WO2021111671A1 - Gas purification method and gas purification device - Google Patents

Gas purification method and gas purification device Download PDF

Info

Publication number
WO2021111671A1
WO2021111671A1 PCT/JP2020/027882 JP2020027882W WO2021111671A1 WO 2021111671 A1 WO2021111671 A1 WO 2021111671A1 JP 2020027882 W JP2020027882 W JP 2020027882W WO 2021111671 A1 WO2021111671 A1 WO 2021111671A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cleaning liquid
scrubber
oil
pipe
Prior art date
Application number
PCT/JP2020/027882
Other languages
French (fr)
Japanese (ja)
Inventor
晃樹 安居
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2021562452A priority Critical patent/JP7351349B2/en
Priority to CN202080082836.4A priority patent/CN114746165A/en
Publication of WO2021111671A1 publication Critical patent/WO2021111671A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • C10K1/14Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors organic

Definitions

  • This disclosure relates to a gas purification method and a gas purification apparatus.
  • This application claims the benefit of priority under Japanese Patent Application No. 2019-217726 filed on December 2, 2019, the contents of which are incorporated herein by reference.
  • Exhaust gas treatment equipment equipped with a bug filter and an oil scrubber is disclosed as a technique for refining gas (for example, Patent Document 1).
  • the bug filter removes dust from the gas.
  • the oil scrubber removes organic compounds in the gas by bringing the cleaning oil into contact with the gas from which the dust has been removed by the bug filter.
  • the oil scrubber comprises a gas-liquid contact portion that brings the cleaning oil into contact with the gas. The cleaning oil in contact with the gas circulates in the oil scrubber by being supplied again to the gas-liquid contact portion.
  • the oil scrubber removes organic compounds from the gas by dissolving organic compounds such as tar, olefins, and organic halides contained in the gas in the cleaning oil.
  • organic compounds such as tar, olefins, and organic halides contained in the gas in the cleaning oil.
  • tar tar
  • olefins organic halides contained in the gas in the cleaning oil.
  • the viscosity of the cleaning oil increases.
  • the present disclosure aims to provide a gas purification method capable of purifying gas at low cost and a gas purification apparatus.
  • the gas purification method is based on the steps of removing solid particles contained in the gas, the gas from which the solid particles have been removed, and the melting point of the removed substance contained in the gas. After performing the steps of contacting the low-temperature first cleaning liquid and the first cleaning liquid, the gas brought into contact with the first cleaning liquid has a higher affinity for the removing substance than the first cleaning liquid. Includes a step of contacting with a cleaning solution.
  • the flow rate of the first cleaning liquid may be determined according to the temperature of the gas from which the solid particles have been removed after the step of removing the solid particles has been performed.
  • first cleaning liquid may contain at least water
  • second cleaning liquid may contain at least oil
  • the gas purification apparatus includes a dust removing unit for removing solid particles contained in the gas, a gas from which the solid particles have been removed by the dust removing unit, and a removal contained in the gas.
  • the first scrubber that contacts the first cleaning liquid that is lower than the melting point of the substance, the gas treated by the first scrubber, and the second cleaning liquid that has a higher affinity for the removing substance than the first cleaning liquid are brought into contact with each other. It is equipped with 2 scrubbers.
  • first cleaning liquid may contain at least water
  • second cleaning liquid may contain at least oil
  • the gas purification apparatus may include a water supply unit that supplies the wastewater generated by the second scrubber to the first scrubber.
  • the gas purification apparatus may be provided with a tar decanter for storing the wastewater generated in the first scrubber and the wastewater generated in the second scrubber.
  • gas purification apparatus may be equipped with equipment that utilizes the removed substance removed from the gas in the first scrubber.
  • FIG. 1 is a diagram illustrating a gasification gas production apparatus.
  • FIG. 2 is a diagram illustrating a gas purification apparatus.
  • FIG. 3 is a flowchart illustrating a processing flow of the gas purification method.
  • FIG. 4 is a diagram illustrating an oil circulation portion and a regeneration portion according to a modified example.
  • FIG. 1 is a diagram illustrating a gasification gas production apparatus 100.
  • solid arrows indicate the flow of solids (fluid media, raw materials, and residues) and liquids (water). Further, in FIG. 1, the broken line arrow indicates the flow of gas (water vapor, gasified gas, air, and combustion exhaust gas).
  • the gasification gas production apparatus 100 includes a combustion furnace 110, a cyclone 120, a heat exchanger 130, a bag filter 140, a gasification furnace 150, a cyclone 160, and a heat exchanger 170. , And a gas purification apparatus 200.
  • the gasification gas production apparatus 100 uses a fluidized bed as a fluidized medium to gasify raw materials to produce gasified gas (synthetic gas).
  • the raw material is, for example, a solid raw material such as coal (brown coal or the like) or biomass (wood pellets or the like).
  • the gasification gas production apparatus 100 is a circulating fluidized bed type gasification system. That is, the gasification gas production apparatus 100 circulates a flow medium as a heat medium in the combustion furnace 110, the cyclone 120, and the gasification furnace 150.
  • the fluid medium is, for example, a mineral such as silica sand or olivine having a particle size of about 300 ⁇ m.
  • the combustion furnace 110 has a tubular shape. Fuel and a flow medium are introduced into the combustion furnace 110 from the gasification furnace 150, which will be described later, through the pipe 112.
  • the pipe 112 connects the lower part of the combustion furnace 110 and the gasification furnace 150.
  • the combustion furnace 110 burns fuel to heat the flow medium to 600 ° C. or higher and 1000 ° C. or lower.
  • the combustion exhaust gas and the flow medium heated in the combustion furnace 110 are sent to the cyclone 120 through the pipe 114.
  • the pipe 114 connects the upper part of the combustion furnace 110 and the cyclone 120.
  • the cyclone 120 firmly separates the mixture of the flow medium introduced from the combustion furnace 110 and the combustion exhaust gas through the pipe 114.
  • the high temperature fluid medium separated by the cyclone 120 is introduced into the gasifier 150 through the pipe 122.
  • the pipe 122 connects the bottom of the cyclone 120 and the gasifier 150.
  • the high temperature fluid medium is fluidized by the fluidized gas (for example, steam) in the gasification furnace 150.
  • the gasification furnace 150 includes a storage tank 152 and a steam introduction unit 154.
  • the storage tank 152 stores the flow medium and the raw material.
  • the water vapor introduction unit 154 introduces water vapor into the storage tank 152.
  • the steam introduction unit 154 includes a wind box 154a and a boiler 154b.
  • the wind box 154a is provided below the storage tank 152.
  • the upper part of the wind box 154a also functions as the bottom surface of the storage tank 152.
  • the upper part of the wind box 154a is composed of a breathable dispersion plate.
  • the boiler 154b produces steam.
  • the boiler 154b is connected to the wind box 154a.
  • the steam generated by the boiler 154b is introduced into the air box 154a.
  • the water vapor introduced into the air box 154a is introduced into the storage tank 152 from the bottom surface (dispersion plate) of the storage tank 152.
  • the boiler 154b introduces water vapor into the air box 154a at a flow velocity capable of forming a fluidized bed of a fluidized medium in the storage tank 152. Therefore, the high temperature fluid medium introduced from the cyclone 120 is fluidized by water vapor. As a result, a fluidized bed of the fluidized medium (for example, a bubble fluidized bed (bubbling fluidized bed)) is formed in the storage tank 152.
  • a fluidized bed of the fluidized medium for example, a bubble fluidized bed (bubbling fluidized bed)
  • the raw material is introduced into the gasification furnace 150 (containment tank 152) through the pipe 122.
  • the introduced raw material is gasified by the heat of the fluid medium at 600 ° C. or higher and 900 ° C. or lower, whereby a gasified gas (synthetic gas) is produced.
  • the gasified gas produced in the gasification furnace 150 is introduced into the cyclone 160 through the pipe 156.
  • the pipe 156 connects the upper part of the gasifier 150 and the cyclone 160.
  • the cyclone 160 solid-gas separates the gasified gas discharged from the gasification furnace 150.
  • the gasified gas separated by solid air is introduced into the heat exchanger 170 through the pipe 162.
  • the pipe 162 connects the upper part of the cyclone 160 and the heat exchanger 170.
  • the solid matter separated by solid air (fluid medium, residue of raw material, some tar) is introduced into the combustion furnace 110 through the pipe 164 and the pipe 112.
  • the pipe 164 connects the bottom of the cyclone 160 and the pipe 112. In this embodiment, the raw material is also introduced into the pipe 164.
  • the heat exchanger 170 exchanges heat between the gasified gas solidly separated by the cyclone 160 and steam, high-pressure water, or the like.
  • the heat exchanger 170 recovers the sensible heat of the gasified gas with steam, and sets the outlet temperature of the gasified gas to 150 ° C. or higher and 200 ° C. or lower.
  • the gasified gas cooled by the heat exchanger 170 is introduced into the gas purification apparatus 200 described later through the pipe 172.
  • the specific configuration of the gas purification apparatus 200 will be described in detail later.
  • the pipe 172 connects the heat exchanger 170 and the gas purification device 200 (dust removal unit 210).
  • the fluidized medium in the gasification furnace 150 is returned to the combustion furnace 110 through the pipe 112 connecting the gasification furnace 150 and the combustion furnace 110.
  • the flow medium moves the combustion furnace 110, the cyclone 120, and the gasification furnace 150 in this order, and is introduced into the combustion furnace 110 again. Circulate these.
  • the residue of the raw material is introduced into the combustion furnace 110 from the gasification furnace 150 through the pipe 112.
  • the residue of the raw material is used as fuel in the combustion furnace 110.
  • the residue of the raw material is the raw material that remains without being gasified in the gasification furnace 150.
  • the combustion exhaust gas separated by the cyclone 120 is guided to the heat exchanger 130 through the pipe 124.
  • the pipe 124 connects the upper part of the cyclone 120 and the heat exchanger 130.
  • the heat exchanger 130 is, for example, a boiler.
  • the heat exchanger 130 exchanges heat between the combustion exhaust gas separated by the cyclone 120 and water.
  • the heat exchanger 130 cools the combustion exhaust gas and heats (vaporizes) the water.
  • the bug filter 140 removes the combustion exhaust gas introduced from the heat exchanger 130 through the pipe 132.
  • the pipe 132 connects the heat exchanger 130 and the bug filter 140.
  • the combustion exhaust gas removed by the bag filter 140 is denitrated by a denitration device (not shown).
  • the denitrated combustion exhaust gas is desulfurized by a desulfurization device (not shown).
  • the desulfurized combustion exhaust gas is exhausted to the outside.
  • the denitration device and the desulfurization device may be omitted.
  • the gasifier 150 gasifies the raw material in a low temperature range of 600 ° C. or higher and 900 ° C. or lower. Therefore, the gasification gas generated in the gasification furnace 150 contains tar. Although the tar contained in the gasification gas is partially separated by the cyclone 160, most of the tar is introduced into the heat exchanger 170 along with the gasification gas. Further, the gasification gas includes ash derived from a raw material and solid particles (dust) such as a fluid medium.
  • the gasification gas production device 100 includes a gas purification device 200.
  • the gas purification apparatus 200 purifies the gasified gas by removing impurities (tar and solid particles) from the gasified gas.
  • impurities tar and solid particles
  • FIG. 2 is a diagram illustrating a gas refining apparatus 200.
  • the broken line arrow indicates the flow of the gasified gas.
  • the solid arrow indicates the flow of the liquid (first cleaning liquid, drainage, second cleaning liquid, and drainage oil).
  • the gas refining apparatus 200 includes a dust removing unit 210, a water scrubber 220, an oil scrubber 230, a mist separator 240, an attraction fan 250, a tar decanter 260, a tar dispensing facility 270, and a water circulation.
  • a portion 280 and an oil circulation portion 290 are included.
  • the dust remover 210, the water scrubber 220, the oil scrubber 230, and the mist separator 240 communicate with each other. Further, the mist separator 240 is connected to the suction side of the attraction fan 250. Therefore, when the attraction fan 250 is driven, the gasification gas passes through the dust removing unit 210, the water scrubber 220, the oil scrubber 230, and the mist separator 240 in this order.
  • the dust remover 210 is composed of, for example, one or more of a bug filter, a ceramic filter, and a cyclone.
  • the dust remover 210 is connected to the heat exchanger 170 through the pipe 172.
  • the dust removing unit 210 removes a part of solid particles and tar contained in the gasified gas.
  • the tar contained in the gasification gas includes heavy tar and light tar.
  • Heavy tar has a higher mass density than water. Heavy tar has properties equivalent to or similar to heavy oil.
  • Light tar has a lower boiling point than heavy tar.
  • the light tar contains, as a main component, an aromatic compound having one or two aromatic rings (benzene, toluene, xylene, naphthalene, etc.).
  • the dust remover 210 removes a part of heavy tar.
  • the gasified gas from which solid particles and a part of heavy tar have been removed by the dust removing unit 210 is introduced into the water scrubber 220 through the pipe 212.
  • the water scrubber 220 brings the gasified gas from which the solid particles have been removed by the dust removing unit 210 into contact with the first cleaning liquid.
  • the first cleaning liquid has a temperature lower than the melting point of the heavy tar (removed substance) contained in the gasified gas.
  • the first cleaning liquid is a liquid containing at least water.
  • the water scrubber 220 cools the gasified gas to 80 ° C. or higher and lower than 100 ° C. (for example, about 85 ° C.) by bringing the gasified gas into contact with the first cleaning liquid.
  • the water scrubber 220 includes a main body 220a and a spraying portion 220b.
  • the main body 220a has a tubular shape.
  • a pipe 222 is connected to the upper part of the main body 220a.
  • the pipe 222 connects the water scrubber 220 and the oil scrubber 230.
  • a pipe 282 is connected to the bottom of the main body 220a.
  • the pipe 282 connects the water scrubber 220 and the tar decanter 260.
  • a pipe 212 is connected between the connection point of the pipe 222 in the main body 220a and the connection point of the pipe 282. Therefore, the gasified gas introduced from the pipe 212 rises in the main body 220a and is exhausted from the pipe 222.
  • the spraying portion 220b is provided between the connection point of the pipe 222 and the connection point of the pipe 212 in the main body 220a.
  • the spraying unit 220b sprays the first cleaning liquid into the main body 220a.
  • the gasified gas comes into contact with the first cleaning liquid in the process of passing (rising) through the main body 220a and is cooled to about 85 ° C. Then, the heavy tar remaining in the gasification gas is condensed and removed from the gasification gas. Then, the gasified gas from which the heavy tar has been removed is introduced into the oil scrubber 230 through the pipe 222. On the other hand, the condensed heavy tar falls to the bottom of the main body 220a together with the first cleaning liquid and is introduced into the tar decanter 260 through the pipe 282.
  • the water scrubber 220 can condense heavy tar while maintaining fluidity by cooling the gasified gas to 80 ° C. or higher and lower than 100 ° C.
  • the water scrubber 220 can move the heavy tar together with the first cleaning liquid to the tar decanter 260 by its own weight. That is, the water scrubber 220 can easily move heavy tar to the tar decanter 260.
  • the water scrubber 220 maintains the gasified gas at 80 ° C. or higher. As a result, the water scrubber 220 can avoid a situation in which naphthalene is deposited on the inner wall of the main body 220a.
  • Ammonia and sulfur oxides (SOx) are dissolved in the first cleaning solution. Therefore, if the gasification gas contains ammonia or sulfur oxides, the water scrubber 220 can remove the ammonia and sulfur oxides from the gasification gas.
  • the oil scrubber 230 brings the gasified gas treated by the water scrubber 220 into contact with the second cleaning liquid.
  • the second cleaning solution has a higher affinity for tar (removing substance) than the first cleaning solution.
  • the second cleaning liquid is a liquid containing at least oil.
  • the oil includes, for example, one or more of mineral oil, light oil, biodiesel fuel, and vegetable oil.
  • the oil scrubber 230 dissolves the light tar contained in the gasification gas in the second cleaning liquid by bringing the gasification gas into contact with the second cleaning liquid. As a result, the oil scrubber 230 removes light tar from the gasified gas.
  • the oil scrubber 230 includes a main body 230a, a dispersion portion 230b, and a filling layer 230c.
  • the main body 230a has a tubular shape.
  • a pipe 232 is connected to the upper part of the main body 230a.
  • the pipe 232 connects the oil scrubber 230 and the mist separator 240.
  • a pipe 234 is connected to the bottom of the main body 230a.
  • the pipe 234 connects the oil scrubber 230 and the tar decanter 260.
  • a pipe 292 is connected between the connection point of the pipe 232 and the connection point of the pipe 234 in the main body 230a.
  • the pipe 292 connects the oil scrubber 230 and the pump 294.
  • the pipe 222 is connected between the connection point of the pipe 232 and the connection point of the pipe 292 in the main body 230a. Therefore, the gasified gas introduced from the pipe 222 rises in the main body 230a and is exhausted from the pipe 232.
  • the dispersion portion 230b is provided between the connection point of the pipe 232 and the connection point of the pipe 222 in the main body 230a.
  • the dispersion unit 230b sprays the second cleaning liquid at a temperature at which the water vapor contained in the gasified gas condenses (for example, 50 ° C. or lower) into the main body 230a.
  • the gasified gas comes into contact with the second cleaning liquid in the process of passing (rising) through the main body 230a.
  • the light tar contained in the gasified gas is dissolved in the second cleaning liquid.
  • the light tar dissolved in the second cleaning liquid falls to the bottom of the main body 230a.
  • the gasified gas is cooled by the second cleaning liquid. Then, the water vapor remaining in the gasification gas is condensed and removed from the gasification gas. Then, the condensed water vapor, that is, the condensed water, falls to the bottom of the main body 230a.
  • the condensed water has a higher mass density than the second cleaning liquid and the exhaust oil containing light tar. Therefore, the condensed water stays below the oil drainage layer at the bottom of the main body 230a. That is, in the main body 230a, the drained oil and the condensed water are separated by sedimentation.
