、動作パラメータモデルPm41は、試作タイプT1の実装基板の生産に使用された実績生産データを用いた学習によって生成されている。動作パラメータモデルPm42は、試作タイプT1とは異なる試作タイプT2の実装基板の生産に使用された実績生産データを用いた学習によって生成されている。動作パラメータモデルPm43は、量産タイプの実装基板の生産に使用された実績生産データを用いた学習によって生成されている。また、動作パラメータモデルPm44は、全ての生産タイプの実装基板のそれぞれの生産に使用された実績生産データを用いた学習によって生成されている。 For example, each of the plurality of operation parameter models Pm41 to Pm44, which are the plurality of learning models held in the learning model holding unit DB2, may be managed for each production type as shown in FIG. 9A. Production types include, for example, prototype types and mass production types. The prototype type is a type of mounting board produced as a prototype, and the mass production type is a type of mounting board produced as a mass-produced product. In the prototype type, operating parameters that emphasize quality are set as compared with the mass production type, and in the mass production type, operating parameters that emphasize productivity tend to be set as compared with the prototype type. Therefore, since the operation parameters set are different between the prototype type and the mass production type even if they are the same mounting board, the estimation accuracy is improved by learning for each production type. Specifically, the operation parameter model Pm41 is generated by learning using the actual production data used in the production of the prototype type T1 mounting board. The operation parameter model Pm42 is generated by learning using the actual production data used for producing the mounting board of the prototype type T2 different from the prototype type T1. The operation parameter model Pm43 is generated by learning using the actual production data used in the production of the mass production type mounting board. Further, the operation parameter model Pm44 is generated by learning using the actual production data used for each production of the mounting boards of all production types.
 図9Bは、学習モデル保持部DB2に保持され、生産タイプ単位および生産設備単位で管理されている複数の学習モデルの一例を示す図である。 FIG. 9B is a diagram showing an example of a plurality of learning models held in the learning model holding unit DB2 and managed in the production type unit and the production equipment unit.
 例えば、学習モデル保持部DB2に保持されている複数の学習モデルである複数の動作パラメータモデルPm51~Pm54のそれぞれは、図9Bに示すように、生産タイプおよび生産設備の組み合わせごとに管理されていてもよい。なお、生産タイプ毎に管理するために部品データDcにおいて、生産タイプを設定する項目を設けてもよい。 For example, as shown in FIG. 9B, each of the plurality of operation parameter models Pm51 to Pm54, which are the plurality of learning models held in the learning model holding unit DB2, is managed for each combination of production type and production equipment. May be good. In addition, in order to manage each production type, an item for setting the production type may be provided in the part data Dc.
 具体的には、動作パラメータモデルPm51は、部品実装ラインL1による試作タイプT1の実装基板の生産に使用された実績生産データを用いた学習によって生成されている。動作パラメータモデルPm52は、部品実装ラインL2による試作タイプT2の実装基板の生産に使用された実績生産データを用いた学習によって生成されている。動作パラメータモデルPm53は、部品実装ラインL3による量産タイプの実装基板の生産に使用された実績生産データを用いた学習によって生成されている。また、動作パラメータモデルPm54は、全ての部品実装ラインL1~L3による全ての生産タイプの実装基板の生産に使用された実績生産データを用いた学習によって生成されている。 Specifically, the operation parameter model Pm51 is generated by learning using the actual production data used for the production of the prototype type T1 mounting board by the component mounting line L1. The operation parameter model Pm52 is generated by learning using the actual production data used in the production of the prototype type T2 mounting board by the component mounting line L2. The operation parameter model Pm53 is generated by learning using the actual production data used for the production of the mass production type mounting board by the component mounting line L3. Further, the operation parameter model Pm54 is generated by learning using the actual production data used for the production of the mounting boards of all production types by all the component mounting lines L1 to L3.
 このように本実施の形態では、複数の学習モデル(すなわち動作パラメータモデル)のそれぞれは互いに異なる実装基板の生産タイプに対応付けられている。言い換えれば、複数の学習モデルは生産タイプ単位で管理されている。この場合、学習部104は、実績生産データに含まれる実績部品データを教師データとして用いた学習を行うときには、その実績生産データを使用して生産された実装基板のタイプに対応する学習モデルに対して学習を行う。 As described above, in the present embodiment, each of the plurality of learning models (that is, the operation parameter model) is associated with different production types of the mounting board. In other words, multiple learning models are managed on a production type basis. In this case, when the learning unit 104 performs learning using the actual component data included in the actual production data as teacher data, the learning unit 104 refers to the learning model corresponding to the type of the mounting board produced using the actual production data. To learn.
 例えば、図9Aに示す例では、生産データ生成装置100のデータ取得部108が試作タイプT1の実績生産データを取得すると、学習部104は、その試作タイプT1に対応する動作パラメータモデルPm41およびPm44に対して学習を行う。また、図9Bに示す例では、データ取得部108が試作タイプT2の実績生産データを部品実装ラインL2から取得すると、学習部104は、その試作タイプT2および部品実装ラインL2に対応する動作パラメータモデルPm52およびPm54に対して学習を行う。 For example, in the example shown in FIG. 9A, when the data acquisition unit 108 of the production data generation device 100 acquires the actual production data of the prototype type T1, the learning unit 104 applies the operation parameter models Pm41 and Pm44 corresponding to the prototype type T1. Learn for it. Further, in the example shown in FIG. 9B, when the data acquisition unit 108 acquires the actual production data of the prototype type T2 from the component mounting line L2, the learning unit 104 receives the operation parameter model corresponding to the prototype type T2 and the component mounting line L2. Learning is performed for Pm52 and Pm54.
 [処理の概要とフロー]
 図10Aは、本実施の形態における動作パラメータmの推定処理の概要を説明するための図である。
[Outline and flow of processing]
FIG. 10A is a diagram for explaining an outline of the estimation process of the operation parameter m in the present embodiment.
 パラメータ推定部105は、例えば入出力部107から部品Pの部品情報dを取得する。また、モデル選択部103は、学習モデル保持部DB2に保持されている複数の動作パラメータモデルPmから例えば1つの動作パラメータモデルPmを選択する。なお、複数の動作パラメータモデルPmのそれぞれは、図7A~図9Bに示す動作パラメータモデルPm11~Pm14、Pm21~Pm25、Pm31~Pm34、Pm41~Pm44、およびPm51~Pm54の何れかであってもよい。パラメータ推定部105は、その取得された部品情報dと、選択された動作パラメータモデルPmとを用いて、その部品情報dによって示される部品Pを基板Bに実装するための部品実装装置M4またはM5の動作条件である動作パラメータmを推定する。そして、パラメータ推定部105は、その推定された動作パラメータmと部品情報dとを含む部品データDcを出力する。 The parameter estimation unit 105 acquires the component information d of the component P from, for example, the input / output unit 107. Further, the model selection unit 103 selects, for example, one operation parameter model Pm from a plurality of operation parameter models Pm held in the learning model holding unit DB2. Each of the plurality of operation parameter models Pm may be any of the operation parameter models Pm11 to Pm14, Pm21 to Pm25, Pm31 to Pm34, Pm41 to Pm44, and Pm51 to Pm54 shown in FIGS. 7A to 9B. .. The parameter estimation unit 105 uses the acquired component information d and the selected operation parameter model Pm to mount the component P indicated by the component information d on the substrate B, or the component mounting device M4 or M5. The operating parameter m, which is the operating condition of, is estimated. Then, the parameter estimation unit 105 outputs the component data Dc including the estimated operation parameter m and the component information d.
 例えば、複数の動作パラメータモデルPmが図7Aに示すように時間単位で管理されている場合、モデル選択部103は、部品情報dによって示される部品Pの製造時期に応じて1つの動作パラメータモデルPmを選択してもよい。例えば、その製造時期が1990年代であれば、モデル選択部103は、図7Aに示す動作パラメータモデルPm11を選択してもよい。また、その製造時期が不明であれば、モデル選択部103は、図7Aに示す動作パラメータモデルPm14を選択してもよい。これにより、部品Pに対して動作パラメータmを推定するための適切な動作パラメータモデルPmを選択することができる。 For example, when a plurality of operation parameter models Pm are managed in units of time as shown in FIG. 7A, the model selection unit 103 uses one operation parameter model Pm according to the manufacturing time of the component P indicated by the component information d. May be selected. For example, if the manufacturing time is in the 1990s, the model selection unit 103 may select the operation parameter model Pm11 shown in FIG. 7A. If the manufacturing time is unknown, the model selection unit 103 may select the operation parameter model Pm14 shown in FIG. 7A. Thereby, an appropriate operation parameter model Pm for estimating the operation parameter m for the component P can be selected.
 また、複数の動作パラメータモデルPmが図7Bに示すように時系列に沿って管理されている場合、モデル選択部103は、最近の日付で更新された1つの動作パラメータモデルPmを選択してもよい。例えば、モデル選択部103は、図7Bに示す動作パラメータモデルPm25を選択してもよい。また、2019年7月3日にその部品Pに類似する部品を用いた実装基板が多く生産されている場合には、モデル選択部103は、図7Bに示す動作パラメータモデルPm23を選択してもよい。これにより、部品Pに対して動作パラメータmを推定するための適切な動作パラメータモデルPmを選択することができる。 Further, when a plurality of operation parameter models Pm are managed in chronological order as shown in FIG. 7B, the model selection unit 103 may select one operation parameter model Pm updated on the latest date. Good. For example, the model selection unit 103 may select the operation parameter model Pm25 shown in FIG. 7B. Further, when many mounting boards using components similar to the component P are produced on July 3, 2019, the model selection unit 103 may select the operation parameter model Pm23 shown in FIG. 7B. Good. Thereby, an appropriate operation parameter model Pm for estimating the operation parameter m for the component P can be selected.
 また、複数の動作パラメータモデルPmが図8に示すように生産設備単位で管理されている場合、モデル選択部103は、部品Pを用いた実装基板の生産を行う生産設備に対応付けられている1つの動作パラメータモデルPmを選択してもよい。例えば、部品Pを用いた実装基板の生産を行う生産設備が部品実装ラインL2である場合、モデル選択部103は、図8に示す動作パラメータモデルPm32を選択してもよい。また、部品Pを用いた実装基板の生産を行う生産設備が部品実装ラインL2だけでない場合には、モデル選択部103は、図8に示す動作パラメータモデルPm34を選択してもよい。これにより、部品Pに対して動作パラメータmを推定するための適切な動作パラメータモデルPmを選択することができる。 Further, when a plurality of operation parameter models Pm are managed in units of production equipment as shown in FIG. 8, the model selection unit 103 is associated with the production equipment that produces the mounting board using the component P. One operating parameter model Pm may be selected. For example, when the production facility that produces the mounting board using the component P is the component mounting line L2, the model selection unit 103 may select the operation parameter model Pm32 shown in FIG. Further, when the production equipment for producing the mounting board using the component P is not limited to the component mounting line L2, the model selection unit 103 may select the operation parameter model Pm34 shown in FIG. Thereby, an appropriate operation parameter model Pm for estimating the operation parameter m for the component P can be selected.
 また、複数の動作パラメータモデルPmが図9Aに示すように生産タイプ単位で管理されている場合、モデル選択部103は、部品Pを用いて生産される実装基板の生産タイプに対応付けられている1つの動作パラメータモデルPmを選択してもよい。例えば、部品Pを用いて生産される実装基板の生産タイプが量産タイプである場合、モデル選択部103は、図9Aに示す動作パラメータモデルPm43を選択してもよい。また、部品Pを用いて生産される実装基板の生産タイプが量産タイプだけない場合には、モデル選択部103は、図9Aに示す動作パラメータモデルPm44を選択してもよい。これにより、部品Pに対して動作パラメータmを推定するための適切な動作パラメータモデルPmを選択することができる。 Further, when a plurality of operation parameter models Pm are managed in production type units as shown in FIG. 9A, the model selection unit 103 is associated with the production type of the mounting board produced by using the component P. One operating parameter model Pm may be selected. For example, when the production type of the mounting board produced by using the component P is a mass production type, the model selection unit 103 may select the operation parameter model Pm43 shown in FIG. 9A. Further, when the production type of the mounting board produced by using the component P is not limited to the mass production type, the model selection unit 103 may select the operation parameter model Pm44 shown in FIG. 9A. Thereby, an appropriate operation parameter model Pm for estimating the operation parameter m for the component P can be selected.
 なお、本実施の形態では、モデル選択部103は、1つの動作パラメータモデルPmを選択するが、1つに限らず、互いに異なる動作条件を推定するための複数の動作パラメータモデルPmを選択してもよい。例えば、動作パラメータmは、図5に示すように、スピードパラメータm3および認識情報m4などの互いに異なるパラメータを含む。したがって、モデル選択部103は、例えば、スピードパラメータm3を推定するための動作パラメータモデルPmと、認識情報m4を推定するための動作パラメータモデルPmとを選択してもよい。この場合、パラメータ推定部105は、部品情報dとスピードパラメータm3用の動作パラメータモデルPmとを用いて、スピードパラメータm3を推定し、部品情報dと認識情報m4用の動作パラメータモデルPmとを用いて、認識情報m4を推定してもよい。 In the present embodiment, the model selection unit 103 selects one operation parameter model Pm, but is not limited to one, and selects a plurality of operation parameter models Pm for estimating different operation conditions. May be good. For example, as shown in FIG. 5, the operation parameter m includes different parameters such as the speed parameter m3 and the recognition information m4. Therefore, the model selection unit 103 may select, for example, an operation parameter model Pm for estimating the speed parameter m3 and an operation parameter model Pm for estimating the recognition information m4. In this case, the parameter estimation unit 105 estimates the speed parameter m3 by using the component information d and the operation parameter model Pm for the speed parameter m3, and uses the component information d and the operation parameter model Pm for the recognition information m4. The recognition information m4 may be estimated.
 また、モデル選択部103は、上述のような動作パラメータモデルPmの選択を自動で行ってもよく、オペレータによる入出力部107への操作に応じてその選択を行ってもよい。 Further, the model selection unit 103 may automatically select the operation parameter model Pm as described above, or may perform the selection according to the operation of the operator to the input / output unit 107.
 図10Bは、本実施の形態における動作パラメータモデルPmの学習処理の概要を説明するための図である。 FIG. 10B is a diagram for explaining the outline of the learning process of the operation parameter model Pm in the present embodiment.
 学習部104は、例えば、データ取得部108を介して部品実装ラインL1~L3の何れかから実績生産データを取得する。実績生産データは、上述のように、実績部品データDcuを含む。つまり、学習部104は、実績部品データDcuを取得する。実績部品データDcuは、部品実装装置M4またはM5による部品Pの基板Bへの実装に使用された部品データDcであって、その使用によって修正などが行われた部品データDcである。例えば、この実績部品データDcuは、修正された動作パラメータmとして動作パラメータmuを含み、動作パラメータmuでは、動作条件である吸着速度がV1からV2に修正されている。 The learning unit 104 acquires actual production data from any of the component mounting lines L1 to L3 via, for example, the data acquisition unit 108. As described above, the actual production data includes the actual part data Dcu. That is, the learning unit 104 acquires the actual component data Dcu. The actual component data Dcu is the component data Dc used for mounting the component P on the substrate B by the component mounting device M4 or M5, and is the component data Dc modified by the use thereof. For example, this actual component data Dcu includes an operation parameter mu as a modified operation parameter m, and in the operation parameter mu, the suction speed, which is an operation condition, is modified from V1 to V2.
 次に、学習部104は、その実績部品データDcuに対応する動作パラメータモデルPmを、学習モデル保持部DB2に保持されている複数の動作パラメータモデルPmから選択する。例えば、学習部104は、図7Aおよび図7Bに示すように、その実績部品データDcuを含む実績生産データが取得された期間に対応する動作パラメータモデルPmを選択する。または、学習部104は、図8に示すように、その実績部品データDcuを含む実績生産データを使用した部品実装装置M4またはM5を含む生産設備に対応する動作パラメータモデルPmを選択する。または、学習部104は、図9Aおよび図9Bに示すように、その実績部品データDcuを含む実績生産データを使用して生産された実装基板の生産タイプに対応する動作パラメータモデルPmを選択する。 Next, the learning unit 104 selects the operation parameter model Pm corresponding to the actual component data Dcu from the plurality of operation parameter models Pm held in the learning model holding unit DB2. For example, as shown in FIGS. 7A and 7B, the learning unit 104 selects the operation parameter model Pm corresponding to the period in which the actual production data including the actual component data Dcu is acquired. Alternatively, as shown in FIG. 8, the learning unit 104 selects the operation parameter model Pm corresponding to the production equipment including the component mounting device M4 or M5 using the actual production data including the actual component data Dcu. Alternatively, as shown in FIGS. 9A and 9B, the learning unit 104 selects the operation parameter model Pm corresponding to the production type of the mounting board produced using the actual production data including the actual component data Dcu.
 そして、学習部104は、取得された実績部品データDcuを教師データとして用いた学習によって、選択された動作パラメータモデルPmを更新する。つまり、その動作パラメータモデルPmによって示される部品情報dと動作条件との関係性が更新される。これにより、学習後の動作パラメータモデルPmuが生成される。学習部104は、上述のように選択され、学習モデル保持部DB2に保持されている動作パラメータモデルPmを、その学習後の動作パラメータモデルPmuに置き換える。これにより、学習後の動作パラメータモデルPmuが、新たな動作パラメータモデルPmとして学習モデル保持部DB2に保存される。 Then, the learning unit 104 updates the selected operation parameter model Pm by learning using the acquired actual component data Dcu as teacher data. That is, the relationship between the component information d indicated by the operating parameter model Pm and the operating conditions is updated. As a result, the operation parameter model Pmu after learning is generated. The learning unit 104 replaces the operation parameter model Pm selected as described above and held in the learning model holding unit DB2 with the operation parameter model Pmu after learning. As a result, the trained operation parameter model Pmu is stored in the learning model holding unit DB2 as a new operation parameter model Pm.
 図11は、本実施の形態における全体的な処理の一例を示す図である。図11に示す例では、学習モデル保持部DB2に保持されている複数の動作パラメータモデルPmは、時間単位または生産タイプ単位で管理されている。 FIG. 11 is a diagram showing an example of the overall processing in the present embodiment. In the example shown in FIG. 11, a plurality of operation parameter models Pm held in the learning model holding unit DB2 are managed in time units or production type units.
 パラメータ推定部105は、図10Aに示す例と同様に、モデル選択部103によって選択された動作パラメータモデルPmを用いて部品Pの動作パラメータmを推定し、部品Pの部品情報dとその動作パラメータmとを含む部品データDcを生成する。そして、データ生成部102は、その部品データDcを含む生産データDpを生成し、入出力部107を介してその生産データDpを例えば部品実装ラインL1に出力する。なお、図11に示す例では、生産データDpは部品実装ラインL1に出力されるが、他の部品実装ラインL2またはL3に出力されてもよい。 Similar to the example shown in FIG. 10A, the parameter estimation unit 105 estimates the operation parameter m of the component P using the operation parameter model Pm selected by the model selection unit 103, and the component information d of the component P and its operation parameters. The component data Dc including m is generated. Then, the data generation unit 102 generates the production data Dp including the component data Dc, and outputs the production data Dp to, for example, the component mounting line L1 via the input / output unit 107. In the example shown in FIG. 11, the production data Dp is output to the component mounting line L1, but may be output to another component mounting line L2 or L3.
 部品実装ラインL1に含まれる部品実装装置M4およびM5は、生産データ生成装置100の入出力部107から生産データDpを取得すると、その生産データDpに基づいて少なくとも1つの部品Pを基板Bに実装することによって、実装基板を生産する。このとき、部品実装ラインL1では、例えば実装基板の不良発生率が低下するように、生産データDpに含まれる部品データDcの修正が行われる。具体的な一例として、部品データDcの動作パラメータmに含まれる吸着速度V1がV2に修正される。その結果、動作パラメータmuを有する実績部品データDcuを含む実績生産データが生成される。実績部品データDcuは、新たな部品データDcとして部品ライブラリ保持部DB3に格納される。具体的には、生産データ生成装置100のデータ取得部108が、部品実装ラインL1から実績生産データを取得し、その実績生産データに含まれる実績部品データDcuを、新たな部品データDcとして部品ライブラリ保持部DB3に格納する。なお、部品実装ラインL1における部品データDcの修正は必ず行われるものではなく、修正がない場合は、部品実装ラインL1は、生産データ生成装置100から取得した部品データDcを実績部品データDcuとして含む実績生産データを生成する。 When the component mounting devices M4 and M5 included in the component mounting line L1 acquire the production data Dp from the input / output unit 107 of the production data generation device 100, at least one component P is mounted on the substrate B based on the production data Dp. By doing so, the mounting board is produced. At this time, in the component mounting line L1, the component data Dc included in the production data Dp is modified so that, for example, the defect occurrence rate of the mounting board is reduced. As a specific example, the adsorption rate V1 included in the operation parameter m of the component data Dc is corrected to V2. As a result, the actual production data including the actual component data Dcu having the operation parameter mu is generated. The actual component data Dcu is stored in the component library holding unit DB3 as new component data Dc. Specifically, the data acquisition unit 108 of the production data generation device 100 acquires the actual production data from the component mounting line L1, and the actual component data Dcu included in the actual production data is used as a new component data Dc in the component library. It is stored in the holding unit DB3. Note that the component data Dc in the component mounting line L1 is not always modified, and if there is no modification, the component mounting line L1 includes the component data Dc acquired from the production data generator 100 as the actual component data Dcu. Generate actual production data.
 学習部104は、データ取得部108によって実績生産データが取得されると、図10Bに示す例と同様に、その実績生産データに含まれる実績部品データDcuに対応する動作パラメータモデルPmを学習モデル保持部DB2から選択する。そして、学習部104は、選択された動作パラメータモデルPmに対する学習を、その実績部品データDcuを用いて行い、学習後の動作パラメータモデルPmuを学習モデル保持部DB2に格納する。 When the actual production data is acquired by the data acquisition unit 108, the learning unit 104 holds the operation parameter model Pm corresponding to the actual component data Dcu included in the actual production data, as in the example shown in FIG. 10B. Select from the unit DB2. Then, the learning unit 104 performs learning on the selected operation parameter model Pm using the actual component data Dcu, and stores the learned operation parameter model Pmu in the learning model holding unit DB2.
 図12は、本実施の形態における全体的な処理の他の例を示す図である。図12に示す例では、学習モデル保持部DB2に保持されている複数の動作パラメータモデルPmは、生産設備単位で管理されている。 FIG. 12 is a diagram showing another example of the overall processing in the present embodiment. In the example shown in FIG. 12, a plurality of operation parameter models Pm held in the learning model holding unit DB2 are managed in units of production equipment.
 パラメータ推定部105は、図10Aに示す例と同様に、生産設備ごとに、モデル選択部103によって選択された動作パラメータモデルPmを用いて、部品Pの動作パラメータmを推定し、部品Pの部品情報dとその動作パラメータmとを含む部品データDcを生成する。 Similar to the example shown in FIG. 10A, the parameter estimation unit 105 estimates the operation parameter m of the component P using the operation parameter model Pm selected by the model selection unit 103 for each production facility, and the component of the component P. The component data Dc including the information d and its operation parameter m is generated.
 例えば、パラメータ推定部105は、部品実装ラインL1用の動作パラメータモデルPm、すなわち、図8に示す動作パラメータモデルPm31に基づいて、動作パラメータmを推定して部品データDcを生成する。そして、データ生成部102は、その部品データDcを含む生産データDpを生成し、入出力部107を介してその生産データDpを例えば部品実装ラインL1に出力する。さらに、パラメータ推定部105は、部品実装ラインL2用の動作パラメータモデルPm、すなわち、図8に示す動作パラメータモデルPm32に基づいて、動作パラメータmを推定して部品データDcを生成する。そして、データ生成部102は、その部品データDcを含む生産データDpを生成し、入出力部107を介してその生産データDpを例えば部品実装ラインL2に出力する。さらに、パラメータ推定部105は、部品実装ラインL3用の動作パラメータモデルPm、すなわち、図8に示す動作パラメータモデルPm33に基づいて、動作パラメータmを推定して部品データDcを生成する。そして、データ生成部102は、その部品データDcを含む生産データDpを生成し、入出力部107を介してその生産データDpを例えば部品実装ラインL3に出力する。 For example, the parameter estimation unit 105 estimates the operation parameter m based on the operation parameter model Pm for the component mounting line L1, that is, the operation parameter model Pm31 shown in FIG. 8, and generates the component data Dc. Then, the data generation unit 102 generates the production data Dp including the component data Dc, and outputs the production data Dp to, for example, the component mounting line L1 via the input / output unit 107. Further, the parameter estimation unit 105 estimates the operation parameter m based on the operation parameter model Pm for the component mounting line L2, that is, the operation parameter model Pm32 shown in FIG. 8, and generates the component data Dc. Then, the data generation unit 102 generates the production data Dp including the component data Dc, and outputs the production data Dp to, for example, the component mounting line L2 via the input / output unit 107. Further, the parameter estimation unit 105 estimates the operation parameter m based on the operation parameter model Pm for the component mounting line L3, that is, the operation parameter model Pm33 shown in FIG. 8, and generates the component data Dc. Then, the data generation unit 102 generates the production data Dp including the component data Dc, and outputs the production data Dp to, for example, the component mounting line L3 via the input / output unit 107.
 または、パラメータ推定部105は、部品実装ラインL1~L3用の動作パラメータモデルPm、すなわち、図8に示す動作パラメータモデルPm34に基づいて、動作パラメータmを推定して部品データDcを生成する。そして、データ生成部102は、その部品データDcを含む生産データDpを生成し、入出力部107を介してその生産データDpを例えば部品実装ラインL1~L3のそれぞれに出力する。 Alternatively, the parameter estimation unit 105 estimates the operation parameter m based on the operation parameter model Pm for the component mounting lines L1 to L3, that is, the operation parameter model Pm34 shown in FIG. 8, and generates the component data Dc. Then, the data generation unit 102 generates the production data Dp including the component data Dc, and outputs the production data Dp to, for example, the component mounting lines L1 to L3 via the input / output unit 107.
 部品実装ラインL1~L3のそれぞれでは、部品実装装置M4およびM5は、生産データ生成装置100の入出力部107から生産データDpを取得すると、その生産データDpに基づいて少なくとも1つの部品Pを基板Bに実装する。これにより、実装基板が生産される。このとき、部品実装ラインL1~L3のそれぞれでは、例えば実装基板の不良発生率が低下するように、生産データDpに含まれる部品データDcの修正が行われる。その結果、実績部品データDcuを含む実績生産データが生成される。それらの実績部品データDcuは、新たな部品データDcとして部品ライブラリ保持部DB3に格納される。具体的には、生産データ生成装置100のデータ取得部108が、部品実装ラインL1~L3のそれぞれから実績生産データを取得し、それらの実績生産データに含まれる実績部品データDcuを、新たな部品データDcとして部品ライブラリ保持部DB3に格納する。なお、部品実装ラインL1~L3のそれぞれにおける部品データDcの修正は必ず行われるものではない。部品実装ラインL1~L3のそれぞれは、修正がない場合は、生産データ生成装置100から取得した部品データDcを実績部品データDcuとして含む実績生産データを生成する。 In each of the component mounting lines L1 to L3, when the component mounting devices M4 and M5 acquire the production data Dp from the input / output unit 107 of the production data generation device 100, at least one component P is mounted on the substrate based on the production data Dp. Implement in B. As a result, the mounting board is produced. At this time, in each of the component mounting lines L1 to L3, the component data Dc included in the production data Dp is modified so that, for example, the defect occurrence rate of the mounting board is reduced. As a result, actual production data including actual component data Dcu is generated. The actual component data Dcu is stored in the component library holding unit DB3 as new component data Dc. Specifically, the data acquisition unit 108 of the production data generation device 100 acquires the actual production data from each of the component mounting lines L1 to L3, and the actual component data Dcu included in the actual production data is used as a new component. It is stored as data Dc in the parts library holding unit DB3. It should be noted that the component data Dc in each of the component mounting lines L1 to L3 is not always modified. If there is no modification, each of the component mounting lines L1 to L3 generates actual production data including the component data Dc acquired from the production data generation device 100 as the actual component data Dcu.
 学習部104は、データ取得部108によって部品実装ラインL1の実績生産データが取得されると、図10Bに示す例と同様に、その実績生産データに含まれる実績部品データDcuに対応する動作パラメータモデルPmを学習モデル保持部DB2から選択する。具体的には、学習部104は、部品実装ラインL1用の動作パラメータモデルPm、すなわち、図8に示す動作パラメータモデルPm31を選択する。そして、学習部104は、選択された動作パラメータモデルPmに対する学習を、その部品実装ラインL1の実績部品データDcuを用いて行う。なお、この実績部品データDcuは、上述のようにデータ取得部108によって部品実装ラインL1から取得されて部品ライブラリ保持部DB3に格納された部品データDcである。その結果、学習部104は、学習モデル保持部DB2に格納されている選択された部品実装ラインL1用の動作パラメータモデルPmを、部品実装ラインL1用の学習後の動作パラメータモデルPmuに更新する。 When the data acquisition unit 108 acquires the actual production data of the component mounting line L1, the learning unit 104 has an operation parameter model corresponding to the actual component data Dcu included in the actual production data, as in the example shown in FIG. 10B. Pm is selected from the learning model holding unit DB2. Specifically, the learning unit 104 selects the operation parameter model Pm for the component mounting line L1, that is, the operation parameter model Pm31 shown in FIG. Then, the learning unit 104 learns the selected operation parameter model Pm by using the actual component data Dcu of the component mounting line L1. The actual component data Dcu is the component data Dc acquired from the component mounting line L1 by the data acquisition unit 108 and stored in the component library holding unit DB3 as described above. As a result, the learning unit 104 updates the operation parameter model Pm for the selected component mounting line L1 stored in the learning model holding unit DB2 to the learned operation parameter model Pmu for the component mounting line L1.