  • the condensed water (drainage) accumulated at the bottom of the main body 230a is introduced into the tar decanter 260 through the pipe 234. Further, the drainage oil accumulated above the condensed water in the main body 230a is sucked into the pump 294 through the pipe 292.
  • the gasified gas from which the light tar and water vapor have been removed is introduced into the mist separator 240 through the pipe 232.
  • the filling layer 230c is provided between the dispersion portion 230b in the main body 230a and the connection point with the pipe 222.
  • the packing layer 230c includes rings, wire mesh, shelves, trays and the like.
  • the packing layer 230c reduces the falling speed of the second cleaning liquid. Since the oil scrubber 230 includes the filling layer 230c, the contact efficiency between the gasification gas and the second cleaning liquid can be improved. Therefore, the oil scrubber 230 can efficiently dissolve the light tar contained in the gasified gas in the second cleaning liquid.
  • the mist separator 240 removes the mist (second cleaning liquid) contained in the gasified gas.
  • a pipe 242 is connected to the upper part of the mist separator 240.
  • the pipe 242 connects the mist separator 240 and the suction side of the attraction fan 250.
  • a pipe 244 is connected to the bottom of the mist separator 240.
  • the pipe 244 connects the mist separator 240 and the oil scrubber 230 (main body 230a).
  • the pipe 242 is connected below the filling layer 230c in the main body 230a.
  • the pipe 232 is connected between the connection point of the pipe 242 in the mist separator 240 and the connection point of the pipe 244.
  • the gasified gas introduced from the pipe 232 is exhausted from the pipe 242 after the mist is removed in the mist separator 240. Further, the mist removed from the gasified gas in the mist separator 240 is returned to the oil scrubber 230 through the pipe 244.
  • the suction fan 250 is connected to the pipe 242 (mist separator 240) on the suction side and to the pipe 252 on the discharge side.
  • the attraction fan 250 sucks the gasification gas (refined gasification gas) from which the mist has been removed by the mist separator 240 and sends it to the gasification gas utilization facility in the subsequent stage through the pipe 252.
  • Gasification gas utilization equipment is power generation equipment such as a gas engine, or equipment for manufacturing chemical products.
  • the tar decanter 260 stores the wastewater generated in the water scrubber 220 and the condensed water generated in the oil scrubber 230.
  • the tar decanter 260 separates wastewater into a supernatant and a sediment depending on the difference in mass density and particle size.
  • the sediment contains heavy tar.
  • the tar dispensing equipment 270 is composed of, for example, a screw conveyor.
  • the tar dispensing facility 270 sends out the sediment (heavy tar) separated in the tar decanter 260 to the outside.
  • Heavy tar (removed substance) is used as fuel for combustion equipment (equipment) such as boilers and generators, and is also used for animal protection.
  • the water circulation unit 280 circulates the first cleaning liquid in the water scrubber 220.
  • the water circulation unit 280 includes pipes 282, 284, 288 and a pump 286.
  • the pipe 284 connects the tar decanter 260 and the suction side of the pump 286.
  • the pipe 288 connects the discharge side of the pump 286 and the spray portion 220b.
  • the pump 286 supplies the supernatant liquid separated in the tar decanter 260 as the first cleaning liquid to the spray unit 220b.
  • the condensed water separated by the oil scrubber 230 is introduced into the tar decanter 260. Therefore, the pipe 234, the tar decanter 260, and the water circulation unit 280 function as a water supply unit that supplies the wastewater generated by the oil scrubber 230 to the water scrubber 220.
  • the oil circulation unit 290 circulates the second cleaning liquid in the oil scrubber 230.
  • the oil circulation unit 290 includes pipes 292 and 296, a pump 294, and a cooling unit 298.
  • the pipe 292 connects the main body 230a of the oil scrubber 230 and the suction side of the pump 294.
  • the pipe 296 connects the discharge side of the pump 294 and the dispersion portion 230b of the oil scrubber 230.
  • the pump 294 supplies the exhaust oil retained in the main body 230a of the oil scrubber 230 as a second cleaning liquid to the dispersion portion 230b.
  • the cooling unit 298 is provided in the pipe 296.
  • the cooling unit 298 cools the second cleaning liquid. With the configuration including the cooling unit 298, the oil scrubber 230 can efficiently dissolve the light tar contained in the gasified gas in the second cleaning liquid.
  • FIG. 3 is a flowchart illustrating a processing flow of the gas purification method.
  • the gas refining method includes a dust removing step S110, a water cleaning step S120, and an oil cleaning step S130.
  • a dust removing step S110 a dust removing step S110
  • a water cleaning step S120 a water cleaning step S120
  • an oil cleaning step S130 an oil cleaning step S130.
  • the dust removing step S110 is a step in which the dust removing unit 210 removes solid particles contained in the gasified gas.
  • the water cleaning step S120 is a step in which the water scrubber 220 brings the gasified gas from which the solid particles have been removed in the dust removing step S110 into contact with the first cleaning liquid. By carrying out the water washing step S120, heavy tar is removed from the gasified gas.
  • the oil cleaning step S130 is a step in which the oil scrubber 230 brings the gasified gas from which the heavy tar has been removed in the water cleaning step S120 into contact with the second cleaning liquid. By carrying out the oil cleaning step S130, the light tar is removed from the gasified gas.
  • the gas purification device 200 of the present embodiment and the gas purification method using the gas purification device 200 include a dust removing unit 210. Thereby, the processing load of the water scrubber 220 can be reduced. Therefore, the gas purification apparatus 200 can reduce the size of the water scrubber 220 and the tar decanter 260.
  • the gas refining device 200 includes a water scrubber 220 and an oil scrubber 230.
  • the conventional technique for purifying a gasified gas using only a water scrubber 220 has a low tar removal rate of about 10% to 25%.
  • the gas refining apparatus 200 can remove heavy tar with a water scrubber 220 and light tar with an oil scrubber 230. Therefore, the gas purification apparatus 200 can efficiently remove tar contained in the gasified gas.
  • the gas refining device 200 includes a water scrubber 220 in front of the oil scrubber 230.
  • the oil scrubber 230 brings the gasified gas from which the heavy tar has been removed into contact with the second cleaning liquid.
  • the viscosity of the light tar does not increase as compared with the heavy tar even if it is dissolved in the second cleaning liquid. Therefore, the oil circulation unit 290 can stably circulate the second cleaning liquid to the oil scrubber 230. Therefore, the gas refining apparatus 200 can reduce the frequency of replacement of the second cleaning liquid as compared with the conventional technique including only the oil scrubber 230.
  • the gas purification device 200 can purify the gasified gas at low cost.
  • the conventional technique of purifying the gasified gas only with the oil scrubber 230 cannot remove water-soluble impurities. Therefore, in the conventional technique of purifying the gasification gas only with the oil scrubber 230, there is a possibility that the gasification gas utilization equipment in the subsequent stage using the gasification gas may be defective due to water-soluble impurities.
  • the gas refining apparatus 200 since the gas refining apparatus 200 includes the water scrubber 220 in addition to the oil scrubber 230, not only tar but also water-soluble impurities can be removed from the gasification gas. Therefore, the gas refining device 200 can prevent a malfunction of the gasification gas utilization equipment in the subsequent stage using the gasification gas.
  • the gas refining apparatus 200 is provided with a tar decanter 260.
  • the gas purification apparatus 200 can separate the heavy tar from the wastewater. Therefore, the gas refining apparatus 200 can effectively utilize heavy tar.
  • the gas purification device 200 includes a water supply unit (pipe 234, tar decanter 260, and water circulation unit 280).
  • a water supply unit pipe 234, tar decanter 260, and water circulation unit 280.
  • the gas refining apparatus 200 can utilize the wastewater generated in the oil scrubber 230 in the water scrubber 220. Therefore, the gas purification apparatus 200 can reduce the cost required for the first cleaning liquid.
  • the gas refining device 200 includes a dust removing unit 210, a water scrubber 220, and an oil scrubber 230. Therefore, the gas refining apparatus 200 can efficiently remove tar from the gasification gas even if the oxidation reforming furnace conventionally used for removing tar contained in the gasification gas is omitted.
  • the oxidation reforming furnace adds oxygen or air to the gasified gas generated in the gasification furnace 150 and burns a part of the gasified gas. Therefore, the gas purification apparatus 200 can increase the amount of combustion gas (hydrogen, carbon monoxide) contained in the gasified gas after purification by omitting the oxidation reforming furnace.
  • the gas refining apparatus 200 may further include a regenerating unit that regenerates the second cleaning liquid used in the oil scrubber 230.
  • FIG. 4 is a diagram illustrating an oil circulation unit 310 and a regeneration unit 350 according to a modified example.
  • the broken line arrow indicates the flow of gas (gasification gas, canned gas, and distillate gas).
  • the solid arrow indicates the flow of the liquid (condensed water, second cleaning liquid, drained oil, canned liquid, and distillate).
  • the oil circulation unit 310 includes a sedimentation separation unit 320, pipes 322, 330, 334, 336, a pump 332, a heat exchanger 340, and a cooling unit 298.
  • the components substantially the same as the oil circulation unit 290 are designated by the same reference numerals and the description thereof will be omitted.
  • the sedimentation separation unit 320 separates the drained oil and the condensed water generated in the oil scrubber 230.
  • the settling separation section 320 includes a storage tank 320a and a partition plate 320b.
  • the storage tank 320a stores the drained oil and condensed water generated in the oil scrubber 230.
  • the partition plate 320b divides the inside of the storage tank 320a into a first chamber and a second chamber.
  • the upper part of the partition plate 320b is separated from the upper part of the storage tank 320a.
  • the side portions and the lower portion of the partition plate 320b are connected to the inner wall of the storage tank 320a.
  • the pipe 234 connects the bottom of the main body 230a of the oil scrubber 230 and the first chamber of the storage tank 320a. Therefore, the drained oil and the condensed water generated in the oil scrubber 230 are stored in the first chamber of the storage tank 320a. In the first chamber of the containment tank 320a, the condensed water settles and is separated from the drainage oil. The settled and separated condensed water is introduced into the tar decanter 260 through the pipe 322.
  • the pipe 322 connects the bottom of the first chamber of the storage tank 320a with the tar decanter 260.
  • the drainage oil separated by the sedimentation of the condensed water in the first chamber overflows the partition plate 320b and moves to the second chamber of the storage tank 320a. Then, the drainage oil is introduced to the suction side of the pump 332 through the pipe 330. The discharge side of the pump 332 is connected to the pipe 334. The pipe 334 connects the discharge side of the pump 332 and the regeneration unit 350 (regeneration tower 352). The pump 332 introduces the drainage oil separated by the sedimentation separation unit 320 into the regeneration unit 350.
  • the regeneration unit 350 regenerates the drained oil. That is, the recycling unit 350 removes the light tar from the drained oil.
  • the specific configuration of the reproduction unit 350 will be described in detail later.
  • the drainage oil (second cleaning liquid) regenerated by the regenerating unit 350 is supplied to the dispersion unit 230b of the oil scrubber 230 through the pipe 336.
  • the heat exchanger 340 exchanges heat between the drainage oil passing through the pipe 334 and the second cleaning liquid passing through the pipe 336.
  • the heat exchanger 340 heats the exhaust oil and cools the second cleaning liquid.
  • the cooling unit 298 is provided between the installation position of the heat exchanger 340 in the pipe 336 and the oil scrubber 230.
  • the regeneration unit 350 (distillation unit) includes a regeneration tower 352, a reboiler 354, and a capacitor 356.
  • the regeneration tower 352 has a tubular shape. A filling layer is provided in the regeneration tower 352.
  • the packed bed includes shelves.
  • the pipe 334 is connected to the center of the regeneration tower 352.
  • the reboiler 354 draws out the canned liquid from the bottom of the regeneration tower 352 and heats it to a predetermined temperature.
  • the canned gas heated by the reboiler 354 and vaporized from the canned liquid is returned to the regeneration tower 352.
  • the canned liquid from which the canned gas has been removed by the reboiler 354 is introduced into the pipe 336 as the second cleaning liquid.
  • the condenser 356 extracts the distillate gas from the top of the regeneration tower 352, cools it to a predetermined temperature, and condenses it. A part of the distillate condensed by the condenser 356 is extracted to the outside, and the rest is returned to the regeneration tower 352.
  • the distillate contains light tar.
  • the oil scrubber 230 removes the light tar from the gasification gas by dissolving the light tar contained in the gasification gas in the second cleaning liquid. Therefore, in the oil scrubber 230, as the operation time becomes longer, the accumulated amount of light tar in the second cleaning liquid increases, and the second cleaning liquid deteriorates. Therefore, the modified example includes a reproduction unit 350. As a result, the light tar can be removed from the drained oil and reused in the oil scrubber 230. Therefore, in the modified example, the frequency of replacement of the second cleaning liquid can be further reduced.
  • the gas purification device 200 purifies the gasified gas produced by the gasification furnace 150 .
  • the gas purification apparatus 200 can purify a gas containing solid particles and an organic compound such as tar or olefin.
  • the gas refining apparatus 200 may purify the gas produced by an apparatus for steaming (dry distillation) raw materials such as a lime kiln and a coke oven. Further, the gas refining device 200 may purify the exhaust gas of the painting factory.
  • the gasification furnace 150 has been described by taking as an example a configuration in which a solid raw material is gasified in a fluidized bed of a fluidized medium.
  • the gasification furnace 150 only needs to be able to gasify the solid raw material with the heat of the flow medium.
  • the gasification furnace 150 may gasify the solid raw material in the moving layer of the flow medium, for example.
  • the configuration in which the gas refining apparatus 200 includes a water supply unit for supplying the wastewater generated in the oil scrubber 230 to the water scrubber 220 is given as an example.
  • the gas purification apparatus 200 does not have to supply the wastewater generated by the oil scrubber 230 to the water scrubber 220.
  • the configuration in which the gas refining apparatus 200 is provided with the tar decanter 260 is given as an example.
  • the gas refining apparatus 200 does not have to include the tar decanter 260.
  • the configuration in which the gas purification device 200 includes the attraction fan 250 is given as an example.
  • the attraction fan 250 is not an essential configuration. For example, if the gas can pass through the dust removing unit 210, the water scrubber 220, and the oil scrubber 230 in this order due to the pressure difference, the attraction fan 250 can be omitted.
  • an acid may be added to the first cleaning liquid sprayed by the water scrubber 220 to make the first cleaning liquid acidic.
  • the water scrubber 220 can efficiently remove the alkaline component (for example, ammonia) contained in the gas.
  • alkali may be added to the first cleaning liquid sprayed by the water scrubber 220 to make the first cleaning liquid alkaline.
  • the water scrubber 220 can efficiently remove the acid component (for example, sulfur oxide) contained in the gas.
  • the water circulation unit 280 may include a mechanism for extracting drainage and a mechanism for replenishing the first cleaning liquid.
  • the oil circulation unit 290 may include a mechanism for draining the drained oil and a mechanism for replenishing the second cleaning liquid.
  • the gas refining apparatus 200 may include a sedimentation separation unit 320 for separating the drained oil and the condensed water generated in the oil scrubber 230.
  • the configuration in which the dispersion portion 230b sprays the second cleaning liquid into the main body 230a is given as an example.
  • the structure of the dispersion portion 230b is not limited as long as the second cleaning liquid can be dispersed substantially uniformly with respect to the horizontal cross section of the main body 230a.
  • the dispersion portion 230b may include, for example, a dispersion material.
  • the pump may be provided in the pipe 234. Further, in the modified example, a pump may be provided in the pipe 336 and the condenser 356.
  • the case where the first cleaning liquid contains at least water is given as an example.
  • the composition of the first cleaning liquid is not limited as long as it is lower than the melting point of the removing substance contained in the gas.
  • the first cleaning solution is, for example, either one or both of methanol and ethanol.
  • the gas purification apparatus 200 can efficiently remove the removed substance by bringing the first cleaning liquid having a temperature lower than the melting point of the removed substance into contact with the gasified gas.
  • tar containing an aromatic compound was given as an example as a removing substance.
  • the removal material may include olefins.
  • the flow rate of the first cleaning liquid supplied by the water scrubber 220 may be determined according to the temperature or flow rate of the gasified gas exhausted from the bag filter 140.
  • the water scrubber 220 is provided with a temperature measuring unit for measuring the temperature of the gasified gas exhausted from the bag filter 140 or the temperature inside the water scrubber 220, and the control unit is based on the measurement result of the temperature measuring unit.
  • the flow rate of the first cleaning liquid to be supplied is determined.
  • the control unit may determine the flow rate of the first cleaning liquid supplied by the water scrubber 220 so that the temperature inside the water scrubber 220 is lower than the melting point of the heavy tar and equal to or higher than the melting point of the light tar.
  • the control unit can set the temperature of the gas at the outlet of the water scrubber 220 to be lower than the melting point of the heavy tar, and can improve the removal rate of the heavy tar.
  • the configuration in which the water scrubber 220 includes the spray portion 220b is given as an example.
  • the structure of the water scrubber 220 is not limited as long as the gasified gas from which the solid particles have been removed by the dust removing unit 210 can be brought into contact with the first cleaning liquid.
  • the water scrubber 220 may have the same configuration as the oil scrubber 230, and may include, for example, a dispersant.
  • This disclosure can be used for gas refining methods and gas refining equipment.
  • Dust removal unit 220 Water scrubber (first scrubber)
  • Oil scrubber (second scrubber) 234 Piping (water supply unit)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Industrial Gases (AREA)