 学習部104は、部品実装ラインL2およびL3のそれぞれについても、上述の部品実装ラインL1と同様に、動作パラメータモデルPmの更新を行う。つまり、学習部104は、学習モデル保持部DB2に格納されている部品実装ラインL2用の動作パラメータモデルPmを、部品実装ラインL2用の学習後の動作パラメータモデルPmuに更新する。さらに、学習部104は、学習モデル保持部DB2に格納されている部品実装ラインL3用の動作パラメータモデルPmを、部品実装ラインL3用の学習後の動作パラメータモデルPmuに更新する。 The learning unit 104 updates the operation parameter model Pm for each of the component mounting lines L2 and L3 in the same manner as the component mounting line L1 described above. That is, the learning unit 104 updates the operation parameter model Pm for the component mounting line L2 stored in the learning model holding unit DB2 to the operation parameter model Pmu after learning for the component mounting line L2. Further, the learning unit 104 updates the operation parameter model Pm for the component mounting line L3 stored in the learning model holding unit DB2 to the operation parameter model Pmu after learning for the component mounting line L3.
 また、学習部104は、データ取得部108によって部品実装ラインL1~L3の何れかの実績生産データが取得されると、全ての部品実装ラインL1~L3用の動作パラメータモデルPm、すなわち、図8に示す動作パラメータモデルPm34を選択してもよい。この場合には、学習部104は、選択された動作パラメータモデルPmに対する学習を、その部品実装ラインL1~L3の何れかの実績部品データDcuを用いて行う。なお、この実績部品データDcuは、上述のようにデータ取得部108によって部品実装ラインL1~L3の何れかから取得されて部品ライブラリ保持部DB3に格納された部品データDcである。その結果、学習部104は、学習モデル保持部DB2に格納されている選択された部品実装ラインL1~L3用の動作パラメータモデルPmを、部品実装ラインL1~L3用の学習後の動作パラメータモデルPmuに更新する。 Further, when the data acquisition unit 108 acquires the actual production data of any of the component mounting lines L1 to L3, the learning unit 104 has an operation parameter model Pm for all the component mounting lines L1 to L3, that is, FIG. The operation parameter model Pm34 shown in the above may be selected. In this case, the learning unit 104 learns the selected operation parameter model Pm by using the actual component data Dcu according to any of the component mounting lines L1 to L3. The actual component data Dcu is component data Dc acquired from any of the component mounting lines L1 to L3 by the data acquisition unit 108 and stored in the component library holding unit DB3 as described above. As a result, the learning unit 104 uses the operation parameter model Pm for the selected component mounting lines L1 to L3 stored in the learning model holding unit DB2, and the learned operation parameter model Pmu for the component mounting lines L1 to L3. Update to.
 なお、本実施の形態におけるデータ生成部102は、生産システム1を有する工場以外の他の工場などの生産設備から生産データDpをインポートしてもよく、他の工場などの生産設備に生産データDpをエクスポートしてもよい。 The data generation unit 102 in the present embodiment may import the production data Dp from the production equipment of a factory other than the factory having the production system 1, and the production data Dp may be imported into the production equipment of the other factory. May be exported.
 図13は、本実施の形態における生産データ生成装置100の処理動作を示すフローチャートである。 FIG. 13 is a flowchart showing the processing operation of the production data generation device 100 according to the present embodiment.
 生産データ生成装置100の入出力部107は、部品情報dを受け付ける(ステップS11)。この部品情報dは、オペレータによる入出力部107による操作によって生成されて受け付けられてもよく、複数の部品情報dから選択されることによって受け付けられてもよい。また、入出力部107は、部品ライブラリに含まれる複数の部品データDcから、デフォルトの動作パラメータmを有する部品データDcを選択し、その部品データDcから部品情報dを抽出することによって、その部品情報dを受け付けてもよい。なお、部品情報dは、図5に示すとおり、例えばサイズデータd2および部品属性d31などを含む。 The input / output unit 107 of the production data generation device 100 receives the component information d (step S11). This component information d may be generated and accepted by an operation by the input / output unit 107 by the operator, or may be accepted by being selected from a plurality of component information d. Further, the input / output unit 107 selects the component data Dc having the default operation parameter m from the plurality of component data Dc included in the component library, and extracts the component information d from the component data Dc to extract the component information d. Information d may be accepted. As shown in FIG. 5, the component information d includes, for example, size data d2 and component attribute d31.
 次に、モデル選択部103は、学習モデル保持部DB2に保持されている複数の動作パラメータモデルPmから少なくとも1つの動作パラメータモデルPmを選択する(ステップS12)。 Next, the model selection unit 103 selects at least one operation parameter model Pm from the plurality of operation parameter model Pm held in the learning model holding unit DB2 (step S12).
 次に、パラメータ推定部105は、ステップS12で選択された少なくとも1つの動作パラメータモデルPmと、ステップS11で受け付けられた部品情報dとに基づいて、動作パラメータmを推定する(ステップS13)。この動作パラメータmは、その部品情報dによって特定される部品Pを基板Bに実装するための部品実装装置M4またはM5の動作条件である。そして、パラメータ推定部105は、その部品情報dおよび動作パラメータmを有する部品データDcを生成する(ステップS14)。 Next, the parameter estimation unit 105 estimates the operation parameter m based on at least one operation parameter model Pm selected in step S12 and the component information d received in step S11 (step S13). This operating parameter m is an operating condition of the component mounting device M4 or M5 for mounting the component P specified by the component information d on the substrate B. Then, the parameter estimation unit 105 generates the component data Dc having the component information d and the operation parameter m (step S14).
 次に、データ生成部102は、ステップS14で生成された部品データDcを含む生産データDpを生成する(ステップS15)。そして、データ生成部102は、その生産データDpを部品実装ラインL1~L3のそれぞれに出力する。つまり、部品実装ラインL1~L3のそれぞれは、データ生成部102から生産データDpをダウンロードし、その生産データDpを使用して実装基板の生産を開始する(ステップS16)。 Next, the data generation unit 102 generates the production data Dp including the component data Dc generated in step S14 (step S15). Then, the data generation unit 102 outputs the production data Dp to each of the component mounting lines L1 to L3. That is, each of the component mounting lines L1 to L3 downloads the production data Dp from the data generation unit 102, and starts the production of the mounting board using the production data Dp (step S16).
 そして、学習部104は、部品実装ラインL1~L3のそれぞれで使用された生産データDpに含まれる部品データDc(すなわち実績部品データDcu)を教師データとして用いた動作パラメータモデルPmの再学習を行う(ステップS17)。再学習の対象とされる動作パラメータモデルPmは、例えば、その使用された生産データDp(すなわち実績生産データ)が取得された期間などに対応する動作パラメータモデルPmである。 Then, the learning unit 104 relearns the operation parameter model Pm using the component data Dc (that is, the actual component data Dcu) included in the production data Dp used in each of the component mounting lines L1 to L3 as the teacher data. (Step S17). The operation parameter model Pm to be relearned is, for example, an operation parameter model Pm corresponding to a period in which the used production data Dp (that is, actual production data) is acquired.
 以上のように、本実施の形態における生産データ生成装置100では、複数の動作パラメータモデルPmから、少なくとも1つの動作パラメータモデルPmが選択される。そして、選択された少なくとも1つの動作パラメータモデルPmと、実装対象部品Pの部品情報dとに基づいて、その実装対象部品Pを基板Bに実装するための動作パラメータmが推定される。 As described above, in the production data generation device 100 according to the present embodiment, at least one operation parameter model Pm is selected from the plurality of operation parameter models Pm. Then, based on the selected at least one operation parameter model Pm and the component information d of the mounting target component P, the operating parameter m for mounting the mounting target component P on the substrate B is estimated.
 これにより、複数の動作パラメータモデルPmから少なくとも1つの動作パラメータモデルPmが選択されて動作パラメータmの推定に用いられるため、実装対象部品Pに対して適切な動作パラメータmが推定される可能性を高めることができる。したがって、適切な動作パラメータmを設定することができる。また、このような動作パラメータmおよび部品情報dを有する部品データDcが生産データDpに含められ、その生産データDpが部品実装装置M4またはM5による部品Pの基板Bへの実装に用いられる場合には、品質の良い実装基板を生産することができる。つまり、実装基板の品質向上を図ることができる。 As a result, at least one operation parameter model Pm is selected from the plurality of operation parameter models Pm and used for estimating the operation parameter m, so that there is a possibility that an appropriate operation parameter m can be estimated for the mounting target component P. Can be enhanced. Therefore, an appropriate operation parameter m can be set. Further, when the component data Dc having such an operation parameter m and the component information d is included in the production data Dp and the production data Dp is used for mounting the component P on the substrate B by the component mounting device M4 or M5. Can produce high quality mounting boards. That is, the quality of the mounting board can be improved.
 また、本実施の形態における生産データ生成装置100では、部品実装装置M4またはM5によって使用された、実績部品データDcuを含む実績生産データが取得される。そして、複数の動作パラメータモデルPmのうち、取得された実績生産データに対応する動作パラメータモデルPmの更新が、その実績部品データDcuを教師データとして用いた学習によって行われる。 Further, in the production data generation device 100 in the present embodiment, the actual production data including the actual component data Dcu used by the component mounting apparatus M4 or M5 is acquired. Then, among the plurality of operation parameter models Pm, the operation parameter model Pm corresponding to the acquired actual production data is updated by learning using the actual component data Dcu as the teacher data.
 実績生産データに含まれる実績部品データDcuの動作パラメータmuは、実装済み部品Pの実装に用いられ、その際に、修正などが行われている。つまり、より良い品質の実装基板が生産されるようにその動作パラメータmuは修正されている。したがって、このような動作パラメータmuを有する実績部品データDcuが動作パラメータモデルPmの学習に教師データとして用いられることによって、動作パラメータモデルPmのさらなる適正化を図ることができる。その結果、その動作パラメータモデルPmがモデル選択部103によって選択される場合には、動作パラメータmの推定精度を向上することができる。 The operation parameter mu of the actual component data Dcu included in the actual production data is used for mounting the mounted component P, and at that time, corrections and the like are performed. That is, the operating parameter mu has been modified so that a better quality mounting board is produced. Therefore, by using the actual component data Dcu having such an operation parameter mu as teacher data for learning the operation parameter model Pm, it is possible to further optimize the operation parameter model Pm. As a result, when the operation parameter model Pm is selected by the model selection unit 103, the estimation accuracy of the operation parameter m can be improved.
 また、本実施の形態における生産データ生成装置100では、複数の動作パラメータモデルPmのそれぞれは互いに異なる期間に対応付けられ、学習は、実績生産データが取得された期間に対応する動作パラメータモデルPmに対して行われる。 Further, in the production data generation device 100 of the present embodiment, each of the plurality of operation parameter models Pm is associated with different periods, and the learning is performed on the operation parameter model Pm corresponding to the period in which the actual production data is acquired. It is done against.
 例えば、図7Aに示すように、動作パラメータモデルPm11~Pm14のうちの1つの動作パラメータモデルPm14は、全期間(例えば1990年から現在までの全期間)に対応付けられている。そして、残りの動作パラメータモデルPm11~Pm13のそれぞれは互いに異なる年代に対応付けられている。互いに異なる年代は、例えば、1990年代、2000年代、2010年代などの各年代である。これにより、それらの動作パラメータモデルPm11~Pm14から、全期間または何れかの年代に対応付けられている動作パラメータモデルPmが選択されて動作パラメータmの推定に用いられる。したがって、実装対象部品Pに対して期間に応じた適切な動作パラメータmを推定することができる。 For example, as shown in FIG. 7A, one of the operation parameter models Pm11 to Pm14, the operation parameter model Pm14, is associated with the entire period (for example, the entire period from 1990 to the present). The remaining operation parameter models Pm11 to Pm13 are associated with different age groups. The different ages are, for example, the 1990s, 2000s, 2010s, and the like. As a result, the operation parameter model Pm associated with the entire period or any age is selected from the operation parameter models Pm11 to Pm14 and used for estimating the operation parameter m. Therefore, it is possible to estimate an appropriate operation parameter m according to the period for the mounting target component P.
 また、本実施の形態における生産データ生成装置100では、図8に示すように、動作パラメータモデルPm31~Pm34のそれぞれは互いに異なる生産設備に対応付けられている。そして、学習は、実績生産データを使用した部品実装装置M4またはM5を含む生産設備に対応する動作パラメータモデルPmに対して行われる。 Further, in the production data generation device 100 according to the present embodiment, as shown in FIG. 8, each of the operation parameter models Pm31 to Pm34 is associated with different production facilities. Then, the learning is performed on the operation parameter model Pm corresponding to the production equipment including the component mounting device M4 or M5 using the actual production data.
 これにより、動作パラメータモデルPm31~Pm34から、全ての部品実装ラインまたは何れか部品実装ラインに対応付けられている動作パラメータモデルPmが選択されて動作パラメータmの推定に用いられる。したがって、実装対象部品Pに対して生産設備に応じた適切な動作パラメータmを推定することができる。 As a result, the operation parameter model Pm associated with all the component mounting lines or any of the component mounting lines is selected from the operation parameter models Pm31 to Pm34 and used for estimating the operation parameter m. Therefore, it is possible to estimate an appropriate operation parameter m according to the production equipment for the mounting target component P.
 また、本実施の形態における生産データ生成装置100では、図9Aに示すように、動作パラメータモデルPm41~Pm44のそれぞれは互いに異なる実装基板のタイプに対応付けられている。そして、学習は、実績生産データを使用して生産された実装基板のタイプに対応する動作パラメータモデルPmに対して行われる。 Further, in the production data generation device 100 according to the present embodiment, as shown in FIG. 9A, the operation parameter models Pm41 to Pm44 are associated with different mounting board types. Then, the learning is performed on the operation parameter model Pm corresponding to the type of the mounting board produced using the actual production data.
 これにより、動作パラメータモデルPm41~Pm44から、例えば量産タイプまたは試作タイプに対応付けられている動作パラメータモデルPmが選択されて動作パラメータmの推定に用いられる。したがって、実装対象部品Pに対して実装基板のタイプに応じた適切な動作パラメータmを推定することができる。 Thereby, for example, the operation parameter model Pm associated with the mass production type or the prototype type is selected from the operation parameter models Pm41 to Pm44 and used for estimating the operation parameter m. Therefore, it is possible to estimate an appropriate operation parameter m according to the type of the mounting board for the mounting target component P.
 このように本実施の形態では、期間、生産設備または実装基板のタイプなどに特化した動作パラメータモデルPmを利用することができ、その結果、その期間、生産設備または実装基板のタイプに対して適切な動作パラメータmを推定することができる。 Thus, in this embodiment, the operating parameter model Pm specialized for the period, the type of production equipment or mounting board, etc. can be used, and as a result, for that period, the type of production equipment or mounting board, etc. An appropriate operating parameter m can be estimated.