Abstract

This gas purification method includes: a step (dust removing step S110) for removing solid particles contained in a gas; a step (water cleaning step S120) for bringing the gas having the solid particles removed therefrom into contact with a first cleaning liquid having a melting point lower than that of a removal substance contained in the gas; and a step (oil cleaning step S130) for, after executing the step for bringing the gas into contact with the first cleaning liquid, bringing the gas that had been already in contact with the first cleaning liquid into contact with a second cleaning liquid having a higher affinity with the removal substance as compared with the first cleaning liquid.

Description

ガス精製方法、および、ガス精製装置Gas refining method and gas refining equipment
 本開示は、ガス精製方法、および、ガス精製装置に関する。本出願は2019年12月2日に提出された日本特許出願第2019-217726号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 This disclosure relates to a gas purification method and a gas purification apparatus. This application claims the benefit of priority under Japanese Patent Application No. 2019-217726 filed on December 2, 2019, the contents of which are incorporated herein by reference.
 ガスを精製する技術として、バグフィルタと、オイルスクラバとを備える排ガス処理設備が開示されている(例えば、特許文献1)。特許文献1の技術において、バグフィルタは、ガスからダストを取り除く。オイルスクラバは、バグフィルタによってダストが取り除かれたガスに洗浄油を接触させガス中の有機化合物を取り除く。オイルスクラバは、洗浄油をガスに接触させる気液接触部を備える。ガスと接触した洗浄油は、気液接触部に再度供給されることにより、オイルスクラバを循環する。 Exhaust gas treatment equipment equipped with a bug filter and an oil scrubber is disclosed as a technique for refining gas (for example, Patent Document 1). In the technique of Patent Document 1, the bug filter removes dust from the gas. The oil scrubber removes organic compounds in the gas by bringing the cleaning oil into contact with the gas from which the dust has been removed by the bug filter. The oil scrubber comprises a gas-liquid contact portion that brings the cleaning oil into contact with the gas. The cleaning oil in contact with the gas circulates in the oil scrubber by being supplied again to the gas-liquid contact portion.
特開2006-21187号公報Japanese Unexamined Patent Publication No. 2006-21187
 上記オイルスクラバは、ガスに含まれるタール、オレフィン、有機ハロゲン化物等の有機化合物を洗浄油に溶解させることで、ガスから有機化合物を取り除く。しかし、タールのうち、相対的に融点が高い重質タールが洗浄油に溶解すると、洗浄油の粘度が増加してしまう。 The oil scrubber removes organic compounds from the gas by dissolving organic compounds such as tar, olefins, and organic halides contained in the gas in the cleaning oil. However, when heavy tar having a relatively high melting point is dissolved in the cleaning oil, the viscosity of the cleaning oil increases.
 そうすると、オイルスクラバへの洗浄油の循環が困難になり、オイルスクラバの運転ができなくなる。したがって、洗浄油を新油に頻繁に交換する必要が生じ、コストが高くなってしまうという問題がある。そこで、低コストでガスを精製できる技術の開発が希求されている。 Then, it becomes difficult to circulate the cleaning oil to the oil scrubber, and the oil scrubber cannot be operated. Therefore, it becomes necessary to frequently replace the cleaning oil with new oil, which causes a problem that the cost increases. Therefore, there is a demand for the development of a technology capable of purifying gas at low cost.
 本開示は、このような課題に鑑み、低コストでガスを精製することが可能なガス精製方法、および、ガス精製装置を提供することを目的としている。 In view of such problems, the present disclosure aims to provide a gas purification method capable of purifying gas at low cost and a gas purification apparatus.
 上記課題を解決するために、本開示の一態様に係るガス精製方法は、ガスに含まれる固体粒子を取り除く工程と、固体粒子が取り除かれたガスと、ガス中に含まれる除去物質の融点よりも低温の第1洗浄液とを接触させる工程と、第1洗浄液を接触させる工程を遂行した後、第1洗浄液に接触させたガスと、第1洗浄液よりも除去物質との親和性が高い第2洗浄液とを接触させる工程と、を含む。 In order to solve the above problems, the gas purification method according to one aspect of the present disclosure is based on the steps of removing solid particles contained in the gas, the gas from which the solid particles have been removed, and the melting point of the removed substance contained in the gas. After performing the steps of contacting the low-temperature first cleaning liquid and the first cleaning liquid, the gas brought into contact with the first cleaning liquid has a higher affinity for the removing substance than the first cleaning liquid. Includes a step of contacting with a cleaning solution.
 また、第1洗浄液の流量は、固体粒子を取り除く工程を遂行した後の固体粒子が取り除かれたガスの温度に応じて定められてもよい。 Further, the flow rate of the first cleaning liquid may be determined according to the temperature of the gas from which the solid particles have been removed after the step of removing the solid particles has been performed.
 また、第1洗浄液は、少なくとも水を含み、第2洗浄液は、少なくともオイルを含んでもよい。 Further, the first cleaning liquid may contain at least water, and the second cleaning liquid may contain at least oil.
 上記課題を解決するために、本開示の一態様に係るガス精製装置は、ガスに含まれる固体粒子を取り除く除塵部と、除塵部によって固体粒子が取り除かれたガスと、ガス中に含まれる除去物質の融点よりも低温の第1洗浄液とを接触させる第1スクラバと、第1スクラバによって処理されたガスと、第1洗浄液よりも除去物質との親和性が高い第2洗浄液とを接触させる第2スクラバと、を備える。 In order to solve the above problems, the gas purification apparatus according to one aspect of the present disclosure includes a dust removing unit for removing solid particles contained in the gas, a gas from which the solid particles have been removed by the dust removing unit, and a removal contained in the gas. The first scrubber that contacts the first cleaning liquid that is lower than the melting point of the substance, the gas treated by the first scrubber, and the second cleaning liquid that has a higher affinity for the removing substance than the first cleaning liquid are brought into contact with each other. It is equipped with 2 scrubbers.
 また、第1洗浄液は、少なくとも水を含み、第2洗浄液は、少なくともオイルを含んでもよい。 Further, the first cleaning liquid may contain at least water, and the second cleaning liquid may contain at least oil.
 また、ガス精製装置は、第2スクラバで生じた排水を第1スクラバに供給する水供給部を備えてもよい。 Further, the gas purification apparatus may include a water supply unit that supplies the wastewater generated by the second scrubber to the first scrubber.
 また、ガス精製装置は、第1スクラバにおいて生じた排水および第2スクラバで生じた排水を貯留するタールデカンタを備えてもよい。 Further, the gas purification apparatus may be provided with a tar decanter for storing the wastewater generated in the first scrubber and the wastewater generated in the second scrubber.
 また、ガス精製装置は、第1スクラバにおいて、ガスから除去された除去物質を利用する設備を備えてもよい。 Further, the gas purification apparatus may be equipped with equipment that utilizes the removed substance removed from the gas in the first scrubber.
 本開示によれば、低コストでガスを精製することが可能となる。 According to the present disclosure, it is possible to purify gas at low cost.
図1は、ガス化ガス製造装置を説明する図である。FIG. 1 is a diagram illustrating a gasification gas production apparatus. 図2は、ガス精製装置を説明する図である。FIG. 2 is a diagram illustrating a gas purification apparatus. 図3は、ガス精製方法の処理の流れを説明するフローチャートである。FIG. 3 is a flowchart illustrating a processing flow of the gas purification method. 図4は、変形例にかかる、油循環部および再生部を説明する図である。FIG. 4 is a diagram illustrating an oil circulation portion and a regeneration portion according to a modified example.
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 The embodiments of the present disclosure will be described in detail with reference to the accompanying drawings below. The dimensions, materials, other specific numerical values, etc. shown in such an embodiment are merely examples for facilitating understanding, and do not limit the present disclosure unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate description, and elements not directly related to the present disclosure are omitted from the illustration. To do.
[ガス化ガス製造装置100]
 図1は、ガス化ガス製造装置100を説明する図である。なお、図1中、実線の矢印は、固形物(流動媒体、原料、および、残渣)および液体(水)の流れを示す。また、図1中、破線の矢印は、ガス(水蒸気、ガス化ガス、空気、および、燃焼排ガス)の流れを示す。
[Gasification gas production device 100]
FIG. 1 is a diagram illustrating a gasification gas production apparatus 100. In FIG. 1, solid arrows indicate the flow of solids (fluid media, raw materials, and residues) and liquids (water). Further, in FIG. 1, the broken line arrow indicates the flow of gas (water vapor, gasified gas, air, and combustion exhaust gas).
 図1に示すように、ガス化ガス製造装置100は、燃焼炉110と、サイクロン120と、熱交換器130と、バグフィルタ140と、ガス化炉150と、サイクロン160と、熱交換器170と、ガス精製装置200とを含む。 As shown in FIG. 1, the gasification gas production apparatus 100 includes a combustion furnace 110, a cyclone 120, a heat exchanger 130, a bag filter 140, a gasification furnace 150, a cyclone 160, and a heat exchanger 170. , And a gas purification apparatus 200.
 ガス化ガス製造装置100は、流動媒体の流動層を用い、原料をガス化してガス化ガス(合成ガス)を製造する。原料は、例えば、石炭(褐炭等)、バイオマス(木質ペレット等)等の固体原料である。ガス化ガス製造装置100は、循環流動層式ガス化システムである。つまり、ガス化ガス製造装置100は、燃焼炉110、サイクロン120、ガス化炉150に、熱媒体として流動媒体を循環させている。流動媒体は、例えば、粒径が300μm程度の珪砂、カンラン石等の鉱物である。 The gasification gas production apparatus 100 uses a fluidized bed as a fluidized medium to gasify raw materials to produce gasified gas (synthetic gas). The raw material is, for example, a solid raw material such as coal (brown coal or the like) or biomass (wood pellets or the like). The gasification gas production apparatus 100 is a circulating fluidized bed type gasification system. That is, the gasification gas production apparatus 100 circulates a flow medium as a heat medium in the combustion furnace 110, the cyclone 120, and the gasification furnace 150. The fluid medium is, for example, a mineral such as silica sand or olivine having a particle size of about 300 μm.
 燃焼炉110は、筒形状である。燃焼炉110には、配管112を通じて、後述するガス化炉150から燃料および流動媒体が導入される。配管112は、燃焼炉110の下部と、ガス化炉150とを接続する。燃焼炉110は、燃料を燃焼させて、流動媒体を600℃以上1000℃以下に加熱する。燃焼排ガス、および、燃焼炉110において加熱された流動媒体は、配管114を通じて、サイクロン120に送出される。配管114は、燃焼炉110の上部と、サイクロン120とを接続する。 The combustion furnace 110 has a tubular shape. Fuel and a flow medium are introduced into the combustion furnace 110 from the gasification furnace 150, which will be described later, through the pipe 112. The pipe 112 connects the lower part of the combustion furnace 110 and the gasification furnace 150. The combustion furnace 110 burns fuel to heat the flow medium to 600 ° C. or higher and 1000 ° C. or lower. The combustion exhaust gas and the flow medium heated in the combustion furnace 110 are sent to the cyclone 120 through the pipe 114. The pipe 114 connects the upper part of the combustion furnace 110 and the cyclone 120.
 サイクロン120は、配管114を通じて燃焼炉110から導入された流動媒体と燃焼排ガスとの混合物を固気分離する。サイクロン120によって分離された高温の流動媒体は、配管122を通じて、ガス化炉150に導入される。配管122は、サイクロン120の底部とガス化炉150とを接続する。 The cyclone 120 firmly separates the mixture of the flow medium introduced from the combustion furnace 110 and the combustion exhaust gas through the pipe 114. The high temperature fluid medium separated by the cyclone 120 is introduced into the gasifier 150 through the pipe 122. The pipe 122 connects the bottom of the cyclone 120 and the gasifier 150.
 高温の流動媒体は、ガス化炉150において、流動化ガス(例えば、水蒸気)によって流動化する。具体的に説明すると、ガス化炉150は、収容槽152と、水蒸気導入部154とを含む。収容槽152は、流動媒体および原料を収容する。 The high temperature fluid medium is fluidized by the fluidized gas (for example, steam) in the gasification furnace 150. Specifically, the gasification furnace 150 includes a storage tank 152 and a steam introduction unit 154. The storage tank 152 stores the flow medium and the raw material.
 水蒸気導入部154は、収容槽152に水蒸気を導入する。水蒸気導入部154は、風箱154aと、ボイラ154bとを含む。風箱154aは、収容槽152の下方に設けられる。風箱154aの上部は、収容槽152の底面としても機能する。風箱154aの上部は、通気可能な分散板で構成されている。ボイラ154bは、水蒸気を生成する。ボイラ154bは、風箱154aに接続される。ボイラ154bによって生成された水蒸気は、風箱154aに導入される。風箱154aに導入された水蒸気は、収容槽152の底面(分散板)から当該収容槽152内に導入される。ボイラ154bは、収容槽152内に流動媒体の流動層を形成可能な流速で水蒸気を風箱154aに導入する。したがって、サイクロン120から導入された高温の流動媒体は、水蒸気によって流動化する。これにより、収容槽152内において、流動媒体の流動層(例えば、気泡流動層(バブリング流動層))が形成される。 The water vapor introduction unit 154 introduces water vapor into the storage tank 152. The steam introduction unit 154 includes a wind box 154a and a boiler 154b. The wind box 154a is provided below the storage tank 152. The upper part of the wind box 154a also functions as the bottom surface of the storage tank 152. The upper part of the wind box 154a is composed of a breathable dispersion plate. The boiler 154b produces steam. The boiler 154b is connected to the wind box 154a. The steam generated by the boiler 154b is introduced into the air box 154a. The water vapor introduced into the air box 154a is introduced into the storage tank 152 from the bottom surface (dispersion plate) of the storage tank 152. The boiler 154b introduces water vapor into the air box 154a at a flow velocity capable of forming a fluidized bed of a fluidized medium in the storage tank 152. Therefore, the high temperature fluid medium introduced from the cyclone 120 is fluidized by water vapor. As a result, a fluidized bed of the fluidized medium (for example, a bubble fluidized bed (bubbling fluidized bed)) is formed in the storage tank 152.
 また、ガス化炉150(収容槽152)には、配管122を通じて、原料が導入される。導入された原料は、流動媒体が有する600℃以上900℃以下の熱によってガス化され、これによってガス化ガス(合成ガス)が製造される。ガス化炉150で製造されたガス化ガスは、配管156を通じて、サイクロン160に導入される。配管156は、ガス化炉150の上部と、サイクロン160とを接続する。 Further, the raw material is introduced into the gasification furnace 150 (containment tank 152) through the pipe 122. The introduced raw material is gasified by the heat of the fluid medium at 600 ° C. or higher and 900 ° C. or lower, whereby a gasified gas (synthetic gas) is produced. The gasified gas produced in the gasification furnace 150 is introduced into the cyclone 160 through the pipe 156. The pipe 156 connects the upper part of the gasifier 150 and the cyclone 160.
 サイクロン160は、ガス化炉150から排出されたガス化ガスを固気分離する。固気分離されたガス化ガスは、配管162を通じて、熱交換器170に導入される。配管162は、サイクロン160の上部と熱交換器170とを接続する。また、固気分離された固形物(流動媒体、原料の残渣、一部のタール)は、配管164、配管112を通じて、燃焼炉110に導入される。配管164は、サイクロン160の底部と、配管112とを接続する。なお、本実施形態において、配管164にも原料が導入される。 The cyclone 160 solid-gas separates the gasified gas discharged from the gasification furnace 150. The gasified gas separated by solid air is introduced into the heat exchanger 170 through the pipe 162. The pipe 162 connects the upper part of the cyclone 160 and the heat exchanger 170. Further, the solid matter separated by solid air (fluid medium, residue of raw material, some tar) is introduced into the combustion furnace 110 through the pipe 164 and the pipe 112. The pipe 164 connects the bottom of the cyclone 160 and the pipe 112. In this embodiment, the raw material is also introduced into the pipe 164.
 熱交換器170は、サイクロン160によって固気分離されたガス化ガスと、水蒸気、高圧水等との熱交換を行う。熱交換器170は、ガス化ガスの顕熱を水蒸気で回収し、ガス化ガスの出口温度を150℃以上200℃以下にする。熱交換器170によって冷却されたガス化ガスは、配管172を通じて、後述するガス精製装置200に導入される。ガス精製装置200の具体的な構成については後に詳述する。配管172は、熱交換器170とガス精製装置200(除塵部210)とを接続する。 The heat exchanger 170 exchanges heat between the gasified gas solidly separated by the cyclone 160 and steam, high-pressure water, or the like. The heat exchanger 170 recovers the sensible heat of the gasified gas with steam, and sets the outlet temperature of the gasified gas to 150 ° C. or higher and 200 ° C. or lower. The gasified gas cooled by the heat exchanger 170 is introduced into the gas purification apparatus 200 described later through the pipe 172. The specific configuration of the gas purification apparatus 200 will be described in detail later. The pipe 172 connects the heat exchanger 170 and the gas purification device 200 (dust removal unit 210).