 (実施の形態1の変形例)
 上記実施の形態では、図7A~図9Bに示すように、時間単位、生産設備単位、または生産タイプ単位で複数の動作パラメータモデルPmが管理されている。しかし、その管理の態様は、これらに限定されることなく、他の単位で複数の動作パラメータモデルPmが管理されていてもよい。また、図9Bに示す例では、生産設備と生産タイプとの組み合わせの単位で複数の動作パラメータモデルPmが管理されているが、その組み合わせは、これに限定されることなく、どのような組み合わせであってもよい。
(Modified Example of Embodiment 1)
In the above embodiment, as shown in FIGS. 7A to 9B, a plurality of operation parameter models Pm are managed in units of time, production equipment, or production type. However, the mode of management is not limited to these, and a plurality of operation parameter models Pm may be managed in other units. Further, in the example shown in FIG. 9B, a plurality of operation parameter models Pm are managed in units of combinations of production equipment and production type, but the combinations are not limited to this, and any combination can be used. There may be.
 また、上記実施の形態における図7Bに示す例では、モデル選択部103は、最近の日付で更新された1つの動作パラメータモデルPmを選択する。ここで、その動作パラメータモデルPmに基づいて推定された動作パラメータmを含む生産データDpによって生産される実装基板の不良発生率が高い場合には、モデル選択部103は、先に選択された動作パラメータモデルPmを、最近の日付の前に更新された動作パラメータモデルPmに選択し直してもよい。また、図7A、図8、図9Aおよび図9Bに示す例であっても、モデル選択部103は、例えば不良発生率に応じて、動作パラメータモデルPmを選択し直してもよい。選択し直しは、ランダムに行われてもよく、予め定められた手順にしたがって行われてもよい。 Further, in the example shown in FIG. 7B in the above embodiment, the model selection unit 103 selects one operation parameter model Pm updated on the latest date. Here, when the defect occurrence rate of the mounting board produced by the production data Dp including the operation parameter m estimated based on the operation parameter model Pm is high, the model selection unit 103 performs the operation selected earlier. The parameter model Pm may be reselected to the operating parameter model Pm updated before the latest date. Further, even in the examples shown in FIGS. 7A, 8, 9A and 9B, the model selection unit 103 may reselect the operation parameter model Pm according to, for example, the defect occurrence rate. The reselection may be performed randomly or according to a predetermined procedure.
 また、上記実施の形態における生産データ生成装置100の入出力部107は、学習モデル保持部DB2に保持されている少なくとも1つの動作パラメータモデルPmを、生産システム1を有する施設以外の他の施設にエクスポートしてもよい。施設は、工場であってもよく、フロアであってもよい。さらに、入出力部107は、少なくとも1つの動作パラメータモデルPmを他の施設からインポートして学習モデル保持部DB2に格納してもよい。これにより、動作パラメータモデルPmのさらなる最適化を図ることができる。また、入出力部107は、生産データ保持部DB1に保持されている生産データDpに対するインポートおよびエクスポートを行ってもよく、部品ライブラリ保持部DB3に保持されている部品データDcに対するインポートおよびエクスポートを行ってもよい。 Further, the input / output unit 107 of the production data generation device 100 in the above embodiment transfers at least one operation parameter model Pm held in the learning model holding unit DB2 to a facility other than the facility having the production system 1. You may export it. The facility may be a factory or a floor. Further, the input / output unit 107 may import at least one operation parameter model Pm from another facility and store it in the learning model holding unit DB2. As a result, the operation parameter model Pm can be further optimized. Further, the input / output unit 107 may import and export the production data Dp held in the production data holding unit DB1 and import and export the parts data Dc held in the parts library holding unit DB3. You may.
 また、上記実施の形態における生産データ生成装置100の学習部104は、学習モデル保持部DB2に保持されている複数の動作パラメータモデルPmのうち、データ取得部108によって取得された実績生産データに対応する動作パラメータモデルPmに対する学習を行う。しかし、学習部104は、入出力部107によって受け付けられたオペレータの操作によって、その学習の対象とされる動作パラメータモデルPmを切り換えてもよい。これにより、オペレータによって指定された動作パラメータモデルPmの学習が行われる。 Further, the learning unit 104 of the production data generation device 100 in the above embodiment corresponds to the actual production data acquired by the data acquisition unit 108 among the plurality of operation parameter model Pm held in the learning model holding unit DB2. Learning for the motion parameter model Pm to be performed. However, the learning unit 104 may switch the operation parameter model Pm to be learned by the operation of the operator received by the input / output unit 107. As a result, the operation parameter model Pm specified by the operator is learned.
 また、部品ライブラリの部品データDcに含まれるパラメータ推定部105によって推定された動作パラメータmには、その動作パラメータmの推定に用いられた動作パラメータモデルPmの識別情報と、その推定が行われた日時とが関連付けられていてもよい。これにより、動作パラメータmを適切に管理することができる。 Further, the operation parameter m estimated by the parameter estimation unit 105 included in the component data Dc of the component library includes the identification information of the operation parameter model Pm used for estimating the operation parameter m and its estimation. It may be associated with the date and time. Thereby, the operation parameter m can be appropriately managed.
 また、パラメータ推定部105は、図5に示す部品情報dに含まれる全ての情報を用いることなく、一部の情報のみを用いて動作パラメータmを推定してもよい。例えば、入出力部107は、部品情報dのうちの、動作パラメータmの推定に用いられる一部の情報を、オペレータによる操作に応じて受け付けてもよい。このような一部の情報が受け付けられた場合に、パラメータ推定部105は、その受け付けられた一部の情報のみを用いて動作パラメータmを推定する。さらに、パラメータ推定部105は、図5に示す動作パラメータmに含まれる全てのパラメータを推定することなく、一部のパラメータのみを推定してもよい。例えば、入出力部107は、図5に示す動作パラメータmのうちの推定対象とされる一部のパラメータの指定を、オペレータによる操作に応じて受け付けてもよい。このような一部のパラメータが指定された場合に、パラメータ推定部105は、動作パラメータmのうちその指定された一部のパラメータのみを推定する。また、パラメータ推定部105は、部品情報dに含まれる全ての情報に対して主成分分析を行い、その分析結果に応じて動作パラメータmを推定してもよい。 Further, the parameter estimation unit 105 may estimate the operation parameter m using only a part of the information without using all the information included in the component information d shown in FIG. For example, the input / output unit 107 may accept a part of the component information d that is used for estimating the operation parameter m according to the operation by the operator. When such a part of the information is received, the parameter estimation unit 105 estimates the operation parameter m using only the received part of the information. Further, the parameter estimation unit 105 may estimate only a part of the parameters without estimating all the parameters included in the operation parameter m shown in FIG. For example, the input / output unit 107 may accept the designation of some parameters to be estimated among the operation parameters m shown in FIG. 5 according to the operation by the operator. When such a part of the parameters is specified, the parameter estimation unit 105 estimates only the specified part of the operation parameters m. Further, the parameter estimation unit 105 may perform principal component analysis on all the information included in the component information d and estimate the operation parameter m according to the analysis result.
 (実施の形態2)
 本実施の形態では、部品実装ラインL1~L3のそれぞれから出力される実績生産データに含まれる動作パラメータmuに対するフィルタリングが行われる。
(Embodiment 2)
In the present embodiment, filtering is performed on the operation parameter mu included in the actual production data output from each of the component mounting lines L1 to L3.
 [生産システム]
 図14は、本実施の形態における生産システムの構成の一例を示す図である。
[Production system]
FIG. 14 is a diagram showing an example of the configuration of the production system according to the present embodiment.
 本実施の形態における生産システム2は、3つの部品実装ラインL1~L3と、生産管理装置100aと、データ管理装置300と、3つの検査装置401~403とを備える。つまり、本実施の形態における生産システム2は、基板Bに部品Pを実装することによって実装基板を生産する部品実装装置M4およびM5と、その実装基板の生産に関する処理を行う、データ管理装置300または検査装置401~403などの処理装置とを有する。 The production system 2 in the present embodiment includes three component mounting lines L1 to L3, a production control device 100a, a data management device 300, and three inspection devices 401 to 403. That is, the production system 2 in the present embodiment is the component mounting devices M4 and M5 that produce the mounting board by mounting the component P on the board B, and the data management device 300 or the data management device 300 that performs processing related to the production of the mounting board. It has a processing device such as inspection devices 401 to 403.
 なお、本実施の形態における各構成要素のうち、実施の形態1と同一の構成要素については、実施の形態1と同一の符号を付し、詳細な説明を省略する。 Of the components of the present embodiment, the same components as those of the first embodiment are designated by the same reference numerals as those of the first embodiment, and detailed description thereof will be omitted.
 3つの部品実装ラインL1~L3は、実施の形態1における生産システム1の3つの部品実装ラインL1~L3と同一である。 The three component mounting lines L1 to L3 are the same as the three component mounting lines L1 to L3 of the production system 1 in the first embodiment.
 生産管理装置100aは、生産システム2における実装基板の生産を管理する。具体的には、生産管理装置100aは、実施の形態1における生産データ生成装置100と同様の機能を備え、さらに、実績生産データに含まれる動作パラメータmuに対してフィルタリングを行う機能を有する。 The production control device 100a manages the production of the mounting board in the production system 2. Specifically, the production control device 100a has the same function as the production data generation device 100 in the first embodiment, and further has a function of filtering the operation parameter mu included in the actual production data.
 データ管理装置300は、生産管理装置100aと部品実装ラインL1~L3のそれぞれとに接続され、部品実装ラインL1~L3のそれぞれの生産データDpを管理する。この生産データDpは、部品実装ラインL1~L3のそれぞれで使用された実績生産データであってもよい。また、本実施の形態におけるデータ管理装置300は、生産管理装置100aによるフィルタリングに用いられるフィルタリング情報を生成し、そのフィルタリング情報を生産管理装置100aに出力する。 The data management device 300 is connected to each of the production control device 100a and the component mounting lines L1 to L3, and manages the production data Dp of each of the component mounting lines L1 to L3. This production data Dp may be actual production data used in each of the component mounting lines L1 to L3. Further, the data management device 300 in the present embodiment generates filtering information used for filtering by the production control device 100a, and outputs the filtering information to the production control device 100a.
 検査装置401~403は、部品実装ラインL1~3によって生産される実装基板の検査をそれぞれ行う。つまり、検査装置401は、部品実装ラインL1の実装基板を検査し、検査装置402は、部品実装ラインL2の実装基板を検査し、検査装置403は、部品実装ラインL3の実装基板を検査する。また、本実施の形態における検査装置401~403のそれぞれは、生産管理装置100aに接続され、その実装基板の検査結果に基づいて上述のフィルタリング情報を生成し、そのフィルタリング情報を生産管理装置100aに出力する。 The inspection devices 401 to 403 inspect the mounting boards produced by the component mounting lines L1 to L3, respectively. That is, the inspection device 401 inspects the mounting board of the component mounting line L1, the inspection device 402 inspects the mounting board of the component mounting line L2, and the inspection device 403 inspects the mounting board of the component mounting line L3. Further, each of the inspection devices 401 to 403 in the present embodiment is connected to the production control device 100a, generates the above-mentioned filtering information based on the inspection result of the mounting board thereof, and transfers the filtering information to the production control device 100a. Output.
 なお、本実施の形態におけるデータ管理装置300および検査装置401~403のそれぞれは、実装基板の生産に関する処理を行う処理装置である。 Note that each of the data management device 300 and the inspection devices 401 to 403 in the present embodiment is a processing device that performs processing related to the production of the mounting board.
 [生産管理装置、部品実装ライン、および処理装置の機能構成]
 図15は、生産管理装置100aと部品実装ラインL1~L3と処理装置とのそれぞれの機能構成を示すブロック図である。なお、本実施の形態では、図15に示すように、データ管理装置300と検査装置401~403とから処理装置500が構成されている。
[Functional configuration of production control equipment, component mounting line, and processing equipment]
FIG. 15 is a block diagram showing the functional configurations of the production control device 100a, the component mounting lines L1 to L3, and the processing device. In the present embodiment, as shown in FIG. 15, the processing device 500 is composed of the data management device 300 and the inspection devices 401 to 403.
 生産管理装置100aは、実施の形態1の生産データ生成装置100と同様に、制御部101、データ生成部102、モデル選択部103、学習部104、パラメータ推定部105、表示部106、入出力部107、データ取得部108、生産データ保持部DB1、学習モデル保持部DB2、および部品ライブラリ保持部DB3を備える。また、生産管理装置100aは、実績生産データに含まれる動作パラメータmuに対してフィルタリングを行うフィルタリング部109を備える。 The production management device 100a is the same as the production data generation device 100 of the first embodiment, that is, the control unit 101, the data generation unit 102, the model selection unit 103, the learning unit 104, the parameter estimation unit 105, the display unit 106, and the input / output unit. It includes 107, a data acquisition unit 108, a production data holding unit DB1, a learning model holding unit DB2, and a parts library holding unit DB3. Further, the production control device 100a includes a filtering unit 109 that filters the operation parameter mu included in the actual production data.
 具体的には、本実施の形態における生産管理装置100aのデータ取得部108は、部品実装装置M4またはM5による実装基板の生産に使用された生産データDp、すなわち実績生産データを、部品実装ラインL1~L3のそれぞれから取得する。この実績生産データは、少なくとも1種類の部品Pのそれぞれについて、当該部品Pを基板Bに実装するための部品実装装置M4またはM5の動作条件である動作パラメータmuを含む。さらに、データ取得部108は、処理装置500からフィルタリング情報を取得する。 Specifically, the data acquisition unit 108 of the production control device 100a in the present embodiment inputs the production data Dp used for the production of the mounting board by the component mounting device M4 or M5, that is, the actual production data, to the component mounting line L1. Obtained from each of ~ L3. This actual production data includes, for each of at least one type of component P, an operating parameter mu which is an operating condition of the component mounting device M4 or M5 for mounting the component P on the substrate B. Further, the data acquisition unit 108 acquires filtering information from the processing device 500.
 フィルタリング部109は、その取得された実績生産データに含まれる少なくとも1つの動作パラメータmuに対するフィルタリングを、処理装置500から得られるフィルタリング情報を用いて行うことによって、1以上の動作パラメータmuを選択する。 The filtering unit 109 selects one or more operation parameter mu by filtering the at least one operation parameter mu included in the acquired actual production data using the filtering information obtained from the processing device 500.
 学習部104は、選択された1以上の動作パラメータmuを教師データとして用いた学習によって、学習モデル保持部DB2に保持されている学習モデルである動作パラメータモデルPmの生成または更新を行う。この動作パラメータモデルPmは、部品Pを基板Bに実装するための部品実装装置M4またはM5の動作条件と部品Pとの間の関係性を示す。なお、上述の学習では、具体的には、その選択された1以上の動作パラメータmuのそれぞれについて、その動作パラメータmuを含む実績部品データDcuが教師データとして用いられる。 The learning unit 104 generates or updates the operation parameter model Pm, which is a learning model held in the learning model holding unit DB2, by learning using one or more selected operation parameter mu as teacher data. This operation parameter model Pm shows the relationship between the operating conditions of the component mounting device M4 or M5 for mounting the component P on the substrate B and the component P. In the above-mentioned learning, specifically, for each of the selected one or more operation parameters mu, the actual component data Dcu including the operation parameter mu is used as the teacher data.