 上記したように、ガス化炉150において流動化された流動媒体は、ガス化炉150と燃焼炉110とを接続する配管112を通じて燃焼炉110に戻される。このように、本実施形態にかかるガス化ガス製造装置100において、流動媒体は、燃焼炉110、サイクロン120、ガス化炉150を、この順に移動し、再度燃焼炉110に導入されることにより、これらを循環する。 As described above, the fluidized medium in the gasification furnace 150 is returned to the combustion furnace 110 through the pipe 112 connecting the gasification furnace 150 and the combustion furnace 110. As described above, in the gasification gas production apparatus 100 according to the present embodiment, the flow medium moves the combustion furnace 110, the cyclone 120, and the gasification furnace 150 in this order, and is introduced into the combustion furnace 110 again. Circulate these.
 また、燃焼炉110には、配管112を通じて、ガス化炉150から原料の残渣が導入される。原料の残渣は、燃焼炉110において燃料として利用される。原料の残渣は、原料のうち、ガス化炉150においてガス化されずに残ったものである。 Further, the residue of the raw material is introduced into the combustion furnace 110 from the gasification furnace 150 through the pipe 112. The residue of the raw material is used as fuel in the combustion furnace 110. The residue of the raw material is the raw material that remains without being gasified in the gasification furnace 150.
 また、サイクロン120によって分離された燃焼排ガスは、配管124を通じて、熱交換器130に導かれる。配管124は、サイクロン120の上部と熱交換器130とを接続する。熱交換器130は、例えば、ボイラである。熱交換器130は、サイクロン120によって分離された燃焼排ガスと水とを熱交換する。熱交換器130は、燃焼排ガスを冷却して、水を加熱する(気化させる)。 Further, the combustion exhaust gas separated by the cyclone 120 is guided to the heat exchanger 130 through the pipe 124. The pipe 124 connects the upper part of the cyclone 120 and the heat exchanger 130. The heat exchanger 130 is, for example, a boiler. The heat exchanger 130 exchanges heat between the combustion exhaust gas separated by the cyclone 120 and water. The heat exchanger 130 cools the combustion exhaust gas and heats (vaporizes) the water.
 バグフィルタ140は、配管132を通じて、熱交換器130から導入された燃焼排ガスを除塵する。配管132は、熱交換器130とバグフィルタ140とを接続する。バグフィルタ140によって除塵された燃焼排ガスは、不図示の脱硝装置によって脱硝される。脱硝された燃焼排ガスは、不図示の脱硫装置によって脱硫される。脱硫された燃焼排ガスは、外部に排気される。なお、脱硝装置および脱硫装置は、省略することもできる。 The bug filter 140 removes the combustion exhaust gas introduced from the heat exchanger 130 through the pipe 132. The pipe 132 connects the heat exchanger 130 and the bug filter 140. The combustion exhaust gas removed by the bag filter 140 is denitrated by a denitration device (not shown). The denitrated combustion exhaust gas is desulfurized by a desulfurization device (not shown). The desulfurized combustion exhaust gas is exhausted to the outside. The denitration device and the desulfurization device may be omitted.
 上記したように、ガス化炉150は、原料を600℃以上900℃以下の低温の温度範囲でガス化する。このため、ガス化炉150で生成されたガス化ガスには、タールが含まれる。ガス化ガスに含まれるタールは、サイクロン160によって一部が分離されるものの、大部分のタールは、ガス化ガスに同伴されて熱交換器170に導入される。また、ガス化ガスには、原料由来の灰、および、流動媒体等の固体粒子(ダスト)が含まれる。 As described above, the gasifier 150 gasifies the raw material in a low temperature range of 600 ° C. or higher and 900 ° C. or lower. Therefore, the gasification gas generated in the gasification furnace 150 contains tar. Although the tar contained in the gasification gas is partially separated by the cyclone 160, most of the tar is introduced into the heat exchanger 170 along with the gasification gas. Further, the gasification gas includes ash derived from a raw material and solid particles (dust) such as a fluid medium.
 そこで、ガス化ガス製造装置100はガス精製装置200を備える。ガス精製装置200は、ガス化ガスから不純物(タールおよび固体粒子)を取り除くことにより、ガス化ガスを精製する。以下、ガス精製装置200について詳述する。 Therefore, the gasification gas production device 100 includes a gas purification device 200. The gas purification apparatus 200 purifies the gasified gas by removing impurities (tar and solid particles) from the gasified gas. Hereinafter, the gas purification apparatus 200 will be described in detail.
[ガス精製装置200]
 図2は、ガス精製装置200を説明する図である。なお、図2中、破線の矢印は、ガス化ガスの流れを示す。また、図2中、実線の矢印は、液体(第1洗浄液、排水、第2洗浄液、および、排油)の流れを示す。
[Gas Purifier 200]
FIG. 2 is a diagram illustrating a gas refining apparatus 200. In FIG. 2, the broken line arrow indicates the flow of the gasified gas. Further, in FIG. 2, the solid arrow indicates the flow of the liquid (first cleaning liquid, drainage, second cleaning liquid, and drainage oil).
 図2に示すように、ガス精製装置200は、除塵部210と、水スクラバ220と、オイルスクラバ230と、ミストセパレータ240と、誘引ファン250と、タールデカンタ260と、タール払出設備270と、水循環部280と、油循環部290とを含む。除塵部210、水スクラバ220、オイルスクラバ230、ミストセパレータ240は、互いに連通している。また、ミストセパレータ240は、誘引ファン250の吸入側に接続されている。したがって、誘引ファン250が駆動されると、ガス化ガスは、除塵部210、水スクラバ220、オイルスクラバ230、ミストセパレータ240をこの順で通過する。 As shown in FIG. 2, the gas refining apparatus 200 includes a dust removing unit 210, a water scrubber 220, an oil scrubber 230, a mist separator 240, an attraction fan 250, a tar decanter 260, a tar dispensing facility 270, and a water circulation. A portion 280 and an oil circulation portion 290 are included. The dust remover 210, the water scrubber 220, the oil scrubber 230, and the mist separator 240 communicate with each other. Further, the mist separator 240 is connected to the suction side of the attraction fan 250. Therefore, when the attraction fan 250 is driven, the gasification gas passes through the dust removing unit 210, the water scrubber 220, the oil scrubber 230, and the mist separator 240 in this order.
 除塵部210は、例えば、バグフィルタ、セラミックフィルタ、および、サイクロンのうち、いずれか1または複数で構成される。除塵部210は、配管172を通じて、熱交換器170と接続される。除塵部210は、ガス化ガスに含まれる固体粒子およびタールの一部を取り除く。ガス化ガスに含まれるタールは、重質タールおよび軽質タールを含む。重質タールは、水より質量密度が大きい。重質タールは、重油と等しい性質、もしくは、重油に類似する性質を有するものである。軽質タールは、重質タールよりも沸点が低い。軽質タールは、主成分として、1つまたは2つの芳香環を有する芳香族化合物(ベンゼン、トルエン、キシレン、および、ナフタレン等)を含む。除塵部210は、重質タールの一部を取り除く。 The dust remover 210 is composed of, for example, one or more of a bug filter, a ceramic filter, and a cyclone. The dust remover 210 is connected to the heat exchanger 170 through the pipe 172. The dust removing unit 210 removes a part of solid particles and tar contained in the gasified gas. The tar contained in the gasification gas includes heavy tar and light tar. Heavy tar has a higher mass density than water. Heavy tar has properties equivalent to or similar to heavy oil. Light tar has a lower boiling point than heavy tar. The light tar contains, as a main component, an aromatic compound having one or two aromatic rings (benzene, toluene, xylene, naphthalene, etc.). The dust remover 210 removes a part of heavy tar.
 除塵部210によって固体粒子および重質タールの一部が取り除かれたガス化ガスは、配管212を通じて、水スクラバ220に導入される。 The gasified gas from which solid particles and a part of heavy tar have been removed by the dust removing unit 210 is introduced into the water scrubber 220 through the pipe 212.
 水スクラバ220(第1スクラバ)は、除塵部210によって固体粒子が取り除かれたガス化ガスと、第1洗浄液とを接触させる。第1洗浄液は、ガス化ガスに含まれる重質タール(除去物質)の融点より低温である。第1洗浄液は、少なくとも水を含む液体である。水スクラバ220は、ガス化ガスと第1洗浄液とを接触させることにより、ガス化ガスを80℃以上100℃未満(例えば、85℃程度)に冷却する。 The water scrubber 220 (first scrubber) brings the gasified gas from which the solid particles have been removed by the dust removing unit 210 into contact with the first cleaning liquid. The first cleaning liquid has a temperature lower than the melting point of the heavy tar (removed substance) contained in the gasified gas. The first cleaning liquid is a liquid containing at least water. The water scrubber 220 cools the gasified gas to 80 ° C. or higher and lower than 100 ° C. (for example, about 85 ° C.) by bringing the gasified gas into contact with the first cleaning liquid.
 本実施形態において、水スクラバ220は、本体220aと、噴霧部220bとを含む。本体220aは、筒形状である。本体220aの上部には、配管222が接続される。配管222は、水スクラバ220とオイルスクラバ230とを接続する。本体220aの底部には、配管282が接続される。配管282は、水スクラバ220とタールデカンタ260とを接続する。本体220aにおける配管222の接続箇所と、配管282の接続箇所との間には、配管212が接続される。したがって、配管212から導入されたガス化ガスは、本体220a内を上昇し、配管222から排気される。 In the present embodiment, the water scrubber 220 includes a main body 220a and a spraying portion 220b. The main body 220a has a tubular shape. A pipe 222 is connected to the upper part of the main body 220a. The pipe 222 connects the water scrubber 220 and the oil scrubber 230. A pipe 282 is connected to the bottom of the main body 220a. The pipe 282 connects the water scrubber 220 and the tar decanter 260. A pipe 212 is connected between the connection point of the pipe 222 in the main body 220a and the connection point of the pipe 282. Therefore, the gasified gas introduced from the pipe 212 rises in the main body 220a and is exhausted from the pipe 222.
 噴霧部220bは、本体220a内における配管222の接続箇所と、配管212の接続箇所との間に設けられる。噴霧部220bは、第1洗浄液を本体220a内に噴霧する。 The spraying portion 220b is provided between the connection point of the pipe 222 and the connection point of the pipe 212 in the main body 220a. The spraying unit 220b sprays the first cleaning liquid into the main body 220a.
 したがって、ガス化ガスは、本体220aを通過(上昇)する過程で第1洗浄液と接触し、85℃程度まで冷却される。そうすると、ガス化ガスに残存する重質タールが凝縮され、ガス化ガスから取り除かれる。そして、重質タールが取り除かれたガス化ガスは、配管222を通じてオイルスクラバ230に導入される。一方、凝縮した重質タールは、第1洗浄液とともに本体220aの底部に落下し、配管282を通じて、タールデカンタ260に導入される。 Therefore, the gasified gas comes into contact with the first cleaning liquid in the process of passing (rising) through the main body 220a and is cooled to about 85 ° C. Then, the heavy tar remaining in the gasification gas is condensed and removed from the gasification gas. Then, the gasified gas from which the heavy tar has been removed is introduced into the oil scrubber 230 through the pipe 222. On the other hand, the condensed heavy tar falls to the bottom of the main body 220a together with the first cleaning liquid and is introduced into the tar decanter 260 through the pipe 282.
 このように、水スクラバ220が、ガス化ガスを80℃以上100℃未満に冷却することにより、流動性を維持したまま、重質タールを凝縮させることができる。これにより、水スクラバ220は、重質タールを第1洗浄液とともに自重でタールデカンタ260に移動させることが可能となる。つまり、水スクラバ220は、重質タールを容易にタールデカンタ260に移動させることができる。 In this way, the water scrubber 220 can condense heavy tar while maintaining fluidity by cooling the gasified gas to 80 ° C. or higher and lower than 100 ° C. As a result, the water scrubber 220 can move the heavy tar together with the first cleaning liquid to the tar decanter 260 by its own weight. That is, the water scrubber 220 can easily move heavy tar to the tar decanter 260.
 また、水スクラバ220は、ガス化ガスを80℃以上に維持する。これにより、水スクラバ220は、本体220aの内壁に、ナフタレンが析出してしまう事態を回避することができる。 In addition, the water scrubber 220 maintains the gasified gas at 80 ° C. or higher. As a result, the water scrubber 220 can avoid a situation in which naphthalene is deposited on the inner wall of the main body 220a.
 また、アンモニアおよび硫黄酸化物(SOx)は、第1洗浄液に溶解する。したがって、ガス化ガスにアンモニアまたは硫黄酸化物が含まれる場合、水スクラバ220は、アンモニアおよび硫黄酸化物をガス化ガスから取り除くことができる。 Ammonia and sulfur oxides (SOx) are dissolved in the first cleaning solution. Therefore, if the gasification gas contains ammonia or sulfur oxides, the water scrubber 220 can remove the ammonia and sulfur oxides from the gasification gas.
 オイルスクラバ230(第2スクラバ)は、水スクラバ220によって処理されたガス化ガスと、第2洗浄液とを接触させる。第2洗浄液は、第1洗浄液よりもタール(除去物質)との親和性が高い。第2洗浄液は、少なくともオイルを含む液体である。オイルは、例えば、鉱物油、軽油、バイオディーゼル燃料、および、植物油のうち、いずれか1または複数を含む。オイルスクラバ230は、ガス化ガスと第2洗浄液とを接触させることにより、ガス化ガスに含まれる軽質タールを第2洗浄液に溶解させる。これにより、オイルスクラバ230は、ガス化ガスから軽質タールを取り除く。 The oil scrubber 230 (second scrubber) brings the gasified gas treated by the water scrubber 220 into contact with the second cleaning liquid. The second cleaning solution has a higher affinity for tar (removing substance) than the first cleaning solution. The second cleaning liquid is a liquid containing at least oil. The oil includes, for example, one or more of mineral oil, light oil, biodiesel fuel, and vegetable oil. The oil scrubber 230 dissolves the light tar contained in the gasification gas in the second cleaning liquid by bringing the gasification gas into contact with the second cleaning liquid. As a result, the oil scrubber 230 removes light tar from the gasified gas.
 本実施形態において、オイルスクラバ230は、本体230aと、分散部230bと、充填層230cとを含む。本体230aは、筒形状である。本体230aの上部には、配管232が接続される。配管232は、オイルスクラバ230とミストセパレータ240とを接続する。本体230aの底部には、配管234が接続される。配管234は、オイルスクラバ230とタールデカンタ260とを接続する。本体230aにおける配管232の接続箇所と、配管234の接続箇所との間には、配管292が接続される。配管292は、オイルスクラバ230とポンプ294とを接続する。本体230aにおける配管232の接続箇所と、配管292の接続箇所との間には、配管222が接続される。したがって、配管222から導入されたガス化ガスは、本体230a内を上昇し、配管232から排気される。 In the present embodiment, the oil scrubber 230 includes a main body 230a, a dispersion portion 230b, and a filling layer 230c. The main body 230a has a tubular shape. A pipe 232 is connected to the upper part of the main body 230a. The pipe 232 connects the oil scrubber 230 and the mist separator 240. A pipe 234 is connected to the bottom of the main body 230a. The pipe 234 connects the oil scrubber 230 and the tar decanter 260. A pipe 292 is connected between the connection point of the pipe 232 and the connection point of the pipe 234 in the main body 230a. The pipe 292 connects the oil scrubber 230 and the pump 294. The pipe 222 is connected between the connection point of the pipe 232 and the connection point of the pipe 292 in the main body 230a. Therefore, the gasified gas introduced from the pipe 222 rises in the main body 230a and is exhausted from the pipe 232.
 分散部230bは、本体230a内における配管232の接続箇所と、配管222の接続箇所との間に設けられる。分散部230bは、ガス化ガスに含まれる水蒸気が凝縮する温度(例えば、50℃以下)の第2洗浄液を本体230a内に噴霧する。 The dispersion portion 230b is provided between the connection point of the pipe 232 and the connection point of the pipe 222 in the main body 230a. The dispersion unit 230b sprays the second cleaning liquid at a temperature at which the water vapor contained in the gasified gas condenses (for example, 50 ° C. or lower) into the main body 230a.
 したがって、ガス化ガスは、本体230aを通過(上昇)する過程で第2洗浄液と接触することになる。これにより、ガス化ガスに含まれる軽質タールは、第2洗浄液に溶解される。そして、第2洗浄液に溶解された軽質タールは、本体230aの底部に落下する。 Therefore, the gasified gas comes into contact with the second cleaning liquid in the process of passing (rising) through the main body 230a. As a result, the light tar contained in the gasified gas is dissolved in the second cleaning liquid. Then, the light tar dissolved in the second cleaning liquid falls to the bottom of the main body 230a.
 また、ガス化ガスは、第2洗浄液によって冷却される。そうすると、ガス化ガスに残存する水蒸気が凝縮され、ガス化ガスから取り除かれる。そして、凝縮した水蒸気、つまり、凝縮水は、本体230aの底部に落下する。なお、凝縮水は、第2洗浄液および軽質タールを含む排油よりも質量密度が大きい。したがって、凝縮水は、本体230aの底部における排油の層よりも下方に滞留する。つまり、本体230aにおいて、排油と凝縮水とが沈降分離される。 Further, the gasified gas is cooled by the second cleaning liquid. Then, the water vapor remaining in the gasification gas is condensed and removed from the gasification gas. Then, the condensed water vapor, that is, the condensed water, falls to the bottom of the main body 230a. In addition, the condensed water has a higher mass density than the second cleaning liquid and the exhaust oil containing light tar. Therefore, the condensed water stays below the oil drainage layer at the bottom of the main body 230a. That is, in the main body 230a, the drained oil and the condensed water are separated by sedimentation.
 そして、本体230aの底部に滞留した凝縮水(排水)は、配管234を通じて、タールデカンタ260に導入される。また、本体230aにおける凝縮水の上方に滞留した排油は、配管292を通じて、ポンプ294に吸引される。 Then, the condensed water (drainage) accumulated at the bottom of the main body 230a is introduced into the tar decanter 260 through the pipe 234. Further, the drainage oil accumulated above the condensed water in the main body 230a is sucked into the pump 294 through the pipe 292.
 また、軽質タールおよび水蒸気が取り除かれたガス化ガスは、配管232を通じてミストセパレータ240に導入される。 Further, the gasified gas from which the light tar and water vapor have been removed is introduced into the mist separator 240 through the pipe 232.