 また、本実施の形態におけるパラメータ推定部105は、実施の形態1と同様、未だ実装されていない実装対象部品Pを基板に実装するための部品実装装置M4またはM5の動作条件である動作パラメータmを推定する。この動作パラメータmの推定は、学習モデル保持部DB2に保持されている動作パラメータモデルPmと、基板Bに実装される実装対象部品Pに関する部品情報dとに基づいて行われる。 Further, the parameter estimation unit 105 in the present embodiment, as in the first embodiment, has an operating parameter m which is an operating condition of the component mounting device M4 or M5 for mounting the mounting target component P which has not been mounted yet on the substrate. To estimate. The estimation of the operation parameter m is performed based on the operation parameter model Pm held in the learning model holding unit DB2 and the component information d regarding the mounting target component P mounted on the substrate B.
 処理装置500は、検査装置401~403と、データ管理装置300とを備える。 The processing device 500 includes inspection devices 401 to 403 and a data management device 300.
 検査装置401は、検査制御部411、入出力部412、表示部413、検査機構414、および検査データ保持部DB5を備える。 The inspection device 401 includes an inspection control unit 411, an input / output unit 412, a display unit 413, an inspection mechanism 414, and an inspection data holding unit DB5.
 入出力部412は、例えば生産システム2のオペレータによる操作に基づく入力データを受け付け、その入力データを検査制御部411に出力する。このような、入出力部412は、例えばキーボード、タッチセンサ、タッチパッドまたはマウスなどを有していてもよい。また、入出力部412は、生産管理装置100aへのデータの出力と、生産管理装置100aからのデータの入力とを行う。 The input / output unit 412 receives, for example, input data based on an operation by an operator of the production system 2, and outputs the input data to the inspection control unit 411. Such an input / output unit 412 may have, for example, a keyboard, a touch sensor, a touch pad, a mouse, or the like. Further, the input / output unit 412 outputs data to the production control device 100a and inputs data from the production control device 100a.
 検査機構414は、実装基板を検査するための例えばカメラなどを含む機構からなり、その検査結果を示す検査データを検査データ保持部DB5に格納する。 The inspection mechanism 414 includes a mechanism including, for example, a camera for inspecting the mounting board, and stores inspection data indicating the inspection result in the inspection data holding unit DB5.
 検査データ保持部DB5は、検査データを保持するための記録媒体である。例えば、このような記録媒体は、ハードディスク、RAM、ROM、または半導体メモリなどである。なお、このような記録媒体は、揮発性であっても不揮発性であってもよい。 The inspection data holding unit DB5 is a recording medium for holding the inspection data. For example, such a recording medium may be a hard disk, RAM, ROM, semiconductor memory, or the like. In addition, such a recording medium may be volatile or non-volatile.
 表示部413は、検査データ保持部DB5に保持されている検査データなどを表示する。表示部413の具体例は、液晶ディスプレイ、プラズマディスプレイ、または有機ELディスプレイなどであるが、これらに限定されない。 The display unit 413 displays the inspection data and the like held in the inspection data holding unit DB5. Specific examples of the display unit 413 are, but are not limited to, a liquid crystal display, a plasma display, an organic EL display, and the like.
 検査制御部411は、入出力部412、表示部413、検査機構414および検査データ保持部DB5のそれぞれを制御する。例えば、検査制御部411は、入出力部412に受け付けられたオペレータによる操作に応じて、検査機構414に実装基板の検査を開始させる。また、本実施の形態における検査制御部411は、フィルタリング情報を生成し、入出力部412を介して生産管理装置100aのデータ取得部108に出力する。 The inspection control unit 411 controls each of the input / output unit 412, the display unit 413, the inspection mechanism 414, and the inspection data holding unit DB5. For example, the inspection control unit 411 causes the inspection mechanism 414 to start the inspection of the mounting board in response to the operation by the operator received by the input / output unit 412. Further, the inspection control unit 411 according to the present embodiment generates filtering information and outputs the filtering information to the data acquisition unit 108 of the production control device 100a via the input / output unit 412.
 検査装置402および403も、上述の検査装置401と同様の構成を有する。 The inspection devices 402 and 403 also have the same configuration as the above-mentioned inspection device 401.
 データ管理装置300は、データ制御部311、入出力部312、表示部313、およびデータ保持部DB6を備える。 The data management device 300 includes a data control unit 311, an input / output unit 312, a display unit 313, and a data holding unit DB6.
 入出力部312は、例えば生産システム2のオペレータによる操作に基づく入力データを受け付け、その入力データをデータ制御部311に出力する。このような、入出力部312は、例えばキーボード、タッチセンサ、タッチパッドまたはマウスなどを有していてもよい。また、入出力部312は、生産管理装置100aおよび部品実装ラインL1~L3へのデータの出力と、生産管理装置100aおよび部品実装ラインL1~L3からのデータの入力とを行う。 The input / output unit 312 receives input data based on, for example, an operation by an operator of the production system 2, and outputs the input data to the data control unit 311. Such an input / output unit 312 may have, for example, a keyboard, a touch sensor, a touch pad, a mouse, or the like. Further, the input / output unit 312 outputs data to the production control device 100a and the component mounting lines L1 to L3, and inputs data from the production control device 100a and the component mounting lines L1 to L3.
 データ保持部DB6は、データを保持するための記録媒体である。例えば、そのデータは、フィルタリング情報である。また、このような記録媒体は、ハードディスク、RAM、ROM、または半導体メモリなどであってもよく、揮発性であっても不揮発性であってもよい。 The data holding unit DB6 is a recording medium for holding data. For example, the data is filtering information. Further, such a recording medium may be a hard disk, RAM, ROM, a semiconductor memory, or the like, and may be volatile or non-volatile.
 表示部313は、データ保持部DB6に保持されているデータなどを表示する。表示部313の具体例は、液晶ディスプレイ、プラズマディスプレイ、または有機ELディスプレイなどであるが、これらに限定されない。 The display unit 313 displays the data and the like held in the data holding unit DB6. Specific examples of the display unit 313 include, but are not limited to, a liquid crystal display, a plasma display, an organic EL display, and the like.
 データ制御部311は、入出力部312、表示部313、およびデータ保持部DB6のそれぞれを制御する。また、本実施の形態におけるデータ制御部311は、上述の検査制御部411と同様に、フィルタリング情報を生成し、入出力部312を介して生産管理装置100aのデータ取得部108に出力してもよい。 The data control unit 311 controls each of the input / output unit 312, the display unit 313, and the data holding unit DB6. Further, the data control unit 311 in the present embodiment may generate filtering information and output it to the data acquisition unit 108 of the production control device 100a via the input / output unit 312, similarly to the inspection control unit 411 described above. Good.
 例えば、本実施の形態におけるデータ制御部311は、基板Bを識別するための基板識別情報をフィルタリング情報として生成してもよい。この場合、互いに異なる複数種の実装基板に対応する複数の実績生産データDpuがそのフィルタリング情報によってフィルタリングされる。したがって、データ管理装置300は、互いに異なる複数種の実装基板に対応する複数の実績生産データDpuを管理する装置と言える。あるいは、データ制御部311は、それぞれ部品Pの種類を識別するための1以上の部品識別情報をフィルタリング情報として生成してもよい。 For example, the data control unit 311 in the present embodiment may generate substrate identification information for identifying the substrate B as filtering information. In this case, a plurality of actual production data Dpu corresponding to a plurality of different types of mounting boards are filtered by the filtering information. Therefore, it can be said that the data management device 300 is a device that manages a plurality of actual production data Dpu corresponding to a plurality of different types of mounting boards. Alternatively, the data control unit 311 may generate one or more component identification information for identifying the type of the component P as filtering information.
 [処理の概要]
 図16は、本実施の形態における全体的な処理の一例を示す図である。
[Outline of processing]
FIG. 16 is a diagram showing an example of the overall processing in the present embodiment.
 本実施の形態では、実施の形態1と同様に、少なくとも1つの生産データDpが生成され、その少なくとも1つの生産データDpに基づいて、部品実装ラインL1~L3のそれぞれから実績生産データDpuが出力される。 In the present embodiment, as in the first embodiment, at least one production data Dp is generated, and based on the at least one production data Dp, the actual production data Dpu is output from each of the component mounting lines L1 to L3. Will be done.
 生産管理装置100aのフィルタリング部109は、それらの実績生産データDpuに含まれる少なくとも1つの動作パラメータmuに対するフィルタリングを行う。このとき、フィルタリング部109は、処理装置500からフィルタリング情報Dfを取得し、そのフィルタリング情報Dfに基づいてフィルタリングを行うことによって、1以上の動作パラメータmuを選択する。そして、フィルタリング部109は、その選択された1以上の動作パラメータmuのそれぞれについて、その動作パラメータmuを含む実績部品データDcuを新たな部品データDcとして部品ライブラリ保持部DB3に格納する。 The filtering unit 109 of the production control device 100a filters at least one operation parameter mu included in the actual production data Dpu. At this time, the filtering unit 109 acquires the filtering information Df from the processing device 500 and performs filtering based on the filtering information Df to select one or more operation parameters mu. Then, the filtering unit 109 stores the actual component data Dcu including the operation parameter mu for each of the selected one or more operation parameters mu in the component library holding unit DB3 as new component data Dc.
 [フィルタリング情報]
 図17Aは、実装基板の検査結果に基づいて生成されるフィルタリング情報Dfの一例を示す図である。
[Filtering information]
FIG. 17A is a diagram showing an example of filtering information Df generated based on the inspection result of the mounting substrate.
 例えば、処理装置500に含まれる検査装置401~403のそれぞれの検査制御部411は、図17Aに示すフィルタリング情報Dfを生成してフィルタリング部109に出力する。 For example, each inspection control unit 411 of the inspection devices 401 to 403 included in the processing device 500 generates the filtering information Df shown in FIG. 17A and outputs it to the filtering unit 109.
 つまり、検査制御部411は、検査機構414による実装基板の検査によって、その実装基板に実装されている少なくとも1種類の部品Pのそれぞれの品質指数を示す情報をフィルタリング情報Dfとして生成する。そのフィルタリング情報Dfによって示される品質指数は、実装品質指数とも称され、例えば、その品質指数に対応する部品Pの実装状態が良いほど大きい数値を示す。 That is, the inspection control unit 411 generates information indicating the quality index of each of at least one type of component P mounted on the mounting board as the filtering information Df by the inspection of the mounting board by the inspection mechanism 414. The quality index indicated by the filtering information Df is also referred to as a mounting quality index, and for example, the better the mounting state of the component P corresponding to the quality index, the larger the numerical value.
 より具体的には、検査機構414がカメラを含む場合、検査制御部411は、そのカメラによる撮像によって得られた実装基板の画像に基づいて、実装されている部品Pの位置ずれを示す実装品質指数を算出する。部品Pの位置ずれは、その画像によって示される部品Pの基板Bにおける実装位置と、生産データDpによって示される部品Pの装着座標(または実装位置)との差である。例えば、検査制御部411は、部品Pの位置ずれが小さいほど1に近い数値を実装品質指数として算出し、逆に、部品Pの位置ずれが大きいほど0に近い数値を実装品質指数として算出する。つまり、実装品質指数は、0~1の範囲の数値として正規化されていてもよい。なお、実装品質指数は、スコアまたは評価値と称されてもよい。 More specifically, when the inspection mechanism 414 includes a camera, the inspection control unit 411 indicates the mounting quality indicating the misalignment of the mounted component P based on the image of the mounting board obtained by imaging with the camera. Calculate the index. The misalignment of the component P is the difference between the mounting position of the component P on the substrate B indicated by the image and the mounting coordinates (or mounting position) of the component P indicated by the production data Dp. For example, the inspection control unit 411 calculates a numerical value closer to 1 as the displacement of the component P is smaller, and conversely, calculates a numerical value closer to 0 as the displacement of the component P is larger as the mounting quality index. .. That is, the mounting quality index may be normalized as a numerical value in the range of 0 to 1. The mounting quality index may be referred to as a score or an evaluation value.
 このような実装品質指数の算出によって、検査制御部411は、図17Aに示すように、複数種の部品Pのそれぞれの実装品質指数を示すフィルタリング情報Dfを生成する。このフィルタリング情報Dfは、部品Pの部品名および部品コードごとに、実装品質指数を示す。例えば、フィルタリング情報Dfは、部品名「A部品」および部品コード「C001」によって特定される種類の部品Pの実装品質指数として「0.95」を示す。 By calculating the mounting quality index in this way, the inspection control unit 411 generates filtering information Df indicating the mounting quality index of each of the plurality of types of components P, as shown in FIG. 17A. This filtering information Df indicates a mounting quality index for each part name and part code of the part P. For example, the filtering information Df indicates "0.95" as the mounting quality index of the type of component P specified by the component name "A component" and the component code "C001".
 生産管理装置100aのフィルタリング部109は、図17Aに示すフィルタリング情報Dfを取得すると、そのフィルタリング情報Dfを用いてフィルタリングを行う。つまり、フィルタリング部109は、そのフィルタリングによって、それぞれ実装品質指数が閾値以上の部品Pの種類に対応する1以上の動作パラメータmuを選択する。例えば、フィルタリング部109は、実装品質指数が閾値「0.85」以上の部品Pの種類に対応する1以上の動作パラメータmuを選択する。図17Aに示す例では、フィルタリング部109は、部品名「A部品」および部品コード「C001」の部品Pに対応する動作パラメータmuと、部品名「G部品」および部品コード「C034」の部品Pに対応する動作パラメータmuとを選択する。つまり、フィルタリング部109は、複数の実績生産データDpuのそれぞれから、部品コード「C001」の実績部品データDcuと、部品コード「C034」の実績部品データDcuとを選択する。 When the filtering unit 109 of the production control device 100a acquires the filtering information Df shown in FIG. 17A, the filtering unit 109 performs filtering using the filtering information Df. That is, the filtering unit 109 selects one or more operation parameters mu corresponding to the type of the component P whose mounting quality index is equal to or higher than the threshold value by the filtering. For example, the filtering unit 109 selects one or more operation parameters mu corresponding to the type of component P having a mounting quality index of the threshold value “0.85” or more. In the example shown in FIG. 17A, the filtering unit 109 has an operation parameter mu corresponding to the component P having the component name “A component” and the component code “C001”, and the component P having the component name “G component” and the component code “C034”. Select the operation parameter mu corresponding to. That is, the filtering unit 109 selects the actual part data Dcu of the part code "C001" and the actual part data Dcu of the part code "C034" from each of the plurality of actual production data Dpu.
 このように、本実施の形態では、フィルタリングによって、大きい実装品質指数を有する部品Pの種類に対応する動作パラメータmuが選択される。これにより、実装状態が良かった部品Pの種類に対応する1以上の動作パラメータmuがフィルタリングによって選択されて学習に用いられ、実装状態が悪かった部品Pの種類に対応する動作パラメータmuは学習に用いられない。したがって、良い実装状態を実現するための適切な動作パラメータmを推定するための動作パラメータモデルPmを生成することができる。 As described above, in the present embodiment, the operation parameter mu corresponding to the type of the component P having a large mounting quality index is selected by filtering. As a result, one or more operation parameter mu corresponding to the type of component P having a good mounting state is selected by filtering and used for learning, and the operation parameter mu corresponding to the type of component P having a bad mounting state is used for learning. Not used. Therefore, it is possible to generate an operation parameter model Pm for estimating an appropriate operation parameter m for realizing a good mounting state.