 充填層230cは、本体230a内における分散部230bと、配管222との接続箇所との間に設けられる。充填層230cは、リング、金網、棚段、トレイ等を含む。充填層230cは、第2洗浄液の落下速度を低下させる。オイルスクラバ230は、充填層230cを備えるため、ガス化ガスと第2洗浄液との接触効率を向上させることができる。したがって、オイルスクラバ230は、ガス化ガスに含まれる軽質タールを効率よく第2洗浄液に溶解させることが可能となる。 The filling layer 230c is provided between the dispersion portion 230b in the main body 230a and the connection point with the pipe 222. The packing layer 230c includes rings, wire mesh, shelves, trays and the like. The packing layer 230c reduces the falling speed of the second cleaning liquid. Since the oil scrubber 230 includes the filling layer 230c, the contact efficiency between the gasification gas and the second cleaning liquid can be improved. Therefore, the oil scrubber 230 can efficiently dissolve the light tar contained in the gasified gas in the second cleaning liquid.
 ミストセパレータ240は、ガス化ガスに含まれるミスト(第2洗浄液)を取り除く。ミストセパレータ240の上部には配管242が接続される。配管242は、ミストセパレータ240と誘引ファン250の吸入側とを接続する。ミストセパレータ240の底部には配管244が接続される。配管244は、ミストセパレータ240とオイルスクラバ230(本体230a)とを接続する。本実施形態において、配管242は、本体230aにおける充填層230cの下方に接続される。ミストセパレータ240における配管242の接続箇所と、配管244の接続箇所との間には、配管232が接続される。したがって、配管232から導入されたガス化ガスは、ミストセパレータ240内でミストが取り除かれた後、配管242から排気される。また、ミストセパレータ240内でガス化ガスから取り除かれたミストは、配管244を通じてオイルスクラバ230に返送される。 The mist separator 240 removes the mist (second cleaning liquid) contained in the gasified gas. A pipe 242 is connected to the upper part of the mist separator 240. The pipe 242 connects the mist separator 240 and the suction side of the attraction fan 250. A pipe 244 is connected to the bottom of the mist separator 240. The pipe 244 connects the mist separator 240 and the oil scrubber 230 (main body 230a). In the present embodiment, the pipe 242 is connected below the filling layer 230c in the main body 230a. The pipe 232 is connected between the connection point of the pipe 242 in the mist separator 240 and the connection point of the pipe 244. Therefore, the gasified gas introduced from the pipe 232 is exhausted from the pipe 242 after the mist is removed in the mist separator 240. Further, the mist removed from the gasified gas in the mist separator 240 is returned to the oil scrubber 230 through the pipe 244.
 誘引ファン250は、吸入側が配管242(ミストセパレータ240)に接続され、吐出側が配管252に接続される。誘引ファン250は、ミストセパレータ240でミストが取り除かれたガス化ガス(精製ガス化ガス)を吸引して、配管252を通じて、後段のガス化ガス利用設備に送出する。ガス化ガス利用設備は、ガスエンジン等の発電設備、または、化学製品の製造装置である。 The suction fan 250 is connected to the pipe 242 (mist separator 240) on the suction side and to the pipe 252 on the discharge side. The attraction fan 250 sucks the gasification gas (refined gasification gas) from which the mist has been removed by the mist separator 240 and sends it to the gasification gas utilization facility in the subsequent stage through the pipe 252. Gasification gas utilization equipment is power generation equipment such as a gas engine, or equipment for manufacturing chemical products.
 タールデカンタ260は、水スクラバ220において生じた排水およびオイルスクラバ230で生じた凝縮水を貯留する。タールデカンタ260は、質量密度および粒径の違いによって、排水を上澄液と沈降物とに分離する。沈降物には、重質タールが含まれる。 The tar decanter 260 stores the wastewater generated in the water scrubber 220 and the condensed water generated in the oil scrubber 230. The tar decanter 260 separates wastewater into a supernatant and a sediment depending on the difference in mass density and particle size. The sediment contains heavy tar.
 タール払出設備270は、例えば、スクリューコンベヤで構成される。タール払出設備270は、タールデカンタ260において分離された沈降物(重質タール)を外部に送出する。重質タール(除去物質)は、ボイラ、発電機等の燃焼設備(設備)の燃料に利用されたり、獣除けに利用されたりする。 The tar dispensing equipment 270 is composed of, for example, a screw conveyor. The tar dispensing facility 270 sends out the sediment (heavy tar) separated in the tar decanter 260 to the outside. Heavy tar (removed substance) is used as fuel for combustion equipment (equipment) such as boilers and generators, and is also used for animal protection.
 水循環部280は、水スクラバ220に第1洗浄液を循環させる。水循環部280は、配管282、284、288と、ポンプ286とを含む。配管284は、タールデカンタ260とポンプ286の吸入側とを接続する。配管288は、ポンプ286の吐出側と噴霧部220bとを接続する。ポンプ286は、タールデカンタ260において分離された上澄液を第1洗浄液として噴霧部220bに供給する。 The water circulation unit 280 circulates the first cleaning liquid in the water scrubber 220. The water circulation unit 280 includes pipes 282, 284, 288 and a pump 286. The pipe 284 connects the tar decanter 260 and the suction side of the pump 286. The pipe 288 connects the discharge side of the pump 286 and the spray portion 220b. The pump 286 supplies the supernatant liquid separated in the tar decanter 260 as the first cleaning liquid to the spray unit 220b.
 また、上記したように、タールデカンタ260には、オイルスクラバ230で分離された凝縮水が導入される。したがって、配管234、タールデカンタ260、および、水循環部280は、オイルスクラバ230で生じた排水を水スクラバ220に供給する水供給部として機能する。 Further, as described above, the condensed water separated by the oil scrubber 230 is introduced into the tar decanter 260. Therefore, the pipe 234, the tar decanter 260, and the water circulation unit 280 function as a water supply unit that supplies the wastewater generated by the oil scrubber 230 to the water scrubber 220.
 油循環部290は、オイルスクラバ230に第2洗浄液を循環させる。油循環部290は、配管292、296と、ポンプ294と、冷却部298とを含む。上記したように、配管292は、オイルスクラバ230の本体230aとポンプ294の吸入側とを接続する。配管296は、ポンプ294の吐出側とオイルスクラバ230の分散部230bとを接続する。ポンプ294は、オイルスクラバ230の本体230aに滞留された排油を第2洗浄液として分散部230bに供給する。冷却部298は、配管296に設けられる。冷却部298は、第2洗浄液を冷却する。冷却部298を備える構成により、オイルスクラバ230は、ガス化ガスに含まれる軽質タールを効率よく第2洗浄液に溶解させることができる。 The oil circulation unit 290 circulates the second cleaning liquid in the oil scrubber 230. The oil circulation unit 290 includes pipes 292 and 296, a pump 294, and a cooling unit 298. As described above, the pipe 292 connects the main body 230a of the oil scrubber 230 and the suction side of the pump 294. The pipe 296 connects the discharge side of the pump 294 and the dispersion portion 230b of the oil scrubber 230. The pump 294 supplies the exhaust oil retained in the main body 230a of the oil scrubber 230 as a second cleaning liquid to the dispersion portion 230b. The cooling unit 298 is provided in the pipe 296. The cooling unit 298 cools the second cleaning liquid. With the configuration including the cooling unit 298, the oil scrubber 230 can efficiently dissolve the light tar contained in the gasified gas in the second cleaning liquid.
[ガス精製方法]
 続いて、上記ガス精製装置200を用いたガス精製方法を説明する。図3は、ガス精製方法の処理の流れを説明するフローチャートである。図3に示すように、ガス精製方法は、除塵工程S110と、水洗浄工程S120と、油洗浄工程S130とを含む。以下、各工程について詳述する。
[Gas purification method]
Subsequently, a gas refining method using the gas refining apparatus 200 will be described. FIG. 3 is a flowchart illustrating a processing flow of the gas purification method. As shown in FIG. 3, the gas refining method includes a dust removing step S110, a water cleaning step S120, and an oil cleaning step S130. Hereinafter, each step will be described in detail.
[除塵工程S110]
 除塵工程S110は、除塵部210が、ガス化ガスに含まれる固体粒子を取り除く工程である。
[Dust removal step S110]
The dust removing step S110 is a step in which the dust removing unit 210 removes solid particles contained in the gasified gas.
[水洗浄工程S120]
 水洗浄工程S120は、水スクラバ220が、除塵工程S110において固体粒子が取り除かれたガス化ガスと、第1洗浄液とを接触させる工程である。水洗浄工程S120を遂行することにより、ガス化ガスから重質タールが取り除かれる。
[Water cleaning step S120]
The water cleaning step S120 is a step in which the water scrubber 220 brings the gasified gas from which the solid particles have been removed in the dust removing step S110 into contact with the first cleaning liquid. By carrying out the water washing step S120, heavy tar is removed from the gasified gas.
[油洗浄工程S130]
 油洗浄工程S130は、オイルスクラバ230が、水洗浄工程S120において重質タールが取り除かれたガス化ガスと、第2洗浄液とを接触させる工程である。油洗浄工程S130を遂行することにより、ガス化ガスから軽質タールが取り除かれる。
[Oil cleaning step S130]
The oil cleaning step S130 is a step in which the oil scrubber 230 brings the gasified gas from which the heavy tar has been removed in the water cleaning step S120 into contact with the second cleaning liquid. By carrying out the oil cleaning step S130, the light tar is removed from the gasified gas.
 以上説明したように、本実施形態のガス精製装置200およびこれを用いたガス精製方法は、除塵部210を備える。これにより、水スクラバ220の処理負荷を軽減することができる。したがって、ガス精製装置200は、水スクラバ220およびタールデカンタ260を小型化することが可能となる。 As described above, the gas purification device 200 of the present embodiment and the gas purification method using the gas purification device 200 include a dust removing unit 210. Thereby, the processing load of the water scrubber 220 can be reduced. Therefore, the gas purification apparatus 200 can reduce the size of the water scrubber 220 and the tar decanter 260.
 また、ガス精製装置200は、水スクラバ220およびオイルスクラバ230を備える。水スクラバ220のみでガス化ガスを精製する従来技術は、タールの除去率が10%~25%程度と低い。一方、ガス精製装置200は、水スクラバ220によって重質タールを取り除き、オイルスクラバ230によって軽質タールを取り除くことができる。したがって、ガス精製装置200は、ガス化ガスに含まれるタールを効率よく取り除くことが可能となる。 Further, the gas refining device 200 includes a water scrubber 220 and an oil scrubber 230. The conventional technique for purifying a gasified gas using only a water scrubber 220 has a low tar removal rate of about 10% to 25%. On the other hand, the gas refining apparatus 200 can remove heavy tar with a water scrubber 220 and light tar with an oil scrubber 230. Therefore, the gas purification apparatus 200 can efficiently remove tar contained in the gasified gas.
 また、オイルスクラバ230のみでガス化ガスを精製する従来技術は、軽質タールのみならず、重質タールが第2洗浄液に溶解する。重質タールは、融点が高いため、第2洗浄液に溶解すると、第2洗浄液の粘度が増加する。そうすると、オイルスクラバ230への第2洗浄液の循環が困難になり、オイルスクラバ230の運転ができなくなる。したがって、オイルスクラバ230のみでガス化ガスを精製する従来技術では、第2洗浄液を頻繁に交換しなければならなかった。 Further, in the conventional technique of purifying the gasification gas only with the oil scrubber 230, not only the light tar but also the heavy tar is dissolved in the second cleaning liquid. Since heavy tar has a high melting point, when it is dissolved in the second cleaning solution, the viscosity of the second cleaning solution increases. Then, it becomes difficult to circulate the second cleaning liquid to the oil scrubber 230, and the oil scrubber 230 cannot be operated. Therefore, in the prior art of purifying the gasified gas only with the oil scrubber 230, the second cleaning liquid had to be changed frequently.
 これに対し、ガス精製装置200は、オイルスクラバ230の前段に水スクラバ220を備える。これにより、オイルスクラバ230は、重質タールが取り除かれたガス化ガスと第2洗浄液とを接触させることになる。軽質タールは、第2洗浄液に溶解しても重質タールと比較して粘度が増加しない。このため、油循環部290は、オイルスクラバ230に安定して第2洗浄液を循環させることができる。したがって、ガス精製装置200は、オイルスクラバ230のみを備える従来技術と比較して、第2洗浄液の交換頻度を低減することが可能となる。これにより、ガス精製装置200は、低コストでガス化ガスを精製することができる。 On the other hand, the gas refining device 200 includes a water scrubber 220 in front of the oil scrubber 230. As a result, the oil scrubber 230 brings the gasified gas from which the heavy tar has been removed into contact with the second cleaning liquid. The viscosity of the light tar does not increase as compared with the heavy tar even if it is dissolved in the second cleaning liquid. Therefore, the oil circulation unit 290 can stably circulate the second cleaning liquid to the oil scrubber 230. Therefore, the gas refining apparatus 200 can reduce the frequency of replacement of the second cleaning liquid as compared with the conventional technique including only the oil scrubber 230. As a result, the gas purification device 200 can purify the gasified gas at low cost.
 また、オイルスクラバ230のみでガス化ガスを精製する従来技術は、水溶性の不純物を取り除くことができない。このため、オイルスクラバ230のみでガス化ガスを精製する従来技術は、水溶性の不純物によって、ガス化ガスを利用する後段のガス化ガス利用設備に不具合が生じるおそれがある。これに対し、ガス精製装置200は、オイルスクラバ230に加えて水スクラバ220を備えるため、タールのみならず、水溶性の不純物をガス化ガスから取り除くことができる。したがって、ガス精製装置200は、ガス化ガスを利用する後段のガス化ガス利用設備の不具合を防止することが可能となる。 Further, the conventional technique of purifying the gasified gas only with the oil scrubber 230 cannot remove water-soluble impurities. Therefore, in the conventional technique of purifying the gasification gas only with the oil scrubber 230, there is a possibility that the gasification gas utilization equipment in the subsequent stage using the gasification gas may be defective due to water-soluble impurities. On the other hand, since the gas refining apparatus 200 includes the water scrubber 220 in addition to the oil scrubber 230, not only tar but also water-soluble impurities can be removed from the gasification gas. Therefore, the gas refining device 200 can prevent a malfunction of the gasification gas utilization equipment in the subsequent stage using the gasification gas.
 また、ガス精製装置200は、タールデカンタ260を備える。これにより、ガス精製装置200は、排水から重質タールを分離することができる。したがって、ガス精製装置200は、重質タールを有効利用することが可能となる。 Further, the gas refining apparatus 200 is provided with a tar decanter 260. As a result, the gas purification apparatus 200 can separate the heavy tar from the wastewater. Therefore, the gas refining apparatus 200 can effectively utilize heavy tar.
 また、ガス精製装置200は、水供給部(配管234、タールデカンタ260、および、水循環部280)を備える。これにより、ガス精製装置200は、オイルスクラバ230で生じた排水を水スクラバ220で利用することができる。したがって、ガス精製装置200は、第1洗浄液に要するコストを低減することが可能となる。 Further, the gas purification device 200 includes a water supply unit (pipe 234, tar decanter 260, and water circulation unit 280). As a result, the gas refining apparatus 200 can utilize the wastewater generated in the oil scrubber 230 in the water scrubber 220. Therefore, the gas purification apparatus 200 can reduce the cost required for the first cleaning liquid.
 また、ガス精製装置200は、除塵部210、水スクラバ220、および、オイルスクラバ230を備える。このため、ガス精製装置200は、ガス化ガスに含まれるタールを除去するために従来用いられていた酸化改質炉を省略しても、ガス化ガスから効率よくタールを取り除くことができる。酸化改質炉は、ガス化炉150で生成されたガス化ガスに酸素や空気を加え、ガス化ガスの一部を燃焼させる。したがって、ガス精製装置200は、酸化改質炉を省略することにより、精製後のガス化ガスに含まれる燃焼ガス(水素、一酸化炭素)の量を増加させることが可能となる。 Further, the gas refining device 200 includes a dust removing unit 210, a water scrubber 220, and an oil scrubber 230. Therefore, the gas refining apparatus 200 can efficiently remove tar from the gasification gas even if the oxidation reforming furnace conventionally used for removing tar contained in the gasification gas is omitted. The oxidation reforming furnace adds oxygen or air to the gasified gas generated in the gasification furnace 150 and burns a part of the gasified gas. Therefore, the gas purification apparatus 200 can increase the amount of combustion gas (hydrogen, carbon monoxide) contained in the gasified gas after purification by omitting the oxidation reforming furnace.
[変形例]
 上記ガス精製装置200は、オイルスクラバ230で利用された第2洗浄液を再生する再生部をさらに備えてもよい。図4は、変形例にかかる、油循環部310および、再生部350を説明する図である。なお、図4中、破線の矢印は、ガス(ガス化ガス、缶出ガス、および、留出ガス)の流れを示す。また、図4中、実線の矢印は、液体(凝縮水、第2洗浄液、排油、缶出液、および、留出液)の流れを示す。
[Modification example]
The gas refining apparatus 200 may further include a regenerating unit that regenerates the second cleaning liquid used in the oil scrubber 230. FIG. 4 is a diagram illustrating an oil circulation unit 310 and a regeneration unit 350 according to a modified example. In FIG. 4, the broken line arrow indicates the flow of gas (gasification gas, canned gas, and distillate gas). Further, in FIG. 4, the solid arrow indicates the flow of the liquid (condensed water, second cleaning liquid, drained oil, canned liquid, and distillate).
 図4に示すように、油循環部310は、沈降分離部320と、配管322、330、334、336と、ポンプ332と、熱交換器340と、冷却部298とを含む。なお、上記油循環部290と実質的に等しい構成要素については、同一の符号を付して説明を省略する。 As shown in FIG. 4, the oil circulation unit 310 includes a sedimentation separation unit 320, pipes 322, 330, 334, 336, a pump 332, a heat exchanger 340, and a cooling unit 298. The components substantially the same as the oil circulation unit 290 are designated by the same reference numerals and the description thereof will be omitted.