 図17Bは、部品実装ラインL1~L3の実装実績に基づいて生成されるフィルタリング情報Dfの一例を示す図である。 FIG. 17B is a diagram showing an example of filtering information Df generated based on the mounting results of the component mounting lines L1 to L3.
 また、処理装置500に含まれるデータ管理装置300のデータ制御部311は、図17Bに示すフィルタリング情報Dfを生成してフィルタリング部109に出力してもよい。 Further, the data control unit 311 of the data management device 300 included in the processing device 500 may generate the filtering information Df shown in FIG. 17B and output it to the filtering unit 109.
 つまり、データ制御部311は、部品実装ラインL1~L3のそれぞれから入出力部312を介して、その部品実装ラインに含まれる部品実装装置M4およびM5の稼働状況を示す情報を取得する。データ制御部311は、その稼働状況を示す情報に基づいて、少なくとも1種類の部品のそれぞれの実装実績指数を示す情報をフィルタリング情報として生成する。実装実績指数は、部品実装装置M4およびM5による実績生産データDpuに基づく動作によって、部品Pに対して部品実装装置M4およびM5で生じたエラーに関する指数であり、例えば、エラーが少ないほど小さい数値を示す。なお、実装実績指数は、スコアまたは評価値と称されてもよい。 That is, the data control unit 311 acquires information indicating the operating status of the component mounting devices M4 and M5 included in the component mounting line from each of the component mounting lines L1 to L3 via the input / output unit 312. The data control unit 311 generates information indicating the mounting performance index of each of at least one type of component as filtering information based on the information indicating the operating status. The mounting performance index is an index relating to an error that occurs in the component mounting devices M4 and M5 with respect to the component P due to the operation based on the actual production data Dpu by the component mounting devices M4 and M5. Shown. The implementation performance index may be referred to as a score or an evaluation value.
 より具体的には、実装実績指数は、部品実装装置M4およびM5により生じた部品Pの吸着ミス、部品Pの落下、または、フィーダ7から実装ヘッド10への供給ミスなどの、エラーに関する指数である。例えば、データ制御部311は、その実装実績指数を百分率で示す。つまり、データ制御部311は、エラーが少ないほど0%に近い数値を実装実績指数として算出し、逆に、エラーが多いほど100%に近い数値を実装実績指数として算出する。 More specifically, the mounting performance index is an index related to errors such as a suction error of the component P caused by the component mounting devices M4 and M5, a drop of the component P, or a supply error from the feeder 7 to the mounting head 10. is there. For example, the data control unit 311 indicates the implementation performance index as a percentage. That is, the data control unit 311 calculates a numerical value closer to 0% as the mounting performance index as the number of errors decreases, and conversely, calculates a numerical value closer to 100% as the mounting performance index as the number of errors increases.
 このような実装実績指数の算出によって、データ制御部311は、図17Bに示すように、複数種の部品Pのそれぞれの実装実績指数を示すフィルタリング情報Dfを生成する。このフィルタリング情報Dfは、部品Pの部品名および部品コードごとに、実装実績指数を示す。例えば、フィルタリング情報Dfは、部品名「A部品」および部品コード「C001」によって特定される種類の部品Pの実装品質指数として「0.5%」を示す。 By calculating the mounting performance index in this way, the data control unit 311 generates filtering information Df indicating the mounting performance index of each of the plurality of types of components P, as shown in FIG. 17B. This filtering information Df indicates the mounting performance index for each part name and part code of the part P. For example, the filtering information Df indicates "0.5%" as the mounting quality index of the type of component P specified by the component name "A component" and the component code "C001".
 生産管理装置100aのフィルタリング部109は、図17Bに示すフィルタリング情報Dfを取得すると、そのフィルタリング情報Dfを用いてフィルタリングを行う。つまり、フィルタリング部109は、そのフィルタリングによって、それぞれ実装実績指数が閾値以下の部品Pの種類に対応する1以上の動作パラメータmuを選択する。例えば、フィルタリング部109は、実装実績指数が閾値「1%」以下の部品Pの種類に対応する1以上の動作パラメータmuを選択する。図17Bに示す例では、フィルタリング部109は、部品名「A部品」および部品コード「C001」の部品Pに対応する動作パラメータmuと、部品名「B部品」および部品コード「C102」の部品Pに対応する動作パラメータmuとを選択する。つまり、フィルタリング部109は、複数の実績生産データDpuから、部品コード「C001」の実績部品データDcuと、部品コード「C102」の実績部品データDcuとを選択する。 When the filtering unit 109 of the production control device 100a acquires the filtering information Df shown in FIG. 17B, the filtering unit 109 performs filtering using the filtering information Df. That is, the filtering unit 109 selects one or more operation parameters mu corresponding to the type of the component P whose mounting performance index is equal to or less than the threshold value by the filtering. For example, the filtering unit 109 selects one or more operation parameters mu corresponding to the type of the component P whose mounting performance index is the threshold value “1%” or less. In the example shown in FIG. 17B, the filtering unit 109 has an operation parameter mu corresponding to the component P having the component name “A component” and the component code “C001”, and the component P having the component name “B component” and the component code “C102”. Select the operation parameter mu corresponding to. That is, the filtering unit 109 selects the actual part data Dcu of the part code "C001" and the actual part data Dcu of the part code "C102" from the plurality of actual production data Dpu.
 このように、本実施の形態では、フィルタリングによって、小さい実装実績指数を有する部品Pの種類に対応する動作パラメータmuが選択される。これにより、部品実装装置M4またはM5でのエラーが少なかった部品Pの種類に対応する1以上の動作パラメータmuがフィルタリングによって選択されて学習に用いられ、エラーが多かった部品Pの種類に対応する動作パラメータmuは学習に用いられない。したがって、エラーの発生を低減するための適切な動作パラメータmを推定するための動作パラメータモデルPmを生成することができる。 As described above, in the present embodiment, the operation parameter mu corresponding to the type of the component P having a small mounting performance index is selected by filtering. As a result, one or more operation parameters mu corresponding to the type of component P having few errors in the component mounting device M4 or M5 are selected by filtering and used for learning, and correspond to the type of component P having many errors. The operation parameter mu is not used for learning. Therefore, it is possible to generate an operation parameter model Pm for estimating an appropriate operation parameter m for reducing the occurrence of an error.
 図18Aは、部品Pの選択によって生成されるフィルタリング情報Dfの一例を示す図である。 FIG. 18A is a diagram showing an example of the filtering information Df generated by the selection of the component P.
 処理装置500に含まれるデータ管理装置300のデータ制御部311は、図18Aの(a)に示すオペレータによる操作結果に応じて、(b)に示すフィルタリング情報Dfを生成してフィルタリング部109に出力してもよい。 The data control unit 311 of the data management device 300 included in the processing device 500 generates the filtering information Df shown in (b) according to the operation result by the operator shown in (a) of FIG. 18A and outputs it to the filtering unit 109. You may.
 例えば、データ制御部311は、図18Aの(a)に示す部品選択画面を表示部313に表示する。この部品選択画面には、生産システム2で扱われる各部品Pの部品名、部品コード、および部品情報dの少なくとも一部(例えば、外形寸法およびリード数)などが示されている。オペレータは、この部品選択画面を見ながら、入出力部312を操作することによって、所望の部品Pに対して学習フラグを入力する。例えば、部品Pの実装によって生産された実装基板において、その部品Pの実装状態が良質だった場合には、オペレータは、その部品Pに対して学習フラグを入力する。または、過去に使用された部品Pが例外的な特殊部品である場合には、オペレータは、その部品Pに対して学習フラグを入力しない。また、実績生産データDpuに含まれる部品Pの動作パラメータmuが他の工場で設定されていた場合には、オペレータは、その部品Pに対して学習フラグを入力しない。図18Aの(a)に示す例では、オペレータは、部品名「A部品」、「B部品」、「D部品」および「F部品」のそれぞれの部品Pに対して学習フラグを入力する。そして、オペレータは、さらに入出力部312を操作することによって、その部品選択画面に示される決定ボタンを選択する。その結果、データ制御部311は、部品選択画面に入力された学習フラグに応じて、図18Aの(b)に示すフィルタリング情報Dfを生成する。 For example, the data control unit 311 displays the component selection screen shown in FIG. 18A (a) on the display unit 313. On this component selection screen, a component name, a component code, and at least a part (for example, external dimensions and number of leads) of the component information d of each component P handled in the production system 2 are shown. The operator inputs the learning flag to the desired component P by operating the input / output unit 312 while looking at the component selection screen. For example, in the mounting board produced by mounting the component P, when the mounting state of the component P is good, the operator inputs a learning flag to the component P. Alternatively, if the part P used in the past is an exceptional special part, the operator does not input the learning flag for the part P. Further, when the operation parameter mu of the component P included in the actual production data Dpu is set in another factory, the operator does not input the learning flag for the component P. In the example shown in FIG. 18A (a), the operator inputs a learning flag for each component P of the component names “A component”, “B component”, “D component”, and “F component”. Then, the operator further operates the input / output unit 312 to select the decision button displayed on the component selection screen. As a result, the data control unit 311 generates the filtering information Df shown in FIG. 18A (b) according to the learning flag input to the component selection screen.
 フィルタリング情報Dfは、オペレータによって入力された学習フラグごとに、その学習フラグに対応する部品Pの部品名および部品コードなどを、その部品Pの部品識別情報として示す。例えば、フィルタリング情報Dfは、4つの部品Pのそれぞれの部品識別情報として、部品名「A部品」および部品コード「C001」と、部品名「B部品」および部品コード「C002」と、部品名「D部品」および部品コード「C003」と、部品名「F部品」および部品コード「C005」とを示す。このように、データ管理装置300は、それぞれ部品Pの種類を識別するための1以上の部品識別情報を含むフィルタリング情報Dfを出力する。 The filtering information Df indicates, for each learning flag input by the operator, the part name and the part code of the part P corresponding to the learning flag as the part identification information of the part P. For example, the filtering information Df contains the part name "A part" and the part code "C001", the part name "B part" and the part code "C002", and the part name "C002" as the part identification information of each of the four parts P. "D part" and part code "C003", and part name "F part" and part code "C005" are shown. In this way, the data management device 300 outputs the filtering information Df including one or more component identification information for identifying the type of the component P, respectively.
 生産管理装置100aのフィルタリング部109は、図18Aの(b)に示すフィルタリング情報Dfを取得すると、そのフィルタリング情報Dfを用いてフィルタリングを行う。つまり、フィルタリング部109は、フィルタリングでは、フィルタリング情報Dfによって示される1以上の部品識別情報のそれぞれについて、その部品識別情報によって識別される部品Pの種類に対応する動作パラメータmuを選択する。図18Aの(b)に示す例では、フィルタリング部109は、複数の実績生産データDpuから、部品コード「C001」の実績部品データDcuと、部品コード「C002」の実績部品データDcuと、部品コード「C003」の実績部品データDcuと、部品コード「C005」の実績部品データDcuとを選択する。 When the filtering unit 109 of the production control device 100a acquires the filtering information Df shown in FIG. 18A (b), the filtering unit 109 performs filtering using the filtering information Df. That is, in the filtering, the filtering unit 109 selects the operation parameter mu corresponding to the type of the component P identified by the component identification information for each of the one or more component identification information indicated by the filtering information Df. In the example shown in FIG. 18A (b), the filtering unit 109 uses the actual production data Dpu of the plurality of actual production data Dpu to obtain the actual component data Dcu of the component code “C001”, the actual component data Dcu of the component code “C002”, and the component code. The actual part data Dcu of "C003" and the actual part data Dcu of the part code "C005" are selected.
 このように、本実施の形態では、フィルタリングによって、オペレータによる操作によって指定された部品Pの種類に対応する動作パラメータmuが選択される。これにより、オペレータによって指定された部品識別情報によって識別される部品Pの種類に対応する1以上の動作パラメータmuがフィルタリングによって選択されて学習に用いられ、他の部品Pの種類に対応する動作パラメータmuは学習に用いられない。したがって、特定の部品Pに対して適切な動作パラメータmuを推定するための動作パラメータモデルPmを生成することができる。 As described above, in the present embodiment, the operation parameter mu corresponding to the type of the component P specified by the operation by the operator is selected by the filtering. As a result, one or more operation parameters mu corresponding to the type of the part P identified by the part identification information specified by the operator are selected by filtering and used for learning, and the operation parameters corresponding to the other types of the part P are used. mu is not used for learning. Therefore, it is possible to generate an operation parameter model Pm for estimating an appropriate operation parameter mu for a specific component P.
 図18Bは、基板Bの選択によって生成されるフィルタリング情報Dfの一例を示す図である。 FIG. 18B is a diagram showing an example of filtering information Df generated by selection of the substrate B.
 処理装置500に含まれるデータ管理装置300のデータ制御部311は、図18Bの(a)に示すオペレータによる操作結果に応じて、(b)に示すフィルタリング情報Dfを生成してフィルタリング部109に出力してもよい。 The data control unit 311 of the data management device 300 included in the processing device 500 generates the filtering information Df shown in (b) according to the operation result by the operator shown in (a) of FIG. 18B and outputs it to the filtering unit 109. You may.
 例えば、データ制御部311は、図18Bの(a)に示す基板選択画面を表示部313に表示する。この基板選択画面には、生産システム2で扱われる各基板Bの基板名、基板コード、および補助情報などが示されている。オペレータは、この基板選択画面を見ながら、入出力部312を操作することによって、所望の基板Bに対して学習フラグを入力する。例えば、オペレータは、基板名「A基板」、「B基板」、「D基板」および「F基板」のそれぞれの基板Bに対して学習フラグを入力する。そして、オペレータは、さらに入出力部312を操作することによって、その基板選択画面に示される決定ボタンを選択する。その結果、データ制御部311は、基板選択画面に入力された学習フラグに応じて、図18Bの(b)に示すフィルタリング情報Dfを生成する。 For example, the data control unit 311 displays the board selection screen shown in FIG. 18B (a) on the display unit 313. On this board selection screen, a board name, a board code, auxiliary information, and the like of each board B handled by the production system 2 are shown. The operator inputs the learning flag to the desired board B by operating the input / output unit 312 while looking at the board selection screen. For example, the operator inputs a learning flag for each board B of the board names "A board", "B board", "D board", and "F board". Then, the operator further operates the input / output unit 312 to select the decision button displayed on the board selection screen. As a result, the data control unit 311 generates the filtering information Df shown in FIG. 18B (b) according to the learning flag input to the board selection screen.
 フィルタリング情報Dfは、オペレータによって入力された学習フラグごとに、その学習フラグに対応する基板Bの基板名および基板コードなどを、その基板Bの基板識別情報として示す。例えば、フィルタリング情報Dfは、4つの基板Bのそれぞれの基板識別情報として、基板名「A基板」および基板コード「B001」と、基板名「B基板」および基板コード「B002」と、基板名「D基板」および基板コード「B004」と、基板名「F基板」および基板コード「B006」とを示す。このように、データ管理装置300は、それぞれ基板Bの種類を識別するための1以上の基板識別情報を含むフィルタリング情報Dfを出力する。 The filtering information Df indicates, for each learning flag input by the operator, the board name and board code of the board B corresponding to the learning flag as board identification information of the board B. For example, the filtering information Df contains the substrate name "A substrate" and the substrate code "B001", the substrate name "B substrate" and the substrate code "B002", and the substrate name "B002" as the substrate identification information of each of the four substrates B. The "D board" and the board code "B004", and the board name "F board" and the board code "B006" are shown. In this way, the data management device 300 outputs the filtering information Df including one or more board identification information for identifying the type of the board B, respectively.
 生産管理装置100aのフィルタリング部109は、図18Bの(b)に示すフィルタリング情報Dfを取得すると、そのフィルタリング情報Dfを用いてフィルタリングを行う。つまり、フィルタリング部109は、複数の実績生産データDpuからなる実績生産データ群がデータ取得部108によって取得された場合には、フィルタリングでは、その実績生産データ群に含まれる少なくとも1つの動作パラメータmuから、1以上の動作パラメータmuを選択する。これらの選択される1以上の動作パラメータmuのそれぞれは、フィルタリング情報Dfに含まれる基板識別情報によって識別される種類の基板Bに実装される部品Pの種類に対応している。 When the filtering unit 109 of the production control device 100a acquires the filtering information Df shown in FIG. 18B (b), the filtering unit 109 performs filtering using the filtering information Df. That is, when the actual production data group composed of a plurality of actual production data Dpu is acquired by the data acquisition unit 108, the filtering unit 109 starts from at least one operation parameter mu included in the actual production data group in the filtering. Select one or more operating parameters mu. Each of the one or more selected operation parameters mu corresponds to the type of component P mounted on the type of substrate B identified by the substrate identification information included in the filtering information Df.
 図18Bの(b)に示す例では、フィルタリング部109は、実績生産データ群から、基板コード「B001」、「B002」、「B004」および「B006」のそれぞれの基板Bに実装された部品Pの種類に対応する実績部品データDcuを選択する。なお、生産データDpおよび実績生産データDpuには、実装基板の生産に用いられた基板Bの基板コードが示されていてもよい。この場合、フィルタリング部109は、実績生産データ群から、基板コード「B001」、「B002」、「B004」および「B006」のそれぞれを示す実績生産データDpuを選択し、それらの選択された実績生産データDpuから実績部品データDcuを抽出する。 In the example shown in FIG. 18B (b), the filtering unit 109 is a component P mounted on each board B of the board codes “B001”, “B002”, “B004” and “B006” from the actual production data group. Select the actual part data Dcu corresponding to the type of. The production data Dp and the actual production data Dpu may indicate the substrate code of the substrate B used in the production of the mounting substrate. In this case, the filtering unit 109 selects the actual production data Dpu indicating each of the board codes "B001", "B002", "B004", and "B006" from the actual production data group, and those selected actual production. The actual component data Dcu is extracted from the data Dpu.
 このように、本実施の形態では、フィルタリングによって、オペレータから指定された基板Bに実装される部品Pの種類に対応する動作パラメータmuが選択される。つまり、オペレータから指定された基板Bに実装される部品Pの種類に対応する1以上の動作パラメータmuがフィルタリングによって選択されて学習に用いられ、他の基板Bに実装される部品Pの種類に対応する動作パラメータmuは学習に用いられない。したがって、特定の基板Bに対して適切な動作パラメータmuを推定するための動作パラメータモデルPmを生成することができる。 As described above, in the present embodiment, the operation parameter mu corresponding to the type of the component P mounted on the board B specified by the operator is selected by the filtering. That is, one or more operation parameters mu corresponding to the type of the component P mounted on the board B specified by the operator are selected by filtering and used for learning, and the type of the component P mounted on the other board B is selected. The corresponding motion parameter mu is not used for learning. Therefore, it is possible to generate an operation parameter model Pm for estimating an appropriate operation parameter mu for a specific substrate B.
 [処理フロー]
 図19は、本実施の形態における生産管理装置100aの処理動作を示すフローチャートである。
[Processing flow]
FIG. 19 is a flowchart showing a processing operation of the production control device 100a according to the present embodiment.
 生産管理装置100aのデータ取得部108は、部品実装ラインL1~L3から実績生産データDpuを取得する(ステップS21)。さらに、データ取得部108は、処理装置500からフィルタリング情報Dfを取得する(ステップS22)。 The data acquisition unit 108 of the production control device 100a acquires the actual production data Dpu from the component mounting lines L1 to L3 (step S21). Further, the data acquisition unit 108 acquires the filtering information Df from the processing device 500 (step S22).
 次に、フィルタリング部109は、ステップS22で取得されたフィルタリング情報Dfを用いて、ステップS21で取得された実績生産データDpuに含まれる各動作パラメータmuに対してフィルタリングを行う(ステップS23)。これにより、実績生産データDpuから学習に用いられる動作パラメータmuが選択される。 Next, the filtering unit 109 uses the filtering information Df acquired in step S22 to filter each operation parameter mu included in the actual production data Dpu acquired in step S21 (step S23). As a result, the operation parameter mu used for learning is selected from the actual production data Dpu.
 次に、学習部104は、ステップS23のフィルタリングによって選択された動作パラメータmuを用いた学習によって、動作パラメータモデルPmを生成または更新する(ステップS24)。この学習では、その選択された動作パラメータmuと、その動作パラメータmuと共に実績部品データDcuに含まれている部品情報dとが、教師データとして用いられる。また、動作パラメータモデルPmの更新では、学習モデル保持部DB2に保持されている、その実績生産データDpuに対応する動作パラメータモデルPmが更新される。 Next, the learning unit 104 generates or updates the operation parameter model Pm by learning using the operation parameter mu selected by the filtering in step S23 (step S24). In this learning, the selected operation parameter mu and the component information d included in the actual component data Dcu together with the operation parameter mu are used as teacher data. Further, in the update of the operation parameter model Pm, the operation parameter model Pm corresponding to the actual production data Dpu held in the learning model holding unit DB2 is updated.
 そして、パラメータ推定部105は、動作パラメータmが未定の部品Pが入出力部107によって選択された場合には、その選択された部品Pの動作パラメータmを、ステップS24で生成または更新された動作パラメータモデルPmを用いて推定する(ステップS25)。 Then, when the component P whose operation parameter m is undecided is selected by the input / output unit 107, the parameter estimation unit 105 generates or updates the operation parameter m of the selected component P in step S24. Estimate using the parameter model Pm (step S25).
 以上のように、本実施の形態における生産管理装置100aでは、実績生産データDpuが取得され、その取得された実績生産データDpuに含まれる少なくとも1つの動作パラメータmuに対するフィルタリングが行われる。つまり、処理装置500から得られるフィルタリング情報Dfを用いて、実績生産データDpuから1以上の動作パラメータmuが選択される。そして、選択された1以上の動作パラメータmuを教師データとして用いた学習によって、動作パラメータモデルPmの生成または更新が行われる。 As described above, in the production control device 100a in the present embodiment, the actual production data Dpu is acquired, and at least one operation parameter mu included in the acquired actual production data Dpu is filtered. That is, one or more operation parameters mu are selected from the actual production data Dpu by using the filtering information Df obtained from the processing device 500. Then, the operation parameter model Pm is generated or updated by learning using one or more selected operation parameters mu as teacher data.
 これにより、フィルタリングによって選択された1以上の動作パラメータmuが学習に用いられ、選択されなかった動作パラメータmuは学習に用いられないため、動作パラメータモデルPmの適正化を図ることができる。その結果、この動作パラメータモデルPmを用いれば、適切な動作パラメータmuを推定し、その後に部品実装装置M4またはM5で用いられる生産データDpに設定することができる。したがって、品質の良い実装基板を生産することができる。つまり、実装基板の品質向上を図ることができる。 As a result, one or more operation parameter mu selected by filtering is used for learning, and the operation parameter mu not selected is not used for learning, so that the operation parameter model Pm can be optimized. As a result, by using this operation parameter model Pm, an appropriate operation parameter mu can be estimated and then set in the production data Dp used in the component mounting apparatus M4 or M5. Therefore, it is possible to produce a high quality mounting board. That is, the quality of the mounting board can be improved.
 つまり、本実施の形態では、学習において教師データとして用いられる動作パラメータmuを制御することができ、ユーザが意図した学習を行わせることができる。 That is, in the present embodiment, it is possible to control the operation parameter mu used as teacher data in learning, and it is possible to perform learning intended by the user.
 また、本実施の形態における生産管理装置100aでは、その生成または更新された動作パラメータモデルPmと部品情報dとに基づいて、実装対象部品Pを基板Bに実装するための動作パラメータmが推定される。これにより、実装対象部品Pに対して適切な動作パラメータmを推定して設定することができる。 Further, in the production control device 100a according to the present embodiment, the operation parameter m for mounting the mounting target component P on the substrate B is estimated based on the generated or updated operation parameter model Pm and the component information d. To. Thereby, an appropriate operation parameter m can be estimated and set for the mounting target component P.
 (実施の形態2の変形例)
 上記実施の形態では、図18Aおよび図18Bに示すように、指定された部品Pの種類または基板Bの種類に基づくフィルタリングが行われるが、実装基板の製品シリーズに基づくフィルタリングが行われてもよい。また、実績生産データDpuが取得された日付に基づくフィルタリングが行われてもよい。例えば、最近の日付で取得された実績生産データDpuに含まれる動作パラメータmuだけがフィルタリングによって選択されてもよい。また、指定された部品実装ラインに基づくフィルタリングが行われてもよい。例えば、部品実装ラインL1が指定された場合には、その部品実装ラインL1から取得された実績生産データDpuに含まれる動作パラメータmuだけがフィルタリングによって選択されてもよい。
(Modified Example of Embodiment 2)
In the above embodiment, as shown in FIGS. 18A and 18B, filtering is performed based on the specified type of component P or the type of substrate B, but filtering based on the product series of the mounting substrate may be performed. .. Further, filtering may be performed based on the date when the actual production data Dpu is acquired. For example, only the operation parameter mu included in the actual production data Dpu acquired on the latest date may be selected by filtering. In addition, filtering based on the specified component mounting line may be performed. For example, when the component mounting line L1 is specified, only the operation parameter mu included in the actual production data Dpu acquired from the component mounting line L1 may be selected by filtering.
 また、図17Aおよび図17Bに示す例では、フィルタリング情報Dfは、実装品質指数または実装実績指数を示すが、これらは一例であって、他の指数を示していてもよい。また、これらの指数は、PPM(parts per million)で表記されていてもよい。 Further, in the examples shown in FIGS. 17A and 17B, the filtering information Df indicates a mounting quality index or a mounting performance index, but these are examples and may indicate other indexes. In addition, these indices may be expressed in PPM (parts per million).
 また、本実施の形態では、実施の形態1のように、複数の動作パラメータモデルPmから少なくとも1つの動作パラメータモデルPmを選択しなくてもよい。つまり、学習モデル保持部DB2に保持されている動作パラメータモデルPmは1つだけであってもよい。 Further, in the present embodiment, it is not necessary to select at least one operation parameter model Pm from the plurality of operation parameter models Pm as in the first embodiment. That is, only one operation parameter model Pm may be held in the learning model holding unit DB2.
 (その他の変形例)
 以上、一つまたは複数の態様に係る生産データ生成装置および生産管理装置などについて、実施の形態およびその変形例に基づいて説明したが、本開示は、これらの実施の形態およびその変形例に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を各実施の形態またはその変形例に施したものや、各実施の形態および各変形例における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれてもよい。
(Other variants)
The production data generation device, the production control device, and the like according to one or more aspects have been described above based on the embodiments and variations thereof, but the present disclosure is limited to these embodiments and variations thereof. It is not something that is done. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to each embodiment or a modification thereof, and a form constructed by combining the components of each embodiment and each modification is also available. It may be included within the scope of the present disclosure.
 なお、上記各実施の形態およびその変形例において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)またはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態およびその変形例の装置などを実現するソフトウェアは、図13または図19に示すフローチャートに含まれる各ステップをコンピュータに実行させるプログラムである。 In each of the above embodiments and modifications thereof, each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory. Here, the software that realizes the devices of each of the above-described embodiments and modifications thereof is a program that causes a computer to execute each step included in the flowchart shown in FIG. 13 or FIG.
 なお、以下のような場合も本開示に含まれる。 The following cases are also included in this disclosure.
 (1)上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムである。前記RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。 (1) Each of the above devices is specifically a computer system composed of a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like. A computer program is stored in the RAM or the hard disk unit. When the microprocessor operates according to the computer program, each device achieves its function. Here, a computer program is configured by combining a plurality of instruction codes indicating instructions to a computer in order to achieve a predetermined function.
 (2)上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。前記RAMには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。 (2) A part or all of the components constituting each of the above devices may be composed of one system LSI (Large Scale Integration: large-scale integrated circuit). A system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, is a computer system including a microprocessor, a ROM, a RAM, and the like. .. A computer program is stored in the RAM. When the microprocessor operates according to the computer program, the system LSI achieves its function.
 (3)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されているとしてもよい。前記ICカードまたは前記モジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。前記ICカードまたは前記モジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、前記ICカードまたは前記モジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有するとしてもよい。 (3) Some or all of the components constituting each of the above devices may be composed of an IC card or a single module that can be attached to and detached from each device. The IC card or the module is a computer system composed of a microprocessor, a ROM, a RAM, and the like. The IC card or the module may include the above-mentioned super multifunctional LSI. When the microprocessor operates according to a computer program, the IC card or the module achieves its function. This IC card or this module may have tamper resistance.
 (4)本開示は、上記に示す方法であるとしてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよいし、前記コンピュータプログラムからなるデジタル信号であるとしてもよい。 (4) The present disclosure may be the method shown above. Further, it may be a computer program that realizes these methods by a computer, or it may be a digital signal composed of the computer program.
 また、本開示は、前記コンピュータプログラムまたは前記デジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray(登録商標) Disc)、半導体メモリなどに記録したものとしてもよい。また、これらの記録媒体に記録されている前記デジタル信号であるとしてもよい。 Further, the present disclosure discloses a recording medium in which the computer program or the digital signal can be read by a computer, for example, a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu-ray It may be recorded on a registered trademark) Disc), a semiconductor memory, or the like. Further, it may be the digital signal recorded on these recording media.
 また、本開示は、前記コンピュータプログラムまたは前記デジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしてもよい。 Further, in the present disclosure, the computer program or the digital signal may be transmitted via a telecommunication line, a wireless or wired communication line, a network typified by the Internet, data broadcasting, or the like.