 沈降分離部320は、オイルスクラバ230で生じた排油および凝縮水を分離する。沈降分離部320は、収容槽320aと、仕切板320bとを含む。収容槽320aは、オイルスクラバ230で生じた排油および凝縮水を貯留する。仕切板320bは、収容槽320a内を第1室と、第2室とに仕切る。仕切板320bの上部は、収容槽320aの上部と離隔する。仕切板320bの側部および下部は、収容槽320aの内壁に接続される。 The sedimentation separation unit 320 separates the drained oil and the condensed water generated in the oil scrubber 230. The settling separation section 320 includes a storage tank 320a and a partition plate 320b. The storage tank 320a stores the drained oil and condensed water generated in the oil scrubber 230. The partition plate 320b divides the inside of the storage tank 320a into a first chamber and a second chamber. The upper part of the partition plate 320b is separated from the upper part of the storage tank 320a. The side portions and the lower portion of the partition plate 320b are connected to the inner wall of the storage tank 320a.
 配管234は、オイルスクラバ230の本体230aの底部と、収容槽320aの第1室とを接続する。したがって、オイルスクラバ230で生じた排油および凝縮水は、収容槽320aの第1室に貯留される。収容槽320aの第1室において、凝縮水が沈降し、排油から分離される。沈降分離された凝縮水は、配管322を通じてタールデカンタ260に導入される。配管322は、収容槽320aの第1室の底部とタールデカンタ260とを接続する。 The pipe 234 connects the bottom of the main body 230a of the oil scrubber 230 and the first chamber of the storage tank 320a. Therefore, the drained oil and the condensed water generated in the oil scrubber 230 are stored in the first chamber of the storage tank 320a. In the first chamber of the containment tank 320a, the condensed water settles and is separated from the drainage oil. The settled and separated condensed water is introduced into the tar decanter 260 through the pipe 322. The pipe 322 connects the bottom of the first chamber of the storage tank 320a with the tar decanter 260.
 一方、第1室において凝縮水が沈降することで分離された排油は、仕切板320bを越流して収容槽320aの第2室に移動する。そして、排油は、配管330を通じて、ポンプ332の吸入側に導入される。ポンプ332の吐出側は、配管334に接続される。配管334は、ポンプ332の吐出側と、再生部350(再生塔352)とを接続する。ポンプ332は、沈降分離部320で分離された排油を再生部350に導入する。再生部350は、排油を再生する。つまり、再生部350は、排油から軽質タールを取り除く。再生部350の具体的な構成は後に詳述する。 On the other hand, the drainage oil separated by the sedimentation of the condensed water in the first chamber overflows the partition plate 320b and moves to the second chamber of the storage tank 320a. Then, the drainage oil is introduced to the suction side of the pump 332 through the pipe 330. The discharge side of the pump 332 is connected to the pipe 334. The pipe 334 connects the discharge side of the pump 332 and the regeneration unit 350 (regeneration tower 352). The pump 332 introduces the drainage oil separated by the sedimentation separation unit 320 into the regeneration unit 350. The regeneration unit 350 regenerates the drained oil. That is, the recycling unit 350 removes the light tar from the drained oil. The specific configuration of the reproduction unit 350 will be described in detail later.
 再生部350によって再生された排油(第2洗浄液)は、配管336を通じて、オイルスクラバ230の分散部230bに供給される。 The drainage oil (second cleaning liquid) regenerated by the regenerating unit 350 is supplied to the dispersion unit 230b of the oil scrubber 230 through the pipe 336.
 熱交換器340は、配管334を通過する排油と、配管336を通過する第2洗浄液とを熱交換する。熱交換器340は、排油を加熱し、第2洗浄液を冷却する。冷却部298は、配管336における熱交換器340の設置位置と、オイルスクラバ230との間に設けられる。 The heat exchanger 340 exchanges heat between the drainage oil passing through the pipe 334 and the second cleaning liquid passing through the pipe 336. The heat exchanger 340 heats the exhaust oil and cools the second cleaning liquid. The cooling unit 298 is provided between the installation position of the heat exchanger 340 in the pipe 336 and the oil scrubber 230.
 再生部350(蒸留部)は、再生塔352と、リボイラ354と、コンデンサ356とを含む。再生塔352は、筒形状である。再生塔352内には、充填層が設けられる。充填層は、棚段を含む。配管334は、再生塔352の中央に接続される。リボイラ354は、再生塔352の塔底から缶出液を抜き出し、所定温度に加熱する。リボイラ354によって加熱され、缶出液から気化した缶出ガスは、再生塔352に返送される。一方、リボイラ354によって缶出ガスが取り除かれた缶出液は、第2洗浄液として配管336に導入される。コンデンサ356は、再生塔352の塔頂から留出ガスを抜き出し、所定温度に冷却して凝縮させる。コンデンサ356によって凝縮された留出液は、一部が外部に抜き出され、残りは、再生塔352に返送される。留出液には、軽質タールが含まれる。 The regeneration unit 350 (distillation unit) includes a regeneration tower 352, a reboiler 354, and a capacitor 356. The regeneration tower 352 has a tubular shape. A filling layer is provided in the regeneration tower 352. The packed bed includes shelves. The pipe 334 is connected to the center of the regeneration tower 352. The reboiler 354 draws out the canned liquid from the bottom of the regeneration tower 352 and heats it to a predetermined temperature. The canned gas heated by the reboiler 354 and vaporized from the canned liquid is returned to the regeneration tower 352. On the other hand, the canned liquid from which the canned gas has been removed by the reboiler 354 is introduced into the pipe 336 as the second cleaning liquid. The condenser 356 extracts the distillate gas from the top of the regeneration tower 352, cools it to a predetermined temperature, and condenses it. A part of the distillate condensed by the condenser 356 is extracted to the outside, and the rest is returned to the regeneration tower 352. The distillate contains light tar.
 オイルスクラバ230は、ガス化ガスに含まれる軽質タールを第2洗浄液に溶解させることで、ガス化ガスから軽質タールを取り除く。このため、オイルスクラバ230では、運転時間が長くなるに従って、第2洗浄液中の軽質タールの蓄積量が増加し、第2洗浄液が劣化する。そこで、変形例は、再生部350を備える。これにより、排油から軽質タールを取り除いて、オイルスクラバ230で再利用することができる。したがって、変形例は、第2洗浄液の交換頻度をさらに低減することが可能となる。 The oil scrubber 230 removes the light tar from the gasification gas by dissolving the light tar contained in the gasification gas in the second cleaning liquid. Therefore, in the oil scrubber 230, as the operation time becomes longer, the accumulated amount of light tar in the second cleaning liquid increases, and the second cleaning liquid deteriorates. Therefore, the modified example includes a reproduction unit 350. As a result, the light tar can be removed from the drained oil and reused in the oil scrubber 230. Therefore, in the modified example, the frequency of replacement of the second cleaning liquid can be further reduced.
 以上、添付図面を参照しながら実施形態について説明したが、本開示は上記実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although the embodiments have been described above with reference to the attached drawings, it goes without saying that the present disclosure is not limited to the above embodiments. It is clear to those skilled in the art that various modifications or modifications can be conceived within the scope of the claims, and it is understood that they also naturally belong to the technical scope of the present disclosure. Will be done.
 例えば、上述した実施形態において、ガス精製装置200が、ガス化炉150によって製造されたガス化ガスを精製する場合を例に挙げた。しかし、ガス精製装置200は、固体粒子と、タール、オレフィン等の有機化合物とを含むガスを精製することができる。ガス精製装置200は、例えば、ライムキルン、コークス炉等の原料を蒸し焼き(乾留)する装置によって製造されたガスを精製してもよい。また、ガス精製装置200は、塗装工場の排気ガスを精製してもよい。 For example, in the above-described embodiment, the case where the gas purification device 200 purifies the gasified gas produced by the gasification furnace 150 has been given as an example. However, the gas purification apparatus 200 can purify a gas containing solid particles and an organic compound such as tar or olefin. The gas refining apparatus 200 may purify the gas produced by an apparatus for steaming (dry distillation) raw materials such as a lime kiln and a coke oven. Further, the gas refining device 200 may purify the exhaust gas of the painting factory.
 また、上記実施形態において、ガス化炉150は、流動媒体の流動層で固体原料をガス化する構成を例に挙げて説明した。しかし、ガス化炉150は、流動媒体が有する熱で固体原料をガス化できればよい。ガス化炉150は、例えば、流動媒体の移動層で固体原料をガス化してもよい。 Further, in the above embodiment, the gasification furnace 150 has been described by taking as an example a configuration in which a solid raw material is gasified in a fluidized bed of a fluidized medium. However, the gasification furnace 150 only needs to be able to gasify the solid raw material with the heat of the flow medium. The gasification furnace 150 may gasify the solid raw material in the moving layer of the flow medium, for example.
 また、上記実施形態において、ガス精製装置200が、オイルスクラバ230で生じた排水を水スクラバ220に供給する水供給部を備える構成を例に挙げた。しかし、ガス精製装置200は、オイルスクラバ230で生じた排水を水スクラバ220に供給せずともよい。 Further, in the above embodiment, the configuration in which the gas refining apparatus 200 includes a water supply unit for supplying the wastewater generated in the oil scrubber 230 to the water scrubber 220 is given as an example. However, the gas purification apparatus 200 does not have to supply the wastewater generated by the oil scrubber 230 to the water scrubber 220.
 また、上記実施形態において、ガス精製装置200がタールデカンタ260を備える構成を例に挙げた。しかし、ガス精製装置200は、タールデカンタ260を備えずともよい。 Further, in the above embodiment, the configuration in which the gas refining apparatus 200 is provided with the tar decanter 260 is given as an example. However, the gas refining apparatus 200 does not have to include the tar decanter 260.
 また、上記実施形態において、ガス精製装置200が誘引ファン250を備える構成を例に挙げた。しかし、誘引ファン250は、必須の構成ではない。例えば、圧力差により、ガスが、除塵部210、水スクラバ220、オイルスクラバ230をこの順で通過することができれば、誘引ファン250を省略することができる。 Further, in the above embodiment, the configuration in which the gas purification device 200 includes the attraction fan 250 is given as an example. However, the attraction fan 250 is not an essential configuration. For example, if the gas can pass through the dust removing unit 210, the water scrubber 220, and the oil scrubber 230 in this order due to the pressure difference, the attraction fan 250 can be omitted.
 また、水スクラバ220が噴霧する第1洗浄液に酸を添加して、第1洗浄液を酸性にしてもよい。これにより、水スクラバ220は、ガスに含まれるアルカリ成分(例えば、アンモニア)を効率よく取り除くことができる。同様に、水スクラバ220が噴霧する第1洗浄液にアルカリを添加して、第1洗浄液をアルカリ性にしてもよい。これにより、水スクラバ220は、ガスに含まれる酸成分(例えば、硫黄酸化物)を効率よく取り除くことができる。 Further, an acid may be added to the first cleaning liquid sprayed by the water scrubber 220 to make the first cleaning liquid acidic. As a result, the water scrubber 220 can efficiently remove the alkaline component (for example, ammonia) contained in the gas. Similarly, alkali may be added to the first cleaning liquid sprayed by the water scrubber 220 to make the first cleaning liquid alkaline. As a result, the water scrubber 220 can efficiently remove the acid component (for example, sulfur oxide) contained in the gas.
 また、水循環部280は、排水を抜き出す機構および第1洗浄液を補充する機構を備えてもよい。同様に、油循環部290は、排油を抜き出す機構および第2洗浄液を補充する機構を備えてもよい。 Further, the water circulation unit 280 may include a mechanism for extracting drainage and a mechanism for replenishing the first cleaning liquid. Similarly, the oil circulation unit 290 may include a mechanism for draining the drained oil and a mechanism for replenishing the second cleaning liquid.
 また、上記実施形態において、ガス精製装置200は、オイルスクラバ230で生じた排油および凝縮水を分離する沈降分離部320を備えてもよい。 Further, in the above embodiment, the gas refining apparatus 200 may include a sedimentation separation unit 320 for separating the drained oil and the condensed water generated in the oil scrubber 230.
 また、上記実施形態において、分散部230bが、第2洗浄液を本体230a内に噴霧する構成を例に挙げた。しかし、分散部230bは、本体230aの水平断面に対し、実質的に均一に第2洗浄液を分散させることができれば構成に限定はない。分散部230bは、例えば、分散材を含んでもよい。 Further, in the above embodiment, the configuration in which the dispersion portion 230b sprays the second cleaning liquid into the main body 230a is given as an example. However, the structure of the dispersion portion 230b is not limited as long as the second cleaning liquid can be dispersed substantially uniformly with respect to the horizontal cross section of the main body 230a. The dispersion portion 230b may include, for example, a dispersion material.
 また、上記実施形態および変形例において、配管234にポンプが設けられていてもよい。また、変形例において、配管336およびコンデンサ356にポンプが設けられていてもよい。 Further, in the above embodiment and the modified example, the pump may be provided in the pipe 234. Further, in the modified example, a pump may be provided in the pipe 336 and the condenser 356.
 また、上記実施形態において、第1洗浄液が少なくとも水を含む場合を例に挙げた。しかし、第1洗浄液は、ガス中に含まれる除去物質の融点よりも低温であれば、構成に限定はない。第1洗浄液は、例えば、メタノールおよびエタノールのうち、いずれか一方または両方である。ガス精製装置200は、除去物質の融点よりも低温の第1洗浄液をガス化ガスに接触させることにより、除去物質を効率よく除去することができる。 Further, in the above embodiment, the case where the first cleaning liquid contains at least water is given as an example. However, the composition of the first cleaning liquid is not limited as long as it is lower than the melting point of the removing substance contained in the gas. The first cleaning solution is, for example, either one or both of methanol and ethanol. The gas purification apparatus 200 can efficiently remove the removed substance by bringing the first cleaning liquid having a temperature lower than the melting point of the removed substance into contact with the gasified gas.
 上記実施形態において、また、除去物質として、芳香族化合物を含むタールを例に挙げた。しかし、除去物質は、オレフィンを含んでいてもよい。 In the above embodiment, tar containing an aromatic compound was given as an example as a removing substance. However, the removal material may include olefins.
 また、水スクラバ220が供給する第1洗浄液の流量は、バグフィルタ140から排気されたガス化ガスの温度または流量に応じて定められてもよい。例えば、バグフィルタ140から排気されたガス化ガスの温度、または、水スクラバ220内の温度を測定する温度測定部を備え、制御部は、温度測定部の測定結果に基づいて、水スクラバ220が供給する第1洗浄液の流量を決定する。この場合、制御部は、水スクラバ220内の温度が、重質タールの融点未満であり、軽質タールの融点以上となるように、水スクラバ220が供給する第1洗浄液の流量を決定するとよい。これにより、制御部は、水スクラバ220の出口のガスの温度を重質タールの融点未満とすることができ、重質タールの除去率を向上させることが可能となる。 Further, the flow rate of the first cleaning liquid supplied by the water scrubber 220 may be determined according to the temperature or flow rate of the gasified gas exhausted from the bag filter 140. For example, the water scrubber 220 is provided with a temperature measuring unit for measuring the temperature of the gasified gas exhausted from the bag filter 140 or the temperature inside the water scrubber 220, and the control unit is based on the measurement result of the temperature measuring unit. The flow rate of the first cleaning liquid to be supplied is determined. In this case, the control unit may determine the flow rate of the first cleaning liquid supplied by the water scrubber 220 so that the temperature inside the water scrubber 220 is lower than the melting point of the heavy tar and equal to or higher than the melting point of the light tar. As a result, the control unit can set the temperature of the gas at the outlet of the water scrubber 220 to be lower than the melting point of the heavy tar, and can improve the removal rate of the heavy tar.
 また、上記実施形態において、水スクラバ220が噴霧部220bを備える構成を例に挙げた。しかし、水スクラバ220は、除塵部210によって固体粒子が取り除かれたガス化ガスと、第1洗浄液とを接触させることができれば構成に限定はない。水スクラバ220は、オイルスクラバ230と同様の構成であってもよく、例えば、分散材を備えていてもよい。 Further, in the above embodiment, the configuration in which the water scrubber 220 includes the spray portion 220b is given as an example. However, the structure of the water scrubber 220 is not limited as long as the gasified gas from which the solid particles have been removed by the dust removing unit 210 can be brought into contact with the first cleaning liquid. The water scrubber 220 may have the same configuration as the oil scrubber 230, and may include, for example, a dispersant.
 本開示は、ガス精製方法、および、ガス精製装置に利用することができる。 This disclosure can be used for gas refining methods and gas refining equipment.
200:ガス精製装置 210:除塵部 220:水スクラバ(第1スクラバ) 230:オイルスクラバ(第2スクラバ) 234:配管(水供給部) 260:タールデカンタ(水供給部) 280:水循環部(水供給部) 200: Gas refiner 210: Dust removal unit 220: Water scrubber (first scrubber) 230: Oil scrubber (second scrubber) 234: Piping (water supply unit) 260: Tar decanter (water supply unit) 280: Water circulation unit (water) Supply department)