 また、本開示は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、前記メモリは、上記コンピュータプログラムを記憶しており、前記マイクロプロセッサは、前記コンピュータプログラムにしたがって動作するとしてもよい。 Further, the present disclosure is a computer system including a microprocessor and a memory, and the memory may store the computer program, and the microprocessor may operate according to the computer program.
 また、前記プログラムまたは前記デジタル信号を前記記録媒体に記録して移送することにより、または前記プログラムまたは前記デジタル信号を前記ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。 Further, it is carried out by another independent computer system by recording and transferring the program or the digital signal on the recording medium, or by transferring the program or the digital signal via the network or the like. May be.
 (5)上記実施の形態及び上記変形例をそれぞれ組み合わせるとしてもよい。 (5) The above-described embodiment and the above-mentioned modification may be combined with each other.
 本開示は、部品を基板に実装することによって実装基板を生産するためのシステムなどに利用可能である。 This disclosure can be used in a system for producing a mounting board by mounting a component on a board.
 1、2  生産システム
 7  フィーダ
 10  実装ヘッド
 10a  吸着ユニット
 10b  吸着ノズル
 11  部品認識カメラ
 12  基板認識カメラ
 14  部品テープ
 100  生産データ生成装置
 100a  生産管理装置
 101  制御部
 102  データ生成部
 103  モデル選択部
 104  学習部
 105  パラメータ推定部
 106、213、313、413  表示部
 107、212、312、412  入出力部
 108  データ取得部
 109  フィルタリング部
 200  ライン管理装置
 211  作業制御部
 214  作業機構
 300  データ管理装置
 311  データ制御部
 401~403  検査装置
 411  検査制御部
 414  検査機構
 d  部品情報
 DB1、DB4  生産データ保持部
 DB2  学習モデル保持部
 DB3  部品ライブラリ保持部
 DB5  検査データ保持部
 DB6  データ保持部
 Dc  部品データ
 Dcu  実績部品データ
 Dp  生産データ
 Dpu  実績生産データ
 L1~L3  部品実装ライン
 m、mu  動作パラメータ
 M4、M5  部品実装装置
1, 2 Production system 7 Feeder 10 Mounting head 10a Suction unit 10b Suction nozzle 11 Parts recognition camera 12 Board recognition camera 14 Parts tape 100 Production data generation device 100a Production control device 101 Control unit 102 Data generation unit 103 Model selection unit 104 Learning unit 105 Parameter estimation unit 106, 213, 313, 413 Display unit 107, 212, 312, 412 Input / output unit 108 Data acquisition unit 109 Filtering unit 200 Line management device 211 Work control unit 214 Work mechanism 300 Data management device 311 Data control unit 401 ~ 403 Inspection device 411 Inspection control unit 414 Inspection mechanism d Part information DB1, DB4 Production data holding unit DB2 Learning model holding unit DB3 Parts library holding unit DB5 Inspection data holding unit DB6 Data holding unit Dc Parts data Dcu Actual parts data Dp Production data Dpu Actual production data L1 to L3 Parts mounting line m, mu Operation parameters M4, M5 Parts mounting device

Claims (15)

  1.  それぞれ部品を基板に実装するための部品実装装置の動作条件と前記部品との間の関係性を示す互に異なる複数の学習モデルから、少なくとも1つの学習モデルを選択するモデル選択部と、
     選択された前記少なくとも1つの学習モデルと、基板に実装される実装対象部品に関する部品情報とに基づいて、前記実装対象部品を基板に実装するための部品実装装置の動作条件である動作パラメータを推定するパラメータ推定部と、
     前記部品情報および前記動作パラメータを有する部品データを含む生産データを生成するデータ生成部とを備える、
     生産データ生成装置。
    A model selection unit that selects at least one learning model from a plurality of learning models that are different from each other and show the relationship between the operating conditions of the component mounting device for mounting the component on the board and the component.
    Based on the selected at least one learning model and the component information about the mounting target component mounted on the board, the operating parameters which are the operating conditions of the component mounting device for mounting the mounting target component on the board are estimated. Parameter estimation unit and
    It includes a data generation unit that generates production data including the component information and component data having the operation parameters.
    Production data generator.
  2.  前記生産データ生成装置は、さらに、
     実装済み部品に関する部品情報と、前記実装済み部品の実装に用いられた動作パラメータとを有する実績部品データを含む、部品実装装置によって使用された実績生産データを取得するデータ取得部と、
     前記複数の学習モデルのうち、取得された前記実績生産データに対応する学習モデルによって示される前記関係性の更新を、前記実績部品データを教師データとして用いた学習によって行う学習部とを備える、
     請求項1に記載の生産データ生成装置。
    The production data generator further
    A data acquisition unit that acquires actual production data used by the component mounting device, including actual component data having component information related to the mounted component and operating parameters used for mounting the mounted component.
    Among the plurality of learning models, the learning unit includes a learning unit that updates the relationship indicated by the learning model corresponding to the acquired actual production data by learning using the actual component data as teacher data.
    The production data generator according to claim 1.
  3.  前記部品情報は、当該部品情報に対応する部品の寸法、形状、外観、種別、および前記部品を供給するための供給形態のうちの少なくとも1つを示す、
     請求項1または2に記載の生産データ生成装置。
    The part information indicates at least one of the dimensions, shape, appearance, type, and supply form for supplying the part corresponding to the part information.
    The production data generator according to claim 1 or 2.
  4.  前記動作パラメータは、前記部品実装装置による部品の移送、認識、吸着、および装着のうちの少なくとも1つに関するパラメータである、
     請求項1~3の何れか1項に記載の生産データ生成装置。
    The operating parameter is a parameter relating to at least one of transfer, recognition, suction, and mounting of a component by the component mounting device.
    The production data generator according to any one of claims 1 to 3.
  5.  前記複数の学習モデルのそれぞれは互いに異なる期間に対応付けられ、
     前記学習部は、前記実績生産データが取得された期間に対応する学習モデルに対して学習を行う、
     請求項2に記載の生産データ生成装置。
    Each of the plurality of learning models is associated with different periods from each other.
    The learning unit learns from the learning model corresponding to the period in which the actual production data is acquired.
    The production data generator according to claim 2.
  6.  前記複数の学習モデルのそれぞれは互いに異なる生産設備に対応付けられ、
     前記学習部は、前記実績生産データを使用した部品実装装置を含む生産設備に対応する学習モデルに対して学習を行う、
     請求項2または5に記載の生産データ生成装置。
    Each of the plurality of learning models is associated with different production facilities.
    The learning unit learns a learning model corresponding to a production facility including a component mounting device using the actual production data.
    The production data generator according to claim 2 or 5.
  7.  前記複数の学習モデルのそれぞれは互いに異なる実装基板のタイプに対応付けられ、
     前記学習部は、前記実績生産データを使用して生産された実装基板のタイプに対応する学習モデルに対して学習を行う、
     請求項2、5または6に記載の生産データ生成装置。
    Each of the plurality of learning models is associated with a different type of mounting board, and is associated with each other.
    The learning unit learns a learning model corresponding to the type of mounting board produced by using the actual production data.
    The production data generator according to claim 2, 5 or 6.
  8.  それぞれ部品を基板に実装するための部品実装装置の動作条件と前記部品との間の関係性を示す互に異なる複数の学習モデルから、少なくとも1つの学習モデルを選択し、
     選択された前記少なくとも1つの学習モデルと、基板に実装される実装対象部品に関する部品情報とに基づいて、前記実装対象部品を基板に実装するための部品実装装置の動作条件である動作パラメータを推定し、
     前記部品情報および前記動作パラメータを有する部品データを含む生産データを生成する、
     生産データ生成方法。
    At least one learning model is selected from a plurality of learning models that are different from each other and show the relationship between the operating conditions of the component mounting device for mounting the component on the board and the component.
    Based on the selected at least one learning model and the component information about the mounting target component mounted on the board, the operating parameters which are the operating conditions of the component mounting device for mounting the mounting target component on the board are estimated. And
    Generate production data including the component information and component data having the operating parameters.
    Production data generation method.
  9.  前記生産データ生成方法では、さらに、
     実装済み部品に関する部品情報と、前記実装済み部品の実装に用いられた動作パラメータとを有する実績部品データを含む、部品実装装置によって使用された実績生産データを取得し、
     前記複数の学習モデルのうち、取得された前記実績生産データに対応する学習モデルによって示される前記関係性の更新を、前記実績部品データを教師データとして用いた学習によって行う、
     請求項8に記載の生産データ生成方法。
    In the production data generation method, further
    Acquire the actual production data used by the component mounting device, including the actual component data having the component information regarding the mounted component and the operating parameters used for mounting the mounted component.
    Among the plurality of learning models, the relationship indicated by the learning model corresponding to the acquired actual production data is updated by learning using the actual component data as teacher data.
    The production data generation method according to claim 8.
  10.  前記部品情報は、当該部品情報に対応する部品の寸法、形状、外観、種別、および前記部品を供給するための供給形態のうちの少なくとも1つを示す、
     請求項8または9に記載の生産データ生成方法。
    The part information indicates at least one of the dimensions, shape, appearance, type, and supply form for supplying the part corresponding to the part information.
    The production data generation method according to claim 8 or 9.
  11.  前記動作パラメータは、前記部品実装装置による部品の移送、認識、吸着、および装着のうちの少なくとも1つに関するパラメータである、
     請求項8~10の何れか1項に記載の生産データ生成方法。
    The operating parameter is a parameter relating to at least one of transfer, recognition, suction, and mounting of a component by the component mounting device.
    The production data generation method according to any one of claims 8 to 10.
  12.  前記複数の学習モデルのそれぞれは互いに異なる期間に対応付けられ、
     前記学習では、前記実績生産データが取得された期間に対応する学習モデルに対して学習を行う、
     請求項9に記載の生産データ生成方法。
    Each of the plurality of learning models is associated with different periods from each other.
    In the learning, learning is performed on the learning model corresponding to the period in which the actual production data is acquired.
    The production data generation method according to claim 9.
  13.  前記複数の学習モデルのそれぞれは互いに異なる生産設備に対応付けられ、
     前記学習では、前記実績生産データを使用した部品実装装置を含む生産設備に対応する学習モデルに対して学習を行う、
     請求項9または12に記載の生産データ生成方法。
    Each of the plurality of learning models is associated with different production facilities.
    In the learning, learning is performed on a learning model corresponding to a production facility including a component mounting device using the actual production data.
    The production data generation method according to claim 9 or 12.
  14.  前記複数の学習モデルのそれぞれは互いに異なる実装基板のタイプに対応付けられ、
     前記学習では、前記実績生産データを使用して生産された実装基板のタイプに対応する学習モデルに対して学習を行う、
     請求項9、12または13に記載の生産データ生成方法。
    Each of the plurality of learning models is associated with a different type of mounting board, and is associated with each other.
    In the learning, training is performed on a learning model corresponding to the type of mounting board produced using the actual production data.
    The production data generation method according to claim 9, 12 or 13.
  15.  請求項8~14の何れか1項に記載の生産データ生成方法をコンピュータに実行させるプログラム。 A program that causes a computer to execute the production data generation method according to any one of claims 8 to 14.
PCT/JP2020/042631 2019-12-02 2020-11-16 Production data generation device, production data generation method, and program WO2021111851A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021562548A JPWO2021111851A1 (en) 2019-12-02 2020-11-16
CN202080080081.4A CN114747307A (en) 2019-12-02 2020-11-16 Production data generation device, production data generation method, and program
DE112020005919.7T DE112020005919T5 (en) 2019-12-02 2020-11-16 Production data generation device, production data generation method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019218351 2019-12-02
JP2019-218351 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021111851A1 true WO2021111851A1 (en) 2021-06-10

Family

ID=76221586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042631 WO2021111851A1 (en) 2019-12-02 2020-11-16 Production data generation device, production data generation method, and program

Country Status (4)

Country Link
JP (1) JPWO2021111851A1 (en)
CN (1) CN114747307A (en)
DE (1) DE112020005919T5 (en)
WO (1) WO2021111851A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264835A1 (en) * 2021-06-16 2022-12-22 パナソニックIpマネジメント株式会社 Component data management method, component data management device, and component data management program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250795A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Packaging method and packaging condition deciding method
JP2012156200A (en) * 2011-01-24 2012-08-16 Hitachi High-Tech Instruments Co Ltd Arithmetic unit calculating setting of component mounting device, component mounting device and program
JP2018107315A (en) * 2016-12-27 2018-07-05 ファナック株式会社 Machine learning device for printed board assembling work, control device, industrial machine, assembly system, and machine learning method
JP2019004129A (en) * 2017-06-19 2019-01-10 パナソニックIpマネジメント株式会社 Mounting board manufacturing system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250795A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Packaging method and packaging condition deciding method
JP2012156200A (en) * 2011-01-24 2012-08-16 Hitachi High-Tech Instruments Co Ltd Arithmetic unit calculating setting of component mounting device, component mounting device and program
JP2018107315A (en) * 2016-12-27 2018-07-05 ファナック株式会社 Machine learning device for printed board assembling work, control device, industrial machine, assembly system, and machine learning method
JP2019004129A (en) * 2017-06-19 2019-01-10 パナソニックIpマネジメント株式会社 Mounting board manufacturing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264835A1 (en) * 2021-06-16 2022-12-22 パナソニックIpマネジメント株式会社 Component data management method, component data management device, and component data management program

Also Published As

Publication number Publication date
JPWO2021111851A1 (en) 2021-06-10
CN114747307A (en) 2022-07-12
DE112020005919T5 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6140414B2 (en) Parts management apparatus, parts management method and program thereof
JP4796461B2 (en) Component management apparatus and component management method for mounting machine
JP5427054B2 (en) Component mounting device with anomaly detection device
JP6314319B2 (en) Electronic component mounting system
WO2021111851A1 (en) Production data generation device, production data generation method, and program
JP5860357B2 (en) Component mounting system
JP4796462B2 (en) Component assembly assignment method, component assembly assignment device, and mounter for mounting machine
JP4757700B2 (en) Production program creation system
JP7403121B2 (en) Production control device, production control method, and program
JP4995745B2 (en) Component mounting equipment
JP5775807B2 (en) Information providing apparatus, information providing method, and component mounting system
JP5331859B2 (en) Mounting board manufacturing system and mounting board manufacturing method
JP7382575B2 (en) Mounting condition estimation device, learning device, mounting condition estimation method, and program
JP4809287B2 (en) Equipment status monitoring method
JP2015170801A (en) support device
US11464150B2 (en) Information processing device and information processing method
US20220342878A1 (en) Data management system
WO2017212566A1 (en) Component mounting system
JP2014063286A (en) Presentation method, production equipment, operation device, and operation program
JP7369905B2 (en) Mounted board manufacturing system and mounted board manufacturing method
JP7382576B2 (en) Speed condition estimation device, speed condition estimation method, and program
JP2021033566A (en) Line control system and work command determination method
WO2021220850A1 (en) Production control device, and production control method
JP2019175029A (en) Managing device and managing method
JP7398668B2 (en) Parts placement determination method and parts placement determination program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562548

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20895741

Country of ref document: EP

Kind code of ref document: A1