Claims (8)

  1.  ガスに含まれる固体粒子を取り除く工程と、
     前記固体粒子が取り除かれた前記ガスと、前記ガス中に含まれる除去物質の融点よりも低温の第1洗浄液とを接触させる工程と、
     前記第1洗浄液を接触させる工程を遂行した後、前記第1洗浄液に接触させた前記ガスと、前記第1洗浄液よりも前記除去物質との親和性が高い第2洗浄液とを接触させる工程と、
    を含むガス精製方法。
    The process of removing solid particles contained in the gas and
    A step of bringing the gas from which the solid particles have been removed into contact with a first cleaning liquid having a temperature lower than the melting point of the removing substance contained in the gas.
    After performing the step of bringing the first cleaning liquid into contact, the step of bringing the gas in contact with the first cleaning liquid into contact with the second cleaning liquid having a higher affinity for the removing substance than the first cleaning liquid.
    Gas purification method including.
  2.  前記第1洗浄液の流量は、前記固体粒子を取り除く工程を遂行した後の前記固体粒子が取り除かれた前記ガスの温度に応じて定められる請求項1に記載のガス精製方法。 The gas purification method according to claim 1, wherein the flow rate of the first cleaning liquid is determined according to the temperature of the gas from which the solid particles have been removed after performing the step of removing the solid particles.
  3.  前記第1洗浄液は、少なくとも水を含み、
     前記第2洗浄液は、少なくともオイルを含む請求項1または2に記載のガス精製方法。
    The first cleaning liquid contains at least water and contains at least water.
    The gas purification method according to claim 1 or 2, wherein the second cleaning liquid contains at least oil.
  4.  ガスに含まれる固体粒子を取り除く除塵部と、
     前記除塵部によって前記固体粒子が取り除かれた前記ガスと、前記ガス中に含まれる除去物質の融点よりも低温の第1洗浄液とを接触させる第1スクラバと、
     前記第1スクラバによって処理された前記ガスと、前記第1洗浄液よりも前記除去物質との親和性が高い第2洗浄液とを接触させる第2スクラバと、
    を備えるガス精製装置。
    A dust remover that removes solid particles contained in the gas,
    A first scrubber that brings the gas from which the solid particles have been removed by the dust removing portion into contact with a first cleaning liquid having a temperature lower than the melting point of the removing substance contained in the gas.
    A second scrubber that brings the gas treated by the first scrubber into contact with a second cleaning liquid having a higher affinity for the removing substance than the first cleaning liquid.
    A gas purification device equipped with.
  5.  前記第1洗浄液は、少なくとも水を含み、
     前記第2洗浄液は、少なくともオイルを含む請求項4に記載のガス精製装置。
    The first cleaning liquid contains at least water and contains at least water.
    The gas refining apparatus according to claim 4, wherein the second cleaning liquid contains at least oil.
  6.  前記第2スクラバで生じた排水を前記第1スクラバに供給する水供給部を備える請求項5に記載のガス精製装置。 The gas purification apparatus according to claim 5, further comprising a water supply unit that supplies the wastewater generated by the second scrubber to the first scrubber.
  7.  前記第1スクラバにおいて生じた排水および前記第2スクラバで生じた排水を貯留するタールデカンタを備える請求項5または6に記載のガス精製装置。 The gas purification apparatus according to claim 5 or 6, further comprising a tar decanter for storing the wastewater generated in the first scrubber and the wastewater generated in the second scrubber.
  8.  前記第1スクラバにおいて、前記ガスから除去された除去物質を利用する設備を備える請求項4から7のいずれか1項に記載のガス精製装置。 The gas purification apparatus according to any one of claims 4 to 7, further comprising equipment for utilizing the removed substance removed from the gas in the first scrubber.
PCT/JP2020/027882 2019-12-02 2020-07-17 Gas purification method and gas purification device WO2021111671A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021562452A JP7351349B2 (en) 2019-12-02 2020-07-17 Gas purification method and gas purification device
CN202080082836.4A CN114746165A (en) 2019-12-02 2020-07-17 Gas purification method and gas purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-217726 2019-12-02
JP2019217726 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021111671A1 true WO2021111671A1 (en) 2021-06-10

Family

ID=76221884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027882 WO2021111671A1 (en) 2019-12-02 2020-07-17 Gas purification method and gas purification device

Country Status (3)

Country Link
JP (1) JP7351349B2 (en)
CN (1) CN114746165A (en)
WO (1) WO2021111671A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279420A (en) * 2004-03-29 2005-10-13 Tsukishima Kikai Co Ltd Treatment equipment of tar-containing exhaust gas and tar removing method in treatment of exhaust gas
JP2006223972A (en) * 2005-02-17 2006-08-31 Yasuaki Yamakoshi Organic waste recycling apparatus and gas washing apparatus
JP2014501606A (en) * 2010-11-09 2014-01-23 ディガンバル パンデ ダナンジャイ A novel system for recovering value-added products by adsorbing and separating floating gas impurities from exhaust gas
CN206298556U (en) * 2016-12-23 2017-07-04 胜帮科技股份有限公司 A kind of system that coal tar is reclaimed in the oil gas from pyrolysis of coal
CN109504468A (en) * 2018-12-26 2019-03-22 陕西煤业化工集团神木天元化工有限公司 The recovery system of coal tar in a kind of pyrolysis coal gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943042B2 (en) * 2003-02-26 2007-07-11 東洋エンジニアリング株式会社 Tar-containing gas cleaning method and apparatus, and combustible gas production method and apparatus
CN101230283B (en) * 2008-02-01 2011-06-08 抚顺矿业集团有限责任公司 Oil shale retorting process reclaiming method
CN101831312A (en) * 2010-05-04 2010-09-15 大庆油田有限责任公司 Oil washing and energy saving technology and device for condensing and recycling destructive distillation oil and gas of oil shale
CN106281475A (en) * 2016-09-09 2017-01-04 新疆广汇中化能源技术开发有限公司 Raw coke oven gas dust arrester
CN107603679A (en) * 2017-10-09 2018-01-19 新疆广汇中化能源技术开发有限公司 A kind of raw coke oven gas deduster and dregs of fat separation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279420A (en) * 2004-03-29 2005-10-13 Tsukishima Kikai Co Ltd Treatment equipment of tar-containing exhaust gas and tar removing method in treatment of exhaust gas
JP2006223972A (en) * 2005-02-17 2006-08-31 Yasuaki Yamakoshi Organic waste recycling apparatus and gas washing apparatus
JP2014501606A (en) * 2010-11-09 2014-01-23 ディガンバル パンデ ダナンジャイ A novel system for recovering value-added products by adsorbing and separating floating gas impurities from exhaust gas
CN206298556U (en) * 2016-12-23 2017-07-04 胜帮科技股份有限公司 A kind of system that coal tar is reclaimed in the oil gas from pyrolysis of coal
CN109504468A (en) * 2018-12-26 2019-03-22 陕西煤业化工集团神木天元化工有限公司 The recovery system of coal tar in a kind of pyrolysis coal gas

Also Published As

Publication number Publication date
CN114746165A (en) 2022-07-12
JPWO2021111671A1 (en) 2021-06-10
JP7351349B2 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
RU2591146C2 (en) Method and device for process water treatment
RU2544663C2 (en) Separator of dust and pitch acid components from hot gases of gasification plants
RU2710020C2 (en) Catalytic modification of pyrolytic vapour
CN103241738A (en) Systems and methods for capturing carbon dioxide
JP2007246695A (en) Apparatus for gasification of waste
JP2008222978A (en) Wood charcoal gasification apparatus
WO2014017955A2 (en) Method for processing combustible carbon-containing and/or hydrocarbon-containing products, reactor for implementing same (variants) and apparatus for processing combustible carbon-containing and/or hydrocarbon-containing products
KR101365116B1 (en) Gas purifying apparatus using molten metal
JP6048133B2 (en) Syngas generation system and synthesis gas generation method
CN106433778A (en) Demetallization of hydrocarbons
JP2005504167A (en) Method and apparatus for fuel gasification in a fluidized bed reactor
ITMI20100467A1 (en) GAS CLEANING SYSTEM PRODUCED BY GASIFICATORS.
CN109576001B (en) Organic hazardous waste pyrolysis gas purifying system
KR101606601B1 (en) Modified gas and steam turbine process having integrated coal gasification under pressure
JP3943042B2 (en) Tar-containing gas cleaning method and apparatus, and combustible gas production method and apparatus
WO2021111671A1 (en) Gas purification method and gas purification device
CN113136246A (en) High-temperature garbage dry distillation oil-gas separation system and method
JP6776832B2 (en) Gasification gas generation system
JP5489264B2 (en) Settling separator for gasified combustible gas content
SU764616A3 (en) Method of synthesis gas production
JP2014024937A (en) System and method for generating gasified gas
KR101330126B1 (en) High-temperature and high-pressure dry sorbent autothermal desulfurization device
JP2019203078A (en) Gasification gas manufacturing apparatus and manufacturing method of gasification gas
JP2000178567A (en) Composite coal gasification-power generation plant and purification apparatus for coal-gasified gas
CN113136231A (en) Purification system and method for high-temperature household garbage pyrolysis oil gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895144

Country of ref document: EP

Kind code of ref document: A1